
From OO to FPGA: Fitting Round
Objects into Square Hardware?

Stephen Kou Jens Palsberg
UCLA Computer Science Department
University of California, Los Angeles

Abstract
Consumer electronics today such as cell phones often have
one or more low-power FPGAs to assist with energy-
intensive operations in order to reduce overall energy con-
sumption and increase battery life. However, current tech-
niques for programming FPGAs require people to be spe-
cially trained to do so. Ideally, software engineers can more
readily take advantage of the benefits FPGAs offer by be-
ing able to program them using their existing skills, a com-
mon one being object-oriented programming. However, tra-
ditional techniques for compiling object-oriented languages
are at odds with today’s FPGA tools, which support nei-
ther pointers nor complex data structures. Open until now
is the problem of compiling an object-oriented language to
an FPGA in a way that harnesses this potential for huge en-
ergy savings. In this paper, we present a new compilation
technique that feeds into an existing FPGA tool chain and
produces FPGAs with up to almost an order of magnitude
in energy savings compared to a low-power microproces-
sor while still retaining comparable performance and area
usage.

Categories and Subject Descriptors D.3 Programming
Languages [Processors]: Compilers

General Terms Design, Experimentation, Languages, Mea-
surement, Performance

Keywords Objects, FGPAs

1. Introduction
Field-programmable gate arrays (FPGAs) offer a middle
point between application-specific integrated circuits (ASICs)
and central processing units (CPUs). ASICs have the lowest
power consumption but also the lowest flexibility: they can

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA/SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright c© 2010 ACM 978-1-4503-0203-6/10/10. . . $10.00

be used for only one purpose. FPGAs, on the other hand,
typically exhibit at least an order of magnitude more power
consumption than ASICs [10], but they also provide greater
flexibility: they can be programmed and reprogrammed. Tra-
ditionally, mobile consumer electronics such as cell phones
have used ASICs to help increase battery life time by of-
floading the more energy or computationally-intensive oper-
ations from the CPU to the ASIC/FPGA. However, during
the past decade, consumer electronics have increasingly used
FPGAs to allow, for example, easy adaptation to the many
cell phone standards worldwide [1]. Furthermore, the repro-
grammability of the FPGA also makes it an ideal choice for
hardware that needs to be upgraded or modified often.

Currently, the benefits that FPGAs offer come at a price.
While CPUs are simple to program and languages made to
program CPUs are generally high-level and easy to learn,
ASICs and FPGAs can only be programmed by those spe-
cially trained to use the tools and languages developed
specifically for designing digital circuits. FPGA designers
typically use a hardware description language (HDL) such
as VHDL [13] or Verilog [2] to define the behavior of the
FPGA. Although recent developments have raised the level
of abstraction by allowing HDL designs to be constructed
from programs written in C, the barrier of entry can be re-
duced even more by enabling software engineers to start at
an even higher level of abstraction and program FPGAs in a
paradigm familiar to many – object-oriented programming.
The nascent boom in FPGA use further presses the question
of how this can be accomplished.

Some work has been done to approach this problem. For
example, Huang, Hormati, Bacon, and Rabbah [7] have de-
signed a new object-oriented language aimed to target both
CPUs and FPGAs. A DES encryption benchmark, when
written in this language, generated an FPGA design that exe-
cuted fourteen times slower than the same code running on a
CPU. However, their project did not consider energy usage;
but we note that since energy = (power × time), longer run-
ning times decrease the energy advantage that FPGAs offer.

Schoeberl [15] presented an implementation of a Java vir-
tual machine in which bytecode was executed by an FPGA;

however, he did not compare the performance between the
FPGAs and CPUs.

Let us note that compiling an object-oriented language
to an FPGA is different from specifying a hardware design
in C++ using an embedded domain-specific language, as is
done by Mencer, Platner, Morf, Flynn [12].

Our approach is different from previous attempts; we
wish to take an existing object-oriented language that was
designed without FPGAs in mind and compile programs
written in this language to C programs, which can be passed
through an existing tool that converts C programs to HDL
designs, which can then be synthesized on an FPGA. In par-
ticular, we want to compile bare object-oriented programs;
that is, object-oriented programs that are written in the usual
syntax without any form of special annotations or pragmas
to help the compiler. We want to do this in a way that real-
izes a large part of the energy savings that is possible on an
FPGA compared to a CPU, while still attaining comparable
performance and area usage.

At first, it seems straightforward to approach our goal:
first compile an object-oriented language to C, and then let
the tool chain from C to FPGAs take over. However, tra-
ditional techniques for compiling object-oriented languages
are at odds with today’s FPGA tools that don’t support point-
ers and complex data structures. Open until now is the prob-
lem of compiling an object-oriented language to an FPGA
in a way that realizes some of the huge potential for energy
savings.

Challenge: compile a bare object-oriented program
to an FPGA with significant energy savings compared
to a CPU, while still maintaining acceptable perfor-
mance and space usage.

As the starting point for our investigation, we chose the
Virgil programming language and the AutoPilot tool for
mapping from C to FPGAs. In this paper, we present a new
compilation technique that compiles unmodified, bare Virgil
programs in a way that AutoPilot can successfully produce
HDL designs meant for synthesis on FPGAs.

Titzer [16] designed Virgil with the purpose of program-
ming embedded systems and device drivers within small
memory. Virgil is a strongly-typed, object-oriented language
akin to Java and C#. Virgil has several features that makes
it an ideal language for our project. In particular, Virgil di-
vides computation into two phases — initialization and ex-
ecution; the initialization phase involves the compiler inter-
preting, starting with the components which contain entry
point methods, the constructors in the program. Each con-
structor may allocate additional memory via the new expres-
sion, which results in an additional constructor call. Memory
allocation and the use of new expressions to create objects
and arrays are complementarily limited to constructors only.
The compiler, upon completion of the initialization phase,
has a view of the entire heap of the program and can then rep-

resent the generated objects and arrays in an efficient man-
ner. Titzer, Auerbach, Bacon, and Palsberg [17] have also
explored the possibility of doing this on a full-fledged Java
virtual machine. The final execution of the program, whether
on an FPGA or a CPU, constitutes the execution phase.

The company AutoESL, Inc. (http://www.autoesl.com)
created the AutoPilot tool for converting a subset of C into
various hardware description languages for synthesis onto
an FPGA chip. AutoPilot is a commercialization of the ex-
perimental xPilot system developed by Cong et al. [5, 19],
and is more robust, stable, and reliable than xPilot. AutoPilot
uses LLVM [11] as its frontend and then outputs a hardware
design in several hardware description languages, namely
VHDL, Verilog, and SystemC [3]. After further optimiza-
tion for a specific FPGA brand and model, the output can be
directly imported into the FPGA manufacturer’s own synthe-
sis and layout tool, which will do the final HDL compilation,
synthesis, routing, and other FPGA-specific layout tasks, af-
ter which the design can be downloaded into the FPGA and
executed.

AutoPilot’s subset of C excludes function pointers, and
places severe limitations on regular pointers, struct casting,
and the contents of structs. These limitations rule out the
traditional way of representing objects as virtual method
tables cannot be used (as there are no function pointers), and
structs cannot be used (as there is no support for casting).

Our compilation technique successfully translates bare,
recursion-free Virgil programs to the subset of C that Au-
toPilot accepts. We build on Titzer and Palsberg’s notion of
vertical object layout [18], and we use the idea of using type
case to compile virtual method dispatch without use of func-
tion pointers [4]. On top of that, we introduce two new tech-
niques: grouped arrays that overcome the other limitations
of AutoPilot, and the hybrid object layout scheme for com-
pression of object tables. Our implementation, essentially,
is:

OO to FPGA = typecase for method dispatch +
grouped arrays +
hybrid object layout.

Our approach produces HDL designs that, when executed
on an FPGA, exhibit up to almost an order of magnitude in
energy savings over a low-power microprocessor, and with
decent performance and competitive area usage compared
with HDL designs written directly in C.

The structure of the rest this paper is as follows: in the
next section, we take a closer look at AutoPilot’s subset of C
and the motivation behind our approach. Sections 3–5 detail
how we compile objects, arrays, and methods, respectively.
In Section 6 we discuss further optimizations, and in Section
7 we give our experimental results.

2. An FPGA-oriented subset of C
AutoPilot places several limitations on the extent of C’s fea-
tures that are supported that dramatically change the way ob-

ject references and array references are compiled, as well as
requiring a completely different approach to handling virtual
method dispatch. The way that we implement these three
form the core of our compilation technique. Traditionally,
all three areas have been solved by using scalar and function
pointers. We will show that usage of pointers in AutoPilot is
significantly hampered and, as a result, we cannot use them
at all. Thus, the driving force behind our approach is to rep-
resent references and virtual methods without using pointers
of any kind.

This section reviews the traditional methods of compiling
objects, arrays, and references to the C programming lan-
guage, and how the restrictions imposed by AutoPilot make
these approaches infeasible.

2.1 Memory Model
The crux of the problem lies in the fundamental difference
of the memory architecture of an FPGA versus that found
on CPUs. The hallmark of the FPGA memory model which
separates it from that of the CPU is that the memory require-
ments must be known beforehand; the amount of memory al-
lotted to a design is precisely the amount of memory that the
design requires; no more is given than requested. Further-
more, this memory is fragmented into many subunits, into
which data is distributed and stored. This is in stark contrast
to that of CPU-based computers, where memory is a single
vast, allocatable, and addressable area that can be managed
by the application itself; additional memory can be requested
during execution.

Because of this difference in design philosophies, a pro-
gram fed through AutoPilot cannot utilize dynamic mem-
ory allocation; i.e. calls to malloc and free. The reason
behind this is twofold: primarily, as stated before, FPGAs
themselves limit the amount of memory available to the syn-
thesized design. ROMs and RAMs are allocated on an as-
needed basis during the design and synthesis phase; addi-
tional memory blocks cannot be requested during runtime.
Also, dynamic memory allocation and other managed mem-
ory models generally have a negative impact on performance
and therefore are not ideal for hardware programming.

As a result, AutoPilot is strongly suited for programs that
have statically known memory requirements. Virgil is an
ideal programming language to target AutoPilot because all
Virgil programs have this exact property. The initialization
phase explained earlier allows the Virgil compiler to know
the memory footprint of the program in its entirety. We
encode this memory footprint in an way that works with
AutoPilot, and emit C code for the rest of the program.

2.2 C Pointers
A language construct in C that is inseparably linked to the
memory model of the underlying platform is the pointer. Au-
toPilot performs a series of transformations on the program
itself that eventually removes all pointers from the program.
It relies heavily on various static analysis techniques in order

to accomplish the illusion of pointers that it offers the pro-
grammer. However, dynamic pointers, or pointers that are
re-assigned to point to different data during runtime, have
always represented a challenging static analysis task; it is
very difficult to determine to which data various pointers will
point to at various points during execution if they are passed
around and re-assigned. Because of this difficulty, there are
several quite hefty restrictions placed on pointers by AutoPi-
lot.

The transformation away of pointers is a necessary step
taken by AutoPilot because pointers, in their traditional
sense, cannot be easily implemented on FPGAs for architec-
tural reasons. On-chip FPGA memory is not a single, large,
addressable memory space like those on computers. Instead,
the memory space is fragmented into many small ’blocks’.
These blocks, called BRAMs in standard FPGA terminol-
ogy, each have their own input/output pins, which allow for
parallel reads and writes over multiple blocks. This memory
architecture, while good for performance, is the reason why
pointers are so hard to emulate on FPGAs.

This is compounded by the fact that each memory block
has its own address space; when a pointer pointing to data
residing on one block is re-assigned to data residing on an-
other block, AutoPilot must be able to determine the correct
block that holds the new data. The hardware design explic-
itly reflects this, as there must be a connection made in the
form of a bus between the entity and the memory blocks
to which it accesses. It is AutoPilot’s job, then, to deter-
mine statically to which data each pointer points and route
the electrical signals to the correct block when dereferenced.
Pointer arithmetic, too, must also be transformed away and
converted to direct data accesses as well. Therefore, pointers
that are dynamically re-assigned or those whose data cannot
be determined statically are not supported in AutoPilot. The
end product of this operation is a program that is left without
pointers at all. Any use of pointers that cannot produce this
end state cannot be handled by AutoPilot. structs are also
limited in this fashion; they cannot contain pointers.

2.2.1 Function pointers
The standard execution model on a computer involves exe-
cution of instructions stored in the main memory. Each in-
struction has a corresponding address; moving between ar-
eas of code is accomplished using jumps to different ad-
dresses. Calling a function involves first copying arguments
onto the stack then transferring execution to the address of
the first instruction of the function.

AutoPilot takes a completely different approach to con-
verting functions onto an FPGA. Each C function in the pro-
gram is converted into a design entity, a language construct
present in all HDLs that provides a level of abstraction. Like
functions, which group together code and provide a black-
box interface, entities also group together circuitry and logic
and provide a black-box interface in the form of input and
output pins. Copies of the entity, called instances, can be

class A { class B extends A { class C {
field child : A; field other: C; field a : int;
field value : int; field b : int;

method bar() : void
method foo() : void { } method f() : void
{ } { }

method arg() : void }
method bar() : void { }
{ } }

}

Figure 1. A set of classes written in Virgil.

placed onto the chip, each occupying a certain amount of
area. An HDL design consists of an interconnected network
of entity instances.

Unlike functions on a computer, any function call ren-
dered in this scheme requires a direct, physical connection
of wires between the caller instance and the callee instance.
If AutoPilot cannot determine the entity instance to which
a call is made, it cannot handle that function call. This is
apparent in the case of function pointers. If a AutoPilot can-
not determine during compilation which function a function
pointer is pointing to, it is unable to create the necessary
connections that implement the call. In fact, AutoPilot at this
time has no support for function pointers, even those that can
be statically reasoned about.

This limitation creates substantial problems for the way
the semantics of virtual methods are implemented. The tra-
ditional technique of handling virtual dispatch is the use of
virtual method tables. Virtual method tables are lists of func-
tion pointers that point to the correct function to be called
when a virtual method is invoked. The cell representing the
virtual method is read, and the address stored within is then
jumped to and executed. Because of the dependence of this
approach upon the function pointer, we are forced to use a
different mechanism to accomplish similar functionality and
semantics.

2.3 Functions and Recursion
As stated earlier, each function is converted into design
entities, of which instances are created; wires linking in-
stances together reflect calls between different entities. This
paradigm for representing functions precludes the need for
stack frames to be set up in memory; here, the closest con-
cept of a ’stack’ is the area available on the FPGA chip.

FPGA tools are able to minimize the number of instances
needed of each entity by allowing reuse of instances. As
long as the instance is used only by one call at a time, the
instance may be used over and over again. However, there
are scenarios where the instance cannot be reused, such as
parallel calls to the same entity. The general solution for
these scenarios is to place another copy of the entity on the
chip, thereby resulting in two instances of the same entity

allowing for two simultaneous calls. Of course, this then
leaves less remaining free area on the FPGA chip for other
logic.

One significant case where this approach fails, however,
is in the case of general recursion. Because the entity then
needs to call itself, the existing instance is not reusable.
This creates an irreconcilable case for AutoPilot: because it
cannot conclude how many times the recursive call will be
performed, it then assumes an infinite number of instances
would be needed. However; the area on a chip is far from
infinite, and thus AutoPilot rejects the input program. The
design of Virgil, however, allows recursion; we do not at-
tempt to resolve this problem in this paper. While it is pos-
sible in some cases to eliminate recursion through program
transformations, it is beyond the scope of this paper and thus
is relegated to future work. Other than recursion, however,
functions are fully supported in AutoPilot’s subset of C.

3. Objects
We now turn to presenting our approach to compiling Vir-
gil. Our chief concern is the representation of objects and
object references. The representation method is particularly
important in the case of Virgil because, like Java, program-
mers must use the object-oriented paradigm. Objects are in-
stances of classes declared in Virgil and are allocated and in-
stantiated in the constructors. Object references are pointer-
like constructs that provide a level of indirection to objects;
like Java, all manipulations done with objects in Virgil are
through the use of references. Object references are passed,
by value, to methods; object references are used in all lo-
cal variables, arrays, and fields which are typed as being an
object instance.

Virgil classes are relatively simple compared to their
counterparts in Java, C#, or C++. Fields and methods can
only be marked as public or private, while all classes can
only be public. Static fields and methods are not supported,
but the functionality is present via the use of singleton
components. All classes are single-inheritance with meth-
ods being virtual by default; interfaces and abstract methods
are not supported. Another important distinction between
Java’s and Virgil’s class semantics is that not all of the

classes in Virgil ultimately inherit from a common Object
class as they do in Java. Instead, a program can consist of
a set of disjoint class hierarchies, each with its own unique
root class. To illustrate this, a small set of classes have been
declared in Virgil syntax in Figure 1. We have described two
distinct class families: that of A and B, and a single-member
family C. Because the two do not ultimately inherit from a
common type, they are wholly independent of each other.

The next few sections will build examples off of this
sample class hierarchy. To give a quick summary of the way
these classes are structured: both the fields child in A and
other in B are references to other objects. Polymorphism
rules allow the recursive child field in A to refer to either
an instance A or an instance of B. Two methods are defined
in A: foo and bar. B provides an overridden implementation
for bar, but not foo; it also adds another method arg.

With this in mind, in the following sections we discuss
and review various object layout strategies, culminating with
the representation we use in our compiler that tries to mini-
mize space while at the same time attempting to incur a min-
imal amount of performance overhead on an FPGA.

3.1 Horizontal Object Layout
We term the traditional method of compiling objects to C
as the ”horizontal object layout”. It is the most straightfor-
ward approach to representing objects using C language con-
structs, and is considered well-known; thus, we will simply
provide a cursory review of this approach. The horizontal ob-
ject model converts each class into a struct; the struct is
composed of, in this order: (1) a pointer to a virtual method
table, (2) the fields of the parent class, and (3) the fields de-
fined in the class itself. As a result, each class’ struct in-
clude its parent class’ struct as a prefix.

In this scheme, references to objects are rendered as
pointers which point to instances of the struct. Polymor-
phism is accomplished by exploiting the property stated ear-
lier that the in-memory layout of a child class is compatible
with that of its parent; a pointer typed as the struct of
the child class can be casted to a pointer typed as pointing
to an instance of the parent class’ struct; all accesses to
the fields and entries in the virtual method table would be
compatible. A type cast is implemented in a similar fash-
ion: a pointer typed as pointing to an instance of the parent
struct may in reality be pointing to an instance of the child
struct; thus, a cast can be performed in the C code on the
pointer itself to cast it back to a reference of the child class.

Figure 2 illustrates how one instance of A, one instance of
B, and one instance of C from our example class hierarchy
would be laid out in memory using the horizontal object
model. The field called vmt is a pointer to the virtual method
table, which contains the collection of function pointers that
refer to the virtual methods. A field access is easily translated
using the horizontal object model. We show a translation of
a small Virgil method to C in the following code snippet. It

a1: vmt

vmt

vmt a b

f()

foo() bar() arg()

child value other

child value

foo() bar()

b1:

c1:

Figure 2. Memory layout of A, B, and C in the Horizontal
Object Model.

is a simple dereference of the object pointer, coupled with a
field access:

method f(obj : A) : int {
return obj.value;

}

int f(struct A* obj) {
return obj->value;

}

Although this is the most straightforward way to repre-
sent objects on a computer, it uses pointers profusely to ac-
complish the various traits required for inheritance and poly-
morphism. This object representation breaks down when
AutoPilot is involved in a number of ways: function pointers
like the ones used in virtual method tables are not allowed,
structs containing pointers are prohibited, and the casting
of structs, done here to accomplish subtype polymorphism
and type casting, cannot be used. It is therefore clear that we
cannot use this form of object representation when targeting
AutoPilot.

3.2 Vertical Object Layout
The first step forward is to first remove the necessity of
the pointer in the representation of an object reference. A
strategy that accomplishes this goal, and the basis for our
approach, is the ”vertical” object layout [18]. We work here
with the concept of the uncompressed vertical object model,
which omits the compression scheme performed in Titzer’s
work.

The vertical object layout re-organizes all of the objects
in a program into a large table, where the rows are the class

fields, and the columns are the individual objects. There is
thus one row for every field defined in the program. The
virtual method table is also encoded as rows; one row for
every virtual method defined. Therefore, an object in this
model is a single column across all the rows. References to
objects, then, do not use pointers — a reference is an integer
that refers to the column index in the table where the values
reside. Instead of pointers, this integer is used anywhere that
an object reference is expected. A field lookup using the
uncompressed vertical object is shown in the code snippet
below. We show a translation of a small method into C:

method f(obj : A) : int {
return obj.value;

}

int f(int obj) {
return Row_A_Value[obj];

}

The emitted C code is achieved from the following steps:

1. Given the field, the compiler determines the correct row
to access in the object table: Row A Value.

2. The row is accessed given the object identifier: obj.

3. The field is accessed by indexing into the field array.

Fields are no longer grouped into structs to reflect how
they were declared in classes; instead, the vertical object
model flattens the structure of the program from a set of
classes to instead a set of fields. Field accesses and encapsu-
lation are instead guaranteed by the Virgil type-checker, and
such traits of the program are not reflected in the C code.
Because of this property of the vertical object model, both
polymorphism and casting are trivial and require no special
treatment. No type information is retained in the C code, as
all object references are now an int.

Figure 3 illustrates how the vertical object model would
lay out 2 instances of A, two instances of B, and one instance
of C from our example class hierarchy shown earlier. The
virtual method table’s entries are also rendered as rows in the
object table; they are typed as arrays of function pointers.

An obvious drawback of the uncompressed vertical object
model is the amount of wasted memory incurred when ren-
dering the object table. All the crossed boxes in the figure
are cells present in the table, but are unused. For example,
an instance of A gets allocated all the memory needed for the
fields of B and C as well. Therefore, as larger programs are
created with more complex object hierarchies, the amount of
wasted memory will grow. This design choice allows faster
lookups and simpler object reference representation, at the
expense of an increased memory footprint.

Nevertheless, the vertical object model solves one of the
major obstacles presented in the previous section to repre-
senting objects in FPGAs and AutoPilot: it allows us to cre-
ate references to objects without pointers. However, the ver-

A's VMT

child

value

other

arg

foo

bar

f

a

b

A's fields

B's VMT

B's fields

C's fields

C's VMT

0 1 2 3 4

Figure 3. A visualization of the in-memory layout of the
uncompressed vertical object model.

tical object model alone is not enough to satisfy all the limits
of AutoPilot: it still employs function pointers to implement
virtual dispatch, and the amount of wasted memory is not
ideal for hardware, where increased area directly translates
to increased costs. In the next sections, we address both of
these issues by modifying the uncompressed vertical object
model.

3.3 Space minimization
The vertical object model employs a compression scheme
which we do not explore in this paper. Instead, we present a
compression scheme which fits well with the unique archi-
tectural properties of FPGAs.

Our aim is to compress the object table while still finding
a way to represent an object reference that retains the sim-
plicity of the vertical object model. To accomplish this, we
totally restructure both the object table and the object refer-
ence. The section describes this approach.

3.3.1 The object table
While we retain the concept of the object table from the
vertical object model, we restructure it in such a way the
leaves no wasted space. Originally, every object in the object
table shown in Figure 3 was the same size in memory —
each object occupied an entire column. By compressing the
object table and removing the unused cells, as shown in
figure 4, the unused space is gone, but objects are now no
longer at a single index. For example, the third column in
the table, an instance of B, occupies the third cell in the row
for A, but occupies the first cell in the row for B. Such an

child

value

other

a

b

A's fields

B's fields

C's fields

{0} {1} {2,0} {3,1} {0}

Figure 4. The hybrid object layout’s object table format.

object table requires us to store offset information for the
different rows.

One approach is to introduce another table, which maps
single integers to a collection of offsets. This scheme would
preserve the single-integer property of the vertical object
model, while allowing us to remove the wasted space. How-
ever, this would have adverse effects on performance. A field
lookup in this scheme would entail the following steps:

method f(obj : A) : int {
return obj.value;

}

int f(int obj) {
return Row_A_value[Objects[obj][1]];

}

1. Given an index obj, a lookup is done into the second
table to retrieve the correct offsets corresponding to the
given object instance index: Objects[obj].

2. Given the field being accessed, the compiler determines
which row is the correct row that corresponds to the field:
Row A Value.

3. The compiler determines which offset is the correct one
that corresponds to the row. Here, we assume the offset
at index 1 refers to the A row.

4. The row is then accessed, being given the correct offset
retrieved from the first step. Since it is a field array, the
access is simply an array access.

Two new steps are introduced: first, an additional lookup
to retrieve the set of offsets; second, a determination must be
made as to which offset corresponds to which row. While the
latter is accomplished within the compiler, the former must
occur at runtime. For traditional computer programming,
such a design would be a tradeoff of performance in favor
of memory. The memory minimization comes at the cost of
the additional lookup for every field access.

Surprisingly, we find that this extra lookup can actually be
eliminated when targeting FPGAs because of a unique opti-

mization that can be performed. If we eliminate the second
table altogether, but pass along the set of offsets directly in-
stead of an integer to the second table, no additional lookup
is needed. An object reference then would not a single inte-
ger, but instead would be the tuple of offsets that point into
the object table directly. Thus, field accesses in our model
consist only of steps 2-4.

To see why this is discouraged on microprocessor-based
systems but a perfectly valid design choice when program-
ming FPGAs, one must re-examine the implications of the
differences in the way function calls are implemented on the
FPGA by AutoPilot and the way they are traditionally done
on a microprocessor. Normally, passing large data structures
(larger than the register size of the platform) as arguments
for function calls is discouraged. Calls such as these will
both require a larger stack frame to hold the data, as well
as additional copy operations to copy the data structure into
into the stack frame before the function can be called. Fur-
thermore, this is compounded by the fact that when dealing
with data larger than the multiprocessor’s register size, mul-
tiple loads and stores are required to move the data. Because
of this, functions with complex parameters have traditionally
been represented indirectly by pointers to mitigate this prob-
lem; a pointer always fits into the register and can be copied
in one operation.

In the hardware world, however, no such difficulty exists
in function calling. A large data structure being passed by
value is just synthesized as a wider bus between the caller
and the callee. Data is passed along this bus in a single
parallel write operation regardless of bit width. Because of
this unique property of an FPGA, widening the bitwidth of
an object reference from a single integer to multiple integers
incurs nearly no performance overhead. In fact, we find that
for larger programs with big class hierarchies, this actually
offers increased performance over the uncompressed model,
as will be discussed in our benchmarks section.

The next subsections discuss in more detail our usage of
tuples as pointers, as well as outline the other difference
in our object table format versus that of the vertical object
model.

3.3.2 Table layout and Inheritance
We call our object model the hybrid object model because
we retain the struct concept from the horizontal scheme,
but apply it to the design philosophy of the vertical scheme.
Like the horizontal object model, we take each class and
convert it to a struct. However, instead of prefixing the
struct with that of its parent, we omit the parent’s layout
altogether, and just include the fields immediately declared
in the class itself. Thus, unlike the horizontal object model,
inheritance is not encoded within the struct itself.

Each class struct forms a row in our object table. Be-
cause we group by structs instead of fields, our object ta-
ble has a fewer number of rows than that of the vertical ob-
ject model. Virtual method information is also omitted from

struct Ptr {
char null;
int comp1;
int comp2;

}

Figure 5. The general structure of the pseudopointer.

the table. Objects are placed into the rows that correspond
to their inheritance chain as illustrated in figure 4: the table
layout consists of two instances of A, two instances of B, and
one instance of C. An instance of A only has an entry in the
row that corresponds to A, whereas an instance of B, because
its parent class is A, consists of an entry the A row as well as
an entry in the B row. Finally, an instance of C has only one
entry in the row for C. Boxes represent actual elements in the
row; empty spaces do not use any memory and are present
to make the diagram easier to understand. Each column in a
diagram represents one object instance; the text underneath
shows the tuple of offsets required to accurately reference
the object.

Another thing to note is that while in the horizontal object
model, inheritance is apparent in the layout of the struct
itself: the parent class’ fields prefix those of the class itself,
resulting in a memory layout that is compatible with that of
the parent. The vertical object model, similarly, makes the
class hierarchy visible in the table itself. A class instance
contains fields for itself as well as its parent (and all the
other classes in the hierarchy, too). For our hybrid object
model, however, inheritance is shown neither in the structs
nor the object table. Instead, inheritance is handled in the
object references; the tuple contains offsets for each node in
the chain from the root class to leaf class. The root class of
any object will always be at the first element in the reference
tuple, and child classes follow, forming the complete chain
from root to leaf.

3.3.3 Structs as Pointers
These tuples of offsets which are used as references to ob-
jects we call pseudopointers. Though they perform the func-
tion of pointers and provide a means of indirection to objects
similar to pointers, the semantics are very different.

The pseudopointer is rendered as a struct in C. The
general structure of the pseudopointer is shown in figure 5.
It consists of a null flag to indicate a reference to null. If
nonzero, it is understood to be a null reference. Following
the null flag are a series of integer fields comp1 ... compN,
which we call component offsets. These component offsets
point to various cells in the object table. The set of cells
that these component offsets point to comprise the object
instance. Each component points to an element in a unique
row in the table.

All objects in our program use this struct definition as
the canonical object reference; it is used wherever an object

struct A {
struct Ptr child;
int value;

};

struct B {
struct Ptr other;

}

struct C {
int a, b;

}

Figure 6. Our class hierarchy in this class encoding scheme.

reference is expected — local variables, fields in classes and
components, elements in arrays of objects, and parameters
to functions. The struct is passed by value into any functions
that take object references as parameters. One example of
this is shown in figure 6, which in particular demonstrates
how the references to other classes (fields child and other)
are rendered in C.

The interpretation of the component offsets is dependent
on the static type of the object reference during compila-
tion. Each class is broken down into multiple components; a
component is a node in the class’ inheritance chain. These
components are then ordered from root class to leaf class.

The number of component offsets stored in the pseudo-
pointer struct is determined by class with the greatest num-
ber of components — that is, the class with the longest path
to the root class of its family. All objects which have a
shorter path to the root node will use the same pseudopointer
struct, but some of the component offsets will be unused.

This scheme results in an absolute ordering of compo-
nents for every class: each class’ ordering is prefixed by that
of its parent. This property is exploited in order to accom-
plish polymorphism. When a reference of type B is assigned
to a reference for A, it still results in a compatible pseudo-
pointer, because the component ordering for A is a subset of
that of B; all the component offsets still correspond to the
correct rows.

With our sample class hierarchy, B has the longest chain
with a length of two – the chain from B to the root is {A,
B}. Thus, the program written using our sample hierarchy
will require a pseudopointer with two component offsets, as
shown in figure 5. All pseudopointers for references to B will
have its two component offsets pointing to the rows for {A,
B}, respectively. References to C will use one component out
of the two {C, -1}, where -1 is used to indicate an unused
component in the pseudopointer. Figure 7 illustrates how the
pseudopointer is interpreted for a reference to a B.

A field access in this scheme is translated into C as shown
in the code snippet below. We convert the same mini-method

Row_A

Row_B

struct Ptr
3

1

Figure 7. An illustration of the pseudopointer, pointing to
an instance of B.

that we have been using throughout this paper to show how
a field is accessed:

method f(obj : A) : int {
return obj.value;

}

int f(struct Ptr obj) {
return Row_A[obj.comp1].value;

}

The generation of this code involves several steps:

1. Given the field that is being accessed, the compiler deter-
mines the class that defines this field: A.

2. The compiler gets the position of the class within the
class hierarchy. This ordering determines which offset to
use in the pseudopointer: obj.comp1.

3. Code is emitted accessing the row that corresponds to
the class using the correct offset from the pseudopointer:
Row A.

4. The field can then be accessed: value.

A component ordering for every class is created during
compilation. We use this ordering also to implement poly-
morphism. The horizontal object model implements poly-
morphism through a form of structural subtyping – a child
class’ struct contains all the methods and fields, in the
same order, of its parent. This allows pointers to the structs
to be casted and still compatible. We use the class ordering
itself to implement polymorphism. A child class’ offset or-
dering is a superset of that of its parent.

As stated earlier, the compiler must create a mapping
from offset position within the pseudostruct to a certain row.
This mapping differs for each class family; the first offset in
the pseudopointer for a reference to an instance of B would
refer to the row for A; however, for a reference to an instance
of C, the first offset refers to an element in the row for C.
We order these components in such a way that the orderings
for a subclass is always compatible with the ordering of the
parent class; this way, subtype polymorphism is allowed.
A reference to a B can be passed to method expecting a

reference of type A as a parameter. Compatibility between
parent and child class is accomplished by ensuring that the
order of the parent class is a subset of that of the child. This
way, when code expecting a reference to A received instead a
reference to B, the offsets still correspond to the same rows.
By this same design choice, casting is possible and requires
no additional code.

3.4 Runtime type information
Augmenting this object layout model is the runtime type
information field TYPEID that is placed into each root
class’ struct in order to supply Virgil’s type query operator,
instanceof, with the needed information. This field also
allows us to check for incompatible type casts. The TYPEID
field is an unique integer that is assigned during compile
time to each class.

The way in which these values are ordered allow us to
optimize the work needed for comparing two types for com-
patibility: each class knows both the minimum value of its
subtree (itself) and the maximum value assigned to its chil-
dren. The implementation of instanceof is straightforward
— given an object type id, checking to see that it is greater
than the id of the target class and less than the maximum
value for that class will yield the correct result.

In our example, the compiler would assign a class identi-
fier of 1 for A, 2 for B, and 3 for C. The instanceof operator
querying whether an instance of C is compatible with A, then,
would be rendered as follows:

return Row_C[obj.f0].TYPEID >= 1 &&
Row_C[obj.f0].TYPEID <= 2;

Similarly, a type cast can be validated by checking the
class identifier of the target object to make sure it falls into
the target class’ interval.

4. Arrays
Virgil’s notions of arrays is similar to that of Java. The
programmer can always check the length of an array by
accessing the length field, and reads and writes are checked
at runtime for being outside of the bounds of the array.
What the programmer actually deals with are references to
the arrays themselves; like objects, all fields, variables, and
parameters which are typed in Virgil as an array are actually
treated as references to arrays. These references are then
passed by value in methods.

Array references normally would be implemented in C,
again, via the use of pointers. Arrays would be converted to
global variables, and pointers would in turn point to these
global variables. Virgil takes an additional step by also in-
cluding with the pointer a field indicating the length of the
array. These two items would be wrapped into a struct,
which would then be passed around. Of course, because of
the same reasons why the traditional object representation
doesn’t work, this strategy does not work either. Aside from

char[]

char[]

int[]

int[]

A[]

arr1

arr2

arr3

arr4

arr5

C[]arr6

arr1

arr2 arr3

arr4

arr5 arr6

char[]

int[]

struct Ptr[]

Figure 8. Array model.

the fact that we cannot use pointers, they cannot be included
as members of structs either.

4.1 Array grouping
Arrays in Virgil also fall under the rules for object alloca-
tion: arrays can only be created using the new operator with a
constant-sized length inside constructors for classes or com-
ponents. Once the initialization phase is complete, the com-
piler will know the total number of arrays in the program
and their lengths. This information allows us to perform our
array grouping technique.

In order to successfully represent references to arrays
without pointers, we approach the problem in much the same
way as with objects. We use the type information known dur-
ing compilation to create canonical global variables for each
type of an array, demarcated by the element type. All arrays
which have the same element type are then grouped together
and concatenated to form one long array. The original arrays
as defined in the Virgil program are now subsets of this one
canonical array.

This approach is illustrated in figure 8. The heap shown
here consists of two arrays typed as char[], two int arrays,
and two arrays holding objects of different types, A[] and
C[]. Although the classes A and C are incompatible, i.e. they
do not intersect at all in the class hierarchy, we consider them
both to be the same array type, as all objects are represented
by one struct in C. The arrays are grouped and concatenated,
forming one canonical array for each array type.

Array grouping accomplishes the prerequisites needed to
successfully encode references to arrays without the need for
pointers.

4.2 Array referencing
With the array groups created, an array can be uniquely iden-
tified by its start offset, and its length. We solve this problem
in much the same way as the object references; we create
a single struct which holds the necessary information to
identify an array. This array reference struct’s basic struc-
ture is shown in figure 9. Because an array reference can
be null like object references, we reserve a special flag for

struct Array {
char null;
int start;
int length;

}

Figure 9. Array reference struct.

null. The other two fields indicate the start of the array within
the canonical array, as well as the length of the array, respec-
tively. The length information is used on all element accesses
during runtime to ensure that accesses are valid and in the
bounds of the array, similar to array accesses in Java or C#.

These array references are, like our object pseudopointer,
passed by value into functions. Given an array reference
and a expression evaluating to an index within the array, an
element access would entail the following steps:

method f(arr : int[], x : int) : int {
return arr[x];

}

int f(struct Array arr, int x) {
return int_array[arr.start + x];

}

1. Determine the overall index by summing the result of
the index expression together with the start field of the
array reference : arr.start + x.

2. The compiler determines the correct global array to ac-
cess based on the static type of the array. All objects are
considered to be one array type: int array.

3. Perform the array access.

Although all array accesses are checked to ensure they are
within bounds, because currently Virgil has no exception
handling mechanism, the case where an invalid array access
occurs will result in undefined behavior.

Array grouping allows us to determine the correct array
to access during compile time based solely on the known

void Foo_dispatch(struct Pointer __this) {

switch(Row_A[__this.f0]) {

case 1: // B

B_bar(__this);

return;

default: // A

A_bar(__this);

return;

}

}

Figure 10. Dispatcher function in C.

type information of the array being accessed. Grouping all
arrays of the same time to one canonical array eliminates the
need for pointers, and allows us to represent references to
arrays in a straightforward way with minimal performance
overhead.

5. Methods
The final area of major concern is virtual method dispatch
without the use of tables or function pointers. The general
approach for this is the use of typecase to examine the run-
time type of an object in order to determine the correct func-
tion to invoke. To accomplish this, we create intermediate
dispatcher functions. In general, each method call will be
re-routed to a dispatcher function, which switches on the
object’s type identifier and then calls the correct function
directly. This section will provide an overview of this ap-
proach.

5.1 Type Case for Method Dispatch
Our dispatcher method relies on several features of our ob-
ject representation to successfully dispatch a call to the cor-
rect function: the runtime type information field, TYPEID,
in the root class struct; the fact that the pointer offsets are
ordered in such a way that the root class’ component index
will always be the first field in the pointer; and the fact that
all classes are known during compile time in order to create
a complete class hierarchy.

The dispatcher consists primarily of a switch statement on
the TYPEID of the object, and calls the appropriate function
for the class. If the method has a non-void return type, the
dispatcher will return the result of the called function. One
case statement will be placed for every class in the class hi-
erarchy. We employ fall-through cases for classes that share
a common method. An example of the dispatcher method for
foo as defined in class A of our example hierarchy is shown
in figure 10.

The dispatcher strategy incurs the highest performance
penalty in our object representation model, since each
method call will have to go through an intermediate dis-
patcher function before the correct code is executed. How-
ever, through static analysis and optimizations described
later, we can skip the dispatcher for many method calls to

which the destination method is definitely known during
compile-time.

5.2 Delegates
Virgil supports the notion of delegates, which behave sim-
ilarly to function pointers. Normally, they are compiled in
C as function pointers, which then are passed around in
the place of delegates. However, because AutoPilot does
not support function pointers, we do not allow delegates
in the Virgil programs at this time. It is possible to extend
the concept of dispatchers and create a large dispatcher that
switches between all functions that have the same signa-
ture, however we have not implemented this at this time. We
therefore relegate the implementation of delegates to future
work.

6. Optimizations
The approaches we have just demonstrated represents the
generalized model of how we implement the various lan-
guage constructs of Virgil targeted for hardware compila-
tion. However, we perform several additional optimizations
to further reduce area needed and improve performance. Our
optimizations fall into several categories, which will be dis-
cussed in this section.

6.1 Method Call Optimizations
Although all methods are virtual in Virgil, we again take ad-
vantage of the fact that all classes are known at compile time
in order to replace some dispatcher calls with direct method
calls. Some virtual methods may never be overridden by
other classes in the class hierarchy; calls to these methods
do not need a dispatcher, as it is known in complete certainty
which method is being called. We are able to then remove the
call to the dispatcher, instead replacing it with a direct call
the function. This minimizes the impact to performance of
using dispatchers.

In our example, the arg method in B and the foo method
in A both exhibit the property of never being overridden by
a child class. Calls to these functions elsewhere in the pro-
gram, then, are replaced with direct calls to the C functions
that represent the methods.

6.2 Bitwidth Optimization
Our compiler generates a variety of data structures and spe-
cial integer values throughout the model presented. Special
values such as the array lengths, object identifiers, array off-
sets, object table offsets, all are constant values generated
during compilation time whose minimum and maximum val-
ues are known. Because of this fact, our compiler can op-
timize the sizes of the integer types needed to store these
values.

AutoPilot allows for arbitrary bit-width integer types in
C. It accomplishes this through various typedefs that hook
into AutoPilot’s own libraries. This feature is exposed in

C via types such as int6, which represents a 6-bit signed
integer. AutoPilot supports arbitrary bit integers from 1 bit to
1,024 bits. We take advantage of this feature to minimize the
bit widths of all of the compiler-generated data structures.

To illustrate this approach, let us use the heap layout
as shown in figure 4. The pseudopointer consists of two
components. Classes that use the first component are A, B,
and C; the second component is used only by B. The widest
row that is pointed to by the first component is the row for A,
which consists of four elements. The row for B, on the other
hand, only has two cells. Our compressed pseudopointer is
then:

struct Ptr {
uint1 null;
uint2 comp1;
uint1 comp2;

}

Our pseudopointer, as a result, is only 4 bits wide. One
bit is required for the null flag, while 2 bits are needed to
represent the last index in row A, 3, and one bit to encode1,
the last index in row B. This optimization, although minor,
serves two purposes: it saves area to a small extent by re-
ducing the bus widths; it also increases performance by a
small amount by reducing the probability of wires of uneven
lengths (due to routing).

Variables, fields, and parameters defined as type int
within the Virgil program itself by the programmer are not
modified. Because the compiler cannot determine the range
of values that will be stored within these, their size will al-
ways be 32 bits. However, Virgil has another feature that
allows the programmer to take advantage of this bitwidth
optimization feature by using the raw types within Virgil.
Raw types are unsigned types which can be defined as any
number of bits between 1 and 64. Normally, we map these
to one of the primitive unsigned integer types in C; however,
when compiling with AutoPilot as the target, we can con-
vert them into the exact number of bits that the programmer
defined them to be.

6.3 Array and Object Initialization
One final required step that we must do is assign all the ini-
tialization data – the initial values of all arrays and objects —
into a separate variables in C which are marked with const.
AutoPilot recognizes this property and puts the data in a spe-
cial ROM. Upon startup, this ROM data is copied into the
RAM slots. This step comprises the runtime initialization
phase when the hardware is executed. The overhead intro-
duced by this operation is measured in the benchmarks sec-
tion; it depends primarily on the amount of data that needs
to be copied from ROM to RAM.

7. Experimental Results
7.1 Benchmarks
We wrote four Virgil benchmark applications to measure and
compare the performance of our compiler. Three were trans-
lations of cryptographic benchmark programs authored in C
found in the CHStone benchmark suite [6], a well-known
suite benchmark programs written in C designed to be syn-
thesized to FPGAs. These benchmarks, because they are
translated from C, a non-object oriented language, lack the
use of most of the object-oriented features that are available
in Virgil. They primarily showcase the raw computational
veracity of the compiler. To make up for this deficiency, a
fourth benchmark, the Richards benchmark, was also trans-
lated into Virgil [14]. The Richards benchmark simulates
the task dispatcher in the kernel of an operating system,
and was translated from an object-oriented Java/C++ imple-
mentation. The Richards benchmark does little in the way
of raw computation, but exercises many features of the lan-
guage that were not covered by our cryptographic bench-
marks. Richards uses many Virtual methods which require
dispatchers, and there is a nontrivial amount of objects allo-
cated during the initialization phase. We chose Richards to
enable comparison of Virgil and C++.

The following list describes in more detail the various
benchmarks that we have chosen to use. They have been
specifically chosen because they do not use any floating
point arithmetic, as Virgil does not have floating-point prim-
itive types. The first three in the list are our cryptographic
benchmarks from the CHStone suite. The last one is the
object-oriented Richards benchmark.

• AES — An implementation of the Advanced Encryption
Standard, a popular and modern encryption cipher.

• Blowfish – An implementation of the Blowfish block
cipher algorithm.

• SHA – An implementation of the cryptographic hash
function, SHA-1.

• Richards – Simulation of a task-dispatcher component
of an operating system kernel.

Figure 11 shows the various sizes of each benchmark
program in line numbers for both the original source code
and our Virgil translation.

7.2 Platform
The performance of our compiler was compared with that
of two different CPUs: an Intel Xeon CPU, which is Intel’s
high-performance CPU offering, and an Intel Atom CPU,
which is the low-power mobile offering. The Xeon’s hefti-
ness offers speed at a cost of power consumption, while the
Atom’s leanness ensures that its power consumption will be
very low compared to the Xeon, sacrificing computational
performance. The Xeon processor gives us an idea of the
computational veracity of our benchmark applications that

CPU (xeon) CPU (atom) FPGA
Benchmark Time Energy Time Energy Time Energy Slices FlipFlops BRAM

(us) (mJ) (us) (mJ) (us) (mJ)
AES
C 23 1.9 92 0.37 34 0.04 4,803 6,641 54
Virgil/wide 83 6.7 317 1.27 103 0.14 6,199 8,198 51
Virgil/hybrid 85 6.8 317 1.27 106 0.14 6,575 8,253 51
Blowfish
C 222 17.7 834 3.34 1,144 1.52 6,795 8,962 63
Virgil/wide 877 70.2 1,786 7.15 2,092 2.74 4,689 6,031 69
Virgil/hybrid 889 71.1 2,587 10.35 2,040 2.65 4,700 6,029 69
SHA1
C 319 25.4 1,093 4.37 1,565 2.07 5,715 8,409 65
Virgil/wide 1,070 85.6 2,131 8.52 1,525 1.98 4,858 6,595 64
Virgil/hybrid 1,074 85.9 2,630 10.52 1,525 2.04 4,890 6,598 64
Richards
C++ 10,065 805.2 39,900 159.60 N/A N/A N/A N/A N/A
Virgil/wide 11,164 893.1 36,331 145.32 16,065 21.21 4,330 5,519 68
Virgil/hybrid 29,135 2,330.8 61,622 246.49 14,433 18.91 4,317 5,355 67

Figure 12. Experimental results.

Lines of code
Original Virgil

Originally in C:
AES 791 669
Blowfish 1320 1548
SHA 1349 1187
Originally in C++:
Richards 705 437

Figure 11. Benchmark code length.

can be achieved on ordinary, off-the-shelf server and work-
station machines, while the Atom gives us a better idea of
how the lowest-power x86 CPUs compare to the FPGA in
terms of both performance and power consumption. The
Xeon E5430, upon which our Xeon platform is based, has
a TDP (Thermal design power) of 80 Watts [9]. On the other
hand, our Atom 230 CPU boasts a TDP of only 4 Watts [8].
Because the Atom’s target market overlaps significantly with
that of FPGAs, we believe that the Atom will be a more in-
teresting comparison than the Xeon.

The TDP of a processor indicates its maximum designed
power consumption. We use these figures in our estimates of
the power consumed when our benchmark applications are
executed on the respective CPUs. While additional power is
consumed by the support devices needed to facilitate a CPU
— memory, storage drives, and other peripheral devices —
we are only interested in the power directly consumed by the
CPU in this paper. FPGA power consumption can be mea-
sured in a more accurate way; each FPGA vendor usually
provides a tool that can precisely estimate the amount of

power consumed by a particular design when it is turned on.
Both of these figures, the TDP of a CPU and the estimated
power consumption of an FPGA in watts, which can be mul-
tiplied by the execution time to give a estimated figure of the
power consumed by the program in joules.

CPU benchmarks were performed via an x86 64 gcc
compiler running on Ubuntu Linux, kernel 2.6.32. The
benchmarks were run 200,000 times, with the overall run
time being divided by 200,000 to obtain the average per-
execution time. FPGA measurement was done via the GHDL
VHDL compiler, which converts FGPAs designs into an x86
program, which can be run from within Linux. This gave
us the ability to have a better view of the internal timings
and signal data. The simulation results were confirmed by
re-executing the design on an Xilinx Virtex-II FPGA chip.
The FPGA vendor (Xilinx) tools were used for synthesis and
layout.

The Intel Xeon E5430 processor contains 4 cores, each
running at 2.66 GHz. It has a 6 MB shared cache. The system
was further equipped with 32 GB of DDR2 RAM, although
the benchmark programs never used more than 500MB of
memory. The benchmarks were compiled using GCC 4.4.3
on Ubuntu “Lucid Lynx” 10.04.

The Intel Atom 230 is a single-core, hyper-threaded CPU
running at 1.6 GHz with 512KB of cache. 1 GB of DDR2
memory is also installed on the system. Again, the bench-
marks were compiled using GCC 4.4.3 on Ubuntu “Lucid
Lynx” 10.04.

The FPGA simulation platform is primarily the GHDL
VHDL compiler version 0.28dev running, again, on Ubuntu
Linux 10.04. The hardware specifications of the simulation
system are not important, as the simulator executes the de-

Benchmark Initialization (us)
AES 23us
Blowfish 231us
SHA1 330us
Richards 2us

Figure 13. Runtime initialization periods.

sign at a specified clock speed (100MHz in our case) regard-
less of the underlying hardware.

7.3 Measurements
Figure 12 show our measurements. On each execution plat-
form, the original C benchmark was first compiled and exe-
cuted to establish “original” performance. Our compiler then
compiles the benchmark programs in two specific modes for
comparison: first, the notion of the “uncompressed” verti-
cal object model, which contains wasted space, and our “hy-
brid” object model which was described in this paper. The
uncompressed model is measured in order to show that our
table compression and object reference representation does
not have an adverse effect on the overall performance when
run on an FPGA, although it may result in slower run times
on the CPU. Finally, area measurements were gathered from
the synthesis reports generated by the Xilinx synthesis tool.
We report three numbers for area usage:

1. Slices – a quantitative measurement which represents the
size of the logic of the design.

2. Flip-flops – Flip-flops are the on-chip ROM, which re-
flects the amount of read-only memory needed by the de-
sign.

3. BRAM units – On-chip RAM is split into subunits called
BRAMS.

7.3.1 Runtime Initialization
As discussed in the optimization section, an additional step
that must be taken is the runtime initialization phase. This
step is a one-time operation that occurs at the beginning of
execution that copies all the initialization data stored in the
ROM into the RAM that takes up a nontrivial amount of
time. The table in figure 13 shows the time taken for this
required initialization phase for the different benchmarks.
This number was gathered during simulation of the FPGA
design.

These numbers are already included in the performance
numbers included in figure 12. However, the amount of time
spent purely on the logic of the Virgil benchmarks can be
obtained by subtracting this number from the total execution
time.

7.4 Microbenchmarks
The scalability factor of our object model was also tested in
order to ensure that it supports large programs with many

objects and/or deep class hierarchies. Two benchmarks were
written: one to test the effect of the dispatcher on large class
hierarchies, and the other to test the the impact of large
amounts of objects upon method calls. For the former, class
hierarchies of three, six, and twelve were benchmarked, and
for the latter, programs consisting of one class and ten, one
hundred, and one thousand objects were measured. In all
cases, one million method calls were issued.

We found that there was no significant difference in per-
formance between the various benchmarks; all performed
within 3-5% of each other. This strongly indicates that there
should be minimal scalability issues with large programs and
our object model.

7.5 Assessment
We approached the performance assessment from three dif-
ferent perspectives: energy, run time, and physical size. Pri-
marily, we were interested in the amount of energy con-
sumed by the various designs during execution. Admittedly,
energy savings may be less attractive if the run time were
to degrade significantly when switched to an FPGA. Thus,
secondly, we performed overall measurements of run time
across platforms. Thirdly, we also analyzed the physical size
of the hardware designs created by our compiler, as fabrica-
tion cost for an FPGA chip is primarily driven by the physi-
cal size of the design.

Time and Energy. As can be expected, the Xeon plat-
form is the fastest and uses the most energy. The Xeon pro-
cessor executed the benchmarks 2 to 4 times faster than the
Atom processor, but consumed 5 to 10 times more energy
doing it.

For the three cryptographic benchmarks, C on the Atom
processor executed 1.2 to 2.4 times faster than Virgil on the
FPGA, but consumed 1.3 to 2.6 times more the energy do-
ing it. In contrast, for the object-oriented Richards bench-
mark, the FPGA is better in both dimensions: C++ on the
Atom processor executed 2.8 times slower than Virgil on
the FPGA, and consumed 8.4 times more energy doing it.
Thus, for the object-oriented benchmark we can get the best
of both worlds by switching from C++ on Atom to Virgil on
the FPGA: faster execution and almost an order of magni-
tude energy savings.

Remarkably, Richards in C++ on Xeon executes within
2x faster than Virgil on the FPGA, but consumes more than
42x more energy doing it.

For the Richards benchmark, when we compare Vir-
gil/wide to Virgil/hybrid, we see a big jump in run time
and energy consumption for both Xeon and Atom, but a
significant drop for the FPGA. The reason is that the hybrid
object model is a better fit for the FPGA than the wide object
model, but is wasteful on a CPU.

For SHA1, the execution time and energy consumption of
Virgil on the FPGA is even lower than of C on the FPGA.

If initialization time is omitted from the result, then the
AES benchmark executes slightly faster in Virgil on the

FPGA than in C on the Xeon! For an informal comparison,
Huang et al. reported that DES on an FPGA ran 14 times
slower than DES on a Core 2 Duo processor with a fre-
quency of 2.66 GHz. We believe that our Virgil compiler is
a significant improvement over the previous work on marry-
ing object-oriented programming paradigms with hardware
synthesis toolchains.

Physical Size. For each of the three cryptographic bench-
marks, we can compare the slices, FlipFlops, and BRAM in
C and in Virgil. We find that our area usage numbers are
comparable. We have managed to occupy less area than that
of even the original C program’s design in two out of three
cases. In both of these cases, our version of the benchmark
occupied significantly less area. The AES benchmark, how-
ever, occupied a similar margin more area.

The interpretation of the Richards benchmark results
must be approached differently. Because the original pro-
gram cannot be synthesized through AutoPilot as it uses
many of the language constructs, especially pointers, in
such a way that is disallowed by AutoPilot, we do not have
a comparison on the FPGA for the equivalent non-Virgil
version. Furthermore, Virgil provides a way to write the
Richards benchmark that would be impossible otherwise to
do (short of replicating our model by hand in C). There-
fore, our sole comparison available is the execution time of
the C++ version running on the CPUs. It is also the only
benchmark in which we have a significant number of ob-
jects and classes; the computational CHStone benchmarks
are not implemented in a object-oriented fashion. Here, we
see the advantages of our object compression scheme. We
used a smaller number of both flip-flops and BRAMs, as
well as gain a significant performance boost over the non-
compressed version.

The Virgil Compiler. The measurements show signifi-
cant variation across the cryptographic benchmarks. For ex-
ample, AES in C on the Atom is 1.2 times faster than in
Virgil on the FPGA, while Blowfish in C on the Atom is
2.4 times faster than in Virgil on the FPGA. It is difficult to
pinpoint the exact causes of the performance difference be-
cause optimizations are done at multiple points through the
compilation process: our Virgil compiler attempts to produce
optimized C code, the AutoPilot tool itself aims to emit opti-
mized HDL design code, and the final FPGA vendor-specific
synthesis tool aims to produce an optimal physical layout of
the design on the FPGA chip, so In future work we will in-
vestigate further how to optimize C code for AutoPilot.

8. Conclusion
The compiler that we have introduced, which enables a full
tool chain that leads from high-level object-oriented Virgil
code to low-level VHDL designs, allows software engineers
to easily reap the enormous energy consumption benefits
that FPGAs have to offer while still exhibiting reasonable
performance and competitive area.

This system is still a preliminary investigation, and much
work can be done to further improve the experience of the
programmer. In particular, work can be done to better ex-
tend Virgil to some domains of hardware programming is
currently out of reach. Examples of such domains are that
of streaming data models, floating-point arithmetic, and de-
signs that interact with external hardware. All three of these
can be achieved elegantly with well-designed extensions to
Virgil. Further static analysis, or an explicit modifier to make
certain arrays and objects read-only, would help to shorten
runtime initialization by reducing the amount of data that
must be copied from ROM to RAM.

Furthermore, improvements can be made to overall pro-
grammer experience in terms of designing programs with
the paradigms which already exist. A big notion that Virgil
is currently lacking is support for user exceptions; currently,
any attempts at dereferencing a null reference or accessing
an array out of bounds leads to undefined behavior. By im-
plementing an exception system as well as a way in hardware
to handle these exceptions would greatly ease the task of de-
signing hardware that gracefully exits when error conditions
are encountered.

Finally, several features currently allowed in Virgil are
not supported in our representation. These include:

• Recursion
• Delegates (function pointers)
• Generics

The support for these features, along with the various im-
provements that could be made listed above, would make
Virgil a truly powerful platform on which to program FG-
PAs.

Acknowledgments. We thank Jason Cong, Karthik Gu-
ruraj, Guoling Han, Zhiru Zhang, and Yi Zou for many
discussions and help with AutoPilot. We also thank Kan-
nan Goundan, Ben Titzer, and the anonymous referees for
helpful comments on drafts of the paper. We were sup-
ported in part by the National Science Foundation Center for
Domain-Specific Computing (award number 0926127), and
by National Science Foundation award number 0725354.
The second author thanks David Bacon for many conversa-
tions about compiling OO to FPGA.

References
[1] David Baldwin. Structured ASIC challenges FPGA. Nikkei

Electronics Asia, September 2003.

[2] Jayaram Bhasker. A Verilog HDL Primer. Star Galaxy Pub-
lishing, 2005.

[3] David C. Black, Jack Donovan, Bill Bunton, and Anna Keist.
SystemC: From the Ground Up. Springer, 2004.

[4] Craig Chambers. The Design and Implementation of the
SELF Compiler, an Optimizing Compiler for Object-Oriented
Programming Languages. PhD thesis, Stanford University,
1992.

[5] J. Cong and Y. Zou. Lithographic aerial image simulation
with FPGA-based hardware acceleration. In In FPGA’08,
Proceedings of 16th ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, pages 20–29, 2008.

[6] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, and Hiroaki
Takada. Proposal and quantitative analysis of the CHStone
benchmark program suite for practical C-based high-level
synthesis. Journal of Information Processing, 17:242–254,
2009.

[7] Shan Shan Huang, Amir Hormati, David F. Bacon, and Ro-
dric M. Rabbah. Liquid metal: Object-oriented programming
across the hardware/software boundary. In Proceedings of
ECOOP’08, European Conference on Object-Oriented Pro-
gramming, pages 76–103, 2008.

[8] Intel. Atom processor 230. Information available from
http://ark.intel.com/Product.aspx?id=35635.

[9] Intel. Xeon processor E5430. Information available from
http://processorfinder.intel.com/details.aspx?sSpec=SLANU.

[10] Ian Kuon and Jonathan Rose. Measuring the gap be-
tween FPGAs and ASICs. In In FPGA’06, Proceedings of
14th ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, pages 21–30, 2006.

[11] Chris Lattner. LLVM: An infrastructure for multi-stage op-
timization. Master’s thesis, University of Illinois at Urbana-
Champaign, 2004.

[12] Oskar Mencer, Marco Platzner, Martin Morf, and Michael J.
Flynn. Object-oriented domain specific compilers for pro-
gramming FPGAs. IEEE Transactions on VLSI Systems,
9(1):205–210, 2001.

[13] Volnei A. Pedroni. Circuit Design with VHDL. MIT Press,
2004.

[14] Martin Richards. Benchmarking with the Richards
benchmark. http://research.sun.com/people/mario/
java benchmarking/richards/richards.html.

[15] Martin Schoeberl. Java technology in an FPGA. In In
FPL’04, Proceedings of the International Conference on
Field-Programmable Logic and its Applications, 2004.

[16] Ben L. Titzer. Virgil: Objects on the head of a pin. In
Proceedings of OOPSLA’06, ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and Ap-
plications, 2006.

[17] Ben L. Titzer, Joshua Auerbach, David F. Bacon, and Jens
Palsberg. The ExoVM system for automatic VM and applica-
tion reduction. In Proceedings of PLDI’07, ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, pages 352–362, San Diego, California, June 2007.

[18] Ben L. Titzer and Jens Palsberg. Vertical object layout and
compression for fixed heaps. In Proceedings of CASES’07, In-
ternational Conference on Compilers, Architecture, and Syn-
thesis for Embedded Systems, pages 170–178, Salzburg, Aus-
tria, September 2007. A revised version of the paper appeared
in Semantics and Algebraic Specification, Essays Dedicated
to Peter D. Mosses on the Occasion of His 60th Birthday,
Springer, LNCS 5700, 2009.

[19] Z. Zhang, Y. Fan, W. Jiang, G. Han, C. Yang, and J. Cong. Au-
topilot: A platform-based ESL synthesis system. In P. Coussy
and A. Morawiec, editors, High-Level Synthesis: From Algo-
rithm to Digital Circuit. Springer Publishers, 2008.

