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Abstract - User requirements for signal processing have 
increased in line with, or greater than, the increase in FPGA 
resources and capability. Many current signal processing 
algorithms require floating point, especially for military 
applications such as radar. Also, the increasing system 
complexity of these designs necessitate increased designer 
productivity, and floating point allows an easier implementation 
of the system model than the fixed point arithmetic that  FPGA 
devices have been traditionally architected for. 
This article will review devices and methods for achieving 
consistent high performance system implementations in floating 
point. Single device designs at over 200 GFLOPs at the 40nm 
node, and approaching 1 Teraflop at 28nm will be described. 
 

I. INTRODUCTION 
 

Many operator libraries have been designed for FPGAs; 
a brief survey of these shows that the most commonly used 
operators (multiply and add/subtract) have similar areas, 
performance levels, and latencies [3]. The combination of 
multiple arithmetic operators into higher level functions such 
a dot product operator are inefficient, and often suffer from 
significantly reduced Fmax. Typical latencies for both 
multipliers and adders are in the range of 10; a dot product 
operator with a few tens of inputs may therefore exceed a 
latency of 100. Routing congestion and datapath latencies are 
some of the reasons why many FPGA matrix operations are 
implemented with a multiple PE (processing element) 
architecture. Parallelism is a key advantage of a hardware 
solution like FPGAs, but it is often not applied to floating 
point signal processing because the long latencies make the 
data dependencies in algorithms such as matrix 
decomposition difficult to manage. The resultant systems 
offer poor performance levels, uncompetitive to other 
platforms such as GPU or multi-core CPU. 

There are several ways in which these FPGA challenges 
can be mitigated. The FPGA can have floating point 
precision supported in the embedded DSP Blocks. More 
efficient ways of mapping the floating point datapath to the 
relatively limited routing structures can be designed. Rather 
than building up a datapath from individual operators, the 
datapath can be considered as a single function, with inter-
operator redundancy factored out. Elementary functions can 
be implemented as much as possible using multipliers, which 
offer guaranteed internal routing and timing, as well as low 
power and latency. New techniques can be applied for matrix 
decompositions, with the algorithms restructured to remove 
most of the data dependencies, so that parallel – and 
therefore high latency – datapaths can be used for 
computation [2]. 

Once the datapath can be efficiently used, i.e. the entire 
pipelined is full during every clock cycle, the FPGA has the 
advantage of parallelism. Unlike other platforms, sustained 
performance can approach peak performance, but the matrix 
decomposition has to be carefully structured to avoid 
deadtime during filling the pipeline. 

 
II. DEVICE CAPABILITY 

 
In recent FPGA architectures there has been some 

support of the multiplier sizes suited for floating point, 
although traditionally FPGA base multiplier sizes are at 
smaller fixed point precisions: 18x18 or 18x25, which are 
both close to C short definitions. IEEE754 floating point uses 
23 bit and 52 bit mantissas for single and double precision, 
respectively, although more precision is required to support 
FPGA floating point efficiently. This is because multiplier 
based elementary function implementation  can be best 
supported with about 12 bits of additional precision – 36x36 
and 64x64 bit precisions for the two formats. For a short 
convergence algorithms - which may be division 
implemented with a modified Newton-Raphson method or a 
trigonometric function where a power series is used to 
calculate a greatly range-reduced argument – the additional 
precision allows a sequential set of multiplications to be 
performed without inter-multiply rounding or normalization, 
and still be completely accurate to the chosen format. The 
Xilinx DSP48E slices support 25x25 multiplies which can be 
used to directly implement single precision mantissa 
multiplication, while the Altera DSP Block can directly 
implement 36x36 multipliers for single precision elementary 
function calculation. The 65nm Stratix III and 40nm Stratix 
IV Altera devices introduced 54x54 multiplier support, for 
double precision floating point mantissa multiplication. The 
28nm Altera Stratix V family also introduced a variable 
precision DSP Block which supports 27x27 multipliers with 
half the resources of the larger 36x36 multipliers. The 64x64 
multipliers still need to be constructed of the combination of 
smaller multipliers and soft logic, although the number of 
multipliers required can be reduced by the application of 
Karatsuba’s method.  
 

III. FUSED DATAPATH MAPPING 
 

Fused datapath methodology uses rules to create 
functional clusters, where the normalization and 
denormalization is merged among multiple operators [1].  
Dynamic range can be controlled so that overflow is 
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impossible. Underflow, or the reduction of accuracy due to 
bit cancellation is more difficult to manage, but the 
effectiveness of the technique can be shown empirically for 
real applications. Many thousands of test cases of a Cholesky 
decomposition were run on a number of different matrix 
sizes [2]. On average, the accuracy of the result was better 
than the equivalent decomposition calculated on an x86 
processor. As floating point is non-associative, there is 
always a difference in result between the parallel and 
sequential calculation of an algorithm; as fused datapath uses 
both an enhanced precision and dynamic range, it can 
expected that the results will be somewhat better than strictly 
IEEE754 compliant individual operators. The increase in 
resources required for supporting fused datapath precision 
expansion is  a linear growth at the applied level, rather than 
a geometric one (as might be expected for a multiplier), but 
is more than offset by the overall resource savings by the 
method. Generally speaking, a typical datapath application 
will have a 50% logic reduction and 50% latency reduction, 
compared to the same construction with individual operators. 

Two complex FIR filter designs illustrate the 
combination of fused datapath with current FPGAs. An 80 
tap filter (640 total single precision operators) in a Stratix IV 
EP4SG230 (182K ALUT/registers, 1288 18x18 multipliers) 
uses 99% DSP, but only 33% logic, with an Fmax of 350MHz, 
giving 225 GFLOPs. A 256 tap filter (2048 operators) in a 
Stratix V 5SGSD6 uses 2048 18x18 multipliers and 200K 
ALUTs, returning 600 GFLOPs. At the time of this writing, 
the fitting algorithms are not ready to provide results for the 
larger SV device, which is expected to provide 1 TFLOPs 
processing. 
 

IV. MATRIX DECOMPOSITION METHODS 
 

Raw floating point density is not sufficient to provide 
high performance system designs. It is possible to easily 
support 100s of GFLOPs in a single device, but latency, 
although reduced, will still significantly impact algorithms 
that have data dependencies. For example, all of the column 
values in a Cholesky decomposition depend on a division by 
the first result in that column, and each element in a column 
also depends on all of the previous results in it’s row. A 
simplistic explanation of a reordering optimization is to 
further decompose the column processing into a separate 
numerator and denominator paths, and apply the division as a 
multiplication during data writeback. More complex changes 
are required when the matrixes are small, or near the end 
points of larger matrixes.  The Cholesky Processor illustrated 
in Fig. 1 was developed to maintain almost 100% datapath 
efficiency for a wide range of matrix sizes. It achieves 1ms 
processing for a 256x256 complex matrix, requiring only 
25K ALUTs and 288 18x18 multipliers. The logic 
requirement is at a low ratio to the multipliers, allowing for a 
high performance fit in a mid speed grade device. 

 

 

 
Figure. 1 Cholesky Processor Architecture 

 
V. CONCLUSIONS 

 
High performance floating point system design is 

possible in current FPGAs, and the ability for a carefully 
designed implementation to achieve a sustained 
throughput at the peak rate makes FPGAs very 
competitive with other implementation platforms. To 
achieve this, the entire system needs to be considered, 
with the datapaths as a single or small collection of 
monolithic structures. In addition, algorithms may need 
to be restructured to avoid or reduce data dependencies. 
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