
Fast Point-to-Point Shortest Path Computations with Arc-Flags

Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling?

Institute of Mathematics, TU Berlin, Germany
{Ekkehard.Koehler|Rolf.Moehring|Heiko.Schilling}@TU-Berlin.DE

Abstract. We present a number of improvements of the basic variant of the arc-flag acceleration (Lauther,
1997, 2004) for point-to-point (P2P) shortest path computations on large graphs. Arc-flags are a modification
to the standard Dijkstra algorithm and are used to avoid exploring unnecessary paths during shortest path
computation. We assume that for the same input graph the shortest path problem has to be solved repeatedly
for different node pairs. Thus, precomputing the arc-flags is possible. We show that the improved arc-flag
acceleration achieves speedups of P2P shortest path queries of more than 1,470 on a subnetwork of the
German road network1 with 1M node and 2.5M arcs using 450 bits of additional information per arc. The
acceleration factors increase with the size of the input graph. Finally, we present an improved preprocessing
version which allows precomputing arc-flags for European and North-American road networks within hours.

1 Introduction

In the present work we investigate the point-to-point (P2P) shortest path problem where one has to find
a shortest path between two specified nodes in an input graph. A standard algorithm for this problem is
the one developed by Dijkstra (1959) which runs inO(m+n log n) time (Fredman and Tarjan, 1987).
For a long time the main focus in developing shortest path algorithms has been on finding algorithms
with good theoretical time-bounds. An overview is given, for instance, by Goldberg and Harrelson
(2005), Sanders and Schultes (2005) and Willhalm (2005). Although fast in theory, the corresponding
algorithms are often not fast enough for applications in large networks that require a huge number of
shortest path computations.

In our study we assume that for the same underlying network the shortest path problem has to be
solved repeatedly for different node pairs. Thus, preprocessing of the network data is possible. We
work on large but sparse directed graphs with given arc weights and a given 2D layout that come from
road networks. We will see that the presented acceleration of shortest path computations works also
on higher dimensional layouts or even on graphs with no layout at all.

More precisely, we consider a generalization of a partition-based arc labelling approach that we
refer to as the arc-flag approach. The basic idea of the arc-flag approach using a simple rectangular
geographic partition has been suggested by Lauther (1997, 2004) and patented by Enders and Lauther
(1999). The arc-flag approach divides the graph into regions and gathers information for each arc
a ∈ A and for each region r ∈ R on whether the arc a is on any shortest path into the region r. For
each arc a ∈ A this information is stored in a flag (bit) vector fa. That means, the vector fa contains
a flag (0 or 1) for each region r ∈ R indicating whether the arc a is useful for a shortest path query
to nodes in region r. Thus, the size of each flag vector is determined by the number |R| of regions
and the number of flag vectors is determined by the number |A| of arcs. Consequently, |A||R| bits of
additional space are consumed by the arc-flag method. The number of regions depends on the input
graph size, but can be kept of moderate size: about 225 regions on graphs with up to 1M nodes and
2.5M arcs proved to be sufficient.

? Supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the Research Cluster ”Algorithms on Large and
Complex Networks” (1126).

1 network data from the PTV Europe road network from the DIMACS Challenge homepage

2

We use arc-flags in the Dijkstra computation to avoid exploring unnecessary paths. This means
we check the flag entry of the corresponding target region (the region where the target node t belongs
to) every time before the Dijkstra algorithm wants to traverse an arc. This is the only modification
to the standard Dijsktra algorithm. Thus, implementing the arc-flags is one of the easiest acceleration
modifications of the standard Dijkstra algorithm known.

We evaluate the quality of our method by measure speedup factors. A speedup factor is the ratio
between the costs of Dijkstra’s algorithm and the costs of the accelerated algorithm. The costs are
either measured by overall running time or by the size of the search space. The search space is the set
of arcs that are traversed during a run of Dijkstra’s algorithm. If not stated otherwise, throughout the
paper the costs are measured by the size of the search space. Therefore, most of the time the speedup
factors represent ratios between search spaces.

The choice of the underlying partition seems to be crucial for the speed up of the arc-flag accelera-
tion of Dijkstra’s algorithm. In (Köhler et al., 2005) we already suggested a multi-way arc separator as
an appropriate partition for the arc-flags. This improvement achieved much better speedups compared
to the original arc-flag version by Lauther (2004): we were able to reach 10 times higher acceleration
factors than with Lauther’s version of the arc-flags (on networks with up to 0.3M nodes, 0.5M arcs and
278 bits of additional information per arc). Together with Birk Schütz, Dorothea Wagner and Thomas
Willhalm we conducted a computational study on which partitions achieve the best speedups for the
arc-flag method (Möhring et al., 2006). We investigated partitions from computational geometry and
a multi-way arc separator partition. The multi-way arc separator partition suggested by Köhler et al.
(2005) is still among the best choices for the arc-flags. Other possible partitions one could consider
for the arc-flags are clusterings of the node set as they were used, for instance, by Maue et al. (2006),
who investigated goal directed shortest path queries by using precomputed cluster distances.

When we combine the arc-flags with a multi-way arc separator partition and a bi-directed search,
we obtain a speedup factor of 1,470 on average on graphs with up to 1M nodes and 2.5M arcs and
with 450 bits of additional information per arc (Köhler et al., 2005). The preprocessing step of the
arc-flag method for networks of this size can take up to 120 minutes. On networks of the same size
and the same additional amount of information (450 bits), the highway hierarchy method by Sanders
and Schultes (2006) yields smaller speedups of only a factor of 1,121 (Schultes, 2006). However,
preprocessing the highway hierarchy can be done within 1 minute for this size graphs. That means,
preprocessing highway hierarchies can be done faster than preprocessing arc-flags, but the arc-flags
deliever higher query speedups. Moreover, the space requirement for the arc-flags can be reduced to
only a fraction of the original space (e.g. 68 bits instead of 450 bits) while achieving almost the same
speedups. This can be done by using two and more level partionings: a coarse one for faraway nodes
and a finer one for close by nodes; this idea has been suggested by Köhler et al. (2005) and studied
by Möhring et al. (2006). Two- and more level partionings is another point that improves the original
arc-flag version by Lauther (2004).

For various shortest path applications with limited processing power (such as PDAs or mobile
phones), it is of utmost importance that the shortest path algorithm does not rely on complicated
and expensive datastructures or subroutines. To keep the implementation of the arc-flags as simple
as possible we are not using any kind of reduction (or contraction) of the original input graph as,
for instance, attached trees or shortcuts used in (Sanders and Schultes, 2006; Goldberg et al., 2006).
Thus, the results we present, reflect running times and speedups on the original graph sizes instead of
reduced sizes. Even without using any kind of reduction, the arc-flags are able to compete with the
speedups achieved by Sanders and Schultes (2006) and Goldberg et al. (2006).

After a brief review of recent related results in the field (next Section 1.1), Section 2 starts with
basic definitions and a precise description of the P2P problem. Furthermore, Section 2 explains the

3

pruning of the search space of Dijkstra’s algorithm with arc-flags. The preprocessing is described in
Section 3. In Section 4 we present the selection of partition algorithms that we used for our analysis.
We discuss the two-level variant of the arc-flags in Section 5. Section 6 describes our experiments and
computational results and we discuss the results and ongoing work in Section 7.

1.1 Previous Work

Highway hierarchies. Sanders and Schultes (2005, 2006) introduced the notion of a highway hier-
archy. The highway hierarchy method is based on the idea that only a highway network needs to
be searched outside a fixed size neighborhood around source and target. This approach can be iter-
ated to generate a hierarchy of highway networks. A hierarchy preserving all shortest routes can be
constructed very efficiently: preprocessing the European road network (18M nodes, 42M arcs) takes
15 minutes. Because of the fast preprocessing step, highway hierarchies can be computed on very
large networks and on such large networks the method achieves large speedup factors of up to 10,196.
Furthermore, the highway hierarchies can be adapted to speed up the computation of shortest path
distances between all pairs of nodes from given sets of sources and targets, see Knopp et al. (2006).

Preprocessing highway hierarchies can be done faster than preprocessing arc-flags, but the arc-
flags deliever higher query speedups with the same amount of additional information: a speedup of
1,470 after 120 minutes of preprocessing for the arc-flags and a speedup of 1,121 after 1 minute of
preprocessing for the highway hierarchies (Schultes, 2006); both on graphs of size up to 1M nodes
and 2.5M arcs with 450 bits of additional information per arc.

Landmarks. Goldberg and Harrelson (2005), see also (Goldberg and Werneck, 2005), have shown
that the performance of A∗ search (without reaches) can be significantly improved if landmark-based
lower bounds are used instead of Euclidean bounds. This leads to the ALT (A∗ search, landmarks, and
triangle inequality) algorithm for the problem. In (Goldberg and Harrelson, 2005), it was noted that
the ALT method could be combined with reach pruning in a natural way. Not only would the improved
lower bounds direct the search better, but they would also make reach pruning more effective.

Reach. Gutman (2004) defines the notion of vertex reach. Informally, the reach of a vertex is a number
that is big if the vertex is in the middle of a long shortest path and small otherwise. Gutman shows how
to prune an s – t search based on vertex reaches (upper bounds) and vertex distances (lower bounds)
from s and to t. He uses Euclidean distances for lower bounds, and observes that the idea of reach can
be combined with Euclidean-based A∗ search to improve efficiency. Goldberg et al. (2006) improved
the reach-based approach of Gutman (2004) in two ways: they introduced a bidirectional version of
the algorithm that uses implicit lower bounds and they added shortcut arcs to reduce vertex reaches.
These modifications improve both preprocessing and query times. The resulting algorithm is as fast as
the highway hierarchies due to Sanders and Schultes (2005). However, the combination of landmarks
with reach is a simpler modification of Dijkstra’s algorithm than the highway hierarchies.

Geometric container. Schulz et al. (2000) used the concept of enriching the graph with arc labels
that mark for each arc a ∈ A geometric regions of the given layout. The geometric regions contain
all possible target nodes of a shortest path that start with the arc a. This labelling approach was
done for the special case of a timetable information system. In their work, arc labels are angular
sectors in the given layout of a train network. Wagner and Willhalm (2003) studied this approach for
general weighted graphs. Instead of the angular sectors, different types of convex geometric objects
are implemented and compared by them. The arc-flags also use such a labelling approach, but there

4

are three crucial differences between arc-flags and the geometric containers. The first on is, that arc-
flags result in a much smaller search space than geometric containers. The reason for this is, that
the partition used by arc-flags approximates in a geometrical sense much better for each arc a the
set of nodes for which a is useful in a shortest path computation (see Figure 12). The second, even
more important difference is that the arc-flags allow a considerably faster preprocessing, that can be
done without the computation of all-pairs shortest paths. With the geometric containers one geometric
object per arc needs to be computed by a shortest path tree computation. Since the geometric objects
are different for different arcs, the shortest path tree computation has to be done for each arc. This is
not the case with the arc-flags, since the same partition can be used for all flag vectors. See Sections 3.2
and 3.3 for details of the arc-flag preprocessing. Finally, the geometric containers rely on a given
layout of the graph. Such a layout is not necessary for the arc-flags, what makes them to a more
general approach than the geometric containers.

2 Problem Description and Dijkstra’s Algorithm with Arc-Flags

Graphs. A directed simple graph G is a pair (V,A), where V is a finite set of nodes and A ⊆ V × V
are the arcs of the graph G. Throughout this paper, the number |V | of nodes is denoted by n and
the number |A| of arcs is denoted by m. A path in G is a sequence of nodes u1, . . . , uk such that
(ui, ui+1) ∈ A for all 1 ≤ i < k. A path with u1 = uk is called a cycle. A graph (without multiple
arcs) can have up to n2 arcs. We call a graph sparse, if m ∈ O(n). If we are given a layout L : V → R2

of the graph in the Euclidean plane, then we will identify a node v ∈ V with its location L(v) ∈ R2

in the plane. We will see, that the presented arc-flag method works also on graphs without any layout.
Furthermore, we introduce arc weigths by a function ` : A → R. We interpret the weights as arc
lengths in the sense that the length of a path is the sum of the weights of its arcs. The reverse graph
Grev of a directed graph G = (V,A, `) with arc weights ` is defined as Grev = (V,Arev, `rev) with
Arev = {(u, v) | (v, u) ∈ A} and `rev(u, v) = `(v, u). Hence, the reverse graph is the graph G with
all arcs reversed. It is easy to see that s, · · · , t is a shortest path from s to t in G, iff t, · · · , s is a
shortest path in Grev with the same arcs reversed.

The P2P Shortest Path Problem. Let G = (V,A, `) be a directed graph whose arcs are weighted by
` : A → R. The goal of the point-to-point (P2P) shortest path problem is to find a path of minimum
length from a given source s ∈ V to a given target t ∈ V . The problem is only well defined for all
s – t pairs, iff G does not contain negative cycles. If there are negative arc weights but no negative
cycles, it is possible, by using Johnson’s algorithm (1977), to convert in O(nm + n2 log n) time the
original arc weights ` to nonnegative arc weights `′ : A → R+ that result in the same shortest paths.
Hence, throughout the paper, we assume that arc weights are nonnegative.

Bi-directed Search. In the bi-directed search, two Dijkstra runs start simultaneously from s and t.
A distance dists(u) from s in the common (forward) graph and a distance distt(u) from t in the
reverse graph, the graph with every arc reversed, is then computed. The bi-directed search algorithm
alternates between running the forward and reverse search version of Dijkstra’s algorithm and stops
with an appropriate stopping criterion when the two searches meet. Note that any alternation strategy
will correctly determine a shortest path. More precisely, the bi-directed search stops if one direction
gets a node v from the priority queue that is already labelled by the other direction: then the shortest
path between s and t is already found. The node v is not necessarily on that shortest path. In order to
avoid searching for the connector-node v of the two searches, we determine the shortest path on-the-
fly: every time we consider a node which is labelled by both directions, we update the minimal sum
of the shortest paths to source and target.

5

The bi-directed search leads to speedup factors of up to 2 in the unaccelerated case. In principle,
this speedup method can be combined with any other one. In our experiments, a forward and backward
accelerated bi-directed search achieved the best results. This means that we applied the partition-based
speedup technique on both search directions with half of the arc-flag entries for each direction. The
underlying partition can differ for the two directions. The preprocessing for both directions must be
computed independently.

Dijkstra’s Algorithm with Arc-Flags. The classical algorithm for computing shortest paths in a di-
rected graph with nonnegative cycles is that developed by Dijkstra (1959). It still seems to be the
fastest algorithm withO(m+n log n) worst-case running time (Fredman and Tarjan, 1987). However,
in practice, speedup techniques can reduce the running time and often result in a sublinear running
time. They crucially depend on the fact that Dijkstra’s algorithm is label-setting and that it can be
terminated when the destination node is settled. Therefore, the algorithm does not necessarily search
the whole graph.

If we allow for a preprocessing step, the running time can be further reduced with the following
insight: consider, for each arc a, the set Sa of nodes that can be reached by a shortest path starting with
a. It is easy to verify that Dijkstra’s algorithm can be restricted to the subgraph with those arcs a for
which the tail node t is in Sa. However, storing all sets Sa requires O(n2) space which is prohibitive
for large graphs (n � 1M). We will therefore use a partition of the set of nodes V into p (:= |R|)
regions for an approximation of the set Sa. Formally, we will use a function r : V → {1, . . . , p}
that assigns to each node the number of its region. We will now use a flag vector fa : {1, . . . , p} →
{true,false}with p entries, each of which corresponds to a region. For each arc a, we set the entry
fa(i) to true, iff a is the beginning of any shortest path to at least one node in region i ∈ {1, . . . , p}.
Additionally, for each arc (v, w) with v, w ∈ V we set the flag entry f(v,w)(rw) to true.

For a specific shortest path query from s to t, Dijkstra’s algorithm can be restricted to the subgraph
Gt induced by those arcs where the flag entry corresponding to the target region (the region where t
belongs to) is true; see Lemma 1.

Definition 1 (Consistent target set).
Let G = (V,A), ` : E → R+ be a weighted graph. We call a set of nodes V ′

(u,v) ⊆ V associated
with an arc (u, v) a consistent target set, if for all shortest paths from u to t that start with the arc
(u, v), the target node t is in V ′

(u,v). A minimum consistent target set is the one with minimum size
among all such sets.

In the following, we always mean minimum consistent target sets and therefore omit the ’mini-
mum’.

Lemma 1 (Dijkstra’s algorithms with arc-flags). Let G = (V,A), ` : A → R+ be a weighted graph
and for each arc a ∈ A let V ′

a be a consistent target set. Then Dijkstra’s algorithm with arc-flags finds
a shortest path from s to t, s, t ∈ V , if one exists.

Proof. Consider the shortest path P from s to t that is found by Dijkstra’s algorithm. If for all arcs
a ∈ P the target node t is in V ′

a, then the path P will also be found by Dijkstra’s algorithm with arc-
flags. This is because the arc-flags for each a ∈ A describe by construction a super set of the consistent
target set V ′

a. Therefore, no necessary arc will be missed when Dijkstra’s algorithm traverses the graph,
(’necessary’ means useful for the shortest path P). Furthermore, the arc-flags do not change the order
in which the arcs are processed. Since a subpath of a shortest path is again a shortest path, it follows
by the definition of the consistent target sets that t ∈ V ′

(u,v) for all arcs (u, v) ∈ P .

6

The subgraph Gt can be computed ’on the fly’ during a run of Dijkstra’s algorithm. In a shortest
path search from s to t, while scanning a node u, the modified algorithm takes all those outgoing arcs
of u into account where the flag entry corresponding to the target region is true. All other outgoing
arcs will be ignored.

a

fa

Fig. 1. The arc-flag method together with a separator partition. The labelled (gray) arc only leads to red and yellow nodes.
A search with targets in green, black or white regions can ignore this arc.

The space requirement of the preprocessed data is O(pm) for p regions because we have to store
one flag for each region and arc. There is a clear trade-off between speedup factor and space require-
ment. Depending on the chosen partition, one can regard the arc-flag acceleration of shortest path
computation as an interpolation between no precomputed information at all (p = 1) and complete
precomputation by determining all possible shortest paths of the graph (p = n). Thus, in theory, we
can get as close as possible to the ideal shortest path search by increasing the number of regions in the
partition (’ideal’ means that the shortest path algorithm visits only arcs that belong to the shortest path
itself). Obviously, an increase in the number of regions also entails an increase in preprocessing time
and space consumption. However, in practice, even for p � n we achieve an average search space
that is at most 4 times the number of arcs in the shortest path. In fact, the number of regions can be
kept of moderate size while one still achieves good speedups: about 225 regions on graphs with up to
1M nodes and 2.5M arcs deliver a speedup of up to 1,470.

It is possible within the framework of the arc-flag speedup technique to use a single region for each
of the most important nodes. Storing all shortest paths to important nodes can therefore be realized
without any additional implementation effort. It is common practice in many applications to cache the
shortest paths to the most important nodes in the graph.

3 The Preprocessing

3.1 The Preprocessing with All-Pairs Shortest Path

We have to calculate the arc-flag vectors for all arcs. This can be done by computing two shortest path
trees for every arc a ∈ A: a one-to-all shortest path computation from the head and from the tail node
of arc a. The computation is done by a standard Dijkstra algorithm which stops when all nodes in
the graph are permanently marked. For each node v ∈ V , we compute the difference between dh(v)
and dt(v), the two distance labels in the shortest path trees of the head and the tail node of a. If the

7

difference |dh(v)−dt(v)| for node v is equal to the length `a of arc a, then we set the flag entry fa(rv)
to true. The running time of the preprocessing is dominated by the time it takes to compute 2m times
a shortest path tree, which can be done in O(m + n log n) time each. For sparse graphs (m = O(n)),
such as typical road networks, we get an overall worst-case time complexity of O(n2 log n).

The preprocessing of the geometric containers (Schulz et al., 2000; Wagner and Willhalm, 2003)
is done in a similar way by computing two shortest path trees per arc in the graph. Preprocessing our
graphs (with 1M nodes and 2.5M arcs) by computing 2m times a shortest path tree would take weeks,
but fortunately the arc-flags allow a much faster preprocessing, which is described in the following
two sections 3.2 and 3.3.

3.2 The Preprocessing without All-Pairs Shortest Path

It is not necessary to compute all-pairs shortest paths to fill the flag vectors correctly. We can use the
following insight: every shortest path from any node s to a region rt ∈ R has to enter the region rt

at some arc. If s does not belong to rt, then there must be an arc (u, v) with ru 6= rt = rv; a so-
called boundary arc. We will see in Lemma 2, that in the preprocessing step it is sufficient to take into
account only shortest paths to such nodes v which are tail nodes of boundary arcs. Such nodes will be
called boundary nodes.

Lemma 2 (Boundary nodes). Given a graph G = (V,A) and a partition of V in p regions by
r : V → {1, . . . , p}. If the flag vectors fa for a ∈ A are computed with the set of shortest paths to
boundary nodes only, then the flags vectors fa are a super set of the consistent target set V ′

a.

Proof. Let s and t be arbitrary but fixed nodes which are connected by a shortest path s =
n1, · · · , nk = t. Further, let s and t belong to different regions, i.e. rs 6= rt. By induction one can eas-
ily see that there exists an arc a = (ni, ni+1), 1 ≤ i < k, in this shortest path with rni 6= rni+1 = rt.
The preprocessing which only considers shortest paths to boundary nodes would have considered the
path from s to node ni+1 and hence it would have set the flag entry of region rt on all arcs of the
shortest subpath s, · · · , ni+1. The flag entry of region rt of the arcs between ni+1 and t are set by
defintion, because the tail nodes of these arcs belong to the region rt. Since all flag entries corres-
ponding to the target region rt are being set for all arcs on the shortest path s = n1, · · · , nk = t, the
modified Dijkstra algorithm finds this shortest path from s to t.

We can now exploit this property: for a specified region r′ ∈ R and a boundary node b of r′ we
calculate the set Tb of arcs a ∈ A with fa(r′) = true and where a is on a shortest path via b to
any node in r′. The reversed arcs corresponding to arcs in the set Tb form in fact a shortest path tree
in the reverse graph Grev. A shortest path tree can be computed in time O(n log n) on sparse graphs.
Therefore, we can compute the flag entries fa(r′) for region r′ for all nodes a ∈ A at once, if we
compute a shortest path tree for each boundary node of r′. This can be done in time O(kn log n) with
k = |Br′ |, where Br′ is the boundary node set of r′: Br′ = {v ∈ r′ | ∃(u, v) ∈ A such that ru 6= rv =
r′}. The number k of boundary nodes dependents on the partition of the nodes. When we search for an
appropriate partition for the arc-flags, the following observation helps: the set of boundary arcs of all
partitions r ∈ R represents a multi-way arc separator. Thus, if we want to minimize the number k of
boundary nodes (and by this, minimize the preprocessing time), we need to find a minimum multi-way
arc separator of the graph. We will see in Section 6, that a minimum multi-way arc separator partition
is among the partitions on which the arc-flags achieve the best speedup results. However, as Section 4
shows, minimizing the number k of boundary arcs (i.e. separator arcs) is not the only objective when
searching for a good partition for the arc-flags.

8

3.3 The Preprocessing with Pruned Shortest Path Trees

A straightforward implementation of the preprocessing phase of our method as it is presented in
Section 3.1 leaves a lot of room for improvements. In the previous Section 3.2, we have presented
an improved version, where for each single separator arc a backward Dijkstra search (i.e. a standard
Dijkstra search in the reverse graph) has to be conducted to determine the flag vectors of all arcs in our
graph. It is a simple observation that a contraction of all nodes of a region to a single super node and
then performing one Dijkstra search from this super node does not supply correct arc-flags. Yet, when
performing a backward Dijkstra search from two different separator arcs of a common region, the
resulting shortest path trees show a strong similarity. More precisely, a large number of arcs that are
contained in the first shortest path tree are as well contained in the second one. We call two separator
arcs similar if they are in a geometrical sense ’closely together’ and point in a geometrically similar
direction. We observed that for similar arcs the corresponding shortest path trees are almost identical,
see Figure 11.

Fig. 2. We computed multi-way arc separator partitions of a subnetwork of the German road network (network data from the
PTV Europe road network from the DIMACS Challenge homepage with 1M nodes and 2.5M arcs) with different numbers
of regions (from 10 to 510). For each region r we analyzed the subgraph which is induced by those arcs a ∈ A which are on
a shortest path to at least one node in r, i.e. fa(r) = true. For this induced graph, we identified subtrees and counted the
number of arcs in all subtrees. These are the red entries in the diagram. Furthermore, we counted the number of all non-tree
arcs in the induced graph. These are the blue entries. We did the counting for all regions of a partition. Now, the tree arcs
(red) represent the preprocessing effort which we can save, because those arcs are on identical subtrees of all shortest path
trees which we calculate per region. For those arcs, the shortest path tree calculation needs to be done only once per region.

Especially, in the more distant parts of the trees there are only a few differences between the two
trees. One can take advantage of the similarity of the shortest path trees of similar arcs for speeding up
the preprocessing version in Section 3.2. The Figures 2 and 10 show how much preprocessing effort
we could save by exploiting the similarity between all the shortest path trees computed for one region.

9

In the following, we will describe the basic idea of how we can further improve the preprocessing
from the last section. Take a separator arc a of the region under consideration. We denote by Ta the
shortest path tree constructed by a backward Dijkstra search from the separator arc a. On the basis of
the similarity observation made above, we can expect that the shortest path trees for all separator arcs
of the same region that are similar to a will be almost identical to Ta. We identify now a small set of
large subtrees Ta of Ta in an appropriate way and speedup the computation for any of the separator
arcs s, similar to a, as follows. Let T sub

a be a tree from the set Ta and r its root node. If T sub
a is

also a subtree of the shortest path tree of s, then, in the Dijkstra algorithm, we need to label only r
permanently from s and can deduce from that the distance for each of the nodes of T sub

a for free. So
if each node v in T sub

a knows its root node r then it can look up on demand its distance from s by
adding up the distance label of r from s and its distance from r in T sub

a . For the case that in Ts the
shortest path to v is not via r in T sub

a , we have to add some further structure: for each of the trees T in
Ta we determine the set OT of outgoing arcs, i.e. the set of arcs that start in T and do not end in T . In
the Dijkstra run for s, as soon as we label r, we insert all the arcs of OT into the heap together with
the appropriate distance label inherited from r. Every time, the Dijkstra search from s reaches a node
v via an arc from OTs the new label for v is compared with the previous v label (which v itself might
have inherited from its root node r′). If this new label is better than the previous one, it is put in the
Dijkstra heap and used for the further computation. However, if it is worse, it can be thrown away. In
that way, the shortest path trees of all separator arcs similar to a can be computed much faster. Since
this method is only applicable for arcs that are close together, the set Ta has to be recomputed for a
separators arc a′ that is too far away from a and thus requires too many label propagations within the
subtrees in Ta.

Hence, this further improved preprocessing saves computational effort in different ways. On the
one hand, labels that are dominated by inherited labels from root nodes can be deleted. On the other
hand, the similarity between the search trees of similar separator arcs makes sure that most of the
inner nodes of the subtrees from T are not directly labelled during the construction of the shortest
path tree. Those inner nodes only inherit the label from the corresponding root node.

Yet, various practical tests showed that although there is a big improvement in the number of
Dijkstra-steps with this improved preprocessing method, the overhead for administering the additional
data structure absorbs a large part of the corresponding saving in computation time.

3.4 The Preprocessing with Centralized Shortest Path Search

In the previously mentioned preprocessing approaches there had to be a single Dijkstra run for each
of the boundary nodes of each region. As already pointed out in the last subsection large parts of the
computed shortest path trees are almost identical. Hence, it seems to be very promising to “bundle
together” the different Dijkstra runs for a given region. Yet, as mentioned before, it is not sufficient
to just contract all boundary vertices to a single vertex and run a usual Dijkstra from there, since the
anticipated graph is now not a tree anymore but rather a more complex graph.

Our new approach is a so-called centralized shortest path algorithm. The basic idea is as follows:
Instead of starting from just one of the boundary nodes we start the search from all boundary nodes
of a region R at once. The boundary vertices are numbered b1, ..., bk. Every vertex v of the graph is
assigned a label, consisting of an array A of values. Entry A[i] stands for the length of the currently
shortest path from boundary vertex bi to v. Furthermore, there is a heap containing those vertices that
have been visited by the shortest path search and that wait to propagate their labels to their neighbors.
Initially, for each of the boundary vertices bi the entry A[i] is set to 0 and for all j 6= i A[j] is set to
the distance from bj to bi within the current region R. For all other vertices outside R all entries of A

10

are set to infinity. Each vertex v in the heap also carries a key k(v) which is used for sorting. Now the
algorithm proceeds very much like a normal labeling algorithm by extracting the minimal element v
from the heap (minimal with respect to the key value k) and propagating its label to the neighboring
vertices. Let w be such a neighbor. We now update the whole label array of w by using the label array
of v by adding the length of the corresponding arc (v, w) to each of the entries of the array A of v and
comparing it to the values of the array of y; domination it defined as usual.

A crucial role in the speed-up of this method in comparison to the previously mentioned prepro-
cessing approaches is the choice of the key value k(v). One option is to take the minimum over all
entries of A as key value for each vertex. With this choice the centralized shortest path algorithm
behaves very much like k parallel Dijkstra algorithms. The label front moves very uniformly and does
not prioritize any of the boundary vertices. A much better choice for the key is a kind of “quality
based” value: We would like to prefer those labels that dominated many values in the previous step.
To determine this, we account for each vertex w the number of entries of A in which there was an
improvement (i.e. domination) since the last label propagation from w; this number is called domina-
tion value. The key value consists now of two parts, the domination value and the minimum over all
entries of A, where the domination value shall be the dominant one. With this key setting there is no
uniform label-front anymore. In fact, there will be a very interesting effect of this choice, that ensures
that the search is quite similar to what we suggested in the previous subsection: In the first number
of steps the algorithm determines all those edges of the graph that are on a shortest path to the first
selected boundary vertex, since all other boundary vertices have domination value 0. When this search
is completely finished the other boundary vertices come into play, one after another, each profitting
from the quality of the previously computed labels.

Our tests showed that the preprocessing phase can be accelerated very much (depending on the
instance by about a factor of 100). However, the drawback of this method is the extremely high mem-
ory usage. Every single vertex of the network has to carry a label of size k, the number of boundary
vertices of the current region. This issue can be dealt with in different ways. One option is to consider
not all boundary vertices of the current region at once but rather partition it in smaller sets of boundary
vertices and let the algorithm run for each of them. Another option is to keep the labels only for a sub-
set of the vertices of the whole graph. This can be done by letting the algorithm propagate the labels
only up to a certain distance from the current region and only let it run further when all the labels have
reached this distance. Then all the labels having smaller distance can be ignored since there arc-flag
is already determined and there will be no label going back to them during the run of the algorithm.

4 Which Partiton?

The arc-flag acceleration method uses a partition of the graph to precompute information on whether
an arc is useful for a shortest path search. Any possible partition can be used for the technique and the
accelerated Dijkstra algorithm will always return a correct shortest path, as Lemma 1 proves. However,
different partitions do lead to different speedups of the Dijkstra algorithm. As an example, when we
take a multi-way arc separator partition instead of a rectangular grid partition the preprocessing time
can be reduced by a factor of 2, but at the same time we obtain up to 7 times larger acceleration factors
with the separator partition. The question is, which partitions lead to the best query speedups.

There are a number of objectives which a good partition should fullfil: first, the number of sepa-
rator arcs should be small, because the preprocessing time directly depents on this number. Second,
the size of partitions should be balanced. With almost equally sized regions the ’load’ per entry in a
flag vector is balanced, i.e. each flag is ’responsible’ for the same amount of possible target nodes.
Third, the number of almost full flag vectors should be minimal. For instance, for the partitions that

11

we presented almost one third of the flag vectors have more than 90% true entries, see Figure 15 (in
the appendix). However, a full flag vector means that we almost never can exclude the corresponding
arc during a accelerated Dijkstra search. Fourth, the partition should approximate in a geometric sense
the consistent target set for each arc as closely as possible, see Figure 12 (in the appendix).

Together with Birk Schütz, Dorothea Wagner and Thomas Willhalm we studied different partitions
in combination with the arc-flag approach extensively, see (Möhring et al., 2006). Therefore, in this
section, we will only present a summary of these results. Most of these algorithms need a 2D layout of
the graph, except for the multi-way arc separator algorithm used by METIS. The partition algorithms
based on a 2D layout can easily be adapted to higher dimensions. For the arc-flag approach itself no
layout of the graph is necessary as long as one can provide a partition for a given graph.

Rectangular partition (grid). Probably the easiest way to partition a graph with a 2D layout is to
define the regions with a x × y grid of the bounding-box. More precisely, we denote with (`, t) the
top-left coordinate of the bounding-box of the 2D layout of the graph and with (r, b) the bottom-
right one. Furthermore, we define w = r − ` as the width and h = t − b as the height of the
layout. The grid cell or region Gi,j with 0 ≤ i < x, 0 ≤ j < y is now defined as the rectangle[
` + i · w

x ; ` + (i + 1) · w
x

]
×

[
b + j · h

y ; b + (j + 1) · h
y

]
. Nodes on a grid line are assigned to one

of the neighboring grid cells. Figure 13(a) (in the appendix) shows an example of a 7 × 5 grid. The
rectangular or grid partition method uses only the bounding-box of the graph. All other properties like
the structure of the graph or the density of nodes are ignored and hence it is not surprising that this
method is not among the best partitions for our application. In fact, the grid partition always has the
worst results in our experiments. Since earlier work on the arc-flag method (Lauther, 2004) used the
grid partition, we take it as a baseline and compare all other partition algorithms with it.

Quad-trees. A quad-tree is a data structure for storing points in the plane. Quad-trees are typically
used in algorithmic geometry for range queries since they support fast access to nearest neighbor
points. Further applications are in computer graphics, image analysis, and geographic information
systems. Quad-trees can be generalized to higher dimensions – for 3D they are called oct-trees. Let
P be a set of n points in the plane, r0 its quadratic bounding-box, then the data structure quad-tree is
recursively defined as follows (see Figure 14 in the appendix):

– Root v0 corresponds to the bounding region r0.
– Region r0 and all other regions ri are recursively divided into four quadrants, while they contain

more than one point of P . The four quadratic subregions of ri are subnodes of vi in the quad-tree.

The leaves of a quad-tree form a subdivision of the bounding-box r0. Even more, the leaves of every
subtree contain the root from such a subdivision. Since, for our application, we do not want to create
a separate region for each node, we use a subtree of the quad-tree. More precisely, we define an
upper bound b ∈ N of points in a region and stop the division if a region contains fewer points
than the bound b. The result is a partition of our graph where each region contains at most b nodes.
Figure 13(b) shows such a partition with 32 regions. In contrast to the grid partition, this partition
reflects the geometry of the graph better: dense parts will be divided into more regions than sparse
parts. The regions generated by this partition have almost balanced size, but the arc separator set can
be large.

kd-Trees In the construction of a quad-tree, a region is divided into four equally sized subregions.
However, equally sized subregions do not take the distribution of the points into account. This quad-
tree division can therefore be extended to more general subdivision schemes, the so-called kd-trees.

12

In the construction of a kd-tree, the plane is recursively divided in a similar way as for a quad-tree.
In contrast to a quad-tree, the underlying rectangle is decomposed into two halves by a straight line
parallel to an axis. The axes alternate in the order x, y, x, y, The positions of the dividing line
can depend on the data. Frequently used positions are given by the center of the rectangle (standard
kd-tree), the average, or the median of the points inside. If the median of points in general position is
used, the partition has always 2q regions, q ∈ N, and the region sizes are balanced. Figure 13(c) (in
the appendix) shows a result for the median and 32 regions. In applications with higher dimensions,
the partition axes are not cycled but the dimension with the largest variance is used.

Experiments on road networks showed that the kd-tree with median partition position usually
leads to the best results, Figure 13(c) (in the appendix). Therefore, we only used this method as a
representative for this partition class. If the median of the points is used, at every decomposition one
node of the graph lies exactly on the boundary of two regions. For these nodes it is worthwhile to
check whether all neighbors of that node have their positions in the other region. If yes, the node can
be transferred to the other region and will not become a boundary node. The median of the nodes
can be computed in linear time with the median of medians algorithm (Cormen et al., 2001). Since
the running time of the preprocessing is dominated by the shortest path tree computations after the
partition of the graph, we decided to use standard algorithms: sorting the nodes and taking the mean.
As an example, the kd-tree partition with 64 regions for our test graph with 1M nodes and 2.5M arcs
was calculated in 175 sec.

Multi-way arc separator. A partition of the graph into k almost equally sized regions with a small
(almost minimal) arc separator set can be computed by the multi-way arc separator algorithms pre-
sented in (Karypis and Kumar, 1998). An efficient implementation of the algorithms can be obtained
free of charge from (Karypis, 1995). The algorithms implemented in METIS are based on multilevel
recursive-bisection, multilevel k-way, and multi-constraint partition schemes. The METIS partition
method has several advantages for our application: it does not need a layout of the graph and is there-
fore the most general partition method among those presented in the present article. The number of
arcs in the separator is noticeably smaller than in the other partition methods. The size of the regions
is balanced and the number of full flag vectors is among the smallest of all the partitions we studied.
Figure 13(d) (in the appendix) shows a partition of a graph generated by METIS.

5 Space Consumption—Coarse vs Fine Partition

An analysis of the calculated flag vectors shows that (depending on the partition) on average more
than 50% of the flag vectors have only 10% true entries, see Figure 15 and Table 2 (both in the
appendix). The high amount of almost empty flag vectors justifies the idea for a compression of the
vectors. It is important that the decompression algorithm is very fast – otherwise the speedup of the
running time will be lost. The two- and more level technique, we describe in this section, is a suitable
lossy compression method for the flag vector entries.

Let us have a closer look at the search space generated by the arc-flag accelerated Dijkstra search
to get an idea of how to compress the arc-flags: as illustrated in Figure 16(a) (in the appendix), the
accelerated Dijkstra search reduces the search space at the beginning of the search, but once the target
region has been reached, almost all nodes and arcs are visited. This is not very surprising, if we
consider that usually all arcs of a region were assigned the region-flag of their own region. We could
deal with this problem by using a finer partition of the graph but this would lead to larger flag vectors
at each arc (requiring more memory and a longer preprocessing). Take the following example: if we
use a fine 15 × 15 grid instead of a coarse 5 × 5 grid (i.e. each coarse region would be split into 9

13

additional finer regions), then the preprocessed data will increase from 25 flags (in the coarse case)
to 225 flags (in the fine case) per arc. Note that the additional information of the fine grid is mainly
needed for arcs close to the target node, e.g. arcs in the target region of the coarse grid. This leads to
the idea of splitting each region of the coarse partition into a set of smaller regions (see Figure 16(b)
in the appendix). For each such set of smaller regions (i.e. for each fine partition of a region from
the coarse partition) we compute and store additional flag vectors only for those arcs inside the same
coarse region. More precisely, we partition the graph induced by the nodes in the (coarse) regions and
perform (for each induced graph) another preprocessing where we calculated another flag vector for
each arc in the induced graphs. The entries of this additional flag vector per arc are associated with
the fine regions of the same coarse region. Hence, each arc gets two flag vectors assigned: one for
the coarse partition and one for the fine partition of the coarse region to which the arc belongs. This
approach can be iterated to more than 2 levels of finer partitionings.

The advantage of this two-level partition approach is that the preprocessed data is much smaller
than for a fine one-level partition. This is because the second flag vector of an arc a is relevant
(i.e. computed, stored, and evaluated) only for the coarse region to which the arc a belongs. In the
example above, the two-level approach would need only 34 flags per arc (instead of 225). The dif-
ference between the search spaces of the arc-flag accelerated Dijkstra search with the one- and with
the two-level partition is small. This is the case, because for the one-level partition the entries in flag
vectors corresponding to faraway neighboring regions are similar to each other. Therefore, we are not
loosing too much information from the one-level flag entries with the two-level partitions. The two-
level approach can be viewed as a (lossy) compression of the one-level flag vectors: we accumulate
the flag entries for faraway regions. For the two-level partition approach only a slight modification
of the search algorithm is required: until the target region is reached, everything remains unaffected,
unnecessary arcs are ignored by using the flag vectors of level one. When the algorithm has entered
the target region, the second-level flag vector provides further information on whether an arc can
be ignored for the search of a shortest path to the target node. Preprocessing the arc-flags for the
two-level approach takes slightly longer than for the one-level approach. However, almost the same
speedups can be achieved with two-level partitions with only a fraction of the space consumption of
the one-level partitions.

6 Experimental Setup and Computational Results

Implementation. We implemented the arc-flags in C++ using the GNU g++ compiler version 4.1 with
the optimizing option ”-O4” on Linux 2.4/2.6 systems (SuSE 9.1). We did all computations on 64 bit
AMD Opteron X2 Dual Core machines 2.2 GHz with 4 GB memory and 1 MB cache memory.

Table 1 shows that our implementation of Dikstra’s Algorithm is by a factor 3.9 to 6.5 slower than
the DIMACS implementation. One reason for that is that our implementation is thoroughly based on
the Boost Graph Library (BGL). Apperently this slowed down our code a lot. In Köhler et al. (2005)
we used our own graph datastructure instead of the BGL. Our Dijkstra implementation from Köhler
et al. (2005) performs as well as the DIMACS implementation, but we will use the BGL-based code
for the current paper since we didn’t had the time to switch back to our old code from Köhler et al.
(2005).

Instances. Currently we are heavily working on extensive experiments with the data from the DI-
MACS Challenge homepage, especially the road networks of Europe and USA. The present paper
gives preliminary results on these networks and a subnetwork of the German road network that is
part of the PTV Europe network from the DIMACS Challenge homepage. Most of these results on

14

name | nodes | | edges | dimacs [ms] own [ms] own/dimacs

NY 264346 733846 57.632 231.66 4.0
BAY 321270 800172 68.096 266.36 3.9
COL 435666 1057066 93.242 400.51 4.3
FLA 1070376 2712798 257.756 1390.51 5.4
NW 1207944 2840206 336.965 1592.72 4.7
NE 1524452 3897634 390.800 1878.12 4.8
CAL 1890814 4657740 488.319 2473.01 5.1
LKS 2758118 6885656 750.431 3331.92 4.4
E 3598622 8778112 1095.032 7163.35 6.5
W 6262103 15248144 2040.588 10173.3 5.0

Table 1. DIMACS benchmark software versus our plain Dijkstra implementaion using the Boost Graph Library (BGL).

the German road network already appeared in (Möhring et al., 2006, 2005). Therefore, we focus on a
summary to prove the preformance of the arc-flag method, see Figures 3 and 4. For the German road
subnetworks we have mainly used the networks in Table 3 (in the appendix). Each arc in these net-
works has a nonnegative integer geographic length. For each network instance we randomly generated
up to 2,500 route requests. The measured speed-up factors and running times are averaged over all
computed requests.

We did the shortest path computations in Figure 3 with the following acceleration methods and
compared them to Dijkstra’s standard algorithm: a hierarchical approach together with a separator
heuristic, see Möhring et al. (2005) for details, the arc-flag approach together with a rectangular parti-
tion and a multi-way arc separator partition. The arc separators were computed with METIS (Karypis,
1995). Combining the bi-directed search and the arc-flag method with an arc separator partition by
METIS was the most successful method in our tests with a speed-up of up to 1,470.

Figure 4 compares the results of the different partitioning methods on four road networks (see
Table 3 in the appendix on details of the networks). The size of the preprocessed data is nearly the
same for all algorithms (80 bits). The same size could not be realized since, for instance, kd-tree
partitions always have size 2q, q ∈ N. Table 5 (in the appendix) shows the partitions we used for the
comparison.

Our preliminary results on the road networks of Europe and USA are given in the following
figures.

7 Discussion and Outlook

We presented a number of improvements of the basic variant of the arc-flag acceleration (Lauther,
1997, 2004) for speeding up the P2P shortest path search on static networks. Arc flags are a modi-
fication to the standard Dijkstra algorithm and are used to avoid exploring unnecessary paths during
shortest path computation. We showed that the improved arc-flags achieve speedups of P2P shortest
path queries of more than 1,470 on a subnetwork of the German road network with 1M node and
2.5M arcs using 450 bits of additional information per arc. The orginal arc-flag version of Lauther
(2004) is only capable of obtaining speedups of up to 64 on the European truck driver’s road network
with 0.3M nodes, 0.5M arcs and 278 bits of additional information per arc. Even the latest version of
the highway hierarchies by Sanders and Schultes (2006) does not compete with the speedups of the
improved version of the arc-flags (Schultes, 2006): a speedup of 1,121 is obtained by the highway hi-
erarchies on the same German road network with 1M node and 2.5M arcs using 450 bits of additional
information per arc.

15

 0

 200

 400

 600

 800

 1000

 1200

 1400
sp

ee
du

p
fa

ct
or

network instances
AA BY HS NO NW OS TH GH GR

hierarchical approach with sep. heuristic
arc-flags with rect. part. (225 regions)
arc-flags with sep. part. (225 regions)
arc-flags with sep. part. & bidi (225 regions)

Fig. 3. Speedups on all networks compared to the plain Dijkstra algorithms (speedup 1). Results are shown for a hierarchical
approach together with a separator heuristic, the arc-flags with a rectangular partition (225 regions), the arc-flags with a
separator partition (225 regions), and the arc-flags with a separator partition combined with a bi-directed search (225 regions
for each direction).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000
B

i2
L

ev
el

K
D

(8
0)

B
iM

E
T

IS
(8

0)

B
iK

D
(6

4)

B
iG

ri
d(

85
)

2L
ev

el
M

E
T

IS
(8

0)

2L
ev

el
K

d(
80

)

2L
ev

el
G

ri
d(

80
)

M
E

T
IS

(8
0)

K
dT

re
e(

64
)

G
ri

d(
81

)

se
ar

ch
 s

pa
ce

 [
no

de
s

to
uc

he
d]

road network AA
road network OS
road network BW
road network BY

Fig. 4. Average search spaces for most of the algorithms we implemented on four road networks (see Tables 4 and 5 in the
appendix for details). The numbers of bits of additional information per arc are given in brackets.

16

rank11 rank12 rank13 rank14 rank15 rank16 rank17 rank18 rank19 rank20 rank21

0.
22

0.
24

0.
26

0.
28

0.
30

USA−road−t.E with 300 partitions

dijkstra rank

tim
e

in
 s

ec

Fig. 5. Query times of a uni-directed Dijkstra search on network E for 1000 demands and 300 partitions.

rank10 rank11 rank12 rank13 rank14 rank15 rank16 rank17 rank18 rank19 rank20

0.
08

0.
10

0.
12

0.
14

0.
16

0.
18

USA−road−t.NW with 100 partitions

dijkstra rank

tim
e

in
 s

ec

Fig. 6. Query times of a uni-directed Dijkstra search on network NW for 1000 demands and 100 partitions.

17

rank10 rank11 rank12 rank13 rank14 rank15 rank16 rank17 rank18 rank19 rank20

0.
08

0.
10

0.
12

0.
14

USA−road−t.NW with 250 partitions

dijkstra rank

tim
e

in
 s

ec

Fig. 7. Query times of a uni-directed Dijkstra search on network NW for 1000 demands and 250 partitions.

rank10 rank11 rank12 rank13 rank14 rank15 rank16 rank17 rank18 rank19 rank20

0.
07

0.
08

0.
09

0.
10

0.
11

0.
12

0.
13

USA−road−t.NW with 490 partitions

dijkstra rank

tim
e

in
 s

ec

Fig. 8. Query times of a uni-directed Dijkstra search on network NW for 1000 demands and 490 partitions.

18

rank10 rank11 rank12 rank13 rank14 rank15 rank16 rank17 rank18 rank19 rank20 rank21 rank22

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

USA−road−t.W with 100 partitions

dijkstra rank

tim
e

in
 s

ec

Fig. 9. Query times of a uni-directed Dijkstra search on network W for 1000 demands and 100 partitions.

The point that leaves room for improvements with the arc-flags is the preprocessing: for instance,
precomputing the highway hierarchies on the our German road network example with 1M node and
2.5M arcs can be done within 1 minute, while preprocessing the arc-flags takes up to 120 minutes
on this network. Section 3.3 hinted at a new idea for a fast preprocessing of the flag vectors. In this
preprocessing, we have to compute at least one full shortest path tree per region. This would give us
a straightforward lower bound on the running time, because computing a full shortest path tree on a
subnetwork of the German road network takes at most 1 second. From our work on the German road
network example we know that we need a partitioning with 225 regions for forward and backward
search on that network. On this basis, we can assume a lower time bound on the preprocessing of
7.5 minutes for German road network example. The new preprocessing idea from Section 3.3 would
bring us very close to this lower bound of 7.5 minutes and therefore already very close the 1 minute of
preprocessing necessary for the highway hierarchies (Schultes, 2006) on the same network. Using our
multi-level idea (Section 5) we would then be able to reduce the space consumption of 450 bits per
arc to only 68 bits. At the same time, we would gain almost the same acceleration factor of 1,470, and
even more importantly: the preprocessing effort would be reduced much further. The reason for this is
that with the two-level partitioning we are works on coarser partitionings (with much less numbers of
regions) and smaller (induced) graphs (for the second level arc-flags). On this basis, future research
could improve the arc-flags method even further.

Bibliography

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Cliff Stein (2001, September).
Introduction to Algorithms (2nd ed.). Cambridge, MA, USA: The MIT Press.

Dijkstra, Edsger Wybe (1959). A note on two problems in connexion with graphs. In Numerische
Mathematik, Volume 1, pp. 269–271. Amsterdam, The Netherlands: Mathematisch Centrum.

DIMACS (2006). 9th Implementation Challenge — Shortest Paths. http://www.dis.
uniroma1.it/˜challenge9.

Enders, Reinhard and Ulrich Lauther (1999, May). Method and device for computer assisted graph
processing. http://gauss.ffii.org/PatentView/EP1027578. Siemens AG.

Fredman, Michael L. and Robert Endre Tarjan (1987). Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the Association for Computing Machinery 34(3), 596–
615.

Goldberg, Andrew V. and Chris Harrelson (2005). Computing the shortest path: A∗ search meets
graph theory. In Adam Buchsbaum (Ed.), Proceedings of the 16th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), Vancouver, BC, Philadelphia, PA, USA, pp. 156–165. SIAM.

Goldberg, Andrew V., Haim Kaplan, and Renato Fonseca Werneck (2006). Reach for A∗: Efficient
point-to-point shortest path algorithms. In Proceedings of the 8th Workshop on Algorithm Engi-
neering and Experiments (ALENEX). SIAM. To appear.

Goldberg, Andrew V. and Renato Fonseca Werneck (2005). Computing point-to-point shortest paths
from external memory. In Proceedings of the 7th Workshop on Algorithm Engineering and Experi-
ments (ALENEX), pp. 26–40. SIAM.

Gutman, Ronald J. (2004). Reach-based routing: A new approach to shortest path algorithms op-
timized for road networks. In Lars Arge, Giuseppe F. Italiano, and Robert Sedgewick (Eds.),
Proceedings of the 6th Workshop on Algorithm Engineering and Experiments (ALENEX) and the
First Workshop on Analytic Algorithmics and Combinatorics (ANALCO), New Orleans, LA, USA,
Philadelphia, PA, USA, pp. 100–111. SIAM.

Johnson, Donald B. (1977). Efficient algorithms for shortest paths in sparse networks. Journal of the
Association for Computing Machinery 24(1), 1–13.

Karypis, George (1995). METIS: Family of multilevel partitioning algorithms. http://
www-users.cs.umn.edu/˜karypis/metis/.

Karypis, George and Vipin Kumar (1998, August). A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on Scientific Computing 20(1), 359–392.

Knopp, Sebastian, Peter Sanders, Dominik Schultes, Frank Schulz, and Dorothea Wagner (2006). Fast
computation of distance tables using highway hierarchies. Technical report, Faculty of Informatics,
University of Karlsruhe.

Köhler, Ekkehard, Rolf H. Möhring, and Heiko Schilling (2005). Acceleration of shortest path and
constrained shortest path computation. In Sotiris E. Nikoletseas (Ed.), In Proceedings of the 4th
International Workshop on Experimental and Efficient Algorithms (WEA), Volume 3503 of Lecture
Notes in Computer Science, Heidelberg, Germany, pp. 126–138. Springer.

Lauther, Ulrich (1997). Slow preprocessing of graphs for extremely fast shortest path calculations.
Lecture at the Workshop on Computational Integer Programming at ZIB.

Lauther, Ulrich (2004). An extremely fast, exact algorithm for finding shortest paths in static networks
with geographical background. In Martin Raubal, Adam Sliwinski, and Werner Kuhn (Eds.), Geoin-
formation und Mobilität - von der Forschung zur praktischen Anwendung, Volume 22 of IfGI prints,
Münster, Germany, pp. 219–230. Institut für Geoinformatik, Westfälische Wilhelms-Universität.

20

Maue, Jens, Peter Sanders, and Domagoj Matijevic (2006). Goal directed shortest path queries using
precomputed cluster distances. In Carme Àlvarez and Maria J. Serna (Eds.), Proceedings of the
5th International Workshop on Experimental Algorithms (WEA), Volume 4007 of Lecture Notes in
Computer Science, pp. 316–327. Springer.

Möhring, Rolf H., Heiko Schilling, Birk Schütz, Dorothea Wagner, and Thomas Willhalm (2005).
Partitioning graphs to speed up dijkstra’s algorithm. In Sotiris E. Nikoletseas (Ed.), Proceedings of
the 4th International Workshop on Experimental and Efficient Algorithms (WEA), Volume 3503 of
Lecture Notes in Computer Science, Heidelberg, Germany, pp. 189–202. Springer.

Möhring, Rolf H., Heiko Schilling, Birk Schütz, Dorothea Wagner, and Thomas Willhalm (2006).
Partitioning graphs to speed up dijkstra’s algorithm. ACM Journal of Experimental Algorithms
(JEA) 12, 1–29. To appear.

Sanders, Peter and Dominik Schultes (2005). Highway hierarchies hasten exact shortest path queries.
In Gerth Stølting Brodal and Stefano Leonardi (Eds.), Proceedings of the 13th Annual European
Symposium (ESA), Volume 3669 of Lecture Notes in Computer Science, pp. 568–579. Springer.

Sanders, Peter and Dominik Schultes (2006, September). Highway hierarchies hasten exact shortest
path queries. In Proceedings of the 14th Annual European Symposium (ESA). To Appear.

Schultes, Dominik (2006, August). Personal communication.
Schulz, Frank, Dorothea Wagner, and Karsten Weihe (2000). Dijkstra’s algorithm on-line: An empir-

ical case study from public railroad transport. ACM Journal of Experimental Algorithms 5, 12.
Wagner, Dorothea and Thomas Willhalm (2003). Geometric speed-up techniques for finding shortest

paths in large sparse graphs. In Giuseppe Di Battista and Uri Zwick (Eds.), Algorithms - ESA
2003, 11th Annual European Symposium, Budapest, Hungary, Heidelberg, Germany, pp. 776–787.
Springer-Verlag, Lecture Notes in Computer Science, vol. 2832.

Willhalm, Thomas (2005). Engineering Shortest Paths and Layout Algorithms for Large Graphs. Ph.
D. thesis, Faculty of Informatics, University of Karlsruhe.

21

A The Preprocessing

Fig. 10. We computed a multi-way arc separator partition of the Luxembourg road network (network data from the PTV
Europe road network from the DIMACS Challenge homepage). The green arcs belong to the same region r. We analyzed
for region r the subgraph which is induced by those arcs a ∈ A which are on a shortest path to at least one node from r,
i.e. fa(r) = true. For this induced graph, we identified subtrees. These are the red arcs in the figure. The blue arcs are the
non-tree arcs in the induced graph. The gray arcs do not belong to the induced subgraph, i.e. f(r) = true. Now, the tree
arcs (red) represent the preprocessing effort which we can save, because those arcs are on identical subtrees of all shortest
path trees that we calculate for region r. For those arcs, the shortest path tree calculation needs to be done only once for
region r.

22

Fig. 11. We computed a multi-way arc separator partition of the Luxembourg road network (network data from the PTV
Europe road network from the DIMACS Challenge homepage). The green arcs belong to the same region r. We calculated
the shortest path trees for two similar separator arcs a1 and a2 of region r. The blue and yellow arcs in the figure represent
the two shortest path trees and the red arcs are the identical shortest path subtrees of a1 and a2. The gray arcs do not belong
to any of the trees.

B Which Partiton?

23

fa

a

1

1
1

1

1
1

1

0

0
0
0

0
0
0
0

0

Fig. 12. The arc-flag method together with a rectangular partition. At each arc a, a flag vector fa is stored such that fa(i)
indicates if a is on a shortest path into region i. The set of regions for which fa(i) = true (yellow regions in the figure)
approximates in a geometrical sense the consistent target set of arc a, i.e. the set of nodes to which a shortest path starting
with a exists.

(a) Rectangular parti-
tion (35 regions)

(b) Quad-tree (34 re-
gions)

(c) kd-Tree (32 re-
gions)

(d) METIS (32 re-
gions).

Fig. 13. Germany with four different partitions.

Fig. 14. Example of a Quad-Tree. Each region is recursively divided until each region contains only one point.

24

C Space Consumtion—Coarse vs Fine Partition

Table 2. Analysis of the arc-flags: kdTree(n) and METIS(n) are partition algorithms of size n. For 80% of the arcs, either
almost none (< 10 %) or nearly all (> 95 %) flags of the corresponding flag vector have been set to true.

network number of arcs algorithm = 1 < 10 % > 95 %

AA 920,000 KdTree(32) 351,255 443,600 312,021
AA 920,000 KdTree(64) 334,533 470,818 294,664
AA 920,000 METIS(80) 346,935 468,101 290,332
BY 2,534,000 KdTree(32) 960,779 1,171,877 854,670
BY 2,534,000 KdTree(64) 913,605 1,209,353 799,206

0

100000

200000

300000

400000

500000

600000

80− 9060− 7040− 5020− 300− 10

n
u

m
b

er
o

f
ar

cs

fill rate of arc-flag vectors [%]

arc-flags with rectangle partition
arc-flags with separator partition

Fig. 15. Statistics of the fill rate of the flag vectors on instance OS (1,169,000 arcs). The y-axis shows the number of arcs
for which the corresponding flag vector has a certain fill rate, while the x-axis shows the percentages of different fill rates.
For instance, an arc a has a flag vector with fill rate 30% if 3 out of 10 flags in the vector have been set to true.

25

(a) Without two-level arc-flags a
search visits almost all arcs in the tar-
get region (lower left gray point).

(b) For each arc a, a flag vector is stored for the coarse 5× 5 grid and a flag
vector for a fine 3 × 3 grid in the same coarse region as the arc a.

Fig. 16. Two-level partition.

D Experimental Setup and Computational Results

26

Table 3. Characteristics of the road networks used in the experiments. Most of them are part of the PTV Europe network
from the DIMACS Challenge homepage.

name description # nodes # arcs

GR German Railway 14,938 32,520
GH German Highway 53,315 109,540
AA North Rhine- 362,554 920,464

Westphalia south
TH Thuringia 422,917 1,030,148
OS Berlin, 474,431 1,169,224

Brandenburg,
Saxony,
Saxony-Anhalt,
Mecklenburg

NW North Rhine-
Westphalia north 560,865 1,410,076

NO Lower Saxony, 655,192 1,611,148
Schleswig-Holstein,
Hamburg, Bremen

HS Hesse, Saarland,
Rhineland-Palatinate 675,465 1,696,054

BY Bavaria 1,045,567 2,533,612

Table 4. Overview of the tested algorithms.

Name Description Parameter

Grid c × c grid over graph layout c
KdTree kd-tree concerning coordinates of nodes depth of kd-tree
METIS partition generated by METIS number of regions
2LevelGrid c × c grid coarse grid, g × g fine grid c and g
2LevelKdTree coarse kd-tree and fine kd-tree depth of coarse and

fine kd-tree
2LevelMETIS coarse METIS and fine METIS number of coarse and

fine regions
BiGrid bi-directed grid size of forward and

backward grid
BiKdTree bi-directed kd-tree depth of kd-trees
Bi2LevelGrid bi-directed 2LevelGrid sizes of grids
Bi2LevelKdTree bi-directed 2LevelKdTree depth of kd-trees
BiMETIS bi-directed METIS number of forward and

backward regions

27

Table 5. Partitions with nearly the same preprocessed data size of 80 bit.

Name of partitioning forward backward bits per arc
1st level 2nd level 1st level 2nd level

Grid 9 × 9 - - - 81
KdTree 64 - - - 64
METIS 80 - - - 80
2LevelGrid 8 × 8 4 × 4 - - 80
2LevelKd 64 16 - - 80
2LevelMETIS 72 8 - - 80
BiGrid 7 × 7 - 6 × 6 - 85
BiKd 32 - 32 - 64
BiMETIS 40 - 40 - 80
Bi2LevelGrid 6 × 6 2 × 2 6 × 6 2 × 2 80
Bi2LevelKd 32 8 32 8 80

