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The olfactory system allows an organism to detect and inter-
pret chemical cues present in its environment. A range of

day-to-day functions, including appetite stimulation, food fora-
ging and evaluation, mate recognition, navigation, detection of
threats, and even early diagnosis of diseases depend on efficient
processing of olfactory cues.1 To perform these essential but
complex olfactory tasks, most mammalian and insect species have
evolved strikingly similar chemosensory systems. This suggests that
the iterative process of evolution converged to a common set of
design and computing rules for the purpose of odor recognition.2

Artificial systems for noninvasive chemical sensing, popularly
referred to as “electronic nose technology” or “e-nose” for short
have emerged recently.3 Like their biological inspiration, electro-
nic noses typically combine an array of sensitive detectors capable of
distinguishing different chemicals with a pattern recognition
module to detect and identify odors.4�7 Here, we first identify
and discuss biological design and computing principles that we
believe are particularly relevant for the purpose of artificial
olfaction. Second, we review recent progress in engineering
approaches inspired by biological principles.

1. THE BIOLOGICAL OLFACTORY SYSTEM

The olfactory system in vertebrates and invertebrates com-
prises three main components: an odor delivery system that
transports the odor molecules to the sensory neurons; a large
sensor array that transduces the chemical information into
electrical signals; and neural circuits that process the sensory
inputs to meet various analytical challenges. A schematic diagram
of the early stages of the biological olfactory system and its various
components is shown in Figure 1. In the following sections, we
will discuss biological principles that have inspired parallel ap-
proaches in artificial analogues.

1.1. The Odor Space. To understand the challenges faced by
the olfactory system, we first need to examine the nature of the
odor space. Odorants are volatile chemicals having a low molecular
mass (<300 Da) and are mostly organic (exceptions exist, e.g.,
ammonia, hydrogen sulphide), polar, and water and lipid soluble.
A large number of chemicals are odorous to the human nose. The
ability of the olfactory system to handle a rather large stimulus set
and assign meaningful percepts for the purpose of distinct recogni-
tion indicates the high-dimensional nature of olfaction. The
spatially and temporally irregular and dynamic nature of the
olfactory cues add further complexity that makes the task of
reliable detection and encoding of odorants a challenging one.
What are the dimensions of this high-dimensional olfactory

space? The problem of identifying the physiochemical properties
of odorants that are detected by sensory neurons and their
subsequent synthesis into a distinct smell percept is a definitive
challenge in the study of olfaction. Historically, three popular
theories have been considered in an attempt to relate molecular
properties of an odorant with its overall perceptual quality. The
vibrational theory of olfaction8�11 identifies intramolecular
vibrations due to stretching, scissoring, rocking, wagging, and
twisting of various bonds or groups in the odor molecule as the
direct determinants of odor identity and quality. However, this
idea has garnered little support from empirical studies. The steric
theory of olfaction relates odor quality to the overall shape and
size of the odor molecules.12�14 This theory also has limitations,
as chemicals with different molecular shapes and composition
could elicit similar overall smell (e.g., benzaldehyde and hydro-
gen cyanide both have the smell of bitter almonds yet are quite
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dissimilar in overall shape). Weak-shape theory diminishes the
rigid requirement of a lock-key type fit between the overall shape
of the ligand and its receptor and proposes only a partial match,
such that a portion of the ligand fits in a receptor’s binding
pocket, is required to activate the receptor. According to a
version of this theory, molecular features such as carbon chain
length, functional groups, and other such properties determine
odor quality. Detailed electrophysiological studies of an indivi-
dual odor receptor have shown that only a subset of the features
defining a molecule are sufficient to predict the response of the
odor receptor (the rat I7 odor receptor is highly specific to
aldehyde group with certain constraints around the carbonyl
group but remains insensitive to other systematic variations at
the tail of the molecule).15 However, because perception emerges
within the brain, not within olfactory receptors, the problem of
relating features of a molecule with its percept, popularly known
as the “structure�odor relationship”, will only be resolved if the
response characteristics of sensory neurons and the subsequent
nonlinear processing of their outputs are both taken into account.
1.2. Odor Delivery. Olfactory sensory neurons (or olfactory

receptor neurons; ORNs) of both vertebrates and insects exist in
aqueous media (mucus and sensillar lymph, respectively), and
odor molecules present in the external environment must traverse
this protein-filled fluid before binding to receptors. The interac-
tions between the odor molecules and the odor delivery interface
prior to reaching the sensory neurons are generally referred to as
perireceptor events.16

Two experimental observations present evidence that the
perireceptor events allow the olfactory system to use physical
variables of space and time to encode odorants. First, sensory

neurons are loosely organized into zones in the olfactory epithelium,
such that neurons of the same type (expressing the same or the
homologous receptor genes) are spatially distributed into regions
(referred to as “zones”) of the epithelium.17 Second, simulta-
neous electrophysiological recordings from distinct regions of
olfactory epithelium showed that odor molecules were differen-
tially transported across the epithelium, thereby creating a unique
spatiotemporal response profile for each odorant.18�23 The latter
mechanism has been likened to that of the gas chromatographic
column, where constituents of a gas mixture, depending on their
physiochemical properties, interact with the liquid stationary
phase and elute at different points in time (see Figure 2a).
Additionally, the complex geometries of olfactory structures

and active mechanisms such as sniffing in vertebrates or antennal
flicks in invertebrates create complex flow dynamics that could
further aid in creation of spatiotemporal distributions across
arrays of receptors.24

1.3. Sensor Array Design. A critical aspect of a biological
olfactory system concerns the design of its sensor array. The large
stimulus set that the system has to process renders infeasible any
approach based on sensors selective for each target ligand. (Separate
subsystems with selective chemoreceptors have been identified
in both vertebrate and invertebrate systems for processing
small numbers of pheromones and other conspecific odors.25)
The biological approach for dealing with general odors appears
to employ a large array of cross-selective sensors (∼300�1000
receptor types, specified by the genes they express from a family
of G-protein coupled receptors26). Each olfactory receptor is
capable of responding to a number of chemicals and generates
a response containing characteristic temporal features.27�29

Figure 1. Anatomical stages and signal-processing primitives in the early olfactory pathway: (1) Odorants are detected by a large population of sensory
neurons in the olfactory epithelium (vertebrates)/antenna (invertebrates) that convert the chemical information in to combinatorial activity patterns.
(2) Sensory neuron of the same type (expressing the same receptor gene) converge onto the same location (spherical structure of neuropil called
glomeruli) in the next anatomical region (olfactory bulb in vertebrates; antennal lobe in invertebrates). This massive convergence of redundant input
serves two computational functions: (i) it allows the system to average out uncorrelated noise to allow reliable detection, and (ii) it enhances the
sensitivity of the system over that of individual sensory neurons. (3) Divisive pattern normalization circuits at the input of the olfactory bulb/antennal
lobe allow the system to compress the concentration information. (4) Neural circuits at the output of the olfactory bulb/antennal lobe decorrelate odor
response patterns such that both coarse clustering and fine discrimination can be achieved. (5) The output pattern from the olfactory bulb/antennal lobe
is sent to the olfactory cortex (vertebrates)/mushroom body (invertebrates) for further reformatting, storage, and association with other sensory
modalities. Typically, these projections are both convergent and divergent (many-to-many), allowing detection of combinations of co-occurring
molecular features of the odorant (or “coincidence detection”). (6) In vertebrates, system cortical feedback modulates the activity in the olfactory bulb.
(Adapted from ref 99).
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The resulting response profile across the sensor arrays provides a
chemical fingerprint for each odor.
To accommodate the variability associated with the olfactory

stimuli, and to provide sensitive detection at the same time, several
hundred thousand copies of each type of olfactory receptor exist
in the olfactory epithelium (there are ∼10�100 million sensory
neurons in the vertebrate nose). Integrating responses from

these redundant copies then provides a simple method to average
out uncorrelated noise and improve the signal-to-noise ratio30

(refer to Figure 2c). Further, such a scheme serves to enhance the
sensitivity of the system as a whole in comparison with those of
its individual sensing elements.31

The next design issue concerns the dynamic range of the chemical
sensing system. For this, two design options are possible, and

Figure 2. Biological principles that have inspired parallel approaches in artificial olfaction. (a) Odor molecules traversing the aqueous, protein-filled
interface between the environment and the sensory neurons (ORNs) are differentially transported, helping different odorants to evoke different
spatiotemporal patterns of activation. (b) Left: The response of the population of receptor neurons to an odor approximates a Gaussian distribution,
arranged here by the receptors’ selectivity for Odors A and B.33 Increasing odorant concentrations recruit additional responses from neurons less
selective for the odorant, broadening this distribution. Right: Vector representations of odor identity and intensity coding across the population of
sensory neurons allow ready comparisons of response characteristics. (c) Integrating redundant information from multiple copies of a receptor allows
the olfactory system to reduce uncorrelated noise. Left: Firing rates of two receptor neurons over time. Right: The baseline fluctuations observed in the
two independent channels are reduced when the channels are integrated, improving the signal-to-noise ratio. (Reprinted with permission from ref 100).
(d) Lateral interactions between projection neurons (PNs) nonlinearly transform responses originating in sensory neurons and restructure odor
patterns to become more uniformly distributed and distinct. (Reprinted with permission from ref 101. Copyright 2008 Elsevier). (e) The olfactory
system refines odor representation over time such that features common across a set of chemicals are extracted first (odor class information) and finer
features required for precise identification are extracted subsequently. Thus a single system, over time, resolves conflicting demands posed by the
problems of odor classification and recognition.
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published results suggest both are employed by animals. The
first, more straightforward, option is to employ olfactory recep-
tors that individually encompass a large dynamic range.32 While
this is certainly the case for some types of receptors, the second
design option is to employ individual sensory neurons that have
steep dose�response curves spanning only one or two log units
of concentration. Collections of such receptors include members
with somewhat different detection thresholds and tunings, so
combining them allows the system to sample a wide range of
concentrations.33 This option has the advantage of providing an
extremely nonlinear, input�output relationship suitable for ampli-
fying extremely weak signals.
Another important aspect of the olfactory system that is critical

to its ability to function over extended periods of operation without
degrading performance is its ability to replace aging olfactory
receptor neurons with a complete turnover occurring every 4�8
weeks.34 This feature, which is unique to olfaction among the
sensory systems, poses fundamental questions regarding the
constancy of the sensory input over time given the changes to
the sensor array. At any point in time, the overall distribution of
the age of a chemosensor of a particular type in the array must be
held constant to shield the pattern recognition circuits from
continual changes to the sensory array.
1.4. Computing Principles. A number of computational

challenges are to be met for proper functioning of any olfactory
system. In this section, we describe biological solutions to various
olfactory pattern recognition problems.
1.4.1. Identity versus Intensity Coding. The biological olfac-

tory system can successfully discriminate among many analytes
presented at different concentration levels. This requires a large
coding space to encode the stimulus set and an ability to decouple
odor identity from intensity (although the latter capability might
not be viable for certain chemicals and the overall odor quality
could change with concentration35�37).
As mentioned earlier, to meet these challenges, the biological

system employs an array of broadly tuned sensors. A single sensory
neuron responds to multiple odors, and each odor, whether it is a
pure analyte or a complexmixture, evokes a unique response pattern
across the population of sensory neurons. The responses of dif-
ferent sensory neurons to a particular odor can be approximated
as aGaussian distribution.33 Increasing odor concentration results in
recruitment of responses from a subset of sensory neurons that
were not active at lower intensities, thereby expanding the width
of the Gaussian distribution.33,38,39 The size of the responding
population monotonically increases with, and therefore encodes,
odor intensity.
This form of encoding automatically allows the receptor array

to decouple odor identity from intensity. To better understand
this, let us consider the response across the population of sensory
neurons as a multidimensional vector. Increasing the concentra-
tion of the odor would result in a monotonic increase in the
length of the response vector and at the same time displace the
vector from its original direction. Since sensory neuron responses
that were recruited by increasing concentration are relatively
weak, the original vector is displaced, but only by a small amount
as shown in Figure 2b. Thus, the responses still cluster according
to odor identity, followed by intensity.
To develop a large encoding space for different odorants, the

sensory neurons employ time as an additional coding dimension.
Both firing rates and rates of change for those firing rates are
known to selectively encode odors.27�29,40�44 Further, the hetero-
geneity of temporal response properties across sensory neurons

has been shown to be particularly important for the following
circuits to discriminate a large set of odorants and to recode olfactory
information to make better use of the system’s capacity29,45�52 (see
Figure 2d).
1.4.2. Gain Control. A fundamental requirement for discrimi-

nation of a large stimulus set is the ability to amplify small
differences (i.e., “contrast enhancement”) in neural representa-
tions of odors. However, such a signal-processing step could also
cause differences in the neural representation arising from noise
or concentration differences (i.e., from the recruitment of less
selective sensory neurons by higher concentrations of odors) to
diverge in a manner similar to representations for different odors.
Hence, a preprocessing step to compress the concentration
information is necessary in order to retain invariance across dif-
ferent concentrations.
The olfactory circuits at the input of the olfactory bulb (OB; in

vertebrates) and antennal lobe (in insects) perform this pattern
normalization function. These feed-forward inhibitory circuits
are of the divisive-type and have been hypothesized to serve as a
“gain control”mechanism.53 In such a system, the overall inhibition
scales with the total amount of input from the sensory neurons,
that is, monotonically with concentration. It is important to note
that information about the odor’s intensity is not completely
removed by this step but only compressed as organisms still need
to distinguish concentrations.
1.4.3. Clustering versus Recognition. Another capability of the

biological olfactory systems is the extraordinary ability to de-
monstrate reliable recognition of odorants to which it has been
pre-exposed and to classify new odorants based upon chemical
similarity to those that it has previously learned. Correct recogni-
tion of a specific chemical requires detection, in some way, of an
aspect of the molecular features unique to that analyte. On the
other hand, generalization to unknown chemical species requires
detection of features that are common across a desired class of
analytes. Thus these pattern recognition tasks impose constraints
that are opposing in nature.
How does the biological olfactory system deal with these con-

flicting analytical tasks? The high-dimensional inputs from the
sensory neurons are subsequently transformed by neural circuits
such that initially coarse odor representation is increasingly
refined over time to become more odor-specific.54 The segmen-
tation of odor class and identity information appears to happen in
a hierarchical fashion over time 55 as illustrated in Figure 2e. Such
a process also allows the system to extract olfactory features at
several degrees of resolution (e.g., pleasantf fruityf strawberry).
1.4.4. Processing of Odor Mixtures and Backgrounds. A

fundamental characteristic and perhaps limitation of the biolo-
gical system is its inability to analyze odor mixtures into their
constituents. Psychophysical studies in humans reveal that even
trained experts have difficulty identifying the constituents of odor
mixtures with more than three components.56 Since most naturally
occurring olfactory stimuli are mixtures of several monomole-
cular components, olfaction probably evolved as a synthetic sense.
Hence, holistic (or configural) processing rather than elemental
processing is the demand posed to the system.
Given the need for synthetic or holistic processing, the olfactory

system must possess perceptual stability to generalize across minor
variations in blend constituents especially since no two odor-
objects (e.g., different roses or chocolates) are likely to be
identical in chemical composition.57,58 A simple two-step solu-
tion appears to be in place for this computational task. First,
the convergent input from multiple sensor types onto a single
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third-order neuron (Kenyon cells in the mushroom body of the
insects; pyramidal neurons in the Piriform cortex of the vertebrates)
allows integration of elemental information about various mo-
lecular features into a single olfactory percept. Choosing a suitable
threshold for these neurons would then allow robustness against
minor variations in the overall composition.45 The performance
might be further enhanced at the ensemble level by means of
autoassociative circuits that could complete partial representa-
tions into complete overall percepts.57

A special case for odor mixtures is the ubiquitous presence of
ambient, background odors in an environment. Sensory adapta-
tion can attenuate the contributions of lingering background
odors58�60 relative to those of freshly introduced stimuli, thereby
helping to distinguish foreground from background. Additional
mechanisms downstream may contribute as well.

2. THE ARTIFICIAL OLFACTORY SYSTEM

Next we discuss how these biological solutions have inspired
parallel solutions in artificial olfaction. Similar to its biological
analogue, an artificial olfactory system also has three basic com-
ponents, namely, the odor delivery system, a cross-selective sensor
array, and a pattern recognition engine. A block diagram identi-
fying the important components of a bioinspired architecture for
artificial olfaction is shown in Figure 3. While most attention in
artificial olfaction has been directed toward designing sensory
arrays employing different transduction mechanisms, the odor
delivery system has been largely overlooked. Furthermore, most
investigations have focused on the problem of discrimination of
multiple analytes. It might be worth noting that applying biological
principles to chemical sensing is a fairly novel line of investigation
and most important contributions have come from a handful of
research groups.
2.1. Odor Delivery System. As noted earlier, discrimination

of odorants in the biological system begins with their interactions
with the aqueous interface between the sensory neurons and their
environment. Motivated by this approach, a microfluidic channel
coated with a polymeric material was fabricated and mounted to
the front end of a chemiresistive microsensor array.61 The internal
coating of this “artificial mucosa” allowed differential transport of
odor molecules across the linear array with 16 columns of 5 dif-
ferent sensing elements each (Figure 4b). Placing the sensing
columns along the length of the microfluidic channel generated
spatiotemporal responses for chemicals that greatly enhanced
their discrimination.

In another elegant effort,62 a simplified model of the canine
nasal cavity was used to deliver odorants to optical vapor sensors
(Figure 4a). By placing identical sensors at different locations
within the model nasal cavity, the authors revealed the uneven
spatiotemporal distribution of odor molecules to various physical
locations and demonstrated the significance of this distribution
for discriminating odors. It is important to note that, unlike the
approach taken by Covington and colleagues,61 here no coating
material was used to act as a barrier to the transport of odor
molecules. Hence, these results revealed the existence of multiple
flow paths and flow currents that could potentially be exploited
by the biological olfactory system to discriminate odors, and that
this feature could also be incorporated to enhance their artificial
analogues.
A different approach was taken by Lewis and co-workers63 to

create space- and time-dependent responses across their sensor
array. Employing low headspace volume and flow rates, the authors
were able to convert upstream sensing elements of a linear sensor
array to act akin to the stationary phase of a gas chromatography
column, thereby producing a spatiotemporal fingerprint for each
analyte introduced.
2.2. Sensor Array. 2.2.1. Transduction Mechanisms. A num-

ber of sensing technologies have been employed for the purpose
of detecting and identifying chemicals, including chemiresistive
metal-oxide semiconductors, quartz microbalances, chemiresis-
tive conducting polymer sensors, surface acoustic wave devices,
optical-fiber sensors, optical filters, colorimetric sensors, and
DNA-based sensors.64�69 However, unlike the biological olfac-
tory system, artificial systems typically use relatively few sensors,
commonly one or a few replicates of a small number of different
sensor types. This fundamental mismatch between the biological
and artificial systems in their input dimensionality must be over-
come in order to be able to exploit the processing strategies
employed by the biological olfactory system.
2.2.2. Large Sensor Arrays. To reduce the dimensionality

mismatch between the two systems and generate a biology-like
combinatorial and high-dimensional odor representation from
chemical sensor arrays, three different mechanisms have so far
been employed. The first method, a direct approach, was taken
by researchers at Tufts University to create large chemical sensor
arrays with optical microbead sensors (refer Figure 4d). Hun-
dreds of broadly-tuned bead sensors, functionalized such that
each belonged to a discrete type, were randomly dispersed across
the tip of an optical fiber70 to create a high-dimensional, com-
binatorial signal.

Figure 3. Building blocks for a biologically-inspired architecture for artificial machine olfaction. The first stage delivers odorants to receptors in a way
that mimics perireceptor events that improve odor separation. The following two stages are related to generation of high-dimensional response patterns
across the sensor array similar to the combinatorial activity across a population of olfactory sensory neurons. The sensor array responses are processed
first to compress/remove concentration information and then to extract features that allow several levels of abstraction (clustering, discrimination, and
quantification). Finally, distinct patterns for odors are stored for subsequent recognition during the testing phase. Interactions between the recognition
and feature extraction steps allow filtering of background signals as well as identification of mixture components. (Adapted from ref 99).
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The second approach to create a large sensor array involved
temperature modulation of metal oxide chemiresistors.7,71�75

Because the interaction between a metal-oxide sensor and an

analyte is a function of the sensor operating temperature, by
capturing a given sensor’s response at different temperatures, a
large population of ‘pseudosensors’ or ‘virtual sensors’ could be

Figure 4. Bioinspired approaches for odor delivery and chemical sensor array design. (a) A realistic physical model of the canine nasal cavity. When
odorants were introduced through the model’s nares, five identical sensors placed at different spatial locations in the model (numbered 1�5) yielded
different spatiotemporal responses. These results show that complex flow dynamics in the nasal cavity could enhance the separation of different chemical
species, potentially giving rise to diverse neural responses. (Reprinted with permission from ref 62. Copyright 2003 American Chemical Society). (b) An
artificial mucosa to simulate fluid found within the nose employs microfluidic channels coated with polymers. This model could separate odor
components like the stationary phase of a gas chromatography column. (Adapted with permission from 61. Copyright 2007 The Institution of
Engineering Technology). (c) Temperature modulation of metal-oxide sensors to increase sensor dimensionality. A voltage profile is applied across the
resistive heater, and the sensor resistance is continually recorded. Because interactions between metal-oxide chemiresistors and various chemical species
are temperature dependent, the response of a sensor at a particular temperature can be treated as a separate “pseudo-sensor” or a “virtual sensor” and
used to simulate a large population of ORNs. (Adapted with permission from ref 64. Copyright 1998 IEEE). (d) Odor sensing by microbead arrays:
Odor vapor is delivered to the distal end of the fiber. Exposure to odor vapor induces a change in fluorescence that is recorded and plotted over time. Inset
A: Microspheres coated with a polymer matrix onto which solvatochromic dye (e.g., Nile red) is immobilized and randomly filled at the distal end of the
fiber. Inset B: Distal end of the optical fiber from which the response is read. (Adapted with permission from ref 70. Copyright 1996 Nature Publishing
Group). Benefits of incorporating redundancy or diversity into a sensor array: (e) Responses of a single temperature modulated metal-oxide sensor to
different background conditions and five target toxic industrial chemicals are shown. Each three-dimensional color-coded sphere indicates a sensor
measurement after dimensionality reduction. (f) Responses from four identical copies of the sensor after dimensionality reduction are shown.
(g) Responses from four different chemiresistors are shown for comparison. Both sensor redundancy and diversity improve detection and recognition of
target chemicals from the background. (Reprinted with permission from ref 76. Copyright 2009 Elsevier).
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generated from a handful of sensor types (as shown in Figure 4c).
In these studies temperature was used as a modulation para-
meter, but any means of altering the selectivity of the sensor
could be used to generate a population of pseudosensors.
A mathematical approach to convert responses from a small

set of sensors onto a combinatorial code across a population of
simulated olfactory sensory neurons was presented in ref 7.
In this approach, each sensory neuron is modeled as an
“n”-dimensional vector that randomly samples a certain region
of the sensor response space (n is the number of sensors used).
The response of this simulated sensory neuron to each analyte is
given by (i) its similarity (cosine of the angle formed) to the
vector that describes the n-dimensional sensor array response to
that analyte, and (ii) the length of the analyte response vector,
which indicates the analyte concentration. Weighting the similarity
(raising the cosine of the angle between the vectors to various
powers) generates sharply-tuned or broadly-tuned receptor neu-
rons. By sampling the sensor space with a population of such
simulated receptors, a high-dimensional odor signal can be obtained
that preserves the topology and proximity relationships of the sensor
space. This approach has the advantage that it can be combined and
used with any sensor array with any number of sensing elements.
2.2.3. Redundancy and Diversity. The biological system

employs up to several hundred thousand copies of the same
receptor neuron type (those expressing the same receptor gene)
and up to hundreds of different types of receptor neurons.
Mimicking this approach, arrays of fiber-optic sensors and semi-
conducting metal-oxide sensors that incorporate both diversity
and redundancy have been fabricated and studied.31,76 Redun-
dant elements in the array allow averaging out uncorrelated noise
and thereby improve the signal-to-noise ratio. Different sensor
types, on the other hand, may add additional information about
the various chemical species of interest. An illustrative example
demonstrating the empirical benefits of incorporating redundant
sensors and diverse sensors to an array is shown in Figure 4e, f.
2.3. Information Processing Principles. 2.3.1. Preprocessing

of Sensory Input. The massive anatomical convergence of re-
dundant information from sensory neurons expressing the same
receptor gene has been of great interest to the e-nose signal
processing community. Integrating signals from a large popula-
tion of chemically sensitive microbeads in a manner akin to the
convergence mechanism, Pearce et al.31 demonstrated a sensi-
tivity gain on the order of

√
n from n redundant copies can be

achieved by this approach.
A self-organizing map-based model of receptor neuron con-

vergence onto the olfactory bulb was presented in ref 7 to reformat
high-dimensional sensor input into an organized spatial map that
decouples odor identity from intensity. In this model, sensors of
the same type converged onto a single node in a 2-D lattice
(analogous to the structure of a glomerulus in the olfactory bulb).
The authors generated a topographic map by providing neigh-
boring nodes with input from sensors with similar selectivities.
Figure 5a, b provides an illustration of this approach. The resulting
activity maps elicited by different concentrations of odors and
their binary mixtures were qualitatively similar to published re-
sults obtained in vivo. The authors further showed that their
model was better able to discriminate odors than competing linear
statistical techniques including principal component analysis
(PCA) and linear discriminant analysis (LDA).
Perera et al.77 reformulated the restructuring of receptor

neuron inputs as a task of dimensionality reduction. Conven-
tional statistical pattern recognition approaches for clustering

operate in the feature space, where each input dimension cor-
responds to a particular feature (or sensor). However, in this
neuromorphic feature-clustering approach, sensors that provide
redundant information (respond similarly to a set of target classes)
were clustered to improve the signal-to-noise ratio and prevent
the washing-out of relevant discriminatory information. The ad-
vantage of this approach appears to be its ability to successfully
process data sets with very few samples.
2.3.2. Identity and Intensity Coding. A number of biologically

inspired models have been used for encoding odor identity and
intensity in artificial olfaction, as briefly summarized here.
A distributed neural network of coupled oscillators referred to

as the KIII model was proposed by Freeman and colleagues to
simulate electro-encephalogram (EEG) activity in the olfactory
bulb.78 The nonlinear dynamics of the KIII model had been
previously exploited to process chemical data from Fourier trans-
formed infrared spectra.79,80 More recently, the KIII model has
also been used for pattern recognition of chemical sensor re-
sponses.81,82 Incorporating various forms of plasticity and adap-
tation mechanisms in the KIII model, chemical detection in the
presence of pretrained backgrounds81 as well as orthogonaliza-
tion of response patterns82 have been studied.
Spiking models of the early stages of the olfactory system have

also been used for processing sensor array signals. White and co-
workers83,84 employed a spiking neuron model inspired by the
first two stages of the olfactory system to process signals from an
array of fiber-optic sensors. In this model, the response of each
sensor is first converted into a pattern of spikes across a population
of olfactory receptor neurons. The identity of the odor was
encoded by activating different subsets of sensory neurons, and
intensity was encoded by changes in spike latencies, firing rates,
and response durations. An olfactory bulb circuit subsequently
processed the sensory neuron input. Different odors produced
unique spatiotemporal activation patterns across mitral cells in
the model olfactory bulb circuits that were then decoded by a
delay line neural network.
Raman and co-workers investigated spiking85 as well as firing-

rate models71,72,86 of the olfactory bulb circuits for odor identity
and intensity encoding. Input data from a pair of temperature-
modulated metal-oxide sensors were first reformatted using a
self-organizing model of chemotopic convergence of receptor
neurons onto a lattice of olfactory bulb neurons to create ordered
spatial maps that decoupled odor identity and intensity. Olfac-
tory bulb circuits with additive center-surround type interactions
subsequently processed these input odor maps to further en-
hance their contrast. The evolution of the model olfactory bulb
activity over time revealed odor-specific manifolds on which
response trajectories (repeatable over trials) that were mono-
tonic with concentration were found to match published results
in insect olfaction.45,87

Ratton et al.88 employed a model of olfactory bulb�olfactory
cortex interactions89 to process responses from a chemiresistor
sensor array. This biologically inspired model combines a winner-
take-all type neural network (for olfactory bulb) with closed-loop
cortical feedback (from cortex) to perform hierarchical clustering
of the data. Converting their sensor responses to four organic
chemicals into binary input to this bulb�cortex model, they
found the discrimination performance was relatively poor com-
pared to other conventional signal processing approaches.
2.3.3. Gain Control. To understand discrimination of odors

across different concentrations in artificial olfaction, Raman and
Gutierrez-Osuna71 proposed a model of the first stage of lateral
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inhibition mediated by periglomerular interneurons at the input
of the olfactory bulb. Sensor responses were first reorganized as
spatial odor maps using a self-organizing model of chemotopic
convergence. The authors subsequently used a shunting-model
of the lateral inhibitory network to compress the concentration
information (refer to Figure 5c�f). While global shunting in-
hibition removed the concentration information completely, the
spread or width of the lateral inhibitory connections in the model
was used as a parameter to provide an appropriate trade-off be-
tween removing and compressing concentration information.
2.3.4. Generalization to Unknown Odors. Although many

researchers have investigated recognition of “pretrained” chemi-
cals, the challenges of long-term operation and generalization of
training to allow chemical classification of “untrained” analytes
remain significant challenges to artificial olfaction. The latter
analytical capability is critically important, as it is often not
feasible to pre-expose a sensor to every analyte it might encounter.
Raman et al.90 demonstrated a biologically inspired approach
where the recognition and generalization problems were de-
coupled and resolved in a hierarchical fashion. They validated

this approach using a MEMS-based chemiresistive microsensor
array with 5600 pseudosensors.
In this approach, analyte composition is refined in a progres-

sion from general (e.g., target is an oxygen-containing hydro-
carbon) to precise (e.g., target is ethanol), using highly-optimized
response features for each step. Using this multistep process the
authors demonstrated the ability to recognize analytes that were
exposed to the sensory array in the training phase, and to
correctly predict the chemical class of two untrained alchohols
and ketones (see Figure 5g). More importantly, they showed that
this bioinspired approach is particularly robust to response
variability caused by the aging of sensors, thereby allowing sensing
devices to remain functional for extended periods of operation.
2.3.5. Processing Odor Mixtures and Backgrounds.Gutierrez-

Osuna and Gutierrez-Galvez81 investigated the use of an adapta-
tion mechanism for processing odor mixtures with chemical
sensor arrays. First, responses from temperature modulated metal-
oxide commercial chemiresistive sensors were converted into an
orthogonal binary pattern that provided input to the KIII model.
Adaptation based on local activity of each channel then allowed

Figure 5. Continued
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Figure 5. Neuromorphic approaches for signal processing. (a) Illustration of chemotopic pseudosensor receptor neurons (top) converging onto a
simulated glomerular lattice (bottom). The responses of the sensor to three analytes (labeled A, B, and C) are used to define the pseudosensor’s affinities
(shown as a color bar). Pseudosensors with similar affinities project to the same artificial glomerulus (a node in the self-organizing map) as a result of
chemotopic convergence, as in a biological glomerulus. Activity across the simulated glomerular lattice forms a spatially distributed representation of the
odor, and can be considered an artificial odor map. (Reprinted from ref 99). (b) Artificial glomerular images generated from an experimental database of
temperature-modulated metal-oxide semiconductor sensors exposed to acetone, isopropyl alcohol, and ammonia at three different concentrations levels
(C1�3). As has been observed in the olfactory bulb, increasing concentrations of odorant expanded the area of activation at the odor-specific locus.
Bottom row: Odor maps generated from the sensor array showing response to a mixture of acetone and isopropyl alcohol at three concentrations. The
binary mixture had an additive effect and generated odor maps that activated regions of the lattice corresponding to both component odors. More
complex mixture responses have been reported in vivo. (Reprinted with permission from ref 7. Copyright 2006 IEEE). (c�e) Various forms of shunting
inhibition can be employed to either compress or remove concentration information. Principal component analysis (PCA) scatterplots showing
responses of a temperature-modulated sensor to three analytes presented at three concentrations (A1, lowest concentration of analyte A; C3, highest
concentration of analyte C). PCA plots compare the odor identity and intensity distributions following (c) chemotopic convergence (no shunting
inhibition), (d) normalization using a shunting inhibition model with local connections, and (e) normalization using a shunting inhibition model with
global connections. (f) Combining biomimetic processing steps can further enhance odor discrimination. Artificial odor maps after chemotopic
convergence (top row), processed with an additive model of the olfactory bulb with center-surround inhibition (middle row), and integrated OB
network with shunting inhibition and center-surround inhibition (third row). Outlines of steady-state active regions in the artificial odor maps
corresponding to different analytes are highlighted below the plots. (Reprinted from ref 99). (g) Mimicking the biological approach of refining odor
representation over time, a hierarchical scheme that performed initial discrimination between broad chemical classes (e.g., contains oxygen) followed by
finer refinements using additional data into subclasses (e.g., ketones vs alcohols) and, eventually, specific compositions (e.g., ethanol vs methanol) is
shown. Left panel: Graphical view of the traversal of each measurement through the hierarchy. The chemical family of the analyte present during
measurement is color-coded: gray = dry air, cyan = simple oxide, red = alcohol, blue = ketone, yellow = alkane, and green = aromatic. Right panel: Chart
of the accuracy of placement of each measurement into its proper category: green box = correct recognition, blue box = correct classification, and red =
incorrect placement. Analytes not included during the training phase are indicated with an asterisk. The order of analyte exposure during the test phase is
as shown, progressing from left to right and then top to bottom (trials 1�8 were air exposures, trials 9�13 were acetone exposures, and so on).
(Reprinted with permission from ref 90. Copyright 2008 American Chemical Society). (h) Both mixture segmentation and background suppression can
be achieved by a model of olfactory bulb�cortex interactions. In this model, the olfactory bulb sends nontopographic and many-to-many projections to
the olfactory cortex such that cortical neurons detect combinations of co-occurring molecular features of the odorant and therefore function as
coincidence detectors. The associational connections within the cortex are established through correlative Hebbian learning, such that cortical neurons
that respond to at least one common odor have purely excitatory connections between them, and neurons that encode for different odors (no common
odor) have purely inhibitory connections between them. The excitatory lateral connections perform pattern completion of degraded inputs from the
bulb, whereas the inhibitory connections introduce winner-take-all competition among cortical neurons. Two types of feedback connection were
investigated: (i) Anti-Hebbian update forms feedback connections such that the resulting centrifugal input from the model cortex inhibits bulb neurons
responsible for the cortical response, resulting in the temporal segmentation of binary mixtures (left panel). (ii) Hebbian update on the other hand
retains only those connections between cortical neurons and bulb neurons that respond to different odors. The resulting feedback from the cortex
inhibits bulb neurons other than those responsible for the cortical response, causing cortical activity to resonate with OB activity and lock onto a
particular odor and suppress the background/weaker odor (right panel). (Reprinted with permission from ref 93. Copyright 2005 IEEE).
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the model to desensitize itself to previously detected stimuli,
thereby facilitating detection of the novel component in subse-
quent exposures to binary mixtures.
Modeling studies91 have suggested that cortical feedback to

the bulb may play an essential role in recognizing odorants against
complex backgrounds and identifying the constituents of an odor
mixture. Inspired by this idea, Gutierrez-Osuna and Powar92

presented a statistical pattern recognition model where inhibi-
tion triggered by a global feedback signal allowed the system to
filter out the previously recognized odor. In another effort,93 a
computational model of bulb�cortex interaction was presented
to achieve parallel computational functions with gas sensors.
Here, the olfactory bulb was modeled with two lateral inhibitory
circuits: global shunting gain control circuits71 followed by local
center-surround contrast enhancement circuits.72 Bulbar outputs
were then projected in a nontopographic fashion onto the olfactory
cortex. Association connections within the cortex obtained through

Hebbian learning formed a content addressable memory. Finally,
inhibitory feedback from the cortex was used to modulate bulbar
activity. Depending on the form of feedback, Hebbian or anti-
Hebbian, themodel was able to perform background suppression
or mixture segmentation (see Figure 5h).

3. THE FINAL FRONTIER: STRUCTURE�ODOR
RELATIONSHIPS

Relating a sensor or instrument’s odor response to an animal’s
perception of the odor remains an elusive goal of neuroscience,
and for the neuromorphic approach to artificial olfaction. Several
hurdles must be crossed before realizing this goal. Clearly, in the
first stage of this process, correlations between odorant molecules
and perceptions are only possible if the sensing instrument cap-
tures information about physiochemical properties (e.g., functional
group, carbon chain-length) to which biological receptors have
affinity.

Figure 6. Artificial odor maps show how sensor responses can be linked to perceptions. Top: Chemicals associated with 10 different smell percepts
predicted from their infrared absorption spectra were organized into these maps using the chemotopic convergence model (see Figure 5a).
Dendrograms (complete-linkage) revealed that artificial odor maps formed from their infrared absorption spectra formed clusters determined by
organoleptic descriptors provided by human experts (from www.flavornet.org/). A cluster analysis of olfactory bulb activation patterns elicited by the
same 17 chemicals36 revealed qualitatively similar results (not shown). Asterisk identifies a chemical with a smell descriptor different from other
members in the cluster. (Reprinted with permission from ref 94. With kind permission of Springer Science þ Business Media).
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A recent study by Raman and Gutierrez-Osuna94 has made an
attempt to match chemical features with high level descriptors
using infrared (IR) spectroscopy. Treating the IR absorption at a
particular wavenumber as a “pseudosensor”, the authors created
high-dimensional inputs that were subsequently reorganized into
compact, spatial odor maps using a feature-clustering scheme
that mimics the chemotopic convergence of receptor neurons
onto the olfactory bulb (see Figure 6). Cluster analysis of the
generated IR odor maps revealed chemical groups with members
that have similar perceptual characteristics, for example, fruity,
nutty, and so forth. Further, the generated clusters match those
obtained from a similar analysis of olfactory bulb odor maps36

obtained from rats for the same set of chemicals.
An approach similar to that proposed by Raman and Gutierrez-

Osuna94 has been independently proposed by Schumaker and
Schneider.95 Here, odor maps were created for a larger set of
odorants using 184 molecular descriptors. Given the spatial map
of the odor, a panel of two-class naive Bayes classifiers, one for
each odor quality (e.g., fruity vs nonfruity), predicted the overall
percept.

In another effort, Mamlouk and colleagues analyzed the
relationships between 851 chemicals based on 278 organoleptic
odor descriptors (e.g., fruity, sweet, etc.) found in the Aldrich
Flavor and Fragrances Catalog.96 Usingmultidimensional scaling
and 2-D self-organized maps in series to reduce the dimension-
ality of the data, they created a 2-D topological map of the odor
space. This work provides another approach to relate olfactory
perception with the physiochemical properties of the molecules.

4. FUTURE PERSPECTIVES AND CONCLUSIONS

To date, the abilities of biological olfaction far outshine the
capabilities attained by artificial analogues. The canine olfactory
system still remains the state-of-art sensing system for many
engineering applications, including homeland security97 and me-
dical diagnosis.98 Hence, mimicking the design and computing
principles of biological olfaction would provide a valuable first
step toward developing a noninvasive chemical sensing system.

We have noted important parallels between the biological
olfactory system and its artificial analogues, but it is important to
point to a number of notable differences between them as well.
First, attempts to correlate sensor responses with organoleptic
properties have been extremely difficult, suggesting that either
the physiochemical properties of themolecules sensed by the two
types of systems or their subsequent processing, or both, are
fundamentally different. Second, while the inspiration for artifi-
cial olfaction hasmost often come from the general-purpose odor
processing system, a biological approach to detect certain highly
species-specific ligands, such as pheromones, seems to involve
more highly selective receptors leading to relatively separate chan-
nels for further processing. Hence, depending on the target ap-
plication, an appropriate bioinspired scheme could involve two
subsystems: one with highly selective and another with cross-
selective sensors. Third, as mentioned earlier, it appears biolo-
gical olfaction has evolved as a holistic rather than analytic sense.
Hence, for applications requiring the segmentation of mixture
signals to identify components, the biology-inspired approach
might not be appropriate. Finally, engineering system constraints
including array size and the number of types of sensing materials
might leave bioinspired solutions inappropriate for some envir-
onmental conditions.
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