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Abstract— The implementation of merged floating-point 
multiply-add operations can be optimized in many ways. For 
latency sensitive applications, our cascade design reduces the 
accumulation dependent latency by 2x over a fused design, at a 
cost of a 13% increase in non-accumulation dependent latency.  
A simple in-order execution model shows this design is 
superior in most applications, providing 12% average 
reduction in FP stalls, and improves performance by up to 6%. 
Simulations of superscalar out-of-order machines show 4% 
average improvement in CPI in 2-way machines and 4.6% in 
4-way machines. The cascade design has the same area and 
energy budget as a traditional fused multiple-add FMA. 

Keywords- Fused Multiply Add 

I.  INTRODUCTION 
A high performance floating-point unit is a major 

component of modern CPU and GPU designs. Its 
applications range from multimedia and 3D graphics 
processing to scientific and engineering applications. Most 
recent designs incorporate an integrated multiply-accumulate 
unit due to the frequency of multiply-accumulation 
operations, such as those found in dot products and matrix 
multiplication.  These multiply-accumulate units usually 
implement the fused multiply add operation (FMA) which 
was first introduced in IBM RS6000 FPU [1]. This operation 
has been recently added to the IEEE floating-point arithmetic 
standard, IEEE741-2008. The standard defines 
fusedMultiplyAdd(A, C, B) as the operation that computes 
(A × C) + B initially with unbounded range and precision, 
rounding only once to the destination format. As a result, 
fused multiply-add has lower latency and higher precision 
than a multiplication followed by an addition. 

 
In this paper we focus on optimizing the design of FPUs 

in CPUs, which are more latency sensitive than GPU 
designs.  We evaluate the design alternatives using the SPEC 
CFP2000 floating point benchmark suite [2]. To understand 
how FP latency affects these applications, we classify FMA 
dependencies according to where the result is used in a 
subsequent instruction, as shown in Figure 1: 

• Accumulation Dependency: the result is 
accumulated in a subsequent fadd or fmadd 
instruction (bypass through fB). 

• Multiply-Add Dependency: the result goes through a 
fused multiply and then an add (bypass through fA or 
fC). 

• Other Dependencies: the dependent instruction is not 
fmadd, fadd or fmul. 

For the rest of the paper we will use a tuple notation to 
indicate the latency for the different kind of dependencies to 
compare different designs. For example, a (3,7,8) design has 
a 3 cycle accumulation latency, 7 cycle multiply-add latency 
and an 8 cycle latency for other non-FMA dependent 
instructions.  
 

Traditional FMA design does not make a distinction 
between the latency of accumulation and multiply-add, 
resulting in designs that have equal latencies for all 
dependencies. For example, the IBM Power5 FMA is a 
(6,6,6) design, but the Power6 FMA is (6,6,7), because the 
design is optimized to handle feed forwarding of dependent 
instructions before the rounding stage [3]. We review such a 
design in Section 3 and use it as a reference for a state of the 
art FMA design. We then introduce our cascade 
implementation of the FMA instruction (CMA) which has 
been optimized for accumulation dependencies with a small 
effect on the other latencies. CMA allows the accumulation 
operand fB to enter the pipeline much later than in a 
traditional FMA implementation, allowing for shorter 
accumulation latency. We then optimize this path by 
introducing overlapping bypass paths for exponent and 
significand to make the accumulation dependent latency as 
short as possible. We demonstrate how a CMA can achieve a 
(3,7,8) latency at the same clock rate of an FMA(6,6,7). 
Figure 2 shows the FMA and CMA pipelines and their 
bypass paths and how these bypass paths reduce the effective 
latency of the instructions. The cascade design can achieve 

 

Figure 1: FMA dependency types 
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such aggressive accumulation latency because of staggered 
feedback as shown in Figure 2 ( and elaborated in Section 4). 

Section 5 presents the delay, power and area results of 
implementing the CMA and FMA design, and Section 6 
concludes the paper. 

II. APPLICATION STUDY 
The effect of the different instruction dependencies in 

FPU design and their respective latencies is application 
dependent, since for applications with parallelism, data 
dependencies can be hidden by interleaving execution of 
parallel (non dependent) work to keep the machine busy 
during the “stall” time. For example, on a 6 stage FPU, 
interleaving the execution of 6 threads will keep the unit 
busy and hide any data dependencies. This technique is used 
in GPU designs. For such parallel workloads, W/GFlops and 
mm²/GFlops are the critical parameters to optimize [4]. 

For applications with less parallelism, the performance 
effect of these latency changes are important, and depend on 
the amount of parallelism that the processor can extract from 
the application: only when FP operations are on this critical 
path will the latency changes matter. We first studied a 
simple single-issue, in-order model to quickly explore the 
frequencies of the different dependency paths, and to gain 
intuition for the types of trade-offs that might exist.  To 
provide this information, we modified the M5 architecture 
simulator [5] built for the PowerPC architecture to count the 
three different FP latency stalls. The modified simulator 
stored the total number of stalled cycles for every design and 
calculated the average latency penalty by dividing by the 
total number of fmadd, fmul and fadd instructions. Finally, 
we calculated the average time penalty by dividing the 
average latency penalty by the clock frequency.  

This study revealed the importance of the accumulation 
latency, so we focused on creating a design which 
maximized the overall performance (at small power changes) 
using asymmetric latencies.  In the end we compared FMA 
(6,6,7), CMA (3,7,8), and CMA2(4,6,7). The last design is a 
variation of CMA which uses more hardware and power to 

get a slightly better multiplier-add latency at the cost of 
increasing the accumulation latency. These latencies were 
chosen based on the delay characteristics of the respective 
designs so that all of them run at the same clock frequency. 
We simulated the reference set of CFP2000 benchmarks 
using the gcc PowerPC cross compiler with the –O3 
optimization directive. The PowerPC architecture was 
chosen because it has had the FMA instruction for a long 
time and has more mature FMA compiler support. The 
compiler optimizes for a 6 cycle FPU, which matches our 
base FMA architecture. 

Figure 3 shows the in-order model results. On average, 
fmadd, fmul and fadd instructions make up around 20% of 
these application’s instructions, but are much smaller in three 
(mesa, facerec, and sixtrack).  We ignore these applications 
in the averages in Figure 3(b) and (c) since FP performance 
is not critical for them. Figure 3(b) shows the average 
latency penalty for each application. CMA(3,7,8) achieves 
an average latency penalty of 1.81 cycles across the 
benchmark which is 13% lower than the 2.07 average 
latency penalty incurred by the FMA(6,6,7) design. 
CMA2(4,6,7) achieves a slightly better average latency 
penalty of 1.73, but in this simple model, the change in the 
two latencies essentially balances out. Figure 3(c) shows the 
performance loss from FP stalls. FMA(6,6,7), CMA(3,7,8) 
and CMA2(4,6,7) incur total performance penalties of 41%, 
33.7% and 33.1% respectively. Therefore, CMA(3,7,8) and 
CMA2(4,6,7) architectures will be ~5-6% faster than an 
FMA(6,6,7) architecture at the same clock frequency, if the 
average instructions per cycle (IPC) of all non-FP 
instructions is one. 

An in-order machine is very latency sensitive, as any 
subsequent dependent instructions stalls the pipeline 
execution until the floating point instruction has finished. 
Out of order superscalar designs are less latency sensitive 
because they exploit instruction level parallelism (ILP) to 
find non-dependent instructions to issue while waiting for 
executing instructions, resulting in higher IPC. However, 
long FPU latency still affects performance when the 

Figure 2: Block diagram of FMA and CMA pipelines with their respective bypass paths, and a timing diagram of an example instruction trace for both 
pipelines. The CMA architecture has shorter accumulation latency than FMA. 
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available ILP is not enough to keep the functional units busy, 
resulting in stalls. 

To test the effectiveness of the proposed cascade design 
in out of order machines, we modified the scheduler of the 
out of order model of the M5 simulator to support the 
FMA(6,6,7) and CMA(3,7,8) architectures. For the 
CMA(3,7,8) design, the scheduler was modified to allow 
fadd and accumulation-dependent fmadd instructions to 
issue up to 5 cycles earlier if the critical operand was 
produced by preceding fmadd, fmul or fadd instructions and 
up to 3 cycles earlier if produced by other instructions. 
Additionally, dependent fmul and multiply-add dependent 
fmadd are issued up to one cycle earlier. On the other hand, 

for the FMA(6,6,7) scheduler, any accumulation dependent 
or multiply-add dependent fmadd, fmul or fadd instructions 
are issued up to 1 cycle earlier. Using the modified model, 
the CFP 2000 benchmarks were run with 2-FPU and 4-FPU 
configurations to see how the performance improvement 
scales with increased number of functional units, which 
should increase the sensitivity to FPU latency. The results of 
the floating point rich benchmarks are summarized in Table 
1. The CMA design shows an average reduction in cycles per 
instruction (CPI) over FMA of 3.97% for the 2-FPU case and 
4.62% for the 4-FPU machine as illustrated in Figure 4.  

The results indicate that the proposed CMA(3,7,8) design 
achieves an average performance improvement of 4-6% for a 

 

(a) 

 
(b) 

 
(c) 

 
Figure 3: CFP 2000 benchmark on a simple single-issue in-order model. (a) Floating point instruction mix as percentage of total number of instructions. (b) 
Average latency penalty (c) Total performance overhead (assuming IPC=1 except for FP operations) for FMA(6,6,7), CMA(3,7,8) and CMA2(4,6,7) designs.
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wide spectrum of designs ranging from simple in-order 
single issue designs to out of order superscalar designs. 
Having demonstrated the potential advantage of a cascade 
design, the following sections review the design of FMA and 
explain the details of the proposed CMA implementation. 

 

III. FUSED MULTIPLY ADD DESIGN 
Fused Multiply Add units have been extensively studied 

and implemented in several designs [6][7]. They reduce 
latency by performing alignment of the addend significand 
(SB) in parallel with the multiplication tree of SA and SC. 
Furthermore, the multiplier output is kept in carry save 

format and added to the aligned addend, thereby saving one 
extra add operation. However, since the addend’s exponent 
might be smaller or larger than the sum of multiplicands’ 
exponents, the addend significand can be shifted from all the 
way to the left of the multiplier result to all the way to the 
right, requiring the datapath to have wide shifters and adders.  

Several modifications to improve latency have been 
proposed. Parallel path designs that compute different 
datapaths in parallel and select the correct answer based on 
different cases have been proposed, but seem to have large 
area overhead [8]. Some FMA designs also aim to improve 
the accumulation latency as well. Intel demonstrated an 80-
core throughput chip that employed an 11-stage multiply-

TABLE 1 
OUT OF ORDER PERFORMANCE RESULTS 

 Instruction Mix CPI (Cycles Per Instructions)
2-FPU configuration 4-FPU configuration

Benchmark 
Name 

fmadd fadd fmul Total 
Floating 

CMA 
(3,7,8) 

FMA 
(6,6,7) 

CMA 
(3,7,8) 

FMA 
(6,6,7) 

168.wupwise 9% 7% 10% 25% 1.301 1.358 1.282 1.355
171.swim 8% 19% 9% 36% 1.479 1.536 1.425 1.487
172.mgrid 3% 42% 3% 48% 1.061 1.219 1.04 1.22 
173.applu 11% 9% 22% 41% 1.689 1.715 1.625 1.654
178.galgel 45% 3% 5% 53% 2.311 2.375 2.312 2.374
179.art 9% 2% 0% 11% 4.196 4.177 4.19 4.177
187.facerec 6% 10% 4% 19% 0.975 0.99 0.969 0.991
188.ammp 7% 5% 7% 19% 1.689 1.665 1.701 1.66
189.lucas 3% 13% 5% 22% 1.568 1.639 1.559 1.638
301.apsi 6% 15% 12% 33% 1.823 1.796 1.605 1.607

Average Performance Improvement of CMA 
over FMA (weighted by % of FP instructions) 

3.97% 4.62% 
 

 
Figure 4: CPI reduction in CFP 2000 benchmarks for out of order 2-FPU and 4-FPU machines. 
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accumulate unit with single cycle accumulation latency 
[9][10]. Unfortunately, this design is not an IEEE FMA 
operation, because it does not preserve intermediate 
precision. A Bridge FMA design has been proposed to add 
FMA functionality by adding a bridge unit to slightly 
modified adder and multiplier designs [12]. The area of this 
bridge FMA unit is nearly as large as a separate FMA and 
adder units, which makes this approach less appealing.  

Another FMA design tries to improve the latency of 
additions by separating addition cases into two groups.  One, 
where the exponents are far apart, does not require 
normalization, and the alignment is done after multiplication.  
The other, where the exponents are close, skips the shifter, 
which gives time for post addition normalization [11]. We 
use this idea in our cascade designs. That design also keeps 
the multiplier output in carry save format, which results in 
complicating the addition datapath. We use this idea in our 
(4,6,7) CMA2 design variant to improve the overall latency, 
but it does add energy and the accumulation latency is 
degraded because of the extra carry save adder and wider 
datapath required. Figure 7 illustrates the datapath of the 
significand of the CMA2 design. 

The Power6 FMA is a recent IEEE-compliant 7 cycle 13 
FO4 design with a 6 cycle latency for dependent instructions 
(Figure 5). It achieves the reduced dependency latency by 

forwarding the unrounded results with special control signals 
to indicate if the result is to be incremented. Special terms 
added in the multiplier tree are used to generate the correct 
product. For example, if A is forwarded and Increment signal 
is asserted, an additional A term is added in the 
multiplication tree to produce A×C+A = (A+1) ×C.  Such a 
design has (6,6,7) latency by the metrics introduced earlier. 
This FMA design is used as the standard design for 
comparison because it is IEEE-compliant and has the 
shortest latency of FMA architecture for the least area and 
energy.  

 

IV. CASCADE MULTIPLY ADD DESIGN 
One can compute a multiply add by simply cascading the 

two functional elements. However because of the 
requirement of unlimited precision for intermediate results of 
FMA instructions, the multiplier and adder are different from 
traditional floating point adders/multipliers. For example, a 
double precision CMA design contains the following stages 

Figure 6: Simplified CMA significand datapath (multiplier; adder: far path, 
close path) with accumulation bypass path shown as dashed line and 
multiply-add bypass path shown as dotted line.  

Figure 5: Power6 FMA Significand Datapath (reproduced from [3]) 
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• A multiplier that takes 2 double-precision operands 
A,C to generate the result A×C in “quad” precision  
(106 bit mantissa, 13 bit exponent) 

• An asymmetric adder that takes a double precision 
operand B and the “quad” precision multiplier output 
to produce a double-precision result (A×C)+B 

Thus, CMA is just an implementation variant of FMA 
that produces exactly the same result for FMA instructions 
with unlimited intermediate precision and rounding only 
once at the end. The cascade design is a less common 
implementation but still has been used in some designs [13]. 
We evaluated the CMA design since the add portion can be 
optimized to be very fast using parallel paths algorithms 
where either alignment or normalization steps are saved [14] 
which might make up for the slight increase in overall 
latency. The overall latency increases because the multiplier 
tree outputs are combined using an adder before being fed to 
the cascaded adder. Since the add operations start “late” in 
the overall pipeline, they cause less stall time than would 
occur in a normal FMA. 

Figure 6 illustrates the datapath of the significand of the 
CMA design we have developed. It employs an adder with 
far path datapath for calculating the sum or difference when 
the exponent difference is greater than 1 and a close path 
datapath that calculates the difference when the exponent 
difference is ≤ 1, which is the only case where there could be 
massive cancellation and a need for a big normalizing shifter. 
The design has been optimized to shorten accumulation 
latency and handle forwarding of unrounded results (with 
increment signals) to shave a cycle off the accumulation and 
multiply-add latencies as was done in the FMA design. The 
next two sections discuss the details of these optimizations. 

A. Removing the Rounding Latency Overhead 
To reduce the overall latency of dependent instructions, 

our CMA design implements a bypass path for dependent 
instructions that feeds forward the unrounded result and an 
increment signal. 

Implementing the bypass for the multiplier inputs A , C is 
similar to the design used by IBM [3]. We modify the 
multiplier tree to have one extra term that can be either SA if 
IncA signal is asserted, or SC if IncC is asserted. As for the 
input B, the adder part has been modified to accept the inputs 
SB, IncB and SA×C. The idea is to merge the incrementation of 
B with the addition to A×C using carry save adders.  The 
implementation of the near path and far path adders that 
support the increment signal is done as follows: 

1) Close Path: The close path handles the subtraction 
case of SA×C (106 bits) and SB (53 bits) which are aligned on 
the MSB. The absolute difference of two binary numbers x, 
y is usually calculated as follows: 
ݔሺݏܾܽ  െ ሻݕ ൌ ൜ ݔ െ ݕ ൌ x ൅ yത ൅ 1             , ݕ ൏ െሺxݔ െ y െ 1ሻ െ 1 ൌ ݔ ൅ തതതതതതതതݕ , ݕ ൒  ݔ

 
Therefore, the operation can be implemented using a 

compound adder to produce (x + ݕത) and (x + ݕത + 1), and a 

mux to choose between ሺݔ ൅ ݕതሻതതതതതതതതതതത and (x +  ݕത + 1) if there is 
a carry out from (x + ݕത). 

Additionally, SB needs to be incremented before the 
absolute difference operation if IncB is asserted. It is 
straightforward to merge the incrementation of SB  with the 
absolute difference operation by right padding SB with 53 
bits of IncB (to match the width of the multiplier output), 
which makes adding 1 at the least significant position 
produce the resulting effect of incrementing SB.  
 

2) Far Path: The far path handles addition and 
subtraction when the exponent difference is greater than 1 
(Figure 8). The addend with the bigger exponent (Sbig) can 
be as wide as 106 bits. The addend with the smaller 
exponent (Ssmall) is shifted right by the amount of exponent 
difference and becomes 159 bits wide after shifting. In case 
of subtraction, Ssmall is inverted before being fed to the 
adders. A compound adder of 106 bits summing Sbig and 
Ssmall[158:53] that produces sum and sum+1 is sufficient for 
calculating the sum and difference [15]. Finally, only the 
uppermost 53 bits of the result is retained after 
normalization (possible right shift in case of addition and 

Figure 7: Simplified CMA2 significand datapath (multiplier; adder: far 
path, close path) with accumulation bypass path shown as dashed line and 
multiply-add bypass path shown as dotted line. Notice the duplicated 
Aligner and Mux units and extra CSA adders in the adder datapath 
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left shift in case of subtraction) and guard and sticky bits are 
calculated. To support incrementation of SB, the design is 
modified by having an adder that produces sum, sum+1, and 
sum+2. Choosing between the three results gives the 
equivalent result of incrementing SB before the add 
operation. The correct result is chosen according to the 
following rules: 

When ExpB > ExpA×C (Figure 8(a)): SB is right padded 
with IncB. and: ܵ௕௜௚ ൌ ሼܵ஻, ሼሺ53ሻሼܿ݊ܫ஻ሽሽ ܵ௦௠௔௟௟ ൌ ሼ ஺ܵൈ஼, 53ᇱܾ0ሽ ب ሺ݌ݔܧ஻ െ ݌ݔܧ஺ൈ஼ሻ 

If IncB is asserted, the result of addition becomes sum+1, 
while the result of subtraction becomes sum+2. 

When ExpA×C > ExpB (Figure 8(b)):  SB is the smaller 
fraction, and in case of incrementation, we need to add 1 to 
the LSB of SB which is then fed to the alignment shifter. To 
combine the incrementation with alignment and add 
operation we pad the lower bits with IncB so that after 
shifting, adding 1 to the LSB is still equivalent to 
incrementing SB before shifting. Logically for Ssmall  we will 
create a 159 operand to feed into the adder, and we will add 
the carry at the LSB. So ܵ௕௜௚ ൌ ஺ܵ஼   

ܵ௦௠௔௟௟ ൌ ሼܵ஻, ሺ106ሻሼܿ݊ܫ஻ሽሽ ب ሺ݌ݔܧ஺ൈ஼ െ ݌ݔܧ஻ሻ  

Since Sbig is zero for the 53 LSBs, carry-in to the 106 bit 
adder is generated by carry-in ANDed with the lower 53 bits 
of Ssmall which is used to choose between sum and sum+1 in 
the case of addition. This handles all the shift cases. As for 
subtraction, Ssmall is inverted before being fed to the adder. 
Since ܵ௦௠௔௟௟തതതതതതതത ൌ  െሺܵ௦௠௔௟௟ ൅  1ሻ  , then the result of 
subtraction is always sum if IncB is asserted.  

 

B. Optimizing the Accumulation Loop 
The accumulation loop can be reduced by noticing that 

the result exponent is known to within ±1 in advance of the 
result mantissa in carry save format as an output of the adder. 
In the near path, the exponent is the difference between the 
larger exponent and the leading zero anticipator (LZA) 

Figure 9: Simplified exponent datapath indicating the feedback loops. 
Since we don’t know the output of the final normalization 
(Shift_ExpB) we take the output of the current operation (Enow) and the 
output of the LZA and combine them with the next multiplier output 
(EAC(next)) to compute the next exponent difference (ExpDiffnext).  Since 
Enow + LZA can be off by one, we need to compute both options, and 
we need to compute the absolute value of the result (the 2-1 mux 
driven by Cout) 

 

Figure 8: Far Path addition of mantissa of B and A×C with IncB asserted. 
The boxes indicate the portion of the fractions that are fed to the adder. 
The padded ones and 1 added at the least significant bit produce the 
equivalent of increment of B. In case ExpA×C> ExpB: Carry in to the 106 bit 
adder is carry in to the effective 159 bit adder ANDed with the 53 LSBs, 
since they all need to be ‘1’ for the carry to propagate to the upper 106 
bits. 
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count. In the far path, the exponent is just the bigger 
exponent of the two addends, but might be incremented if a 
late right shift is needed in case of addition or decremented if 
a late left shift is needed in case of subtraction. 

Figure 9 illustrates the exponent datapath implementation 
to achieve reduced accumulation latency. An exponent 
difference unit takes as input Enow, LZA, and EAC(next). It 
computes: 
௡௢௪ ൅ܧ൫ݏܾܽ  ܣܼܮ  െ ஺஼ሺ௡௘௫௧ሻܧ ൅  .൯,  where x = -1, 0, 1 ݔ
corresponding to the exponent difference if the last result is 
normalized to the left, not shifted or normalized to the right. 
A late select based on normalization of the mantissa is used 
to select the correct exponent difference for next stage.  

The mantissa datapath is architected to start operation 
after the exponent difference is found, resulting in 
overlapping bypass loops of the exponent datapath and 
mantissa datapath, as shown in Figure 10. This late mantissa 
datapath design has several advantages. First, the exponent 
difference is done in parallel with the multiplication, 
removing the exponent difference stage from the critical path 
between the multiplier and adder; thereby shortening the 
total latency of CMA design and making it roughly the same 
as FMA one. Second, the critical path for an accumulation 
dependent instruction is improved from 4 cycles to 3 cycles 
without noticeably affecting the latency of independent 
instructions. Finally, since exponent difference is performed 
first, power optimizations such as fine-grained clock gating 
of the far/near path of the adder based on exponent 

difference can be introduced, although no such optimization 
was implemented in the presented power figures. 
 

C. Handling Denormals 
The cascade design handles denormals at the adder input 

without a problem. It also produces denormal numbers 
correctly when they are the result of the operation. However 
multiplying a denormal with a normal number can result in 
an unnormalized input to the adder which could generate 
cancellations in the far path and therefore require 
normalization. To solve for such a problem a special 
exception is raised and a normalization stage after the 
multiplier is used to normalize the product. 

 

V. TIMING, POWER AND AREA 
An FMA, a CMA design and a CMA2 with multiplier 

outputs in carry save format have been implemented and 
verified using SystemVerilog and synthesized using TSMC 
45nm technology libraries. To determine the relative 
latencies, unpipelined versions of the designs were 
synthesized. Table 1 summarizes the result. CMA has the 
least accumulation latency while FMA has the least 
multiply-add latency. These latencies were the basis for 
choosing the latency cycles we evaluated in our application 
study.  

For comparing the delay and energy of the designs, the 
FMA design and the CMA2 were synthesized using a 7-stage 
pipeline while for the CMA design an 8-stage pipeline was 
synthesized. The datapath optimization flow starts by 
synthesizing a design for a certain timing constraint, 
inserting pipeline registers and doing register retiming to 
pipeline the design. Then the resulting design is placed and 
routed and the required clock network is generated. After the 
design is routed, the design is reoptimized and parasitics are 
extracted and annotated to the netlist. Activity factors for 
dynamic power calculations are calculated for random input 
vectors and assuming full utilization of the FPU. The timing 
and power of the design are then reported using Primetime 
timing tool. This procedure is repeated over a wide range of 
supply voltages, threshold voltages, and clock periods to 

 

Figure 10: Block diagram of CMA mantissa and exponent datapaths 
showing the staggered timing of the exponent and mantissa 

Figure 11: Energy efficiency tradeoff curves of different fused multiply-
add architectures. 

TABLE 2 
UNPIPELINED FMA VS. CMA DESIGN LATENCIES 

 FMA CMA CMA2 
with 
CSA 

Accumulation Latency (ns) 2.14 1.03 1.29

Multiply-Add Latency (ns) 2.14 2.4 2.28

Average Latency (ns) 2.14 1.715 1.785

Area (µm²) 33149 36660 41429

Energy/op (pJ) 17.9 19.3 21.864
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choose the most energy efficient designs. After generating 
the data, the points on the efficient frontier of minimum 
energy/op designs for a certain performance targets are 
extracted from data points and are plotted in Figure 11. Table 
2 provides the power, area and design parameters of these 
efficient frontiers. Examining the data, FMA(6,6,7) and 
CMA(3,7,8) have very similar energy and area cost, while 
CMA2(4,6,7) requires roughly 20% more energy and area. 

 

VI. CONCLUSION 
When optimizing an FMA design, it is critical to 

understand that the effective latency of the operation depends 
on which unit (multiplier or adder) will consume the output, 
and whether latency matters at all.  For applications with 
abundant parallelism, the latency penalty will be zero and 
throughput oriented metrics such as W/GFlops and 
mm²/GFlops should be the optimization target. For more 
latency sensitive applications, a cascade design provides a 
number of parameters that can be optimized, and in 
particular it allows one to create a design with very low 
effective latency between operations with a sum dependence. 
The reduction in latency depends on two main optimizations: 
forwarding of unrounded results and tightening the 
accumulation bypass path by staggering the exponent and 
mantissa datapath of the adder. Building and synthesizing the 
design reveals it does not incur area or energy overheads 
over existing FMA designs. Using an architectural simulator 
and SPEC2000 FP benchmark we found the CMA design to 
have 6% performance gain for a simple single issue in-order 
designs and 4-4.5% gain for out of order superscalar designs.  
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