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Abstract—Dynamically adaptive systems propose adaptation
by means of variants that are specified in the system model
at design time and allow for a fixed set of different runtime
configurations. However, in a dynamic environment, unantic-
ipated changes may result in the inability of the system to
meet its quality requirements. To allow the system to react to
these changes we propose a solution for automatically evolving
the system model by integrating new variants and periodically
validating existing ones based on updated quality parameters.
To illustrate our approach we present a BPEL based frame-
work using a service composition model to represent the system
functional requirements. Our framework estimates Quality of
Service (QoS) values based on information provided by our
monitoring mechanism, ensuring that changes in QoS are
reflected in the system model. We show how the evolved model
can be used at runtime to increase the system’s autonomic
capabilities and delivered QoS.

Keywords-dynamic adaptability, model evolution, model at
runtime, quality requirements

I. INTRODUCTION

When reasoning about design decisions, software engi-
neers must take into consideration two important concerns:
firstly, runtime adaptability to allow the system to provide
its functionality regardless of the changes in the environ-
ment, and secondly, system quality requirements, such as
performance, reliability, and cost.

Autonomic systems must be able to continuously adapt to
changes in the environment. Dynamically adaptive systems
must be able to change behavior depending on environmental
conditions and switch between runtime configurations with-
out disrupting the running system. Such systems support
adaptation by means of variants that determine runtime
configurations and are specified in the system model at
design time.

The first issue that engineers face is that the variants
provided at runtime are fixed and non-exhaustive. In order to
integrate new variants enabled by environmental changes or
required by new user needs, the system must be modified and
redeployed. The second issue the engineers face is that the
delivered quality estimated at design time can be affected by
parameter changes at runtime. These changes can result in
the inability of the system to fulfill its quality requirements.

We propose a solution that addresses these issues in two
phases:
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1) We automatically evolve the system model by period-
ically updating it with monitored quality information
and by integrating new variants enabled by changes
such as the availability of a new service.

2) We use the updated model at runtime to select the
system runtime configuration.

We present a BPEL-based working framework implement-
ing the proposed solution. We use a service composition
model to represent the running system which allows us to
leverage the advantages of service oriented architectures:
flexibility, loose coupling, and ease of integration.

The quality requirements of a service oriented system are
expressed as Quality of Service (QoS) parameters guaran-
tees, called service level objectives (SLO [28]), in service
level agreements (SLA [28]). Given the distributed nature of
service oriented systems, the system does not have control
over the evolution of the composing services. Therefore, the
QoS of the composing services can vary in time and might
result in violations of the system SLOs.

We provide a monitoring mechanism that allows us to
gather information on the running system and monitor
the service execution. Based on monitoring information,
our framework detects violations of the system SLOs and
invalidates the violating variants. In this way, subsequent
SLO violations are prevented and the system can maintain
the required quality.

We update the system model with QoS values estimated
based on monitoring information and use the updated QoS
values to select the runtime configuration. By using the
model at runtime, changes in the model are immediately
reflected in the running system.

In this paper we propose a novel approach to auto-
mated model evolution for dynamically adaptive systems
that (1) finds variants to adapt to changes in the environment
and integrates them into the model and (2) annotates the
model with updated values of delivered system quality
computed based on monitoring information on the running
system. Our framework enhances the system with autonomic
capabilities by leveraging service compositions and using
the automatically evolving model at runtime. This paper
improves, refines and evaluates the approach outlined in a
former position paper [27].
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Figure 1. Overview of our approach to automated model evolution.

This paper is structured as follows: Section II introduces
our approach and details our choice of model. Section III
presents an overview of our framework, detailing the au-
tomated model evolution mechanism. In Section IV we
describe the system adaptation mechanism discussing the
framework interactions for variant selection, and we evaluate
our framework in Section V. We discuss related work in
Section VI. Section VII concludes this paper.

II. OVERVIEW AND SYSTEM MODEL

In this section we present a general overview of our
approach and describe the system model we use to represent
the running system.

A. Overview

An important concept that we use in our approach is the
variant. A variant represents one possible implementation
of a system functional requirement. Variants can increase
fault tolerance by specifying alternative ways of fulfilling a
functional requirement.

Figure 1 presents the conceptual phases in our approach:
(1) automatically evolving the system model based on run-
time information; and (2) using the updated model at runtime
to adapt the running system.
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‘We take into considerations two types of changes: changes
that might affect the delivered quality of the system and
changes that might determine structural modifications of the
model, such as adding a new variant.

At design time the delivered quality values are estimated
using available parameters, such as QoS guarantees specified
by SLAs, or provided by domain experts. However, these
parameters might change because of system evolution or
changes in the environment. Thus, the initially estimated
delivered quality values become obsolete and the changes
might result in violations of the system quality requirements.
To avoid these situations, the quality estimations must be
periodically updated to reflect the current state of the envi-
ronment.

One important part in our approach is gathering informa-
tion on the current environmental conditions by monitoring
the running system. The gathered information is then used
(a) to re-estimate the delivered quality estimations and (b) to
detect the system’s inability to fulfill its quality require-
ments. In the Quality Evaluation step, the delivered quality
values are re-estimated based on the monitoring information.
The model is then updated according to the new estimations.

A second concern for model evolution are changes that
provide a new variant, or that invalidate an existing variant.
Consider for example the case of introducing a new compo-
nent. New variants using the component become available.
The model is updated by integrating the new discovered
variants.

System adaptation is done by using the updated model to
decide the system runtime configuration and the execution
path for each functional requirement. To use this adaptation
technique, a framework implementing our approach must
ensure that implementation always conforms to the current
model. The framework must provide a way to automatically
implement the model changes into the running system with-
out requiring user intervention or system interruption. The
framework can improve the system delivered quality and
prevent violations of quality requirements by leveraging the
estimations when selecting the variant to execute.

B. Model

The choice of the system model plays an important part
in achieving the required autonomic capabilities. In the
following we describe our system model based on service
compositions. We take into consideration goal oriented mod-
els, such as [31], [17].

The model we describe below was introduced in [27]. Fig-
ure 2 presents the generation of the system model from the
developer input model. In the input model the developer de-
fines variability points, that is, functional (sub)requirements
of the system which can have different variants. The Variant
Finder generates the model of the running system from the
input model by finding solutions to the variability points. A
solution to a variability point is a variant.
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Figure 2.

The Variant Finder is an automated service composition
engine that takes the variability point description and queries
the service repository finding the set of service compositions
that solve the requirement, such as [21], [16]. The variability
points must be expressed in a query language understood
by the Variant Finder [2], [10], and the services must be
semantically annotated.

The input model must represent a system that can be
implemented as a service composition. Currently we con-
sider the input model to be a goal model with functional
goals (functional requirements) as presented in [17]. A goal
model is an AND/OR graph showing how higher-level goals
are satisfied by lower-level ones (goal refinement) [18]. The
AND-refinement link relates a goal to a set of subgoals that
must be satisfied in order for the goal to be satisfied. A goal
node can be OR-refined into multiple AND-refinements that
each represent an alternative, i.e., the parent goal can be
satisfied by satisfying the subgoals in any of the alternative
AND-refinements. In our input model, the bottom subgoals
must be queries in order to be able to automatically generate
the system implementation. In this case, the whole system
implementation is provided through automatic service com-
position.

The generated model is an annotated AND/OR graph in
which the variability points are expanded with the variants
found by the Variant Finder. A variant node is a node that is
parent to at least one variant. All OR-link nodes and nodes
corresponding to variability points in the input model are
variant nodes. Variant nodes are annotated with information
that is used at runtime to select the variant to execute. A
variant node contains as data for each child variant a pair
<Variant ID, {<qosID, value, flag>} > in which:

1) Variant ID uniquely identifies the variant.
2) The set contains the values of the estimated QoS val-
ues for the variant. At model generation, the QoS val-
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Variability Variability
point point

Model transformation.

ues are computed based on the SLAs of the variant’s
composing services. The QoS parameter is identified
by qosID. A value of FAILED for the flag invalidates
the variant.

In Figure 3 we show a fragment of the generated model
for an astronomical observatory system. We detail the graph
branch representing the weather forecast functional require-
ment. The requirement is to provide an image of a given
targeted area predicting the weather conditions for the next
24 hours. The Variant Finder provides three variants for the
weather forecast variability point:

1) The system gets a satellite image from the dedicated
satellite for the targeted area and computes the weather
prediction based on information such as cloud type
and wind strength and direction. The predictions are
rendered in an weather forecast image.

2) The system gets up to four images from the satellite
network for the areas closest to the targeted area. It
then matches previously acquired images from the
areas, crops the image parts that cover the targeted
area and renders a satellite image of the targeted area
by putting together the cropped parts. It then uses the
obtained image to compute the weather prediction and
render the weather forecast image.

3) The system uses a cached image of the targeted area
and computes the deviation of the weather conditions
from the ones computed for the cached image based
on the weather changes observed between the taken
time of the cached image and the current time. It then
renders the weather forecast image.

III. FRAMEWORK ARCHITECTURE.

This section presents the architecture of our framework
that illustrates the approach introduced above and describes
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the components of the framework that play an important part
in the automated model evolution and system adaptation.

A. Overview

Figure 4 presents the architecture of our framework.
BPEL [7] is the de facto standard for service compositions.
BPEL process definitions are deployed to BPEL engines that
instantiate and execute a process instance when a request for
the deployed process arrives. Our framework leverages the
BPEL technology to implement the system.

The System model is the one introduced in Section II-B.
Our framework automatically generates BPEL processes
from the system model. The processes are instrumented
to allow monitoring the component services and the sys-
tem QoS parameters. Based on monitoring information the
framework estimates QoS values, periodically updating the
model. The updated model is used to decide the runtime
configuration.

The BPEL Generator creates a BPEL process for every
variant in the model. All generated processes are registered
to the System Manager (the arrow labeled register in the
figure).

The System Manager has the following responsibilities:

1) selects the variants to be executed for fulfilling the
system requirements.

keeps a mapping between variants in the model and the
corresponding BPEL processes. A variant is mapped

to exactly one process.

2)

3) updates the system model (the arrow labeled
updateModel in the figure).
4) manages variant identifiers (variantID).

Observatory

Ge 3 3
Weather from satellite satellite |
Forecast
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Variants for Functional Requirement
“Weather Forecast”
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R1V2: N3;N5;N6;N7
R1V3: N4;N7

Astronomical observatory system: weather forecast functionality example. There are three variants for the weather functionality, identified by

Some systems that are an aggregation of distributed
applications, such as service-oriented systems, can be seen
as a composition of functional requirements implemented
independently. The system core is a dispatcher that forwards
requests to the System Manager. We can automatically
generate the dispatcher from the model. The developer can
choose not to use the fully automated version, but only
to forward requests for variability points execution to the
System Manager.

When the execution of a variability point is triggered, the
System Manager checks the model for the variant to execute.
The variant is selected according to criteria implemented by
Selection Policies. The System Manager starts the variant
execution by invoking the process corresponding to the
selected variant (start). This approach allows the system to
evolve with the system model, changes in the model being
reflected in the system implementation.

Changes in the environment affect the system so that
variants can become outdated, or new variants can be found.
Variant Finder provides new possible variants based on run-
time information, such as the availability of a new service.
The Variant Finder updates the model with new variants,
which can be then selected to be executed. In this way, new
variants are easily integrated without disrupting the running
system. In our current implementation we assume new
variants are manually provided. Our framework allows for
integration of more complex systems for automatic variant
discovery. One such system is the matchmaker described
in [16] that takes the requirement description and queries
the service repository finding the set of service compositions
that solve the requirement.
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Figure 4. Framework architecture. The grey boxes represent external components and data. The numbered arrows represent the flow for a variant execution.

Usually service discovery and matchmaking is a time
consuming process. The search for a new variant solving
a variability point is triggered upon availability of runtime
information signaling a change, or upon request from the
System Manager. Upon the invalidation (violation detection)
of a variant, the System Manager checks the availability of
existing variants for the corresponding variability point. If
no valid variants exist for the variability point or the QoS
values are not satisfactory (determined by checking them
against a given threshold), the System Manager requests the
Variant Finder for new variants solving the variability point.

Our framework uses the monitoring capabilities of
ADULA, a framework for fault tolerant execution of BPEL
processes introduced in previous work [25], [26]. The
Monitor component of ADULA provides statistics on QoS
parameters of services used by processes. Service invoca-
tions are redirected through Dynamic Proxies that measure
the response time of the service. The Monitor observes
the service execution, collects measurements and provides
aggregated performance statistics.

Variant Validators test the fulfillment of the system quality
requirements for each variant using statistic methods, such as
Bayesian inference [5] or statistical hypothesis testing [33].
In previous work [26] we have used statistical methods to
detect SLO violations for BPEL processes.

B. Variant Validation

Variant Validators compute the estimated value of the
QoS making use of monitoring information. Based on the
estimated values, Variant Validators validate each variant for

each QoS parameter, and update the model with the new
values (triggerUpdate). In case a violation is detected, i.e.,
the variant does not fulfill the system quality requirement,
the validator invalidates the variant by setting the flag
corresponding to the QoS parameter on FAILED.

Below we give two examples of possible Variant Val-
idators. A simple Variant Validator computes the system
QoS parameters using a provided utility function specific
to each QoS parameter [19]. For instance, for response
time the variant QoS values is computed as the sum of
the QoS parameters of the individual services used by the
variant. Initially, the validator uses as QoS parameter source
the SLAs of the services. The validator uses monitoring
information when it becomes available.

As another example, for SLAs that require the aver-
age (arithmethic mean) QoS value not to exceed a given
threshold, we apply the Student t-test statistical significance
test [33] to determine the probability of a QoS parameter
to be violated. Let’s consider as an example that the SLA
guarantees that the system average response time does not
exceed 2500ms. In this case we make use of our monitoring
mechanism that provides statistics on services response
times and variant execution times. The null-hypothesis is
that the requirement is not violated, i.e., we assume that
the average process response time is smaller or equal to the
given threshold, in this case, < 2500ms. The statistical test
tells us whether the samples, i.e., the measured response
times for a variant, are unlikely to have occurred by chance
given the truth of the null-hypothesis. In that case, the null-
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hypothesis is rejected, and the validator signals a violation.

The new estimated QoS value is the sample mean com-
puted from the available samples. The significance level «,
the probability of committing a type-I error, i.e., the prob-
ability of rejecting the null-hypothesis when it is true,
is a configurable value. When multiple variants exist and
the tolerance for deviations from quality requirements is
critically low, the o values may be unusually high (e.g.,
a = 0.1). High values for o mean that there might be a
larger number of false positives (the validator detects a false
violation), on the other hand they assure a faster reaction of
the system to the degradation of the delivered quality.

This technique is suited for variants (functionalities) that
are often executed and for which enough monitoring infor-
mation can be gathered, i.e., a sufficient number of samples
exists. Variant Validators using null-hypothesis statistical
significance tests need access to some history of previous
samples (i.e., variant execution times), and as a consequence,
for variants for which little monitoring data is available, SLA
violations may be detected with some delay.

We verify that the variant execution times (the samples)
follow a normal distribution using the Chi-Square normality
test [9]. In case the Chi-Square test is negative, i.e., the
distribution is not normal, we use non-parametric tests, such
as the Wilcoxon signed-rank test [35] for one sample.

IV. SYSTEM ADAPTATION

In this section we describe system adaptation enabled by
our framework detailing how variants are selected at runtime.

To provide a functionality, the System Manager selects
a variant from the model and executes it by starting an
instance of the process corresponding to the selected variant.
Selection Policies implement criteria for selecting the variant
to be executed for each variability point. Selection Policies
are customizable and are mapped to variability points. For
variability points for which no custom Selection Policy is
provided, the default Selection Policy is used. Selection
Policies allow for prioritization of QoS parameters.. For
instance, the selection policies prioritizing cost can deter-
mine the selection of a variant that violates the performance
requirement but obtains a better cost, or other policies can
specify that the variant with best performance should be
selected regardless of the value of the other QoS parameters.
The policy can also prioritize the variants by specifying
preferred variants. This feature is useful when alternative
ways of implementing the functionality should be used only
in case of failure. Take for example the case of the alarm
function in a smart home system. The engineer specifies
one variant of fulfilling the functionality by setting off the
alarm, and a second variant by blinking the lights if the
alarm device is out of order.

The default Selection Policy selects the variant that offers
the best QoS parameter values. Figure 5 shows the peudo-
code of the default policy. The policy assigns a ranking
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forall gos do

begin
forall variants do
begin
if flagqosip =FAILED then
negativeRankingyariantI D <
negativeRankingyariantip + 1
else
add (gosValues, <variantID, value>)
end
end

sortedValues<-sort (gosID, gosValues);
forall variantID € sortedValues do
begin
positiveRankingyariantID
positiveRankingyariantiD +

position (sortedvalues, variantID)
end
end

forall variants do
begin
if negativeRankingyqriantip = minnegative Rankings
then
if positive Rankingy,qriant; D = max positive Rankings
then
selected < variantl D
end
end
end

Figure 5. Selection Policy example pseudo-code. The policy ranks
the variants according to their degree of fulfillment of the system QoS
requirements and selects the best available variant.

to each variant for every available QoS parameter. For
variants that violate a system SLO for a QoS parameter,
the policy assigns to the variants a negative ranking of 1.
For every QoS parameter, the policy computes a ranking
list (sortedvalues) that ranks all non-violating variants
from the worst (e.g., for response time parameter the variant
with the longest response time) to the best (e.g., for cost
parameter, the variant with the lowest cost). The policy
computes for every variant a negative ranking sum that
represents the number of violations and a positive ranking
sum that represents the sum of positions in the ranking
lists. The variant with the lowest negative ranking sum and
the highest positive ranking sum is selected. The function
sort creates a ranking list for the QoS parameter values
gosValues according to an utility function defined for
the QoS parameter identified by qgosID. The function
position returns the index of the variantID in the
sortedValues ranking list.

Figure 6 represents the variant selection and frame-
work interactions in case of an SLO violation. For
clarity, only the important functionalities are presented.
getVariants (pointID) parses the system model and
reads the variants along with the data contained by the vari-
ability point node identified by point ID. The data is made
available to the selection policy through the variants iden-
tifiers. selectVariant (Set{variantID}) selects the
variant to be executed based on the model data and selection
criteria implemented by the Selection Policy.
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Figure 6. Variant selection for weather forecast functionality.

1) First functionality request

When the request for the weather forecast functionality
arrives, the system selects variant r/v/ and executes
it.

SLO violation

Upon the variant finish, the Variant Validator com-
putes the QoS parameter values and detects a violation
of the response time SLO. The variant is invalidated
by setting the response time parameter flag to FAILED
and updating the model with the computed QoS val-
ues.

Second functionality request

Upon sub-sequent requests for the weather forecast
functionality, the System Manager selects a valid vari-
ant from the updated model and executes it (r/v3). The
Variant Validator periodically checks the invalidated
variants to determine if services have recovered.

2)

3)

V. EVALUATION

In this section, we evaluate our framework by explor-
ing the response time of the system using our framework
when the response time of composing services degrades.
We compare different validation techniques exploring the
effectiveness of the statistical tests for violation detection.

Our evaluation is based on the astronomical observatory
system example. For the implementation of the weather
forecast functionality, the framework provides one BPEL
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process for each of the variants. The first variant interacts
with three services: one to get the satellite image of the
area from the plant’s satellite, one to compute the weather
forecast based on the satellite image (we will call this
service forecaster), and one to render the computed forecast
image (renderer). The second variant interacts with four
services: one to get a number of satellite images from the
network, one to extract the satellite image of the area from
the intersection of all the satellite images, the forecaster
service and the renderer. The third variant interacts with
two services: one to extract the satellite image of the area by
estimating modifications based on previously cached images
and compute the forecast image, and the renderer.

We take into consideration the response time parameter,
and consider that the astronomical observatory system guar-
antees through its SLA that the weather forecast function-
ality is provided with an average response time less than
2500ms. The selection policy defines the first variant as the
preferred one, meaning that the system executes the first
variant whenever possible switching to the best available of
the other two variants only in case the first variant violates
the system QoS requirements.

We developed a testbed which models web service perfor-
mance with discrete time Markov chains [22]. The testbed
includes web services, client workload generators, as well
as performance measurement tools.



For measuring response time, we use for the forecaster
service a service model with five states, in each state the
service has a different response time. In the state fast the
response time of the service is 500ms, in the state slow, the
response time is 2500ms, respectively the response times in
the intermediary states are 1000ms, 1500ms, and 2000ms.
The forecaster service changes state on every time slot! until
it reaches the slowest state (2500ms) and afterwards remains
in the same state. All other services are in the fast state
(500ms) and do not change state. The transition period is
30 seconds.

Our implementation uses Java 5, Apache Axis 1.4, and
BPEL 2.0; as BPEL engine we use ActiveBPEL 4 [1].
Both ADULA and the BPEL engine are deployed in an
Apache Tomcat 4.1.24 installation. The variant validators
using statistical tests are implemented with the Apache
Commons Mathematics 2.0 library. Our measurement ma-
chine is an Intel Core 2 Duo (2.4GHz, 2GB RAM) running
Mac OS X v10.4. All measurements were repeated 15 times
and we report the median of these measurements.

We compare the response time of the system when using
a simple Variant Validator, respectively when using a Variant
Validator implementing the Student t-test with low and high
« values.

Figure 7 shows the response time of the system for 100
variant executions’. The simple Variant Validator detects
a violation as soon as the variant response time exceeds
2500ms, invalidating the first variant. The system switches
to the best available non-violating variant (the third one
in this case) so that the system response time requirement
is fulfilled. The Variant Validator using the Student t-test
tests that the average response time of the system is below
2500ms. When using a high « value (e.g. 0.1) the violation
is detected sooner, but there is a higher risk of false positives.
The simple validator detects the violation very fast, allowing
the system to obtain the best performance. On the other
hand, it can result in a larger number of false violations
than the validator using the Student t-test. However, as the
validator periodically checks the recovery of the invalidated
variants, the impact of false violations is reduced.

Figure 8 shows the average response time of the system
after every completed 15 variant executions. The overall
average response time of the system is 2215.8 ms when
using the Student t-test with «=0.0005, 2071.6 ms when
using the Student t-test with a=0.1, respectively 1800.7 ms
when using the simple validator. The system response time
requirements is maintained in all cases.

In summary, our framework successfully detects SLO
violations preventing the degradation of the delivered qual-
ity. The best suited technique depends on the system. For

A time slot is the moment in time when a decision is made randomly
based on the current state and the transition probability to change or to
keep state.

2A variant execution represents the execution of a process instance.
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Figure 8. Average system response time for every 15 variant executions,

using the Student t-test validator with a=0.1, a=0.0005, respectively, the
Simple Validator.

systems that specify variants that are equal from the user
preference point of view, using the simple validator obtains
the best delivered quality. On the other hand, for systems
that specify preferred variants, using statistical techniques
allows for a more accurate violation detection.

VI. RELATED WORK

Existing solutions that take into consideration non-
functional properties of a system in model evolution, such
as [11], [32], do not use the evolved model at runtime to
increase the system’s autonomic capabilities.

KAMI [11] is a framework for model evolution by runtime
parameter adaptation. KAMI focuses on Discreete Time
Markov Chain [22] (DTMC) models that are used to reason
about non-functional properties of the system. The authors
adapt the non-functional properties of the model using
Bayesian estimations to update the parameters that influence
the non-functional properties. The estimations are computed
based on runtime information, and the updated model allows
verification of requirements. Our framework focuses on
using the model at runtime to improve a system’s autonomic
capabilities. We also consider new variants for functional



requirements and use the evolved model to dynamically
adapt the system.

Similarly to KAMI, the approach in [32] considers the
non-functional properties of a system in a web-service
environment. The authors provide a language, SLAng, that
allows to specify QoS to be monitored.

CEA-Frame [34] is a framework for system adaptation de-
pending on context that combines aspect oriented techniques
with model driven engineering. The framework separates the
QoS concerns from the application and provides QoS-aware
planning and adaptation to suit the operation context and the
resource availability. Our approach also considers evolving
the model based on observed quality values using statistical
techniques.

The approach taken in [30] also combines aspect oriented
techniques with model driven engineering to weave QoS
concerned aspects within the system model in order to allow
for monitoring of the QoS parameters.

There are different approaches to provide self-adaptive
systems. Models@Run.Time [6] propose leveraging soft-
ware models and extending the applicability of model-
driven engineering techniques to the runtime environment
to enhance systems with dynamic adapting capabilities. The
system adaptation in our approach leverages this idea using
the model to determine the system runtime configuration.

In [29], the authors use an architecture-based approach
to support dynamic adaptation. Rainbow [15] also updates
architectural models to detect inconsistencies and correct
certain types of faults. In [14] the authors implement an
architecture-based solution in the context of mobile applica-
tions to adapt the system by replacing the implementation
of components at runtime. None of these solutions considers
the impact of environmental changes on the quality require-
ments of the system.

In a different context, in [8] the authors introduce a
technique of enhancing a system’s autonomic capabilities
by using variability models at runtime. They focus on mass-
production environments that provide systems which need to
change behavior depending on user context, but offer limited
customization options, and argue that autonomic capabilities
can be achieved by reuse of variability models. Our approach
allows variants to be added at runtime, not requiring them
to be provided at design time.

A different approach to using models at runtime for
system adaptation is taken in [20]. The authors update the
model based on execution traces of the system. Our approach
provides new execution paths for the system by integrating
new and modified variants into the model.

The work in [23] provides a solution to a different
issue concerning dynamically adaptive systems, which is the
control over the wide number of variants that a system with
many variability options can have. The authors introduce a
solution to maintain dynamically adaptive systems by using
aspects to evolve the model.
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In the world of service compositions, ALBERT [3] is
a language that is used to specify functional and non-
functional property assertions which are verified at design
time by model checking and used at runtime as dynamically
evaluated assertions. Our approach takes dynamic models
into consideration, i.e., models that can evolve at runtime
because of environmental changes.

There are a number of solutions that allow monitoring
of the composing service execution and provide runtime
adaptability of service compositions by means of dynamic
binding [24], [4], [13], [12], which could be used as ex-
ternal runtime information providers. They do not take into
consideration model evolution, nor QoS estimations updates.

VII. CONCLUSION AND FUTURE WORK

In this paper we introduced a novel approach to enhancing
a system’s autonomic capabilities by using an automatically
evolving model of the system at runtime. The model is
periodically updated with re-evaluated QoS values based on
runtime information. The evaluations can be used to predict
and prevent QoS violations.

Our framework demonstrates how service compositions
can be leveraged to achieve dynamically adaptive systems.
Variants represented in our flow graph model are imple-
mented as BPEL processes that can be switched at runtime
allowing the system to adapt to changes in the environment.
In this way, the system can integrate new variants without
requiring interruption of the running system.

The model we leverage inherits the limitations of auto-
mated service composition, because it requires variants to
be expressed as a simple flow of service operations. We are
exploring possibilities to optimize the framework by using
more complex BPEL constructs when generating the variant
implementation.

As future work, we are considering different techniques
for estimating the QoS parameters and predicting quality
degradation, to determine which techniques are more effec-
tive for different types of systems.
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