
Latency Sensitive FMA Design

Sameh Galal, Mark Horowitz
Stanford University

{sameh.galal,horowitz}@stanford.edu

Abstract— The implementation of merged floating-point
multiply-add operations can be optimized in many ways. For
latency sensitive applications, our cascade design reduces the
accumulation dependent latency by 2x over a fused design, at a
cost of a 13% increase in non-accumulation dependent latency.
A simple in-order execution model shows this design is
superior in most applications, providing 12% average
reduction in FP stalls, and improves performance by up to 6%.
Simulations of superscalar out-of-order machines show 4%
average improvement in CPI in 2-way machines and 4.6% in
4-way machines. The cascade design has the same area and
energy budget as a traditional fused multiple-add FMA.

Keywords- Fused Multiply Add

I. INTRODUCTION
A high performance floating-point unit is a major

component of modern CPU and GPU designs. Its
applications range from multimedia and 3D graphics
processing to scientific and engineering applications. Most
recent designs incorporate an integrated multiply-accumulate
unit due to the frequency of multiply-accumulation
operations, such as those found in dot products and matrix
multiplication. These multiply-accumulate units usually
implement the fused multiply add operation (FMA) which
was first introduced in IBM RS6000 FPU [1]. This operation
has been recently added to the IEEE floating-point arithmetic
standard, IEEE741-2008. The standard defines
fusedMultiplyAdd(A, C, B) as the operation that computes
(A × C) + B initially with unbounded range and precision,
rounding only once to the destination format. As a result,
fused multiply-add has lower latency and higher precision
than a multiplication followed by an addition.

In this paper we focus on optimizing the design of FPUs

in CPUs, which are more latency sensitive than GPU
designs. We evaluate the design alternatives using the SPEC
CFP2000 floating point benchmark suite [2]. To understand
how FP latency affects these applications, we classify FMA
dependencies according to where the result is used in a
subsequent instruction, as shown in Figure 1:

• Accumulation Dependency: the result is
accumulated in a subsequent fadd or fmadd
instruction (bypass through fB).

• Multiply-Add Dependency: the result goes through a
fused multiply and then an add (bypass through fA or
fC).

• Other Dependencies: the dependent instruction is not
fmadd, fadd or fmul.

For the rest of the paper we will use a tuple notation to
indicate the latency for the different kind of dependencies to
compare different designs. For example, a (3,7,8) design has
a 3 cycle accumulation latency, 7 cycle multiply-add latency
and an 8 cycle latency for other non-FMA dependent
instructions.

Traditional FMA design does not make a distinction
between the latency of accumulation and multiply-add,
resulting in designs that have equal latencies for all
dependencies. For example, the IBM Power5 FMA is a
(6,6,6) design, but the Power6 FMA is (6,6,7), because the
design is optimized to handle feed forwarding of dependent
instructions before the rounding stage [3]. We review such a
design in Section 3 and use it as a reference for a state of the
art FMA design. We then introduce our cascade
implementation of the FMA instruction (CMA) which has
been optimized for accumulation dependencies with a small
effect on the other latencies. CMA allows the accumulation
operand fB to enter the pipeline much later than in a
traditional FMA implementation, allowing for shorter
accumulation latency. We then optimize this path by
introducing overlapping bypass paths for exponent and
significand to make the accumulation dependent latency as
short as possible. We demonstrate how a CMA can achieve a
(3,7,8) latency at the same clock rate of an FMA(6,6,7).
Figure 2 shows the FMA and CMA pipelines and their
bypass paths and how these bypass paths reduce the effective
latency of the instructions. The cascade design can achieve

Figure 1: FMA dependency types

2011 20th IEEE Symposium on Computer Arithmetic

1063-6889/11 $26.00 © 2011 IEEE

DOI 10.1109/ARITH.2011.26

129

such aggressive accumulation latency because of staggered
feedback as shown in Figure 2 (and elaborated in Section 4).

Section 5 presents the delay, power and area results of
implementing the CMA and FMA design, and Section 6
concludes the paper.

II. APPLICATION STUDY
The effect of the different instruction dependencies in

FPU design and their respective latencies is application
dependent, since for applications with parallelism, data
dependencies can be hidden by interleaving execution of
parallel (non dependent) work to keep the machine busy
during the “stall” time. For example, on a 6 stage FPU,
interleaving the execution of 6 threads will keep the unit
busy and hide any data dependencies. This technique is used
in GPU designs. For such parallel workloads, W/GFlops and
mm²/GFlops are the critical parameters to optimize [4].

For applications with less parallelism, the performance
effect of these latency changes are important, and depend on
the amount of parallelism that the processor can extract from
the application: only when FP operations are on this critical
path will the latency changes matter. We first studied a
simple single-issue, in-order model to quickly explore the
frequencies of the different dependency paths, and to gain
intuition for the types of trade-offs that might exist. To
provide this information, we modified the M5 architecture
simulator [5] built for the PowerPC architecture to count the
three different FP latency stalls. The modified simulator
stored the total number of stalled cycles for every design and
calculated the average latency penalty by dividing by the
total number of fmadd, fmul and fadd instructions. Finally,
we calculated the average time penalty by dividing the
average latency penalty by the clock frequency.

This study revealed the importance of the accumulation
latency, so we focused on creating a design which
maximized the overall performance (at small power changes)
using asymmetric latencies. In the end we compared FMA
(6,6,7), CMA (3,7,8), and CMA2(4,6,7). The last design is a
variation of CMA which uses more hardware and power to

get a slightly better multiplier-add latency at the cost of
increasing the accumulation latency. These latencies were
chosen based on the delay characteristics of the respective
designs so that all of them run at the same clock frequency.
We simulated the reference set of CFP2000 benchmarks
using the gcc PowerPC cross compiler with the –O3
optimization directive. The PowerPC architecture was
chosen because it has had the FMA instruction for a long
time and has more mature FMA compiler support. The
compiler optimizes for a 6 cycle FPU, which matches our
base FMA architecture.

Figure 3 shows the in-order model results. On average,
fmadd, fmul and fadd instructions make up around 20% of
these application’s instructions, but are much smaller in three
(mesa, facerec, and sixtrack). We ignore these applications
in the averages in Figure 3(b) and (c) since FP performance
is not critical for them. Figure 3(b) shows the average
latency penalty for each application. CMA(3,7,8) achieves
an average latency penalty of 1.81 cycles across the
benchmark which is 13% lower than the 2.07 average
latency penalty incurred by the FMA(6,6,7) design.
CMA2(4,6,7) achieves a slightly better average latency
penalty of 1.73, but in this simple model, the change in the
two latencies essentially balances out. Figure 3(c) shows the
performance loss from FP stalls. FMA(6,6,7), CMA(3,7,8)
and CMA2(4,6,7) incur total performance penalties of 41%,
33.7% and 33.1% respectively. Therefore, CMA(3,7,8) and
CMA2(4,6,7) architectures will be ~5-6% faster than an
FMA(6,6,7) architecture at the same clock frequency, if the
average instructions per cycle (IPC) of all non-FP
instructions is one.

An in-order machine is very latency sensitive, as any
subsequent dependent instructions stalls the pipeline
execution until the floating point instruction has finished.
Out of order superscalar designs are less latency sensitive
because they exploit instruction level parallelism (ILP) to
find non-dependent instructions to issue while waiting for
executing instructions, resulting in higher IPC. However,
long FPU latency still affects performance when the

Figure 2: Block diagram of FMA and CMA pipelines with their respective bypass paths, and a timing diagram of an example instruction trace for both
pipelines. The CMA architecture has shorter accumulation latency than FMA.

130

available ILP is not enough to keep the functional units busy,
resulting in stalls.

To test the effectiveness of the proposed cascade design
in out of order machines, we modified the scheduler of the
out of order model of the M5 simulator to support the
FMA(6,6,7) and CMA(3,7,8) architectures. For the
CMA(3,7,8) design, the scheduler was modified to allow
fadd and accumulation-dependent fmadd instructions to
issue up to 5 cycles earlier if the critical operand was
produced by preceding fmadd, fmul or fadd instructions and
up to 3 cycles earlier if produced by other instructions.
Additionally, dependent fmul and multiply-add dependent
fmadd are issued up to one cycle earlier. On the other hand,

for the FMA(6,6,7) scheduler, any accumulation dependent
or multiply-add dependent fmadd, fmul or fadd instructions
are issued up to 1 cycle earlier. Using the modified model,
the CFP 2000 benchmarks were run with 2-FPU and 4-FPU
configurations to see how the performance improvement
scales with increased number of functional units, which
should increase the sensitivity to FPU latency. The results of
the floating point rich benchmarks are summarized in Table
1. The CMA design shows an average reduction in cycles per
instruction (CPI) over FMA of 3.97% for the 2-FPU case and
4.62% for the 4-FPU machine as illustrated in Figure 4.

The results indicate that the proposed CMA(3,7,8) design
achieves an average performance improvement of 4-6% for a

(a)

(b)

(c)

Figure 3: CFP 2000 benchmark on a simple single-issue in-order model. (a) Floating point instruction mix as percentage of total number of instructions. (b)
Average latency penalty (c) Total performance overhead (assuming IPC=1 except for FP operations) for FMA(6,6,7), CMA(3,7,8) and CMA2(4,6,7) designs.

0%
10%
20%
30%
40%

In
st

ru
ct

io
ns

 M
ix

Floating Point MUL

Floating Point Add

Floating Point FMA

0
1
2
3
4
5
6

A
ve

ra
ge

 L
at

en
cy

 P
en

al
ty

FMA(6,6,7)

CMA(3,7,8)

CMA2(4,6,7)

0%

20%

40%

60%

80%

100%

To
ta

l P
er

fo
rm

an
ce

O

ve
rh

ea
d

FMA(6,6,7)

CMA(3,7,8)

CMA2(4,6,7)

131

wide spectrum of designs ranging from simple in-order
single issue designs to out of order superscalar designs.
Having demonstrated the potential advantage of a cascade
design, the following sections review the design of FMA and
explain the details of the proposed CMA implementation.

III. FUSED MULTIPLY ADD DESIGN
Fused Multiply Add units have been extensively studied

and implemented in several designs [6][7]. They reduce
latency by performing alignment of the addend significand
(SB) in parallel with the multiplication tree of SA and SC.
Furthermore, the multiplier output is kept in carry save

format and added to the aligned addend, thereby saving one
extra add operation. However, since the addend’s exponent
might be smaller or larger than the sum of multiplicands’
exponents, the addend significand can be shifted from all the
way to the left of the multiplier result to all the way to the
right, requiring the datapath to have wide shifters and adders.

Several modifications to improve latency have been
proposed. Parallel path designs that compute different
datapaths in parallel and select the correct answer based on
different cases have been proposed, but seem to have large
area overhead [8]. Some FMA designs also aim to improve
the accumulation latency as well. Intel demonstrated an 80-
core throughput chip that employed an 11-stage multiply-

TABLE 1
OUT OF ORDER PERFORMANCE RESULTS

 Instruction Mix CPI (Cycles Per Instructions)
2-FPU configuration 4-FPU configuration

Benchmark
Name

fmadd fadd fmul Total
Floating

CMA
(3,7,8)

FMA
(6,6,7)

CMA
(3,7,8)

FMA
(6,6,7)

168.wupwise 9% 7% 10% 25% 1.301 1.358 1.282 1.355
171.swim 8% 19% 9% 36% 1.479 1.536 1.425 1.487
172.mgrid 3% 42% 3% 48% 1.061 1.219 1.04 1.22
173.applu 11% 9% 22% 41% 1.689 1.715 1.625 1.654
178.galgel 45% 3% 5% 53% 2.311 2.375 2.312 2.374
179.art 9% 2% 0% 11% 4.196 4.177 4.19 4.177
187.facerec 6% 10% 4% 19% 0.975 0.99 0.969 0.991
188.ammp 7% 5% 7% 19% 1.689 1.665 1.701 1.66
189.lucas 3% 13% 5% 22% 1.568 1.639 1.559 1.638
301.apsi 6% 15% 12% 33% 1.823 1.796 1.605 1.607

Average Performance Improvement of CMA
over FMA (weighted by % of FP instructions)

3.97% 4.62%

Figure 4: CPI reduction in CFP 2000 benchmarks for out of order 2-FPU and 4-FPU machines.

-5%

0%

5%

10%

15%

20%

Performance Improvement of CMA(3,7,8) over FMA(6,6,7) design

2-FPU configuration

4-FPU configuration

132

accumulate unit with single cycle accumulation latency
[9][10]. Unfortunately, this design is not an IEEE FMA
operation, because it does not preserve intermediate
precision. A Bridge FMA design has been proposed to add
FMA functionality by adding a bridge unit to slightly
modified adder and multiplier designs [12]. The area of this
bridge FMA unit is nearly as large as a separate FMA and
adder units, which makes this approach less appealing.

Another FMA design tries to improve the latency of
additions by separating addition cases into two groups. One,
where the exponents are far apart, does not require
normalization, and the alignment is done after multiplication.
The other, where the exponents are close, skips the shifter,
which gives time for post addition normalization [11]. We
use this idea in our cascade designs. That design also keeps
the multiplier output in carry save format, which results in
complicating the addition datapath. We use this idea in our
(4,6,7) CMA2 design variant to improve the overall latency,
but it does add energy and the accumulation latency is
degraded because of the extra carry save adder and wider
datapath required. Figure 7 illustrates the datapath of the
significand of the CMA2 design.

The Power6 FMA is a recent IEEE-compliant 7 cycle 13
FO4 design with a 6 cycle latency for dependent instructions
(Figure 5). It achieves the reduced dependency latency by

forwarding the unrounded results with special control signals
to indicate if the result is to be incremented. Special terms
added in the multiplier tree are used to generate the correct
product. For example, if A is forwarded and Increment signal
is asserted, an additional A term is added in the
multiplication tree to produce A×C+A = (A+1) ×C. Such a
design has (6,6,7) latency by the metrics introduced earlier.
This FMA design is used as the standard design for
comparison because it is IEEE-compliant and has the
shortest latency of FMA architecture for the least area and
energy.

IV. CASCADE MULTIPLY ADD DESIGN
One can compute a multiply add by simply cascading the

two functional elements. However because of the
requirement of unlimited precision for intermediate results of
FMA instructions, the multiplier and adder are different from
traditional floating point adders/multipliers. For example, a
double precision CMA design contains the following stages

Figure 6: Simplified CMA significand datapath (multiplier; adder: far path,
close path) with accumulation bypass path shown as dashed line and
multiply-add bypass path shown as dotted line.

Figure 5: Power6 FMA Significand Datapath (reproduced from [3])

A
cc

um
ul

at
io

n
B

yp
as

s

133

• A multiplier that takes 2 double-precision operands
A,C to generate the result A×C in “quad” precision
(106 bit mantissa, 13 bit exponent)

• An asymmetric adder that takes a double precision
operand B and the “quad” precision multiplier output
to produce a double-precision result (A×C)+B

Thus, CMA is just an implementation variant of FMA
that produces exactly the same result for FMA instructions
with unlimited intermediate precision and rounding only
once at the end. The cascade design is a less common
implementation but still has been used in some designs [13].
We evaluated the CMA design since the add portion can be
optimized to be very fast using parallel paths algorithms
where either alignment or normalization steps are saved [14]
which might make up for the slight increase in overall
latency. The overall latency increases because the multiplier
tree outputs are combined using an adder before being fed to
the cascaded adder. Since the add operations start “late” in
the overall pipeline, they cause less stall time than would
occur in a normal FMA.

Figure 6 illustrates the datapath of the significand of the
CMA design we have developed. It employs an adder with
far path datapath for calculating the sum or difference when
the exponent difference is greater than 1 and a close path
datapath that calculates the difference when the exponent
difference is ≤ 1, which is the only case where there could be
massive cancellation and a need for a big normalizing shifter.
The design has been optimized to shorten accumulation
latency and handle forwarding of unrounded results (with
increment signals) to shave a cycle off the accumulation and
multiply-add latencies as was done in the FMA design. The
next two sections discuss the details of these optimizations.

A. Removing the Rounding Latency Overhead
To reduce the overall latency of dependent instructions,

our CMA design implements a bypass path for dependent
instructions that feeds forward the unrounded result and an
increment signal.

Implementing the bypass for the multiplier inputs A , C is
similar to the design used by IBM [3]. We modify the
multiplier tree to have one extra term that can be either SA if
IncA signal is asserted, or SC if IncC is asserted. As for the
input B, the adder part has been modified to accept the inputs
SB, IncB and SA×C. The idea is to merge the incrementation of
B with the addition to A×C using carry save adders. The
implementation of the near path and far path adders that
support the increment signal is done as follows:

1) Close Path: The close path handles the subtraction
case of SA×C (106 bits) and SB (53 bits) which are aligned on
the MSB. The absolute difference of two binary numbers x,
y is usually calculated as follows:
ݔሺݏܾܽ െ ሻݕ ൌ ൜ ݔ െ ݕ ൌ x ൅ yത ൅ 1 , ݕ ൏ െሺxݔ െ y െ 1ሻ െ 1 ൌ ݔ ൅ തതതതതതതതݕ , ݕ ൒ ݔ

Therefore, the operation can be implemented using a

compound adder to produce (x + ݕത) and (x + ݕത + 1), and a

mux to choose between ሺݔ ൅ ݕതሻതതതതതതതതതതത and (x + ݕത + 1) if there is
a carry out from (x + ݕത).

Additionally, SB needs to be incremented before the
absolute difference operation if IncB is asserted. It is
straightforward to merge the incrementation of SB with the
absolute difference operation by right padding SB with 53
bits of IncB (to match the width of the multiplier output),
which makes adding 1 at the least significant position
produce the resulting effect of incrementing SB.

2) Far Path: The far path handles addition and
subtraction when the exponent difference is greater than 1
(Figure 8). The addend with the bigger exponent (Sbig) can
be as wide as 106 bits. The addend with the smaller
exponent (Ssmall) is shifted right by the amount of exponent
difference and becomes 159 bits wide after shifting. In case
of subtraction, Ssmall is inverted before being fed to the
adders. A compound adder of 106 bits summing Sbig and
Ssmall[158:53] that produces sum and sum+1 is sufficient for
calculating the sum and difference [15]. Finally, only the
uppermost 53 bits of the result is retained after
normalization (possible right shift in case of addition and

Figure 7: Simplified CMA2 significand datapath (multiplier; adder: far
path, close path) with accumulation bypass path shown as dashed line and
multiply-add bypass path shown as dotted line. Notice the duplicated
Aligner and Mux units and extra CSA adders in the adder datapath

A
cc

um
ul

at
io

n
B

yp
as

s

134

left shift in case of subtraction) and guard and sticky bits are
calculated. To support incrementation of SB, the design is
modified by having an adder that produces sum, sum+1, and
sum+2. Choosing between the three results gives the
equivalent result of incrementing SB before the add
operation. The correct result is chosen according to the
following rules:

When ExpB > ExpA×C (Figure 8(a)): SB is right padded
with IncB. and: ܵ௕௜௚ ൌ ሼܵ஻, ሼሺ53ሻሼܿ݊ܫ஻ሽሽ ܵ௦௠௔௟௟ ൌ ሼ ஺ܵൈ஼, 53ᇱܾ0ሽ ب ሺ݌ݔܧ஻ െ ݌ݔܧ஺ൈ஼ሻ

If IncB is asserted, the result of addition becomes sum+1,
while the result of subtraction becomes sum+2.

When ExpA×C > ExpB (Figure 8(b)): SB is the smaller
fraction, and in case of incrementation, we need to add 1 to
the LSB of SB which is then fed to the alignment shifter. To
combine the incrementation with alignment and add
operation we pad the lower bits with IncB so that after
shifting, adding 1 to the LSB is still equivalent to
incrementing SB before shifting. Logically for Ssmall we will
create a 159 operand to feed into the adder, and we will add
the carry at the LSB. So ܵ௕௜௚ ൌ ஺ܵ஼

ܵ௦௠௔௟௟ ൌ ሼܵ஻, ሺ106ሻሼܿ݊ܫ஻ሽሽ ب ሺ݌ݔܧ஺ൈ஼ െ ݌ݔܧ஻ሻ

Since Sbig is zero for the 53 LSBs, carry-in to the 106 bit
adder is generated by carry-in ANDed with the lower 53 bits
of Ssmall which is used to choose between sum and sum+1 in
the case of addition. This handles all the shift cases. As for
subtraction, Ssmall is inverted before being fed to the adder.
Since ܵ௦௠௔௟௟തതതതതതതത ൌ െሺܵ௦௠௔௟௟ ൅ 1ሻ , then the result of
subtraction is always sum if IncB is asserted.

B. Optimizing the Accumulation Loop
The accumulation loop can be reduced by noticing that

the result exponent is known to within ±1 in advance of the
result mantissa in carry save format as an output of the adder.
In the near path, the exponent is the difference between the
larger exponent and the leading zero anticipator (LZA)

Figure 9: Simplified exponent datapath indicating the feedback loops.
Since we don’t know the output of the final normalization
(Shift_ExpB) we take the output of the current operation (Enow) and the
output of the LZA and combine them with the next multiplier output
(EAC(next)) to compute the next exponent difference (ExpDiffnext). Since
Enow + LZA can be off by one, we need to compute both options, and
we need to compute the absolute value of the result (the 2-1 mux
driven by Cout)

Figure 8: Far Path addition of mantissa of B and A×C with IncB asserted.
The boxes indicate the portion of the fractions that are fed to the adder.
The padded ones and 1 added at the least significant bit produce the
equivalent of increment of B. In case ExpA×C> ExpB: Carry in to the 106 bit
adder is carry in to the effective 159 bit adder ANDed with the 53 LSBs,
since they all need to be ‘1’ for the carry to propagate to the upper 106
bits.

135

count. In the far path, the exponent is just the bigger
exponent of the two addends, but might be incremented if a
late right shift is needed in case of addition or decremented if
a late left shift is needed in case of subtraction.

Figure 9 illustrates the exponent datapath implementation
to achieve reduced accumulation latency. An exponent
difference unit takes as input Enow, LZA, and EAC(next). It
computes:
௡௢௪ ൅ܧ൫ݏܾܽ ܣܼܮ െ ஺஼ሺ௡௘௫௧ሻܧ ൅ .൯, where x = -1, 0, 1 ݔ
corresponding to the exponent difference if the last result is
normalized to the left, not shifted or normalized to the right.
A late select based on normalization of the mantissa is used
to select the correct exponent difference for next stage.

The mantissa datapath is architected to start operation
after the exponent difference is found, resulting in
overlapping bypass loops of the exponent datapath and
mantissa datapath, as shown in Figure 10. This late mantissa
datapath design has several advantages. First, the exponent
difference is done in parallel with the multiplication,
removing the exponent difference stage from the critical path
between the multiplier and adder; thereby shortening the
total latency of CMA design and making it roughly the same
as FMA one. Second, the critical path for an accumulation
dependent instruction is improved from 4 cycles to 3 cycles
without noticeably affecting the latency of independent
instructions. Finally, since exponent difference is performed
first, power optimizations such as fine-grained clock gating
of the far/near path of the adder based on exponent

difference can be introduced, although no such optimization
was implemented in the presented power figures.

C. Handling Denormals
The cascade design handles denormals at the adder input

without a problem. It also produces denormal numbers
correctly when they are the result of the operation. However
multiplying a denormal with a normal number can result in
an unnormalized input to the adder which could generate
cancellations in the far path and therefore require
normalization. To solve for such a problem a special
exception is raised and a normalization stage after the
multiplier is used to normalize the product.

V. TIMING, POWER AND AREA
An FMA, a CMA design and a CMA2 with multiplier

outputs in carry save format have been implemented and
verified using SystemVerilog and synthesized using TSMC
45nm technology libraries. To determine the relative
latencies, unpipelined versions of the designs were
synthesized. Table 1 summarizes the result. CMA has the
least accumulation latency while FMA has the least
multiply-add latency. These latencies were the basis for
choosing the latency cycles we evaluated in our application
study.

For comparing the delay and energy of the designs, the
FMA design and the CMA2 were synthesized using a 7-stage
pipeline while for the CMA design an 8-stage pipeline was
synthesized. The datapath optimization flow starts by
synthesizing a design for a certain timing constraint,
inserting pipeline registers and doing register retiming to
pipeline the design. Then the resulting design is placed and
routed and the required clock network is generated. After the
design is routed, the design is reoptimized and parasitics are
extracted and annotated to the netlist. Activity factors for
dynamic power calculations are calculated for random input
vectors and assuming full utilization of the FPU. The timing
and power of the design are then reported using Primetime
timing tool. This procedure is repeated over a wide range of
supply voltages, threshold voltages, and clock periods to

Figure 10: Block diagram of CMA mantissa and exponent datapaths
showing the staggered timing of the exponent and mantissa

Figure 11: Energy efficiency tradeoff curves of different fused multiply-
add architectures.

TABLE 2
UNPIPELINED FMA VS. CMA DESIGN LATENCIES

 FMA CMA CMA2
with
CSA

Accumulation Latency (ns) 2.14 1.03 1.29

Multiply-Add Latency (ns) 2.14 2.4 2.28

Average Latency (ns) 2.14 1.715 1.785

Area (µm²) 33149 36660 41429

Energy/op (pJ) 17.9 19.3 21.864

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.5 1 1.5 2 2.5

En
er

gy
/o

pe
ra

ti
on

 (W
/G

Fl
op

s)

Clock Frequency (GHz)

FMA(6,6,7)

CMA(3,7,8)

CMA2(4,6,7)
with carry
save add

136

choose the most energy efficient designs. After generating
the data, the points on the efficient frontier of minimum
energy/op designs for a certain performance targets are
extracted from data points and are plotted in Figure 11. Table
2 provides the power, area and design parameters of these
efficient frontiers. Examining the data, FMA(6,6,7) and
CMA(3,7,8) have very similar energy and area cost, while
CMA2(4,6,7) requires roughly 20% more energy and area.

VI. CONCLUSION
When optimizing an FMA design, it is critical to

understand that the effective latency of the operation depends
on which unit (multiplier or adder) will consume the output,
and whether latency matters at all. For applications with
abundant parallelism, the latency penalty will be zero and
throughput oriented metrics such as W/GFlops and
mm²/GFlops should be the optimization target. For more
latency sensitive applications, a cascade design provides a
number of parameters that can be optimized, and in
particular it allows one to create a design with very low
effective latency between operations with a sum dependence.
The reduction in latency depends on two main optimizations:
forwarding of unrounded results and tightening the
accumulation bypass path by staggering the exponent and
mantissa datapath of the adder. Building and synthesizing the
design reveals it does not incur area or energy overheads
over existing FMA designs. Using an architectural simulator
and SPEC2000 FP benchmark we found the CMA design to
have 6% performance gain for a simple single issue in-order
designs and 4-4.5% gain for out of order superscalar designs.

REFERENCES

[1] Hokenek, E.; Montoye, R.K and Cook, P.W, “Second-generation
RISC floating point with multiply-add fused”, IEEE Journal of Solid-
State Circuits, Oct. 1990, pp. 1207–1213.

[2] Standard Performance Evaluation Corporation, “CFP2000 (Floating
Point Component of SPEC CPU2000)”,
http://www.spec.org/cpu2000/CFP2000/

[3] Son Dao Trong, Martin S. Schmookler, Eric M. Schwarz, Michael
Kroener, “P6 Binary Floating-Point Unit”, IEEE Symposium on
Computer Arithmetic 2007: 77-86

[4] S. Galal, M. Horowitz, “Energy-Efficient Floating Point Unit
Design,” IEEE Transactions on Computers, Vol. pp, issue 99, June
2010

[5] N. L. Binkert, et al., “The M5 Simulator: Modeling Networked
Systems” IEEE Micro, Vol. 26, No. 4. (2006), pp. 52-60.

[6] R.M. Jessani and M. Putrino, “Comparison of Single- and Dual-Pass
Multiply-Add Fused Floating-Point Units,” IEEE Transactions on
Computers, Vol. 47, pp. 927-937. 1998.

[7] H.-J. Oil, , et. al., “A Fully Pipelined Single-Precision Floating-Point
Unit in the Synergistic Processor Element of a Cell Processor”, IEEE
J. Solid-State Circuits 41, No. 4, 759-771 (2006)

[8] P.-M. Seidel “Multiple Path IEEE Floating-Point Fused Multiply-
Add”, Proceedings of the 46th IEEE International Midwest
Symposium on Circuits and Systems, 2003. MWSCAS '03.

[9] S. R. Vangal, et al., “An 80-Tile Sub-100-W TeraFLOPS Processor in
65-nm CMOS” IEEE J. Solid-State Circuits, pp. 29-41, Vol. 43, Jan.
2008

[10] S. R. Vangal, Y. V. Hoskote, N. Y. Borkar and A. Alvandpour, “A
6.2-GFLOPS floating-Point multiply-accumulator with conditional
normalization,” IEEE J. Solid-State Circuits, pp. 2314-2323, Vol. 41,
Oct. 2006

[11] J.D. Bruguera and T. Lang, “Floating-Point Fused Multiply-Add:
Reduced Latency for Floating-Point Addition,” Proceedings of the

TABLE 3
EFFICIENT FRONTIER DESIGNS (ENERGY/OP VS. FREQUENCY) FOR DIFFERENT FMA ARCHITECTURES

Vdd Vth Frequency
(GHz)

Area
(μm²)

Power(mW) FO4(ns) Cycle
Time
(FO4)

mm²/
GFlops

W/
GFlops Dynamic Leakage

Double Precision FMA(6,6,7)
0.72 standard 0.62 47269 17.9 0.9 24 67 0.038 0.014
0.81 low 0.93 43651 30.5 2.3 17 64 0.024 0.016
0.9 low 1.85 52240 103.6 4 14 39 0.014 0.027
0.9 low 1.92 71089 204 7 14 37 0.018 0.032

Double Precision CMA(3,7,8)
0.72 standard 0.65 49571 17.4 0.9 24 64 0.038 0.014
0.81 low 0.99 44950 28 2.2 17 59 0.023 0.015
0.9 low 1.72 54578 96.7 4.7 14 41 0.016 0.026
0.9 low 1.85 61133 134 6.1 14 39 0.017 0.028

Double Precision CMA2(3,6,7) with multiplier outputs in Carry Save format
0.72 standard 0.65 58990 20.9 1.1 24 64 0.045 0.016
0.81 low 0.93 52357 32.9 2.7 17 64 0.028 0.018
0.9 low 1.56 63530 110.2 6.4 14 46 0.02 0.03
0.9 low 1.67 81944 64.3 5 14 43 0.025 0.035

137

17th IEEE Symposium on Computer Arithmetic. pp. 42-51, June,
2005.

[12] E. Quinnell, E. Swartzlander , and C. Lemonds, “Bridge Floating-
Point Fused Multiply-Add Design,” IEEE Transactions on VLSI
Systems, Vol. 16, No. 12. (December 2008), pp. 1727-1731

[13] N. Ide, et al., “2.44-GFLOPS 300-MHz Floating-Point Vector-
Processing Unit for High-Performance 3-D Computer Graphics
Computing,” IEEE J. Solid-State Circuits, vol. 35, no. 7, pp. 1025-
1033, July 2000.

[14] P. M. Farmwald, “On the design of high performance digital
arithmetic units,” PhD Thesis, Stanford University, Stanford, CA,
1981

[15] E.M. Schwarz, “Binary Floating-Point Unit Design: the fused
multiply-add dataflow”, High-Performance Energy-Efficient
Microprocessor, Edited by V.G. Oklobdzija and R.K. Krishnamurthy,
Springer, Chapter 8, 2006.

138

