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Abstract

The number of functional errors escaping design ver-

ification and being released into final silicon is growing,

due to the increasing complexity and shrinking production

schedules of modern processor designs. Recent trends to-

wards chip multiprocessors (CMPs) are exacerbating the

problem because of their complex and sometimes non-

deterministic memory subsystems, prone to subtle but dev-

astating bugs. This deteriorating situation calls for high-

efficiency, high-coverage results in functional validation,

results that are be achieved by leveraging the performance

of post-silicon validation, that is, those verification tasks

that are executed directly on prototype hardware. The

orders-of-magnitude faster testing in post-silicon enables

designers to achieve much higher coverage before customer

release, but only if the limitations of this technology in di-

agnosis and internal node observability could be overcome.

In this work, we unlock the full performance of post-

silicon validation through Dacota, a new high-coverage so-

lution for validating memory operation ordering in CMPs.

When activated, Dacota reconfigures a portion of the cache

storage to log memory accesses using a compact data-

coloring scheme. Logs are periodically aggregated and

checked by a distributed algorithm running in-situ on the

CMP to verify correct memory operation ordering. When

the design is ready for customer shipment, Dacota can be

deactivated, releasing all cache storage, and only leaving a

small silicon area footprint, less than 0.01% (three orders

of magnitude smaller than previous solutions). We found

experimentally that Dacota is effective in exposing memory

subsystem bugs, and it delivers its high coverage capabili-

ties at a 26% performance slowdown (only during valida-

tion) for real-world applications.

1. Introduction

Verification of today’s complex microprocessors has be-

come the bottleneck of the design cycle. Despite massive

pre-silicon verification efforts, chips are still released with

devastating bugs. Errors in the memory subsystem are be-

coming increasingly common, comprising at least 10% of

the escaped and reported bugs in the Intel Core 2 Duo [1].

Memory coherence and consistency, which provide guar-

antees as to the order of memory operations, are signifi-

cant sources of escaped bugs and are likely to become more

error-prone as designs move from buses towards complex,

non-deterministic interconnects. The system-level proper-

ties related to memory operation policies are difficult to

verify due to the vast state space they encompass and their

decentralized enforcement. As technology moves towards

large CMP systems, such as the TILE64 [3] and Polaris [23]

microprocessors, the verification problem worsens.

To address these shortcomings, post-silicon functional

validation has emerged as a new complementary approach,

promising to bridge the gap between failing pre-silicon ver-

ification efforts and the correctness requirements of multi-

core systems. Applied to early silicon prototypes, post-

silicon validation enables high coverage as a result of fast

execution speeds. However, current post-silicon techniques,

such as logic analyzers [24], on-chip assertions [22] and

scan chains [5] are plagued by limited internal observability.

This precludes existing techniques from adequately validat-

ing system-wide properties such as memory coherence and

consistency, for which it is extremely difficult to detect and

diagnose bugs from the system’s external interface.

1.1. Contributions

This work introduces a novel solution to detect func-

tional errors in the memory ordering of CMPs in post-

silicon validation. Our solution, called Dacota (Data-

coloring for COnsistency Testing and Analysis), offers the

benefits of high validation coverage and debugging support

at a very small performance impact and near-zero area over-

head. Enabled only during post-silicon validation, it incor-

porates a simple in-hardware activity logging mechanism

that observes selected system activity during program exe-

cution. Periodically, a software-based validation algorithm

examines the logs to detect violations in the ordering of

memory operations, indicative of an error in memory co-

herence or consistency.

When Dacota is enabled, an activity logging mechanism

located at each level one (L1) cache stores a compact en-



coding of memory accesses. The caches are temporarily re-

configured to include an access vector associated with each

line: the access vectors contain a counter “color” value, in-

cremented with each store operation to the line and used to

disambiguate accesses to the same cache line during execu-

tion. In addition, after each load and store, individual CMP

cores log the address and color values of the access in an ac-

tivity log, which is also maintained in the local cache. Thus,

the logs record the history of memory accesses in program

order for each individual core. When local cache storage is

exhausted, activity logs are aggregated and validated by a

software-based algorithm, leveraging the existing processor

cores for computation. Validation is performed by build-

ing a graph from the activity log where vertices represent

memory accesses and edges indicate the observed ordering

between them. Correct memory ordering is then checked

by inspecting the graph for cycles. By leveraging exist-

ing cache storage and CPU computation resources, Dacota

incurs an extremely small silicon area overhead. Finally,

Dacota can be completely disabled upon product shipment,

leading to zero performance impact to the end user.
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Figure 1. CMP reconfiguration for Dacota validation. Cache
lines are partitioned to include an access vector tracking the order
of memory accesses. A portion of each cache is reclaimed and
used as activity log storage for load/store operations. Finally, the
cache controllers are augmented to include supporting hardware.

2. Dacota Overview

Dacota’s architecture is embedded in the CMP design to

be validated and requires minimal hardware modifications.

A schematic of its components is shown in Figure 1. We

assume a generic CMP architecture where multiple simple

processing elements (cores), each with private L1 caches,

are connected via an on-chip interconnect fabric to a shared

L2 cache. When Dacota is enabled, the system is reconfig-

ured so that a portion of the cache resources are reserved for

Dacota’s core activity logs (hashed blocks in the L1 caches

of Figure 1). The portion of the cache used by Dacota is

configurable, a simple implementation allocates half of the

cache to core logs, and the other half to normal data storage.

Processor activity is organized into epochs (Figure 2),

where program execution alternates with Dacota’s check-

ing phase, which can be divided into log aggregation, graph

construction and policy validation. During normal program

execution, Dacota monitors activity in the background by

updating and transmitting access vectors along with data,

and logging snapshots of the vectors. When log resources

are exhausted, program execution stops, data in transit is

allowed to reach its destination, and all data portions of

the caches are frozen. All cores then drain their activity

logs into a dedicated region of un-cacheable memory (log

aggregation). Next, each core in the system builds a con-

sistency graph representing the ordering of memory oper-

ations. This consistency graph is examined by the policy

validation algorithm to expose memory ordering errors. If

the analysis exposes an error, information from the activity

logs can be leveraged to support subsequent diagnosis and

debugging. Otherwise, activity logs and access vectors are

cleared and the next epoch may begin.

program execution

Network traffic: data/vector
Dacota epoch

L1 cache freeze L1 cache thaw

policy 
validation

graph
construction

logs
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activity logs

Figure 2. Dacota execution flow. When Dacota is enabled, nor-
mal benchmark execution progresses with data and access vectors
transferred together and while activity is logged in the background.
When log resources are exhausted, they are aggregated and ana-
lyzed by a graph-based algorithm. If an error is found, the logs are
presented to the user for diagnosis, otherwise execution resumes.

When Dacota is active, each cache line is partitioned to

include additional information alongside the data block, in

an access vector that records the number and the order of

store operations issued to the line. Each core modifying the

data in the cache line also updates the corresponding access

vector. Traveling throughout the system with its data block,

the access vector records the order of store operations to

cache lines. A snapshot of the access vector is also stored

in the local cache’s core activity log upon each memory op-

eration, along with the address. These logs are later ana-

lyzed to validate the ordering of memory operations. When

required to support specific consistency models (such as

Weak Consistency), Dacota may also log special memory

synchronization instructions.

When logging resources are exhausted, Dacota’s anal-

ysis algorithm validates the ordering of memory opera-

tions from the contents of the activity logs. The algorithm

builds a consistency graph from the aggregated core activ-



ity logs; vertices represent memory accesses, while directed

edges indicate operation sequencing as perceived by differ-

ent cores. Analysis of the consistency graph determines if

a memory ordering error has occurred with respect to the

memory consistency model. Errors manifest as a loop in

the graph. The analysis engine can also expose coherence

violations if they are manifest in the consistency graph or

through incompatible access vectors in the activity log. Da-

cota’s analysis algorithm is executed entirely in software on

the existing CPU resources of the CMP.

3. Activity Logging

The activity logging system in Dacota records the order

of shared memory accesses observed by different cores. To

this end, we maintain both an access vector attached to each

cache line, as well as activity logs residing in local caches.

The information in the access vectors and logs is updated

concurrently with program execution and incurs no perfor-

mance overhead during this phase. However, when the log

storage resources are exhausted, normal execution is sus-

pended and the logs are aggregated and analyzed by the

policy validation engine, discussed in Section 4.

3.1. Access vector

Dacota logs the order of accesses to cache lines using

a scheme based on data coloring. Each cache line is par-

titioned into two parts: one for program data and the other

configured as an access vector; these travel together through

the interconnect and caches of the CMP. Each core has a

dedicated entry in the vector, updated when that core per-

forms a store access to the cache line. An additional entry in

the vector is reserved for a counter tracking the total num-

ber of stores to the line since the beginning of the epoch.

Figure 3 shows several examples of access vectors, with the

counter entry shown in gray.

At the beginning of an epoch, the counter and all entries

of the vector are initialized to zero. With each issued store,

Dacota automatically increments the counter and copies its

value to the vector entry associated with the issuing core.

Updates to the counter are accomplished automatically by

Dacota hardware and do not require read-modify-write op-

erations to be issued by the CPU. A saturated counter trig-

gers the end of the program execution phase in an epoch,

a necessary measure to ensure counter uniqueness. The

end result is an access vector with monotonically increasing

counter values indicating the chronological order in which

cores modified a line.

To illustrate how access vectors operate, we show several

examples in Figure 3.a-d. Part 3.a shows the vector associ-

ated with an unmodified cache line: all of its N entries and

the counter have a zero value. Figure 3.b shows the result of

three stores (as indicated by the counter value 3) issued by
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Figure 3. Dacota access vector. An access vector associated with
each cache line is used to track the order of store operations. a.
Access vector at the beginning of an epoch. b. Access vector
indicating modifications (in order) by Core0, Core2 and Core1. c.
and d. Examples of aliasing due to multiple stores by the same
core. In c. the order can be inferred because of the other entries
being at 0; in d. the complete order cannot be recovered.

cores 0, 2, and 1, in this order. Initially, the line starts with a

vector as in 3.a, and after Core0’s store, the counter and the

first entry are updated to 1. When Core2 issues a store, the

counter is incremented to 2 and this value is copied into the

third entry. Finally, the store by Core1 changes the access

vector to its final state shown in Figure 3.b. Observe that

in this example the vector uniquely identifies the order of

all store operations to the address block. In contrast, Fig-

ure 3.c shows a situation where three store operations have

occurred, yet we can only determine which core executed

the last one. In this example, the fact that all other entries

are at zero indicates that Core0 is indeed responsible for all

the stores. In the last example in Figure 3.d, we cannot de-

termine the unique order of the accesses to the cache line,

since we cannot determine whether Core0 or Core1 issued

the first store operation. Note, however, that if we had a

snapshot of this access vector before the third store oper-

ation was issued, then we would be able to establish the

sequence of operations precisely.

To manage access vector updates, we make a small ad-

dition to the cache controllers (hashed areas in Figure 1).

This hardware component is responsible for incrementing

the counter and updating the vector entries. At the cost

of increased hardware complexity, it would be possible to

eliminate the counter entry from the access vector and sim-

ply retrieve the counter value by extracting the highest value

in the access vector entries. This alternative approach incurs

higher area cost, but could be interesting for system where

the resources for the access vector are extremely limited.

3.2. Core Activity Log

While access vectors record the order of accesses to indi-

vidual cache lines, activity logs record the order of accesses
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Figure 4. Dacota activity log operation. The activity log records snapshots of access vectors in program order, while data dependencies
are exposed by the access vectors’ content. The index table connects accesses that have not yet completed to their corresponding log entry.
a. Store to line A is issued and the counter and the index table are updated. b. Load to line B is issued and completes before Store A. c.
Store to line A completes and the updated vector is logged. d. After loads to C and D the log fills and the policy validation algorithm runs.

among different cache lines. Stored in a reconfigured por-

tion of the caches, activity logs record a series of access vec-

tor snapshots. When a core issues a load or a store, Dacota

copies the updated access vector to the activity log, together

with the type of access (load/store) and the cache line tag.

The activity log is maintained as a queue and entries are al-

located in program order, but copied in order of completion,

which may differ from program order. By leveraging the

order and contents of the activity log, Dacota can later re-

construct the order of memory operations perceived by each

core. To reconfigure Dacota’s portion of the L1 cache as a

queue, we augment it with a simple up-counter that cycles

through the allocated ways and sets. The tag array stores a

portion of the location’s address, while the data block stores

spill-over address bits and the instantaneous value of the ac-

cess vector associated with the line. In addition, since the

order of completion of memory operations may be different

from program order, we add a small index table for conver-

sion between outstanding memory accesses and entries in

the cache. Because we only need to index the outstanding

memory accesses, the table can be quite small.

Figure 4.a-d shows an example of activity log operation.

First, a local core issues a store to location A, allocating an

entry for it in the log and recording the mapping in the in-

dex table. Before the store completes, a load to address B is

issued and completed (Figure 4.b), logging the access vec-

tor of line B. When the store completes in Figure 4.c, the

vector of line A is copied to its pre-allocated entry. When

the log fills (Figure 4.d), a signal is asserted and the policy

validation algorithm is invoked.

In developing Dacota, we observed that logging each

memory access led to prohibitively large storage require-

ments. Thus, we optimized our design to log a load access

only if it triggered a cache miss, either because the data

block is not cached, or because the copy in the cache is ob-

solete due to modification by another core. No loss in cover-

age is incurred by this optimization, when operating under

the simple assumption that (hit) accesses to local caches are

serviced correctly.

3.3. Activity Logging Example

An example of Dacota’s logging system in operation is

presented in Figure 5. We assume a CMP with two cores,

MESI coherence protocol and a load/store buffer that en-

forces strict program order. For this and subsequent exam-

ples we adopt the following notation for the access vector

format: c0|c1 cnt, where c0 and c1 are the entries for Core0

and Core1, and cnt is the counter. For example, the access

vectors in Figure 3.a and 3.d are recorded as 0|0 0 and 3|2 3,

respectively. For simplicity we do not show the index table

and the index counter of the activity log.

Initially, both L1 caches, as well as the logs, are empty

(not shown). The first access (store to A) is issued by Core0

in Figure 5.a and brings line A into the L1 cache in the mod-

ified state. The access vector of the line is then updated: the

counter is incremented and the new value (1) is copied into

Core0’s entry. The resulting value 1|0 1 and the address of

A is copied to the core’s activity log. Subsequently, Core0

issues a load to B and Core1 issues a store to A (Figure 5.b).

As a result, line B (with access vector 0|0 0) is brought to

the local cache and recorded in the activity log of Core0.

Note that since a load operation is performed, the access

vector is not updated. The consequences of Core1’s store,

on the other hand, are as follows: line A is invalidated in

Core0’s cache and it is moved to Core1 in modified state.

The vector is transferred together with the data and is up-

dated to 1|2 2. The log of Core0 still preserves a log entry

for a previous store to A, while the line itself is no longer

in Core0’s cache. Finally, in Figure 5.c Core0 issues a load

to A and Core1 issues a store to B. The latter invalidates

line B in Core0’s cache, transfers it to Core1 and updates

the vector to 0|1 1. The former, puts line A in shared state

and records its access vector in the activity log of Core0.

At the end of the execution we can use the logs to see

how the order of operations was perceived by individual

cores. For example, we observe that Core0 has the follow-

ing log entries A:1|0 1, B:0|0 0, A:1|2 2. Since the last en-

try appears also in Core1, we can thus determine that when

Core0 fetched line B, this was not yet modified by Core1.
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Figure 5. Example of Dacota activity logging system. The ex-
ample is based on a system with 2 cores, MESI protocol and in-
order execution of individual cores’ memory operations. a. Core0
stores to A, updating and logging the access vector. b. Core0 loads
B and updates the activity log. Core1 stores to A, updates its vec-
tor and logs it. c. Core0 loads A with the updated access vector,
while Core1 modifies B, and writes the log.

4. Policy Validation Algorithm

Dacota’s policy validation algorithm takes the activity

logs as input, builds a directed graph representing the mem-

ory operation ordering, and checks the graph for errors. The

algorithm is invoked every time log resources are exhausted,

and begins with aggregating the access logs. This process

overlaps with the graph construction process, which may

begin as soon as the first logged data is available, and it is

followed by policy validation through graph analysis. To

minimize the area overhead of Dacota we implemented the

checking algorithm in software running on the CMP’s cores.

4.1. Access Log Aggregation

When a core detects that its log is full or the counter of

the accessed line’s vector reached the maximum value, it

broadcasts a message requesting validation. Upon receipt

of the message, all cores are required to stop execution and

complete all pending memory operations. Then, the data

portions of the caches are frozen, and the activity logs are

transferred to un-cacheable memory, where they are acces-

sible by all cores for graph construction and analysis.

4.2. Graph Construction

After activity logs are relocated to main memory, Dacota

proceeds to build a directed graph, representing the order-

ing of memory operations. Vertices in the graph represent

unique memory accesses issued during the epoch; while

edges represent the ordering constraints specific to the con-

sistency model adopted in the system. As graph construc-

tion progresses, Dacota also conducts a coherence invariant

check using the access vectors of the individual lines.

Graph Construction()

Graph G, Coherence Order Map M

Activity Log L[0..N-1]

Foreach core c in N

Foreach entry e in L[c]

If Exists M[Address(e)]

Verify Coherence(M,e)

Add Coherence Order(M,e)

Add Vertex(e,G)

Edges E = Ordering Edges(L[c],e)

Add Edges(E,G)

End

End

Figure 6. Graph construction algorithm. The algorithm iterates
through all history logs, generating vertices and ordering edges for
the graph, and checking the coherence invariant.

The pseudocode for the graph construction algorithm is

given in Figure 6.a. The algorithm iterates over each core

and log entry, performing a preliminary check to verify that

all store operations to an individual cache line are compat-

ible with a unique ordering of events. In other words, the

algorithm checks that for a single line all cores agree on the

same order for write operations. For this coherence check,

we employ a data structure that maps the line’s address to

a complete list of stores issued to this line. Each time the

line’s address is encountered in a log, its access vector is

compared to the list to see if there are any violations. If the

entries of the vector reveal an access that was not previously

observed, the ID of the core that issued it is added to the

list in the proper location. After this preliminary check, we

use the information in the log entry to augment the graph

for the consistency model. At the end, the graph is checked

for loops, which are indicators of an error in memory oper-

ation ordering. Below we provide insights in the specific

graph construction rules for a range of consistency policies.

Sequential Consistency. Sequential consistency re-

quires that the order of operations in all cores is perceived

uniquely throughout the system. For systems employing

this model, loads and stores correspond to vertices in the



consistency graph; edges in the graph are of two types:

program order edges and address reference edges. Program

order edges are imposed by the order of entries within each

activity log, while address reference edges are derived from

operations issued to a same location by different cores and

represent data dependencies (see Figure 7.b).

Total Store Ordering (TSO). This consistency model

relaxes sequential consistency by allowing loads to com-

plete before previously issued stores to a same location. In

the graph construction for TSO, vertices are created only

from store operations, while edges are derived from load

information. Program order and address reference edges

are constructed similarly to the Sequential Consistency

model. In addition, chronological edges are derived from

the values of access vectors returned by load operations

and represent inferred orderings between stores to different

locations. In particular, we identify the most recent store

operation that modified the loaded location by inspecting

its access vector and infer that any subsequent store to

that same location had not yet been executed. We then

retrieve the vertex corresponding to the most recent store

operation issued by the core, which executed before the

load (to any location), and draw an edge from this vertex to

the one corresponding to inferred next store. In addition,

we connect the last store that accessed the loaded location

to the next store issued by this core. With reference to

the example in Figure 7.c, the two chronological edges

(A2 → B2 and B1 → C1) are derived precisely in this way.

Processor Consistency. This model requires a that the

perceived order of store operations issued by a single core

is the same throughout the entire system. However, there

is no requirement for the interleaving of stores issued by

different cores. For this model, each core builds its own

graph using a process similar to that of TSO, but creating

vertices only for stores issued by that core. Edges are gen-

erated from load operations issued by all cores, as in TSO.

Other consistency models. Weak consistency mod-

els require that only special instructions (such as memory

barriers) are perceived in a unique order throughout the sys-

tem, while the observed interleaving of accesses between

the synchronization operations may be different for differ-

ent cores. In this case, Dacota logs the synchronization

instructions in addition to loads and stores, and uses them

as vertices in graph construction. The edges between the

operations are derived from log entries of ordinary accesses.

4.3. Graph Analysis

Consistency graphs in Dacota are constructed to reflect

the order in which accesses performed by individual cores

are perceived in the system. In order to find errors, Dacota
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Figure 7. Graph construction example. a. Interleaved sequence
of loads and stores issued by two cores. Black lines represent pro-
gram order constraints, while gray lines represent data dependen-
cies. b. Consistency graph for Sequential Consistency. Solid lines
represent program ordering constraints, while dashed ones indi-
cate address reference edges. c. Consistency graph for TSO. The
additional dotted lines represent chronological edges.

searches the graphs for loops, employing a modified version

of the Depth First Search (DFS) algorithm [11]. The algo-

rithm retains the complexity of the underlying implementa-

tion of DFS [20], that is, to O(E), where E is the number

of edges in the graph. However, to ensure maximum per-

formance, we aggressively apply transitive closure during

graph construction, thus reducing the number of edges.

Note that we do not use any additional hardware for

implementing policy validation, thus dramatically reducing

the silicon area overhead requirements of Dacota. This is a

crucial feature distinguishing Dacota as a post-silicon solu-

tion from runtime approaches that also use graph analysis

techniques. Moreover, it allows us to parallelize the anal-

ysis for common weaker consistency models where several

distinct graphs must be constructed. Even for consistency

policies that require the construction of a single graph, such

as Sequential Consistency, Dacota exploits the cores of the

CMP to parallelize the cycle detecting algorithm by start-

ing from distinct graph vertices. To further boost the per-

formance of Dacota during the policy validation phase, we

reconfigure the storage previously occupied by the activity

logs (now residing in main memory) to be used as regular

cache space. When the check completes, caches are recon-

figured once again to make space for the activity logs, the

data cache is thawed and the next Dacota epoch begins.

4.4. Error Detection Examples

In this section we overview an example of a coherence

error and a consistency error, showing how Dacota identi-

fies them. Figure 8 demonstrates a case when the state of

cache line A is not updated properly upon Core1 request-

ing it as exclusive. In a system operating correctly, Core0

should first invalidate the line in its own cache. Assume

instead, as shown in Figure 8.b, that due to a design error,

Core0 incorrectly modifies the line’s state to shared (we as-



sume a MESI protocol). This, in turn, leads to the situation

shown in Figure 8.c, where two modified copies of the line

exist in different caches at the same time. Thus, the cores

disagree on the order of the store operations that they issued

to the line. Dacota detects this type of issues while analyz-

ing the accesses to address A during graph construction.
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Figure 8. Coherence conflict example. a. A store to line A is
executed by Core0. b. Core1 requests exclusive access to line A
to perform a store, however, the cache of Core0 is erroneously up-
dated. c. Core0’s store to line A updates the access vector, leading
to a conflict detected by Dacota at graph construction time.

A more complex fault, this time in memory consistency,

is shown in Figure 9, where we assume Sequential Consis-

tency. When Core1 issues a number of load operations, their

execution order is erroneously reversed, possibly because of

a non-deterministic interconnect or because of incorrect be-

havior of the memory controller. The load to A completes

first, bringing an unmodified vector associated with the line

into Core1’s cache and activity log. Then, the stores issued

by Core0 complete, and, finally, the load to line B com-

pletes, returning to Core1 the line’s data and access vector.

In this scenario, the reversal of the execution of the loads

becomes visible because the perceived order of the stores to

A and B is incompatible among the two cores, generating a

loop in the consistency graph, which is detected by Dacota.
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Figure 9. Sequential Consistency violation example. A load to
A in Core1 is erroneously reordered to execute before the load to
B and completes first. Then, stores from Core0 execute (invalidat-
ing A in Core1’s cache), and, finally, the load to B in Core1 com-
pletes. The order in which accesses to A and B are observed by
Core0 and Core1 in this case is different, which leads to a loop in
the consistency graph built by Dacota, and thus an error is flagged.

4.5. Checking Algorithm Requirements

To minimize the area overhead of Dacota, its checking

algorithm is designed to run in software, as opposed to ded-

icated hardware. Therefore, for our approach to be reli-

able, we require computational correctness from the cores,

as well as their ability to access main memory. Main mem-

ory accesses use the same subsystem that Dacota is verify-

ing, however, bugs in the memory subsystem are unlikely

to cause analysis errors due to the absence of memory race

conditions during Dacota analysis. The cores drain the ac-

tivity logs into disjoint memory regions and then use this in-

formation without overwriting it. Moreover, since the logs

are aggregated in the uncacheable memory, caches are not

involved in the transfer, eliminating the chance that coher-

ence or consistency bugs corrupt the analysis process.

5. Strengths and Limitations

While Dacota is effective in exposing a diverse range of

functional errors in the memory subsystem of a CMP archi-

tecture, there are several limitations to its approach. First,

its bug catching ability is dependent on the quality of the

stimulus, that is, the program running on the system un-

der test. More specifically, Dacota can only find bugs that

are uncovered by the workload running on the system. For

example, workloads without shared data will not uncover

coherence or consistency related bugs, nor will small ones,

which do not stress the memory system. Bugs that result in

deadlock or system hang are also not flagged by Dacota, as

we assume that forward progress is always maintained.

Bugs that do not affect execution semantics evade cap-

ture by our validation system. For instance, consider one



cache line shared by two cores, both in the shared state of

a MESI protocol. If one processor silently (and incorrectly)

modifies the line’s state to exclusive the system becomes

incoherent. Yet, if no store is performed to the line, the ex-

ecution semantics of the program is not violated. A store,

however, will make the error manifest, since it updates the

activity log and the access vector. Furthermore, when Da-

cota is implemented with the optimization that activity is

logged only on cache misses (Section 3.2), errors related to

how cache hits are handled locally would not be detected by

our approach. However, this aspect can be verified through

properties local to a single cache and its core’s memory in-

terface by using traditional methods, allowing Dacota to fo-

cus on the validation of system-wide invariants.

5.1. Debugging with Dacota

One of the major strengths of Dacota is its support for

the debugging effort. In addition to the detection of com-

plex coherence and consistency bugs, Dacota can also help

find the root cause of an error once it has been discovered.

The activity logs present at the end of an epoch become

a useful debugging resource, providing detailed informa-

tion about which cache lines were accessed, which cores

accessed them, and when stores occurred. With this infor-

mation, an engineer can clearly see the activity of all the

processor cores, as well as system-level events leading up

to the bug. Moreover, since the data portions of the cores’

L1 caches are frozen during Dacota analysis, the data resid-

ing in them can also be used to provide additional insights

about the violation. Finally, Dacota can be augmented with

hardware blocks to log the state of each core’s internal reg-

isters at the end of an epoch, providing engineers with more

info about the program execution. These features allow Da-

cota to be efficiently used for debugging of complex and

non-deterministic CMP systems.

5.2. Design Considerations

In order to make Dacota a viable post-silicon solution,

its design was driven by three primary goals: high cov-

erage, low area overhead and debuggability. Performance

was an additional consideration, as high execution speed

is critical to our primary goal of high coverage. Early in

the design phase, we considered attaching only a sequence

counter to each cache line and storing these values in the ac-

tivity log with each memory operation. While this minimal-

ist setup eliminates the need for access vectors, we quickly

found that the analysis algorithm corresponding to this stor-

age mechanism was grossly inefficient. Since the sequence

counter did not record the order of accesses to the line, the

order had to be inferred from the logs of the other cores in

the system, requiring the algorithm to walk the entire set

of aggregated access logs during the construction of each

vertex in the graph. With the logs placed in un-cacheable

memory, the performance overhead of the graph construc-

tion process outweighed the savings in log storage space.

Furthermore, this scheme lost writer identification informa-

tion, thus significantly hampering debuggability. With the

addition of the access vector, graph construction becomes

much faster, as well as it provides additional debugging in-

formation. Our design decisions are validated by our exper-

imental results, which indicate that longer periods of exe-

cution between checks do not necessarily lead to better per-

formance for the graph analysis algorithm.

6. Experimental Evaluation

We evaluate the efficiency of Dacota in a simulated CMP

system, determining its error coverage, performance and

area impact. Investigating how different configurations af-

fect Dacota, we explore several activity log lengths and their

effect on consistency graph size and policy validation algo-

rithm runtime. In addition, we measure how the amount of

communication and computation overhead incurred by Da-

cota ranges across multiple benchmarks and log sizes.

6.1. Experimental Framework

Our simulation framework was based on a CMP sys-

tem modeled with the Wisconsin Multifacet GEMS mem-

ory sub-system simulator [14]. The CMP contained 16

cores, each with a 16 entry load/store buffer, 128KB L1

cache, a single 4MB L2 cache and a 4x4 on-chip mesh

interconnect. The MOESI directory protocol was used as

the coherence protocol, along with the Total Store Ordering

consistency model. For several additional experiments, we

evaluated systems with token coherence, as well as crossbar

and switch-based interconnects. Dacota was implemented

as a simulator plug-in, which included methods for access

vector manipulation, core activity log management, the pol-

icy validation algorithm was implemented using the Boost

Graph Library [20]. The runtime of the algorithms was cal-

culated using the SimpleScalar architectural simulator [4].

The set of workloads used to evaluate Dacota was a com-

bination of real world programs and random stimulus. We

used the ten SPLASH2 benchmarks [25], considering sec-

tions of 10,000,000 instructions generated by the Virtutech

Simics simulator [13]. In addition, to induce more stress

on the memory subsystem, we created eight tests of di-

rected random stimulus with varying degrees of data shar-

ing, each containing 1,000,000 memory accesses. Three

of these benchmarks used a fairly small address space that

could fit into the cores’ L1 caches without eviction, while

the other five used significantly larger memory ranges and

could not be fully contained in the L1 caches. Additionally,

we used the GEMS built-in random test generator executing

the “barrier” and “locks” patterns.
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Figure 10. Dacota performance overhead and additional traffic for an activity log size of 256 entries. a. Overhead for SPLASH2
benchmarks. b. Overhead for random stimulus.

6.2. Design Error Coverage

In our first experiment, we introduced eight coherence

and consistency related errors into our simulation model,

inspired by known issues with industrial CMPs. We then

ran our SPLASH2 and random stimulus benchmarks with

Dacota enabled, recording the number of cycles required to

discover the bug (Table 1). We found that the activity log-

ging scheme of Dacota is capable of quickly finding com-

plex coherence and consistency bugs.

6.3. Performance Evaluation

We also investigated the computation and communica-

tion overhead of Dacota relative to normal program execu-

tion time. In this study, we assumed that one half of the

L1 cache (64kB) was devoted to data and associated ac-

cess vectors, and the activity log was limited to 256 entries.

As shown in Figure 10, the performance overhead was well

within the acceptable range for post-silicon solutions: ap-

proximately 26% for the SPLASH2 benchmarks (for com-

parison, overheads of 200-300% are perfectly acceptable

in this domain). The overhead for random benchmarks is

somewhat higher due to the nature of these tests, which

were designed specifically to stress the memory subsystem.

Our implementation of Dacota serializes graph construc-

tion and log transfers: in practice they could be overlapped,

leading a smaller aggregate overhead than the one reported

in Figure 10. Moreover, since Dacota can be disabled upon

shipment, these performance overheads are only incurred

during in-house analysis of a prototype.

In our next study, we varied the size of Dacota’s activ-

ity logs, measuring communication and computation over-

heads. The results of this analysis for the SPLASH2 bench-

marks and random tests are presented in Figures 11.a-b and

12.a-b. We found that the communication overhead remains

nearly constant despite different queue sizes, regardless of

Table 1. Design error coverage by Dacota.

Avg. cycles

Bug name Description of the error to expose

shared store store to a shared line 0.252M

may not invalidate other caches

invisible store store message may not reach all cores 1.32M

store alloc 1 store allocation in any core 1.93M

may not occur properly

store alloc 2 store allocation in a single core 2.27M

may not occur properly

reorder 1 invalid store reordering (all cores) 1.38M

reorder 2 invalid store reordering 2.82M

(by a single core)

reorder 3 invalid store reordering 2.87M

(to a single address)

reorder 4 invalid store reordering 5.61M

(to a single address by a single core)

workload. However, computation overhead seems to exhibit

several interesting trends, as shown in Figure 11: for some

benchmarks (fft, lu, locks), the ratio of analysis time to nor-

mal program execution time decreases as the activity log

size grows. Interestingly, the computation overhead time

for several other benchmarks, such as cholesky, radix, etc.,

exhibits a local minimum at medium log sizes. This can

be explained by the growing complexity of the consistency

graph, which in turn results in an increased time to build and

analyze it. We found through several analyses that the aver-

age aggregate overhead (computation and communication)

is minimal when the activity log is 256 entries long.

In the next experiment, we ran the same benchmarks and

activity log lengths, but varied the interconnect topology

(crossbar or hierarchical switch) and used a different under-

lying coherence protocol (token coherence). Our results did

not demonstrate any appreciable difference in Dacota’s per-

formance for different network topologies, however, chang-

ing the coherence protocol to token coherence resulted in an

8% reduction in communication overhead. We found that in

this case, the ratio of Dacota traffic to normal system traf-
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fic is lower due to the larger number of control messages

required to implement the token coherence scheme.

Finally, we measured the number of cycles between in-

vocations of the policy validation algorithm. The average

time between analyses (in simulation cycles) is presented

in Figure 13.a for SPLASH2 benchmarks and Figures 13.b

and 13.c for the random tests. We found that the time be-

tween checks grows with increasing activity log size. An

interesting observation presents itself in the barrier bench-

mark in Figure 13.b, where the periodicity of Dacota checks

remains constant past 512 log entries. The plateau in this

benchmark occurs because the check is triggered by access

vector counter saturation, not due to the filling of the log.

Another special case is illustrated in Figure 13.c by bench-

mark small 0 shared. Small random benchmarks in our ex-

periments have address spaces that fit completely in the L1

caches of individual cores. Since this particular benchmark

has no shared data, lines cached by the cores are never in-

validated or evicted. Thus, with the optimizations discussed

in Section 3.2, the core activity logs never fill up throughout

the entire execution of the benchmark, and Dacota analysis

is invoked only once, after the benchmark’s completion.

6.4. Area Evaluation

To analyze the area impact of Dacota, we implemented

the additional hardware required by our solution in Verilog

HDL. The module included a block for updating the counter

and access vector, a state machine for activity log manage-

ment and an index table for conversion between program

order and performance order. The module was synthesized

with Synopsys Design Compiler targeting a TSMC 90nm li-

brary. The area for a control module, one of which is added

to each processor core in a CMP system, is 5,216µm2. For

comparison, an OpenSPARC T1 [12] chip occupies approx-

imately 378mm2. Placing a Dacota module on each of the

8 cores in this design results in an overhead of 0.01%. This

low overhead is largely due to Dacota’s reuse of existing

hardware structures, such as cache storage.

In order to put Dacota’s area overhead into perspective,

we compared its storage requirements to two runtime solu-

tions: [7] and [15]. Since Dacota reconfigures the caches

for temporary storage, it requires very little additional hard-

ware, a 2B counter and a 32B table at each node, totaling

544B for our 16-processors system. A conservative esti-
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mation of the added storage in Chen et al. , [7] results in

171kB for a similar 16 node system. Since the functionality

of this solution is dependent on checkpointing by SafetyNet

[21], an additional 432kB are required, bringing the total to

603kB. In the case of Meixner, et al. , [15], 486kB are re-

quired by the technique, totaling to 918kB when SafetyNet

is included. These estimates are extremely conservative, as

they do not consider the area required by logic implement-

ing the checkers. Conservative estimates notwithstanding,

the Dacota solution is approximately 1,135 times smaller

than [7] and 1,728 times smaller than [15].

7. Related Work

The space of memory subsystem verification can be di-

vided into three major approaches: pre-silicon, post-silicon

and runtime. The set of pre-silicon solutions boasts an

extensive body of work, most notably several formal ap-

proaches [2, 10, 9, 17], which use mathematical techniques

to reason about coherence and consistency. While formal

verification has the advantage of exploring all scenarios in

the design state space, it is limited to small designs and

to abstractions. Moreover, while formal verification of ab-

stract representations has been accomplished with success,

its results are inadequate, as the implementations of these

abstract models are much more complex and cannot be val-

idated. In contrast, simulation-based approaches are able to

consider the full system-level implementation of a design,

as in [26], where the authors leverage constrained-random

simulation to boost the coverage of a design. Unfortunately,

the slow speed of pre-silicon simulation critically limits the

coverage of this approach.

Runtime solutions to the problem of memory subsystem

correctness have emerged to ensure the correctness of multi-

core designs deployed in the field. Meixner et. al. [15] ap-

proach the problem by adding checkers to verify memory

consistency. Another runtime solution, proposed by Chen

et. al. [7], leverages the constraint graph-based approach

developed in [6, 19]. This solution adds dedicated obser-

vation hardware at each core, periodically analyzing the

collected information with a centralized hardware checker.

While runtime solutions provide effective protection against

soft errors, their ability to recover from functional errors

is not guaranteed, since the same errant hardware is also

used to recover from the bug. Furthermore, the silicon area

required to implement these solutions is significant, three

orders of magnitude more than Dacota (Section 6.4), thus

precluding the use of runtime solutions for post-silicon val-

idation. On the other hand, Dacota targets functional errors,

and operates under a different design philosophy optimized

for the post-silicon regime: zero performance cost to the

end user and near-zero area cost to the designer.

Work in the sphere of execution replay [16, 18, 27] is

relevant to Dacota’s logging approach. These works log

memory activity and values in order to provide determinis-

tic execution replay. Dacota differs from these approaches

in that it does not store data values. Furthermore Dacota

only involves caches for this task, while related logging ap-

proaches necessarily involve main memory.

Recent work in post-silicon verification targets cache co-

herence in CMP systems [8]. In this work, the authors de-

scribe an alternate mode of a operation for cache controllers

which allow the reconfiguration of system resources to store

a history of cache coherence operations at each node. The

information is periodically aggregated and checked by a

software algorithm running on the processor cores. Dacota

is similar to it in that it leverages built-in storage resources

and it uses the available processor cores to perform software



checking. However, it differs in the capabilities it provides:

while [8] is only capable of validating the implementation

of the coherence protocol, Dacota can identify errors in both

cache coherence and memory consistency.

8. Conclusions

This work presents Dacota, a novel solution for high-

coverage post-silicon validation of memory ordering in

CMP systems. When enabled by the verification team, Da-

cota stores sequence information about issued memory op-

erations, periodically aggregating this information to per-

form a software-based policy validation. The validation al-

gorithm is implemented purely in software to minimize the

area impact of our solution and executes on existing pro-

cessor resources. Leveraging approximately 6 orders of

magnitude performance advantage over pre-silicon simula-

tion, Dacota’s post-silicon approach is able to offer signifi-

cantly higher coverage compared to pre-silicon approaches.

The average performance overhead of our solution (com-

pared to execution with error detection disabled) is 26% for

SPLASH2 benchmarks. Moreover, through reuse of preex-

isting hardware resources, Dacota is able to incur an area

penalty of less than 0.01% for a commercial design, such as

the OpenSPARC T1 system, and over three orders of mag-

nitude area advantage over popular runtime solutions.

We found that Dacota is effective in detecting subtle con-

sistency and coherence bugs, showing its promise as a so-

lution to the problem of validating the order of memory

operations in CMP systems. Furthermore, Dacota enables

post-silicon debugging support, providing invaluable infor-

mation to the validation team. Before shipment, the check-

ing functionality of our solution can be disabled, completely

eliminating performance degradation to the end user.
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