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ABSTRACT
Energy-efficient implementation techniques for virtual
machines (VMs) have received little attention yet: con-
ventional wisdom claims that VMs have a diametrical
effect on energy consumption and sensor network appli-
cations on VMs are therefore short-lived.

In this paper we argue that bytecode interpretation
is affordable for sensor networks if we synthesize VMs
specifically for energy-efficiency. We present TinyVM,
an execution infrastructure that seamlessly integrates
with nesC/TinyOS and C-based environments. TinyVM
achieves high code density through the use of compressed
bytecode as the primary program representation. Com-
pressed bytecode allows rapid application deployment
with low communication overhead. TinyVM executes
compressed byte-code in-place, which eliminates the need
for a decompression stage and thereby reduces memory
consumption on sensor nodes.

Our infrastructure automates the creation of energy-
efficient application-specific VMs. Applications are par-
titioned in machine-code, byte-code and VM instruc-
tion set extensions. Partitioning is manually controlled
and/or fully guided by a discrete optimization problem
that produces a partitioning with lowest energy con-
sumption for a given memory space constraint. We
provide experimental results for sensor network bench-
marks and selected applications on Atmega128-based
motes and the Intel iMote2.

1. INTRODUCTION
A VM is a software execution platform that abstracts

from native execution on a processor. VMs for wire-
less sensor networks have received a lot of attention
in the recent past [29, 25, 34, 23, 18, 1, 22] to over-
come the difficulties of programming sensor networks at
massive scale for a range of platforms. Various hard-
ware platforms for sensor nodes [32, 15, 16, 3, 30] make

software development difficult, although the actual pat-
terns are uniform across platforms. An execution infras-
tructure that builds on VM technology gives the abil-
ity to build heterogeneous systems, allowing cheap dy-
namic code updates, a uniform programming interface,
and high code density for resource constraint sensor
nodes. Higher code density has substantial advantages
for WSN applications: (1) more code can be packed in
small memories, (2) smaller code sizes enable larger lo-
cal data caches which may reduce network traffic, (3)
smaller code sizes enable in-situ deployment over the
radio because of the reduced transmission costs and en-
ergy, and (4) due to reduced memory footprint, pro-
grams are faster and more energy-efficiently written to
flash memory.

Sensor networks impose significant challenges for VM-
based execution infrastructures. Hardware platforms
range from micro-controllers [16] to 32bit RISC-based
platforms [30]. A VM technology is required to cope
with the resource limitations of micro-controllers while
it must be able to run large applications on a 32bit RISC
platform with far more resources. Energy-efficiency is
another challenge: the execution speed of VMs is slower
than native execution on a processor and hence will con-
sume more energy than machine code execution. Ertl et
al. [10] estimate that VMs impose a slowdown between a
factor of 10 and 1000, depending on the implementation
technique. Current VMs for wireless sensor networks
do not incorporate modern VM techniques such as just-
in-time decompression of compressed bytecode and re-
moval of interpreter dispatch loops [20] and impose a
slow-down of an order of magnitude of two to three. For
wireless sensor networks, C and nesC/tinyOS [12] are
the de-facto standards for programming sensor nodes.
An execution infrastructure that weaves into nesC and
C is integrated easily with existing wireless sensor net-
work projects whereas VMs introduced in the past do



not have the capabilities of running system code nor
have the robustness to run generic C code. VMs for sen-
sor networks require mixed-mode execution: efficiency
considerations and space constraints suggest a parti-
tioning of a WSN application into a part that is exe-
cuted as bytecode, and a part that is executed as ma-
chine code. Mixed-mode execution requires an efficient
bi-directional calling-mechanism between machine code
and bytecode. Bytecode calling machine code is com-
mon, e.g., with application-specific VMs (ASVMs), but
the opposite direction is less obvious: it arises, e.g.,
when an operating system scheduler (machine code) starts
the execution of a bytecode task. Other examples in-
clude machine coded device drivers performing up-calls
to bytecode functions.

The contributions of this paper are as follows.

• We present an execution infrastructure that, for
the first time, enables the compilation of nesC (and
C) applications to an energy-efficient combination
of compressed bytecode, machine code, and appli-
cation specific instructions. This partitioning is
either performed manually and/or automated.

• We introduce a fast just-in-time decompression de-
coder that is able to execute Huffman-compressed
instructions using different Huffman codes for in-
structions and operands.

• We model the energy/space trade-off between ma-
chine and bytecode execution as a discrete opti-
mization problem. This optimization problem is
parameterizable with respect to optimization ob-
jectives such as execution energy and code size.
This allows domain experts to safely explore the
design space of the system: based on the provided
optimization objectives, our programming environ-
ment automatically performs an optimal partition-
ing.

• We conduct extensive experiments on Mica2 and
iMote2 to demonstrate the validity of our approach.

The remainder of this paper is organized as follows: in
Sec. 2 we survey related work. In Sec. 3 we introduce
the overview of our TinyVM execution infrastructure.
In Sec. 4 we describe the techniques used to implement
the VM. Sec. 5 is devoted to the machine/bytecode par-
titioning of an application, and Sec. 6 presents our eval-
uation of TinyVM on Mica2 and the Intel iMote2. We
draw conclusions and outline future work in Sec. 7.

2. RELATED WORK
Sun Microsystems introduced the SunSPOT platform

for developing WSN applications in Java [34]. Their VM
supports J2ME and runs on an ARM platform using

an of the orders of magnitudes more power than an 8-
bit microcontroller platform. Sentilla Corp. introduced
a VM of the same name with fewer resource require-
ments. In [25] another VM for Java has been introduced
that implements a subset of Java. SwissQM [29] is a
VM targeted at query processing in WSNs. The Swis-
sQM bytecode is a subset of Java VM bytecode plus
special-purpose instructions for query processing and
sensor access. SwissQM is oriented for data-acquisition.
User-defined functions are compiled to bytecode, to be
used in queries. Although the bytecode instruction set
is Turing-complete, SwissQM supports only a single in-
teger data type, no arrays and no function call mecha-
nism. VMStar [18] is a synthesizable scalable platform
for WSNs. It is based on Java, offers application-specific
VM synthesis and dynamic software updates. The VM-
Star runtime environment provides a native interface
for device-specific functions, and support for dynamic
memory management and scheduling. Like TinyVM,
VMStar employs threaded code. VMStar performs Java
Class file compaction but no bytecode compression.

Maté [22] is a communication-centric VM implemented
on top of TinyOS. Maté stores bytecode in so-called
capsules that are 128 byte in size. Every bytecode in-
struction is one byte long. The abstraction level of the
Maté instruction set is very high, resulting in small pro-
gram sizes. Maté is directly programmed in bytecode;
it supports instruction set extensions through 8 user-
definable instructions. One of Maté’s key goals is WSN
reprogrammability; code capsules are injected into the
network and distributed through a viral code distribu-
tion scheme.

Application-specific VMs (ASVMs) are a recent ex-
tension of Maté [23] that trades portability for perfor-
mance. Portions of code are encapsulated in applica-
tion specific extensions of the VM. This results in very
high code density, low propagation cost and low inter-
pretation overhead. We adopted the idea of ASVMs
for TinyVM: in TinyVM, users can extend the VM’s in-
struction set through machine code functions or through
instruction set extensions for the interpreter itself. Both
extension mechanisms are transparent to the TinyVM
nesC-to-bytecode translation mechanism.

DVM [1] is a VM for multiple applications and repro-
gramming of WSNs on top of SOS. The DVM instruc-
tion set can be extended at runtime.

TinyVM differs from the above approaches in the fol-
lowing: (1) it uses in-place execution of compressed
bytecode to reduce the memory footprint of programs,
(2) it employs discrete optimization to address the trade-
off between memory footprint and energy consumption,
and (3) it is able to execute nesC on TinyOS, (4) allows
call-sites in native machine code to execute seamlessly



functions represented in compressed bytecode1, and (5)
it is a general purpose VM that is capable of executing
the C programs of the SPEC2K [35] benchmark suite
whereas other VMs and their languages for WSN are
severely restricted in their expressiveness. A prior ver-
sion of this work appeared as a poster abstract [17].

In [4] a virtual machine was designed for C that uses
off-line compression, i.e., compressed bytecode is ex-
panded in a memory buffer and converted to an expen-
sive internal VM representation called threaded code.
Threaded code ensures fast execution but consumes four
times as much memory as machine code [4, Table 3].
The memory buffer further increases memory consump-
tion. This virtual machine is not viable for micro-controller
based WSN platforms due to the high memory con-
sumption.

Compression of bytecode has been proposed by [20].
It allows to execute bytecode in its compressed form
(see Fig. 6(b)). The fetch mechanism of the VM is ex-
tended to decompress bytecode on-the-fly when it is ex-
ecuted. This technique overcomes the disadvantage of
a traditional approach by making the memory buffer
for execution redundant. Our method differs from the
method introduced in [20] by splitting the instruction
stream into opcodes, literals and addresses and encode
these streams separately with different Huffman codes.
This method results in high compression rates.

The implementation of VMs have been significantly
alleviated in the presence of high-level virtual machine
generators such as VMgen [10], which takes VM instruc-
tion descriptions as input and generates C code for the
VM, disassembler, tracer and profiler. However, VMgen
produces threaded code, which is fast but its internal
representation consumes four times more memory than
machine code.

TinyVM is a node-centric programming model in the
sense that the programmer thinks in terms of single
(sensor) nodes operating in the context of the WSN ap-
plication. This contrasts data-centric approaches like
TinyDB [26] or the role assignment programming para-
digm [33]. TinyVM facilitates high-level WSN program-
ming approaches.

3. OVERVIEW
We designed TinyVM for high performance and effi-

cient mixed-mode execution capabilities. The execution
environment of TinyVM consists of the VM and the
application image as depicted in Fig. 1. The applica-
tion images contains compressed bytecode and machine
code. Machine code executes on the mote’s CPU core,
1This feature is important to enable arbitrary partitioning
of the code between byte code and machine code. If not
available, leaves in the static call tree (or subgraphs with no
outgoing calls) only can be represented in machine code.

Figure 1: TinyVM Execution Environment.
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Figure 2: Partitioning into Machine-Code(MC),
Instruction Set Extensions(IS), and Byte-
code(VM).

whereas bytecode executes on the VM. In TinyVM the
thread of execution can jump back and forth between
the machine and the bytecode realm seamlessly, which
we refer to as mixed-mode execution.

As outlined in Fig. 2 the TinyVM execution infras-
tructure allows a partitioning of code into three por-
tions: machine code (MC), instruction set (IS) exten-
sions, and bytecode (VM). The partitioning is not bound
to the application itself and may span across the oper-
ating system since TinyVM runs on the bare metal.

The partitioning into machine-code, application spe-
cific instruction set extension, and bytecode requires a
mechanism to map source code to machine code, VM
extensions, and bytecode. In TinyVM we have the par-
titioning automated and/or the programmer provides
annotation in the source code or in configuration files.
The automated partitioning seeks for minimal energy
consumption under a given space constraint (see Sec. 5)
and can partition the code into compressed bytecode
and machine code. The annotations of the program-
mer make explicit which portion of the code is executed
on the VM, on the CPU and as an application spe-
cific instruction set extension, respectively. TinyVM
introduces three optional code qualifiers, i.e., __vm__,
__mc__, and __is__, to assign nesC functions, com-
mands, events and tasks to the domains. In absence of
code qualifiers, the translation system selects between
compressed bytecode and machinecode. Examples for
the annotation approach are given below:



void __vm__ task do_all() { ... }
void __mc__ f_do_all() { ... }
int __is__ log2(int x) { ... }

In this example function f_do_all is compiled to ma-
chine code, task do_all is compiled to compressed byte-
code, and function log2 is synthesized as an application
specific instruction set extension. To be able to synthe-
size function log2 as an application specific instruction
extension, function log2 must not call a function that
is represented in bytecode.

An overview of our compilation framework is shown in
Fig. 3. The inputs to our framework include the user-
supplied nesC sources, the configuration and profiling
information (“config and profile info”), the interface of
the TinyVM nesC component, and the specification of
the VM (“TinyVM spec”). NesC source files, configu-
ration information and the TinyVM nesC interface are
input to the nesc compiler/splitter (“ncc & splitter”).
The splitter is a modified ncc compiler that translates
nesC sources to C, thereby partitioning them into two
files: one C file containing the code to be compiled to
bytecode, and one with the code to be compiled to ma-
chine code. Splitting is performed according to the given
configuration information, code qualifiers, and program
optimization. C code that is to be compiled to machine
code is subjected to the GCC compiler to translate it
into an object file (“machine code”). C code that is
to be translated to bytecode is submitted to the byte-
code backend of LCC. The resulting bytecode is then
put through the optimizer (“VMOPT”). The optimizer
uses the user-defined interpreter extension specification
(see Sec. 4.1) to patch those procedure calls, for which a
user-defined VM instruction exists. The optimizer pro-
duces a list of VM instructions that occur in the opti-
mized bytecode. This list is used during VM synthe-
sis to decide on the VM instructionset. The optimized
bytecode is run through our Huffman-encoder to pro-
duce a bit-stream blob of encoded bytecode (“bytecode
image”). The Huffman-encoder generates the decoding
tables for the opcode-, literal-, and address bitstream;
these tables belong to the VM (“TinyVM image”), to-
gether with the synthesized VM instruction set and the
interpretive function. For the generation of TinyVM we
use VMgen [10] that is a high-level code generator for
VMs. We have rewritten the backend of VMgen to ex-
ecute compressed bytecode2. The GNU linker (“LD”)
links machine code, bytecode and VM into an applica-
tion image to be deployed on the mote hardware.

4. TINYVM RUNTIME ENVIRONMENT
TinyVM is a stack-based VM. Its basic architecture

2VMgen provides the execution of threaded code only;
threaded code is an intermediate representation that con-
sumes four times more memory than machine code.

is depicted in Fig. 1. Mixed-mode execution requires a
seamless transition between compressed bytecode and
machine code. For this purpose special trampolines
need to be injected before the bytecode of a function,
that allow the invocation of the VM if a bytecode func-
tion is called from machine code. The VM needs to have
a dedicated call mechanism for machine code functions
as well [4].

TinyVM consists of the VM instruction decoder, the
VM interpreter, and the VM evaluation- and proce-
dure call argument stacks (VM Eval Stack and VM Arg
Stack in Fig. 1). “Prog Stack” is the stack used for
the execution of machine code. The core instruction
set of our VM is related to the bytecode interface that
comes with LCC [14], with the main deviations being
induced by the requirements of the seamless integra-
tion of bytecode (__vm__) and machine (__mc__) code
execution and by application specific virtual machine
extensions for WSN application. Our VM has only few
hardware-dependent parts, i.e., (1) the 8 bytes of assem-
bly code employed with trampolines, and (2) the target
procedure calling conventions that we need for mixed-
mode execution. TinyVM does not use any system calls,
which makes it able to run on the “bare” CPU. We syn-
thesize the instruction set according to the needs of the
respective application, to keep the memory footprint of
the VM low. TinyVM is available on IA32 under Linux
and Windows, ARM-based architectures such as the In-
tel iMote2 and on Atmega128-based motes such as Mica,
Mica2, MicaZ and BTnodes.

4.1 Instruction Set Extensions
ASVMs [23] allow the user to define the abstraction-

level of the VM instruction set: on the one extreme,
an instruction set may consist of just one instruction
with the semantics of “execute the program”. On the
other extreme, we might have a multitude of instruc-
tions which perform only insignificant amounts of com-
putation. A high-level instruction set clearly increases
the density of the bytecode, but it can severely increase
the footprint of the VM’s instruction set implementa-
tion. It is a technique to partition the code in machine
code and byte code whereas machine code is encapsu-
lated in new instructions of the virtual machine. Ex-
tending the instruction set of a virtual machine and re-
moving existing instructions cannot be done on the fly
for virtual machines. Hence, re-occurring patterns/code
fragments including sending and receiving of data are
synthesized as new instructions of the Virtual Machine.
In contrast to mixed-byte code execution where machine
and byte-code can be mixed arbitrarily without having
any impact on the virtual machine. Our execution envi-
ronment gives the designer the choice whether to pack
code fragments into instructions or whether instructions
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Figure 3: TinyVM Compilation Path.

are executed in a mixed-mode execution environment.
The later has more overhead when it comes to switch
between the VM and the machine code execution. The
former has the advantage of being faster but there is
less flexibility as soon as the VM is uploaded to a sen-
sor node. With TinyVM, we provide two mechanisms to
extend the core instruction set by user-defined instruc-
tions.

Loose Extensions: compiling a function to machine
code already represents an extension of the VM by a
highly-efficient implementation of a coherent piece of
source code. This extension is loose in the sense that
the new instruction is executed via a procedure call. The
advantage of loose extensions is their ease of use: im-
plementing a coherent piece of source code as a C/nesC
function and assigning it to be compiled to machine code
is all that is requested from the TinyVM user. Dy-
namic code updates can be applied with loose exten-
sions. Techniques for such dynamic code updates were
introduced, e.g., in [28, 8], they are however outside the
scope of this paper. The disadvantage of loose exten-
sions is their loose coupling with the VM: executing the
new instruction comes at the additional cost induced by
the procedure call. Loose extensions are entirely covered
by TinyVM’s mixed-mode execution capabilities.

Interpreter Extensions: extending the VM’s interpreter
with instructions avoids the procedure call overhead as-
sociated with loose extensions. Interpreter extensions
execute as efficient as instructions from the core instruc-
tion set. In the remainder of this section we develop our
interpreter extension mechanism in the context of VM-
gen instruction set specifications.

As an example for an interpreter extension, we con-
sider the merge instruction of SwissQM[29]. SwissQM
provides the merge instruction to perform in-network
aggregation along the path to the WSN gateway. This
instruction has the form

merge(n,m, aggop1, . . . , aggopn),

where n, m, and aggop1–n are parameters of the merge
operation. Suppose that merge is a coherent and self-
contained computation that the user wants to add to
the TinyVM instruction set. The envisioned instruction
set extension consists of two steps.

In the first step, we provide a C-level declaration for

the new instruction, void merge(int n, int m, ...);
To be accessed from nesC, this declaration can be wrapped
into a nesC interface, similar to [23]. Calling the opera-
tion merge(n,m,op1,op2); from C/nesC will result in
bytecode depicted in Fig. 4. Therein the arguments are
pushed in reverse order onto the VM argument stack.
In line 15 the number of arguments is pushed onto the
VM evaluation stack. Thereafter the call to merge is
performed.

1 addrl_p4 12
2 indir_i4
3 arg_i4 #push op2 on Arg stack

4 addrl_p4 8
5 indir_i4
5 arg_i4 # push op1 on Arg stack

9 addrl_p4 4
10 indir_i4
11 arg_i4 # push m on Arg stack

12 addrl_p4 0
13 indir_i4
14 arg_i4 # push n on Arg stack

15 cnst_i4 4 # push number of args
16 call merge # procedure call

Figure 4: Bytecode to call the merge operation.

We use a post-processing step that replaces the call
instruction in line 16 by the user-extended instruction
merge_v. This post-processing step takes place before
the bytecode is encoded. In Fig. 3 the postprocessor is
labeled as ”VMOPT”.

In the second step, the TinyVM user has to provide a
VMgen instruction specification for the merge_v instruc-
tion. Due to the nature of the TinyVM call-mechanism
user-defined instructions get their arguments form the
Arg stack instead of the evaluation stack. Apart from
that, the specification works in the same way as core
instruction specifications. To conclude this example,
we give a pseudo-code specification for the merge_v in-
struction in Fig. 5. VMgen provides the ARG prefix
to denote arguments form the VM argument stack. In
this way the user-provided instruction specification can
reference instruction arguments via ARGn and ARGm (see
e.g., line 6 in Fig. 5). The evaluation stack is the de-
fault stack, which means that we do not need to prefix
the argument count argc. Note that argc denotes the



1 merge_v (argc ARGn ARGm -- )

2 for(int i=0;i<argc;i++) { # process args

3 foo(ARGn, argc); # do something

4 ...

n }

Figure 5: Instruction Specification for merge_v.

number of arguments (see Line 15 of Fig. 4). The actual
implementation for merge_v will consist of the C code
provided by the user from Line 2 of Fig. 5 onwards.

Our interpreter extension mechanism facilitates the
extension of the core instruction set with arbitrary VM
instructions without modifying the bytecode compiler
backend. Modifications of the compiler backend would
make interpreter instruction set extensions impractical.
Instead, we integrated our instruction set extension mech-
anism with VMgen’s instruction set specifications. We
believe that this mechanism makes user-supplied inter-
preter extensions applicable even for domain-experts who
might not be too fluent in interpreter technology. It
should be noted that dynamic code updates cannot be
used with interpreter extensions, because the instruc-
tion extension is part of the VM’s interpreter function
itself, and functions cannot be partially updated (we
would have to replace the whole interpreter). The ad-
vantage of interpreter extensions vs. loose extensions
is that (1) an interpreter instruction avoids the proce-
dure call overhead, and that (2) VMgen can perform
peephole-optimizations across instructions. These opti-
mizations are e.g. necessary to use superoperations (se-
quences of VM instructions) to further increase the per-
formance of the VM [10].

4.2 Execution of Compressed Bytecode
Memory is at a premium in wireless sensor nodes, and

code compression is a key technique to accommodate
complex applications in small memory sizes. Code com-
pression is an established technique [9, 11, 24, 19, 21, 5,
7] for embedded systems. The majority of the work fo-
cuses on the compression of machinecode. A traditional
approach partitions a program into segments. Before a
portion of code in a segment is executed, the segment
is decompressed into a buffer and then executed on the
CPU or the VM as depicted in Fig. 6(a). The major
disadvantage of this approach is that a memory buffer
for execution is required that needs to be large enough
to execute translation units of an application.

A new code compression technique [20] allows to ex-
ecute bytecode in its compressed form 6(b). The fetch
mechanism of the VM is extended to decompress byte-
code on-the-fly when it is executed. This technique
overcomes the disadvantage of a traditional approach by
making the memory buffer for execution redundant. By

carefully designing the decoder in the fetch mechanism
of the VM Latendresse [20] et al. showed that the exe-
cution overhead for in-place decompression of Huffman-
Code is at an acceptable speed. However, in [20] only
the op-codes are compressed to Huffman-Code and the
instructions are not split into different encoding streams
for opcodes, literals, and addresses. This splitting is
crucial for achieving good code compressions (see Ex-
periments).

The integration of the decoder in the fetch mecha-
nism of the VM [20] requires pre-computed decoder ta-
bles. The compressed bytecode is seen as a bitstream.
A bitstream pointer points to the current fetch-position
in the stream. The decoder reads the next k-bits from
the stream and moves the bistream pointer k-bits to the
right. The k-bits from the bitstream are used to decode
the next code word from the stream. To speed up the
decoding, a decoder table is used. The length of Huff-
man codes can become very long (up to 21 bits in our
applications) and generating tables for these sizes is not
viable in a WSN setting. To overcome this issue, we
need to split the decoder table into sub-tables, which
slows down the decoding. The sizes of the sub-tables
depend on a space-speed trade-off.

The decoder mechanism consists of several code frag-
ments that are executed via the decoder table. The
decoder starts executing a new code word in decode0.
It reads the first k bits of the stream and uses the result-
ing number as an index for the first decoder sub-table.
The sub-table contains the location of either a fragment
that executes the op-code or more bits need to be pro-
cessed from the stream to decode the word, i.e. another
decode<x> fragment is executed. If a code-word was
identified, more bits might have been read and the bit-
stream pointer is adjusted by shift_left(<k>). We
use following templates for decoding,

decode<x>: idx = get_nbits(<k>);
goto *decoder_table<nr>[idx]; ...

code<y>: shift\_left(<k>);
<execute instruction y>; goto decode0; ...

where decode<x> is for decoding parts of a code word
and code<y> executes the op-code <y>.

To generate the decoder-tables we have a simple al-
gorithm that determines the waste of a sub-table. A
waste occurs if we have identical entries in the decoder
table, i.e. with less bits the code words could be identi-
fied. Starting from the root node of the binary Huffman
tree, we generate the sub-tables for the decoder. We
increase the size of the tables until the waste thresh-
old is saturated. We substantially simplified the de-
coder scheme of [20] that uses a complicated branch-
and-bound scheme and canonical Huffman-codes.

As far as the author are aware of, we have the first
instruction format for bytecode, that compresses integer



(a) Buffer Scheme

(b) Just-In-Time Decompression
Figure 6: Code Compression Model

literals, splits the instruction word into different streams
depending on the op-code, and uses in-place compres-
sion. In particular, we had to make design decisions for
encoding (1) literals that are operands (integers, floats,
etc.), (2) jump addresses of conditional and uncondi-
tional jumps, (3) addresses of global variables, and (4)
and function addresses of call statements.

In order to achieve a high compression rate we use
alternating codes. I.e., the operands are encoded in a
different code than their op-codes. Depending on the
op-code, the decoder of the VM decides, which code is to
be used to decode the operands of the instructions. For
integer literals we use another Huffman code. Floating
point literals are encoded as verbatim 32bit and 64bit
codes respectively. Encoding jump addresses of condi-
tional and unconditional jumps in bytecode turns out to
be a hard problem: We decided to use relative addresses
of fixed bitlength because they have the advantage of be-
ing position independent3. The reason why we did not
choose a Huffman code is that Huffman codes do not
have a monotonicity property, i.e. if code x is smaller
than code y, than the length of the encoded code x is not
necessarily smaller than the length of the encoded code
y. Finding the distances between a jump target and a
jump instructions is a non-trivial problem because in
between there might be other jump instructions whose
length depend on the current jump instruction. This
results in a simultaneous discrete equation system that
is very hard to solve. Therefore, we decided to encode
the relative addresses of jumps as verbatim signed 16bit
distance. Addresses of global variables and function ad-
dresses are encoded as 32bit words that are patched by
the loader.

5. MACHINE- /BYTE-CODE SELECTION
In the following we discuss a discrete optimization

problem that partitions the set of functions into two
disjoint sets, i.e., the set of functions that are compiled
to bytecode and the set of functions that are compiled
3For wireless sensor nodes that do not have memory man-
agement units, position independent code is an advantage if
the memory needs to be re-organized (e.g., for code updates
at runtime).

to machine code. The optimization seeks for a partition-
ing, which has minimal energy consumption and which
does not exceed the maximal available memory. We call
this optimization problem the Machine-/Byte-code Se-
lection(MBS) problem that arises with the capability
of a virtual machine to seamlessly execute interpreted
functions and functions in native machine code.

Compiled functions have a larger memory footprint
than interpreted functions represented in compressed
bytecode. However, compiled functions consume less
energy than interpreted functions due to their interpre-
tation overhead. Hence, there is a trade-off between
energy and space, and we interested in a function parti-
tioning that makes best use of the available memory to
minimize the energy of the whole program. In this opti-
mization problem, we consider as well transitions from
the virtual machine to machine code and vice versa.
These transitions between bytecode and machinecode
are not for free in terms of energy because energy is used
up for executing trampolines, rebuilding call stacks, and
saving the state of the virtual machine. The transition
overhead can be substantially, and if it is not modelled
correctly, it could lead to sub-optimal answers.

Given a static call graph G(F,C) where F is the set
of functions and C ⊆ F × F is the set of call-sites of
the input program. A call-site (u, v) ∈ C represents a
function call where u is the caller and v is the callee. The
MBS problem may be stated as following mathematical
program,

minf =
∑
u∈F

[Evm(u)xu + Emc(u)(1− xu)]+ (1)∑
(u,v)∈F×F

[Evm→mc(u, v) + Emc→vm(v, u)]xu(1− xv)

s.t.
∑
u∈F

Svm(u)xu + Smc(u)(1− xu) ≤ Stotal (2)

xu ∈ {0, 1}, for all u ∈ F (3)

where xu is a binary variable expressing the decision
whether a function u ∈ F is represented as bytecode
(i.e., xu is one) or as machine code (i.e., xu is zero). The
objective function of the mathematical program in Eq. 1
is the amount of energy needed for a given partition-
ing and has energy parameters that model the energy
consumption of functions and the transition between
bytecode and machinecode. The parameter Evm(u) is
the energy consumption of function u when executed in
the virtual machine, the parameter Emc(u) is the en-
ergy consumption of function u when executed in ma-
chine code, Evm→mc(u, v) is the energy consumption of
switching from bytecode to machine at call-site (u, v),
and Emc→vm(u, v) is the energy consumption of switch-
ing from machine code to bytecode at call-site (u, v).
The space constraint in Eq. 1 has space parameters for



functions Svm when executed in bytecode and Smc when
executed in machine code. The parameter Stotal is the
maximal available memory for the program and is de-
termined by the available flash memory of the sensor
node.

If a user manually overrides the representation of a
function, the energy parameters of the function are ad-
justed accordingly, i.e., if the user specifies machine code
the energy parameter for bytecode is set to a sufficient
large number and if the user specifies byte code the pa-
rameter for machine code is set to a sufficient large num-
ber. Functions that are synthesized are excluded from
the set F .

Theorem 1. The MBS problem is NP-hard.

Proof. See Appendix B.

The energy function has a quadratic component for
modeling the transitions between bytecode and machine-
code. We linearize the quadratic terms of the objective
function to solve the mathematical program with an in-
teger linear programming solver. The term xu(1 − xv)
of Eq. 1 is expanded in the objective function, and
quadratic term xuxv is replaced by variable yuv ∈ {0, 1}.
We add linear constraints to the mathematical program
to enforce the equivalence yuv = xuxv and obtain the
following linear integer program for MBS:

minf =
∑
u∈F

[Evm(u)xu + Emc(u)(1− xu)]+∑
(u,v)∈F×F

[Evm→mc(u, v) + Emc→vm(v, u)] (xu − yuv)

s.t.
∑
u∈F

Svm(u)xu + Smc(u)(1− xu) ≤ Stotal

xu ∈ {0, 1}, for all u ∈ F

yuv ≤ xu, for all (u, v) ∈ C

yuv ≤ xv

xu + xv − 1 ≤ yuv

yuv ∈ {0, 1}

The partitioning problem can also be seen as a multi-
objective optimization problem of two dimensions, i.e.,
energy and space. In this formulation we are interested
in the Pareto frontier. A point on the Pareto frontier
is a bytecode- machine-code selection of functions that
neither can improve code size without loosing energy
and vice versa. The endpoints of the frontier are the
solutions that all functions are either compiled to byte-
code or to machine-code. An optimal solution of the
MBS problem for a given memory limit Stotal is Pareto
efficient (i.e. is a point on the Pareto frontier). Note
that the problem is highly discrete and therefore, the
Pareto frontier is not continuous and might have gaps.

The pareto frontier is computed iteratively by initially
setting the memory limit to a sufficiently large number
resulting in a partitioning with a specific memory and
energy consumption that gives an endpoint in the pareto
frontier. In general, this partitioning will represent all
functions in machine code. We compute the next point
in the pareto frontier by using the space consumption of
the previous point and decremented by one to determine
the memory limit. This instance of MBS computes the
next point in the pareto frontier. We compute this new
instance and continue with the next point whose mem-
ory limit is determined by the previous one until no
further points on the pareto frontier can be computed.

6. EXPERIMENTAL RESULTS
We conducted experiments to evaluate code compres-

sion and performance of our interpreter on the Intel
iMote2 and for Atmega128-based motes. To investi-
gate the robustness of our VM architecture we mea-
sured VM performance and compression rates for the
SPEC CPU2000 benchmark suite (Spec2k) on the IA32
architecture. We compared performance and code sizes
of TinyVM to other VMs proposed for sensor networks.
We applied MBS and interpreter instruction set exten-
sions to an elliptic curve cryptography and an image
recognition benchmark to automatically generate all pos-
sible ASVMs along the energy/space Pareto frontier.

6.1 Interpreter Performance and Code Size
To conserve energy, motes are required to spend the

major part of their lifetime in deep sleep. Prolonging
the period of time a mote is awake (i.e., increasing the
mote’s duty cycle) consumes additional energy and re-
duces battery lifetime. For a WSN VM it is therefore
of paramount importance to keep the interpretive over-
head to a minimum.

Because of in-network processing, we tested TinyVM
with large problem sizes. This would give us a good
indication how our VM would scale to programs run on
the more powerful upcoming mote generations such as
the Intel iMote2. To begin with, we run the Spec2k
testsuite on our VM on IA32. With Spec2k we would
compile an entire application both to bytecode and to
machine code and compare the execution times.

Fig. 7 shows the achieved VM slowdowns of inter-
preted bytecode over machine code plus the bytecode
compression rates. Our slowdowns were between a fac-
tor of 11.4 (181.mcf) and a factor of 75.8 (183.equake).
On average, TinyVM stayed below a factor of 38. These
runs where conducted with the large Spec2k reference
data sets. The upper half of Fig. 7 shows the rela-
tive sizes of compressed bytecode compared to machine
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Figure 7: Spec2k Performance Figures

code.4 TinyVM on IA32 is less than 30kB in size; ma-
chine code sizes of benchmarks were up to 602kB. Huffman-
compressed bytecode yields codesize reductions of more
than 50%. In-place execution of compressed bytecode
therefore allows to store substantially larger programs
on the mote or make more memory available to buffer
data for in-network processing. Fig. 7 shows that TinyVM
can execute even large programs like GCC in bytecode.
This contrasts existing approaches where bytecode is
limited to small sizes (128 bytes with Mate, and 1 user-
defined function with SwissQM).

IA32 was indicative for architectures with a small reg-
ister set: when enabling top-of-stack-caching (a VM op-
timization that caches the topmost stack element in a
register), increased register pressure impacted perfor-
mance in a negative way. When we repeated those
experiments on the Intel iMote2, top-of-stack-caching
increased performance. TinyVM’s demand of two reg-
isters (one for the top-of-stack-pointer and one for the
evaluation stack pointer) are much easier to get on RISC
cores with a rich general-purpose register file than on ir-
regular architectures.

On the Intel iMote2 under Linux, we ran the WSN el-
liptic curve cryptography (Ecc) implementation from [27]
and the Susan benchmark from the MiBench embed-
ded benchmark suite [13]. Like ECC, Susan is highly
relevant for WSNs, because it performs various image
recognition algorithms (in-network processing). On the
Intel iMote2, we achieved a slowdown of 21.66 for ECC
and 29.0 for Susan. We achieved space savings of 72.7%
and 67.7% over machine code.

To evaluate TinyVM’s performance on Atmega-based
motes, we used 9 benchmarks from the WSN bench-
mark collection introduced in [31]. Results are depicted
in Fig. 8. Therein, benchmark “sec.stt” performs a com-
position of benchmarks ”stats”and ”secure”as suggested

4In [4], off-line de-compression was used for C programs.
Compressed code was inflated in memory prior to execution.
This approach is not possible with WSNs due to the size of
inflated code and the severe memory constraints of motes.
This motivated in-place execution of compressed bytecode.

in [31]. All other benchmarks are application building
blocks from [31]. ”Avrg.” denotes the average slow-
down and compression rate. Measurements were con-
ducted on the cycle-accurate Avrora framework [36],
with custom monitors to extract bytecode execution
times, power consumption and memory usage. Like
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Figure 8: Sensebench Performance and Byte-
code Compression Rates on the Mica2.

with previous benchmarks, we compiled each Sensebench-
mark to Huffman-compressed bytecode and to machine
code to compare the resulting execution times. As shown
in Fig. 8, the slowdowns for interpreted compressed byte-
code over machine code are between a factor of 14.4 and
a factor of 72. Compressed bytecode was on average
only 49.3% the size of machine code.

The TinyVM instruction set is synthesized to a given
application such that only instructions occurring in the
actual application are included with a TinyVM inter-
preter. For the Sensebenchmarks less than 20% of the
instructions were needed on avarage. The resulting sizes
of the TinyVM interpreters were between 4.3kB and
7kB, with an average of 5.4kB.

aodv
buf8

crc8
fir_filter

hist4
search

tea

top100

50

60

70

80

90

100

C
om

pr
. R

at
e 

(%
)

Op-code only
3-Streams

Figure 9: Compression Rates of Op-code only
and 3-Streams vs. Plain Bytecode

Fig. 9 compares the compression rates that we achieved
for the Sensebench benchmarks using opcode-only com-
pression (of [20]) and compression of opcodes, literals
and addresses (3-stream compression). For the surveyed
benchmarks, 3-stream compression offers almost 20%
better compression than opcodes only. 3-stream com-
pression is thus advantageous for memory-constrained
WSN architectures.

We compared TinyVM with other VMs for sensor net-



works, to investigate the performance that can be ob-
tained in various parts of the sensor network VM design
space (after all, TinyVM being a VM for nesC and C
provides a relatively low abstraction level, which should
lead to the highest performance in turn).

We instrumented the SwissQM [29] implementation
on the Telos mote to determine execution speed and
code size of SwissQM’s user-definable bytecode func-
tions (SwissQM is quoted as having the most space ef-
ficient program representation for sensor networks [6]).
SwissQM provides comparatively simple bytecode func-
tions without function-calls and arrays; we compiled a
simple loop-based code to bytecode and compared its
execution time to the execution time of the equivalent
machine code. Bytecode execution on SwissQM was by
a factor of 891 slower than machine code. A similar
result is reported for an outlier detection application
with DVM [1], where bytecode execution is by a fac-
tor of 107 slower than machine code. Although Swis-
sQM achieves high code-density, Huffman-compression
achieves between 40% to 50% higher space-savings over
machine code than SwissQM. A similar result was ob-
served for Mate [22]: a 128-byte code capsule for a dis-
crete fourier transform was 32% larger than Huffman-
compressed bytecode, and over 50% slower.

6.2 MBS: Machine-/Bytecode Selection
We conducted experiments for the MBS optimisation

from Sec. 5 for two TinyOs benchmark programs: (1)
the TinyOS elliptic curve cryptography implementation
from [27] on the Atmega128 architecture with Mica2,
and (2) an object recognition implementation based on
the speeded-up robust features algorithm (SURF) [2].
Our framework draws no distinction between operating
system and user code. Note the only functions that are
not compiled to bytecode are functions that have inline
assembler and for which, there does not exist a bytecode
equivalent representation.

Our version of the TinyOS Ecc code consists of a to-
tal of 36 generated C-functions5 and the SURF bench-
mark consists of a total of 23 generated C-functions.
To automatically derive machine-code/bytecode parti-
tions (i.e., ASVMs), our framework profiles the code to
determine the energy consumptions of all functions u
when executed in bytecode (Evm(u)) and in machine-
code (Emc(u)). Moreover, we derive the code sizes for
bytecode (Svm(u)) and machine-code (Smc(u)). For each
pair of functions u, v we determine the overhead for the
calls Evm→mc(u, v) and Emc→vm(u, v).

From the profiled data we compute the Pareto frontier
for the MBS problem using CPLEX. The Pareto frontier
consists of 303 points for Ecc, and it takes 6.1 seconds on
5 The callgraph for this benchmark is depicted in Ap-
pendix C.
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Figure 10: Pareto Frontiers.

a 2.3GhZ XEON E5345 Intel computer for computing
the points with CPLEX. The pareto frontier for SURF
on the same platform takes 1.5 seconds and consists of
140 points.

Fig. 10 shows the Pareto frontier for the whole Ecc
and SURF code on Mica2. The x-axis gives the appli-
cation image sizes, the y-axis depicts the energy con-
sumption for a given machine-code/bytecode partition
(called MBS partition in the following). Every point on
the Pareto frontier represents an optimal MBS partition
w.r.t. the given energy and space constraint.

Compiling the whole of Ecc and SURF to bytecode
results in an Ecc application image of 3982 bytes and
2658 bytes, respectively, with a total bytecode execu-
tion energy bill of 1.717 J and 4.407 J. We get the other
extreme point by compiling all of Ecc and SURF to
machine code. This yields an Ecc application image
of 8526 bytes and 5228 bytes, respectively, with a to-
tal bytecode execution energy bill of only 0.067 J and
0.117 J.

It follows from Fig. 10 that the Pareto frontier of the
Ecc and SURF application has a steep gradient at the
bytecode-side of the design space. This means that it
is highly profitable to invest a few more bytes to com-
pile certain small functions to machine-code. It is not
unusual for applications to spend a major part of the
execution time in a small fraction of the code, which
means that this situation is likely to occur in practice.



It is worth to mention that SURF has a less smoother
curve. This is due to the fact that functions in the SURF
code have highly varying energy/memory consumptions.

Given the Pareto frontier, the WSN designer can se-
lect the most energy-efficient MBS partition for the avail-
able memory. Manual design space explorations would
be infeasible: for Ecc with its 36 functions and for SURF
with its 23 functions, the design space already contains
236 and 223 MBS partitions, respectively. Only 303
and 140, respectively, of those are Pareto-optimal. Au-
tomating the partitioning algorithm greatly facilitates
the programmer’s quest to come up with an energy-
efficient solution for the application at hand.

Partition Byte Joule Machine-code functions
1 3982 1.717699 n/a
2 3984 1.717696 task function
3 4006 1.717692 task function, f do all
4 4016 1.717548 task function, p iszero
5 4026 1.708419 task function, ecc memset
6 4048 1.437735 task function, b xor
7 4070 1.437731 task function, b xor, f do all

31 4532 0.675114
task function, b xor,
ecc memset, b clear, b copy,
b bitlength, f add

Table 1: Machine-code functions of space-
efficient MBS partitions.

For ASVM hardware abstraction, an ideal MBS parti-
tion will have functions at the bottom of the call graph
assigned to machine-code. Thereby functionality close
to the hardware is separated from higher-level byte-
code, which facilitates hardware abstraction and later
bytecode updates. Table 1 shows the top-most space-
minimal MBS partitions for the Ecc application. Sev-
eral small functions are put to machine-code, which
might not be desirable for the above reasons (e.g., the
task funtion). With our automated MBS partitioning
scheme, the programmer can attach the vm type speci-
fier to such functions to override the proposed Pareto-
optimal solution. With Ecc, pretty soon the functions at
the bottom of the call-graph are assigned to machine-
code (see, e.g., Partition 31 in Table 1). Thereby an
advantageous partitioning in terms of hardware abstrac-
tion is achieved.

6.3 Instruction Set Extensions
To evaluate instruction set extensions, we employed a

tight loop with only one function call:
for(i=0;i<MAX;i++) {

call(arg0, arg1, ... , arg8);
}

During the first program run, call would be a binary
function using the traditional native call interface; dur-
ing the second run, call would be a VM instruction.
We calibrated the above loop to execute for 10 seconds
using the native call. On the iMote 2, the instruction
set extension yielded a speedup of 12.7% over the na-

tive call. On the Mica2, the instruction set extension
yielded a speedup by a factor of 2.16. This speedup is
mainly due to the complicated calling convention of the
Atmega128 CPU, which involves up to 9 8-bit register
pairs and the program stack to accommodate procedure
call arguments and return value. For a call from byte-
code to machine code the arguments must be fetched
from the VM evaluation stack and passed to the callee
according to the callee’s function signature (types of pa-
rameters and return type).

We evaluated instruction set extensions with the Ecc
benchmark from the previous section. Once a partition
on the Pareto frontier is selected, the WSN programmer
can decide to make functions instruction set extensions
of the VM. For example, by attaching the“__is__”type
specifier to function b_copy with Partition 31 in Table 1,
we make b_copy a VM instruction. Because b_copy is
frequently called (9264 times in total, see the callgraph
in Appendix C, the call-overhead of this MBS partition
can be substantially reduced and performance increased
by 2.4%6 Likewise, we got a speedup of 3.7% for bxor
and 4.59% for b_bitlength. Making a frequently ex-
ecuted function a VM instruction is highly profitable,
but the function must be known to be a fixed and im-
mutable part of an application (dynamic code update
techniques can only update whole functions, but not
part of a function). Instruction set extensions are simi-
lar to machine-code functions of application-specific vir-
tual machines [23], but our mechanism saves the call
overhead to machine-code functions and incorporates
energy efficiency of functions to provide profile-guided,
semi-automated creation of energy-efficient application-
specific virtual machines.

7. CONCLUSION
We have introduced a virtual-machine based program-

ming environment named TinyVM that uses compressed
bytecode as its main code representation. Compressed
bytecode is executed in-place, thereby avoiding CPU-
and memory-intensive decompression on the mote. Byte-
code interpretation can be further improved by the ex-
ecution of machinecode. TinyVM seamlessly integrates
the execution of compressed bytecode and machinecode,
which maximizes performance while keeping the appli-
cation’s memory footprint small. Interpreter instruction
set extensions save the procedure call overhead from
bytecode to machine-code. Our Machine-code/Bytecode
Selection algorithm (MBS) employs discrete optimiza-
tion to achieve an optimal/near optimal partitioning of
a WSN application into machine and bytecode. The
6We determine these call-overheads when we profile the
application during MBS. The overhead for function v is
Σu∈callers(v)Evm→mc(u, v), where callers(v) is the set of all
functions that call v.



application developer can override this partitioning to
explicitly trade space for speed/energy or vice versa7.

We have implemented our programming environment
and conducted experiments with WSN benchmarks on
several platforms, including IA32, Intel iMote2 and Mica2.
TinyVM is significantly more efficient than other ap-
proaches while maintaining a smaller memory footprint
at the same time.

We are currently preparing a GPL-release of the TinyVM
framework to make it available to the community and
to get valuable feedback.
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APPENDIX
A. AMPL MODEL
# define nodes and edges of static callgraph
# nodes are functions and edges are calls
set F;
set C within (F cross F);
# memory limit for program in bytes
param MemoryLimit, >=0;
# space and energy requirement of a function
# in bytecode representation
param SpaceVM{F}, >=0;
param EnergyVM{F}, >=0;
# space and energy requirement of a function
# in machine code representation
param SpaceMC{F}, >=0;
param EnergyMC{F}, >=0;
# energy requirements for a transitions between
# bytecode and machine code.
param EnergyVMtoMC{C}, >=0;
param EnergyMCtoVM{C}, >=0;
# binary decision variable for each function that
# decides whether the function is represented in
# bytecode or in machine code.
var x{F}, binary;
# Variable y[u,v] is one if both adjacent
# functions of edge (u,v) in the call graph
# are in bytecode; otherwise zero.
var y{C}, binary;
# minimize the energy of the whole program
# considering the energy of each function
# and the transitions between bytecode and
# machine-code.
minimize energy:
(sum{u in F} (EnergyVM[u] * x[u] +

EnergyMC[u] * (1- x[u]))) +
(sum{(u,v) in C} EnergyVMtoMC[u,v]*(x[u] - y[u,v])) +
(sum{(u,v) in C} EnergyMCtoVM[u,v]*(x[v] - y[u,v]));
# memmory constraint
subject to memory:
sum{u in F} (SpaceVM[u] * x[u] +
SpaceMC[u] * (1 - x[u])) <= MemoryLimit;

# linearization of term y[u,v] = x[u]*x[v]
# for all edges (u,v) in callgraph
subject to linear1{(u,v) in C}:

y[u,v] <= x[u];
subject to linear2{(u,v) in C}:

y[u,v] <= x[v];
subject to linear3{(u,v) in C}:

x[u] + x[v] - 1 <= y[u,v];

B. PROOFS
Proof. Proof of Theorem 1. Given an instance of a 0 − 1

knapsack problem with set of items A, a capacity of the knapsack
K, and profit and size parameters for each item in set A. The
reduction from 0-1 knapsack to MBS works as follows: Each ele-
ment in A becomes a function u in F . There are no call-sites in
the callgraph, i.e., C = ∅, and we set the parameters of the MBS
problem as follows:

Evm(u) = 0, for all u ∈ A

Emc(u) = profit(u), for all u ∈ A

Svm(u) = size(u), for all u ∈ A

Svm(u) = 0, for all u ∈ A

Stotal = K

We obtain a reduced mathematical program of MBS

minf =
X
u∈A

profit(u)−
X
u∈A

profit(u)xu

s.t.
X
u∈A

size(u)xu ≤ K

that solves the Knapsack problem since the objective function
can be rewritten to max f =

P
u∈A profit(u)xu.



C. CALLGRAPHS

b_bitlength
17398

b_xor
12138

f_add
12138

12138

b_copy
9264

b_testbit
9086

b_shiftleft1
6244

4270

b_shiftleft2
2164

2164

b_shiftleft
2130

2070

b_compareto
889

b_sub
536

ecc_memset
396

b_clear
391

391

f_mod
376

94470 376376

f_mul
282

90241974 282

b_iszero
196

p_iszero
192

196

b_isequal
154

c_add
98

666

282192 154

p_copy
98

98

f_inv
94

94

196 17302

11472

94

427021642130 94

b_halfprint
5

b_setbit
5

p_clear
5

10

c_mul
2

2

62

98

2

p_print
2

4

event
Boot

1

5

5 3

b_mod
1

513 536

5

f_do_all
1

f_generate_secret
1

1

f_generate_privKey
1

1
f_generate_pubKey

1

1

f_generate_randomKey
1

1

task
 task_function

1

1

1 1

1

1

1 1

Figure 11: Callgraph for the Ecc benchmark: node and edge labels represent calling frequencies;
three initialization functions have been omitted for space considerations. The Ecc callgraph was used
with the MBS problem in Section 6.2. In Section 6.3, functions b_copy, b_xor and b_bitlength were
compiled to VM instruction set extensions to save the call overhead from bytecode to machine-code
functions.
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