
Teraflop FPGA Design

Martin Langhammer
Altera Corporation

Holmers Farm Way, High Wycombe, Buckinghamshire, UK
mlangham@altera.com

Abstract - User requirements for signal processing have
increased in line with, or greater than, the increase in FPGA
resources and capability. Many current signal processing
algorithms require floating point, especially for military
applications such as radar. Also, the increasing system
complexity of these designs necessitate increased designer
productivity, and floating point allows an easier implementation
of the system model than the fixed point arithmetic that FPGA
devices have been traditionally architected for.
This article will review devices and methods for achieving
consistent high performance system implementations in floating
point. Single device designs at over 200 GFLOPs at the 40nm
node, and approaching 1 Teraflop at 28nm will be described.

I. INTRODUCTION

Many operator libraries have been designed for FPGAs;
a brief survey of these shows that the most commonly used
operators (multiply and add/subtract) have similar areas,
performance levels, and latencies [3]. The combination of
multiple arithmetic operators into higher level functions such
a dot product operator are inefficient, and often suffer from
significantly reduced Fmax. Typical latencies for both
multipliers and adders are in the range of 10; a dot product
operator with a few tens of inputs may therefore exceed a
latency of 100. Routing congestion and datapath latencies are
some of the reasons why many FPGA matrix operations are
implemented with a multiple PE (processing element)
architecture. Parallelism is a key advantage of a hardware
solution like FPGAs, but it is often not applied to floating
point signal processing because the long latencies make the
data dependencies in algorithms such as matrix
decomposition difficult to manage. The resultant systems
offer poor performance levels, uncompetitive to other
platforms such as GPU or multi-core CPU.

There are several ways in which these FPGA challenges
can be mitigated. The FPGA can have floating point
precision supported in the embedded DSP Blocks. More
efficient ways of mapping the floating point datapath to the
relatively limited routing structures can be designed. Rather
than building up a datapath from individual operators, the
datapath can be considered as a single function, with inter-
operator redundancy factored out. Elementary functions can
be implemented as much as possible using multipliers, which
offer guaranteed internal routing and timing, as well as low
power and latency. New techniques can be applied for matrix
decompositions, with the algorithms restructured to remove
most of the data dependencies, so that parallel – and
therefore high latency – datapaths can be used for
computation [2].

Once the datapath can be efficiently used, i.e. the entire
pipelined is full during every clock cycle, the FPGA has the
advantage of parallelism. Unlike other platforms, sustained
performance can approach peak performance, but the matrix
decomposition has to be carefully structured to avoid
deadtime during filling the pipeline.

II. DEVICE CAPABILITY

In recent FPGA architectures there has been some

support of the multiplier sizes suited for floating point,
although traditionally FPGA base multiplier sizes are at
smaller fixed point precisions: 18x18 or 18x25, which are
both close to C short definitions. IEEE754 floating point uses
23 bit and 52 bit mantissas for single and double precision,
respectively, although more precision is required to support
FPGA floating point efficiently. This is because multiplier
based elementary function implementation can be best
supported with about 12 bits of additional precision – 36x36
and 64x64 bit precisions for the two formats. For a short
convergence algorithms - which may be division
implemented with a modified Newton-Raphson method or a
trigonometric function where a power series is used to
calculate a greatly range-reduced argument – the additional
precision allows a sequential set of multiplications to be
performed without inter-multiply rounding or normalization,
and still be completely accurate to the chosen format. The
Xilinx DSP48E slices support 25x25 multiplies which can be
used to directly implement single precision mantissa
multiplication, while the Altera DSP Block can directly
implement 36x36 multipliers for single precision elementary
function calculation. The 65nm Stratix III and 40nm Stratix
IV Altera devices introduced 54x54 multiplier support, for
double precision floating point mantissa multiplication. The
28nm Altera Stratix V family also introduced a variable
precision DSP Block which supports 27x27 multipliers with
half the resources of the larger 36x36 multipliers. The 64x64
multipliers still need to be constructed of the combination of
smaller multipliers and soft logic, although the number of
multipliers required can be reduced by the application of
Karatsuba’s method.

III. FUSED DATAPATH MAPPING

Fused datapath methodology uses rules to create
functional clusters, where the normalization and
denormalization is merged among multiple operators [1].
Dynamic range can be controlled so that overflow is

2011 20th IEEE Symposium on Computer Arithmetic

1063-6889/11 $26.00 © 2011 IEEE

DOI 10.1109/ARITH.2011.32

187

impossible. Underflow, or the reduction of accuracy due to
bit cancellation is more difficult to manage, but the
effectiveness of the technique can be shown empirically for
real applications. Many thousands of test cases of a Cholesky
decomposition were run on a number of different matrix
sizes [2]. On average, the accuracy of the result was better
than the equivalent decomposition calculated on an x86
processor. As floating point is non-associative, there is
always a difference in result between the parallel and
sequential calculation of an algorithm; as fused datapath uses
both an enhanced precision and dynamic range, it can
expected that the results will be somewhat better than strictly
IEEE754 compliant individual operators. The increase in
resources required for supporting fused datapath precision
expansion is a linear growth at the applied level, rather than
a geometric one (as might be expected for a multiplier), but
is more than offset by the overall resource savings by the
method. Generally speaking, a typical datapath application
will have a 50% logic reduction and 50% latency reduction,
compared to the same construction with individual operators.

Two complex FIR filter designs illustrate the
combination of fused datapath with current FPGAs. An 80
tap filter (640 total single precision operators) in a Stratix IV
EP4SG230 (182K ALUT/registers, 1288 18x18 multipliers)
uses 99% DSP, but only 33% logic, with an Fmax of 350MHz,
giving 225 GFLOPs. A 256 tap filter (2048 operators) in a
Stratix V 5SGSD6 uses 2048 18x18 multipliers and 200K
ALUTs, returning 600 GFLOPs. At the time of this writing,
the fitting algorithms are not ready to provide results for the
larger SV device, which is expected to provide 1 TFLOPs
processing.

IV. MATRIX DECOMPOSITION METHODS

Raw floating point density is not sufficient to provide
high performance system designs. It is possible to easily
support 100s of GFLOPs in a single device, but latency,
although reduced, will still significantly impact algorithms
that have data dependencies. For example, all of the column
values in a Cholesky decomposition depend on a division by
the first result in that column, and each element in a column
also depends on all of the previous results in it’s row. A
simplistic explanation of a reordering optimization is to
further decompose the column processing into a separate
numerator and denominator paths, and apply the division as a
multiplication during data writeback. More complex changes
are required when the matrixes are small, or near the end
points of larger matrixes. The Cholesky Processor illustrated
in Fig. 1 was developed to maintain almost 100% datapath
efficiency for a wide range of matrix sizes. It achieves 1ms
processing for a 256x256 complex matrix, requiring only
25K ALUTs and 288 18x18 multipliers. The logic
requirement is at a low ratio to the multipliers, allowing for a
high performance fit in a mid speed grade device.

Figure. 1 Cholesky Processor Architecture

V. CONCLUSIONS

High performance floating point system design is

possible in current FPGAs, and the ability for a carefully
designed implementation to achieve a sustained
throughput at the peak rate makes FPGAs very
competitive with other implementation platforms. To
achieve this, the entire system needs to be considered,
with the datapaths as a single or small collection of
monolithic structures. In addition, algorithms may need
to be restructured to avoid or reduce data dependencies.

REFERENCES

[1] M. Langhammer, “Floating point datapath synthesis for
FPGAs”, in Proc. Field Programmable Logic, 2008.
[2] S. Demirsoy and M. Langhammer, “Fused datapath
floating point implementation of cholesky decomposition”, in
Proc. ACM/SIGDA International Symposium for Field
Programmable Logic (FPGA), 2009.
[3] (2011) LogiCORE IP Floating-Point Operator
v5.0.[Online]www.xilinx.com

188

