
Design and Performance Analysis of a
Distributed Java Virtual Machine

Mihai Surdeanu, Member, IEEE, and Dan Moldovan, Senior Member, IEEE

AbstractÐThis paper introduces DISK, a distributed Java Virtual Machine for networks of heterogenous workstations. Several

research issues are addressed. A novelty of the system is its object-based, multiple-writer memory consistency protocol (OMW). The

correctness of the protocol and its Java compliance is demonstrated by comparing the nonoperational definitions of Release

Consistency, the consistency model implemented by OMW, with the Java Virtual Machine memory consistency model (JVMC), as

defined in the Java Virtual Machine Specification. An analytical performance model was developed to study and compare the design

trade-offs between OMW and the lazy invalidate Release Consistency (LI) protocols as a function of the number of processors,

network characteristics, and application types. The DISK system has been implemented and running on a network of 16 Pentium III

computers interconnected by a 100Mbps Ethernet network. Experiments performed with two applications: parallel matrix multiplication

and traveling salesman problem confirm the analytical model.

Index TermsÐObject-oriented distributed shared memory, Java Virtual Machine, performance analysis, memory consistency

protocols, consistency models.
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1 INTRODUCTION

THE desire for software simplicity in complex projects is in
part responsible for the large popularity of the Java

language. Complex projects, on the other hand, often require
parallel or distributed processing. Unfortunately, so far,
parallelism in Java has been limited to either multi-threading
on symmetric multiprocessors (SMPs) or distributed com-
puting, using Remote Method Invocation (RMI). None of
these options is extremely attractive: The first comes with an
additional hardware cost and the second implies increased
software complexity. Our goal in this project is to take
advantage of the inherent parallelism available in a network
of workstations (NOW) without requiring any modifications
to Java multithreaded applications.

This paper focuses on the design of a correct (meaning
compliance with the Java Virtual Machine Specification
(JVMS) [17]) and performant distributed shared memory

(DSM) Java Virtual Machine (JVM). Several research issues
are addressed.

A new object-based multiple-writer memory consistency

protocol (OMW) for a distributed Java Virtual Machine is

presented. OMW is adapted from the update-based,
multiple-writer Lazy Release Consistency protocol. Taking
advantage of the object framework offered by the JVM,
OMW adds the following improvements to the original

protocol: 1) The protocol minimizes its overhead by auto-
matically classifying objects as shared or unshared. Because
unshared objects have no consistency overhead, the

protocol's strategy to maintain objects unshared as much

as possible leads to significant performance improvement.

2) Access faults are completely avoided. Based on the thread

structure, OMW detects if an object may be accessed by a

remote processor and provides object copies as necessary.

3) The OMW protocol is completely decentralized. Due to the

update nature of the protocol, all nodes have up-to-date

information about shared objects protected by synchroniza-

tion variables; hence, object directories are not required.
Correctness becomes a very important issue when one

realizes that the JVMS consistency model is not compa-

tible with a distributed shared memory architecture. The

JVMS provides an operational definition of the Java

Virtual Machine memory consistency model (JVMC) by

defining the interaction rules between two memory

layers: global shared memory and thread private memory

(see Appendix A). This definition assumes that shared

memory is available; hence, it is not applicable to

architectures without shared memory (i.e., NOWs). To

mitigate this architectural incompatibility, we introduce an

architectural-independent, nonoperational definition for

JVMC (JVMCnop). A comparison of JVMCnop with a

nonoperational definition of release consistency (RCnop)

indicates that JVMC is stronger than RC, but, for data-race-

free programs [2], [13], these two consistency models are

equivalent. Even if it is not explicitly stated in the JVMS, the

data-race-free program assumption is generally true for

programs written for weak consistency models; hence, the

applicability of this result is not reduced. As shown in

Fig. 1, this equivalence is the bridge that links JVMC with

consistency protocols originally designed for RC. For

asynchronous algorithms, the JVMS is not feasible for a

distributed shared memory implementation. In order to be

JVM compliant for asynchronous programs, release con-

sistency protocols required additional constraints which
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affect their performance. To our knowledge, this is the
first work on distributed JVMs that reports this issue.

An analytical performance model was developed. It defines
the parallel execution time in terms of the computation time
and the overhead consisting of synchronization, thread
creation time, access fault overhead, and consistency
barrier overhead. The model allows us to compare the
OMW protocol with a lazy invalidate (LI) protocol and
realize possible trade-offs as a function of the number of
processors, network characteristics, and application types.
The experimental results measured on two different bench-
marks confirm the analytical model.

The OMW protocol has been implemented in DISK
(DIStributed Kaffe1), a distributed Java Virtual Machine,
running on a network of 16 Pentium III processors. For
flexibility and portability, DISK has been implemented
entirely in user space.

2 RELATED WORK

A distributed Java system is appealing because it
combines high performance with language elegance and
simplicity. Fig. 2 shows how both DSM systems and
Java environments have evolved towards this common
ground: DSM systems seek the elegant object-oriented

framework, while Java environments indicate a tendency
towards distributed computing.

Page-based DSM systems (IVY, TreadMarks, Coherent
Virtual Machine, Millipede) were chronologically the first to
appear and they still enjoy a large popularity. IVY was the
first system to introduce the notion of distributed shared
memory to networks of workstations [21]. IVY emulates the
cache of a multiprocessor architecture using the work-
station's memory management unit and the operating
system. The virtual memory fault handler is redirected to
IVY's routine, which is aware that a missing page may not
be available on the local disk (like a traditional virtual
memory system), but on a remote workstation. While page-
based DSM systems have evolved significantly since IVY,
the basic idea of using the virtual memory management
system to implement consistency remained the same. IVY
implements sequential consistency using a single writer
multiple reader protocol. Modern page-based DSM systems
attempt to correct IVY's two main disadvantages: First,
sequential consistency protocols have poor performance
due to the large number of consistency messages and,
second, single writer protocols have the false sharing
problem. The false sharing problem is caused by two (or
more) variables being located on the same page. If each
variable is used by a different processor, the page bounces
between nodes, even though conceptually there is no
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Fig. 1. Transition from the JVMC operational definition to consistency protocols.

1. We use Kaffe [19] version 1.0.b5.

Fig. 2. Evolutionary tendencies in DSM and Java systems.



shared data. The TreadMarks page-based DSM system
avoids both these disadvantages [5]. TreadMarks achieves
performance close to equivalent message-passing architec-
tures by replacing sequential consistency with lazy release
consistency [20]. Lazy release consistency delays the propa-
gation of consistency messages until a synchronization
variable is acquired by a different processor. The size of
consistency messages is reduced because only pages
known to be out of date on the remote node are
updated/invalidated. The false sharing problem is miti-
gated by the usage of multiple writer protocols. Multiple
writer protocols allow a page to be concurrently written,
as long as different processors access different parts of
the page. The latest research from the TreadMarks group
focuses on runtime adaptive memory consistency proto-
cols. Based on the observed page accesses, the Tread-
Marks memory consistency protocol is capable of selecting
between single or multiple writers and between invalidate
or update strategies [6]. Other page-based DSM systems,
such as Coherent Virtual Machine (CVM) [11], [26] and
Millipede [22], reduce the number of consistency messages
through thread migration. Based on their page access profile,
threads are migrated on the nodes that maximize the
number of local pages; hence, reducing the number of
consistency messages.

Shared-variable DSM systems (Munin [10], Midway [9])
brought language support for DSM. Even though it is
variable-based, Munin uses the virtual memory manage-
ment unit to implement consistency. To avoid the false
sharing problem, the Munin compiler allocates every
shared variable to a separate page. Several protocols are
implemented in Munin for shared variables:

1. Read-only variables are freely replicated without any
consistency management,

2. Migratory variables are not replicated: They migrate
from node to node as critical regions are entered,

3. Write-shared variables are maintained consistent
through a multiple writer protocol implementing
eager release consistency [13], and

4. Conventional variables, which are sequentially
consistent.

The protocol selection is performed by the programmer
which annotates shared variables and the desired consis-
tency protocol with special keywords. Midway is another
well-known variable-based DSM system, in many aspects
similar to Munin. Midway's novelty is the implementation
of a new consistency model: entry consistency. Entry
consistency associates a synchronization variable with
every shared variable. Similar to lazy release consistency,
consistency messages are propagated when synchroniza-
tion variables are acquired, but, unlike release consistency,
entry consistency updates/invalidates only the shared
variable associated with the acquired synchronization
variable. Similarly to Munin, Midway relies on the
programmer to annotate shared variables.

Object-based DSM systems (Linda, Orca) provide a more
elegant programming framework for DSM environments.
Linda provides a conceptual view of the distributed shared
memory as a tuple space [3]. Tuples are sets of fields of
certain types, roughly similar to C structures. Tuples can be

added to the shared space with the out operation and
retrieved with the in operation, which implements an
associative search over the tuple space. The tuple space is
maintained consistent by broadcasting changes on all nodes
part of the Linda system. Unlike Linda, whose program-
ming interface is an extension of the C language, Orca
proposes a completely new language [8]. Orca is a parallel
environment designed from scratch as an object-oriented
DSM system. Orca's programming language is based on
Modula-2, with additional distributed programming fea-
tures. The Orca runtime system is implemented on top of
the Amoeba operating system. A very important feature of
this operating system is that it has support for reliable
broadcast. This feature is used to broadcast the operations
performed on shared objects such that they are simulta-
neously performed on all object copies. Because the reliable
broadcast mechanism offers a unique order for all opera-
tions performed on shared objects, Orca implements
sequential consistency. Orca objects can be in one of two
states: single-copy or replicated. Replicated objects are
maintained consistent with the broadcast mechanism
described above. Single-copy objects are accessed through
remote procedure calls. Based on object access profiles, the
Orca runtime system decides if an object should be
replicated or maintained in a single copy.

From the Java perspective, Sun offers support for
distributed computing in Java with Remote Method Invoca-
tion (RMI) since release 1.1, and release 1.2 is Corba-
compliant. Even though both RMI and Corba hide message
exchanges behind method calls to remote objects, they are
still explicit client-server architectures lacking the transpar-
ency required from a distributed system. RMI and Corba
also lack true support for optimizations like data replication
and computational load balancing commonly seen in
distributed systems.

The next evolutionary step is enhanced distributed Java
Application Programming Interfaces (API). An interesting
representative in this category is the Aleph toolkit [15].
Aleph provides distributed services in the form of an API,
including both data and control shipping. Jini(tm) is Sun's
version of a distributed API [18]. Instead of providing a
shared space for objects, Jini is a platform for sharing
services. A service is an entity that can be used by a user or a
program. Any kind of network device can make a service
available through Jini, regardless of the connection type or
the software network interface (RMI, Corba, etc.). Jini also
helps clients find and access the posted services. The Jini
service protocol includes secure access to services and
accesses in the form of leases or transactions. Distributed
Java APIs, such as Jini and Aleph, do not offer complete
transparency, but they are attractive due to their flexibility.

JavaParty [24] implements a Java-based distributed envir-
onment, built as a cluster of regular JVMs connected through
RMI. JavaParty uses a new keyword to mark objects as
shared. A preprocessor translates this code into RMI-
based Java code. JavaParty provides the programmer
with a simple interface for distributed programming.
However, JavaParty does not offer complete transpar-
ency, the programmer having to separate local objects
from shared objects. To our knowledge the only other
project that qualifies as a distributed shared memory
Java Virtual Machine is Java/DSM [27]. Java/DSM is a
JDK 1.0.2-compliant distributed JVM implemented on top
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of TreadMarks. Java/DSM allocates objects and classes
with TreadMarks shared-memory allocation routines.
This modular design allows TreadMarks to provide the
required memory consistency, while Java/DSM imple-
ments the JRE. However, we believe that DISK's
approach, where the JVM is tightly connected to the
consistency protocols allows for better tuning and higher
performance. Java/DSM also fails to indicate whether or
not the consistency protocols used are JVMS compliant.

The theoretical foundation of this paper builds upon the
work published by Gontmacker and Schuster [14] who
introduce a nonoperational definition for JVMC when no
locks are involved (first two sections of Appendix A) and
compare this definition with traditional consistency models.
When locks are involved, they show that JVMC is stronger
than RC, but no definition is provided. Unlike Gontmacker
and Schuster, we provide a complete, self-contained,
nonoperational definition for JVMC, including both the
nonlock and lock constraints. Furthermore, we show that
this definition is indeed stronger than RC, but, for data-
race-free programs, these two models are equivalent.

3 DISK DESIGN OVERVIEW

The DISK system consists of a set of nodes connected
through software point-to-point TCP channels. Fig. 3 shows
the block diagram of a DISK node. The modules part of a
DISK node are detailed next.

DISK uses the Kaffe Java Virtual Machine [19] to execute
the Java bytecode on each node. This module contains the
Just-In-Time (JIT) compiler and the garbage collector.

The consistency barriers link the JVM with the consistency
modules. To implement the software barriers, we modified
Kaffe's JIT compiler to insert consistency function calls
before object and class write-access instructions. We show,

in Section 6, that the average overhead of the software-
implemented consistency barriers for the tested applica-
tions is only 3 percent. This is possible due to the fact that
the consistency barriers affect only write instructions to Java
objects and classes. Write accesses to Java primitive types,
or JVM internal data are not affected.

The modified Java native libraries redirect the JVM thread,
lock, and I/O native functions to our own distributed
implementations. Both this module and the software barrier
module require minimal changes to the JVM source code.

The consistency module contains the core of the system:
the memory consistency protocol. This protocol is described
in detail in Section 4.

The main function of the distributed thread management
module is processor allocation for Java threads. DISK currently
supports only a round-robin processor allocation algorithm.
Both this module and the consistency module use the
services of the lock and thread directory. This directory tracks
the location of every lock owner and the processor where
every thread is allocated. We currently use a centralized
directory for threads in order to provide up-to-date
information for a possible load-balancing processor
allocation algorithm. The lock directory is distributed on
all N nodes in a round-robin strategy based on the lock
id modulo N .

The distributed I/O module provides I/O transparency to
Java application threads. The goal in designing this
module was to have as little internode interaction as
possible. I/O accesses generated during class loading are
performed ªlocallyº on an NFS-mounted file system. The
protocol for application-based I/O accesses is based on
the following algorithm:

. When a file is opened, the upper log�N� bits of the
file descriptor are set to the local node id ( N being
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the number of nodes in the system). This algorithm
limits the number of possible file descriptors to
2word size

N on each node. However, the limit imposed by
the operating system is usually much smaller; hence,
we do not consider this a major drawback.

. Read or write accesses to a file descriptor are
performed locally if the upper log�N� bits of the file
descriptor are equal to the node id. Only if the node
id stored in the file descriptor is different than the
local node id the I/O request is forwarded to a
remote node. The standard I/O streams (input,
output, and error) are exempt from this algorithm:
They are all redirected to the node where the main
Java thread runs.

The DISK modules introduced above communicate with
their peers on other nodes using our own implementation
of a multithreaded Remote Procedure Call (RPC) protocol. This
protocol hides the details of the communication layer
behind the stub/skeleton RPC abstraction.

As mentioned before, DISK uses a fully-connected logical
topology, each node-to-node link being a TCP channel. The
channel end-points are managed on each node by the
communication module. The description of a communication
channel end-point is presented in Fig. 4. Each channel input
is monitored by a dedicated dispatcher thread. Incoming
requests are enqueued by the dispatcher thread in the
request queue. One worker thread per channel is responsible
for dequeuing and serving request messages. This dis-
patcher/worker strategy provides better CPU utilization
than the more simple approach where the dispatcher thread
serves the incoming requests. If the incoming message is a
reply, the dispatcher thread wakes up the corresponding
Java thread waiting for this response.

The conversion module is an optional module. If plugged
in, this module is in charge of translating data to/from
network standard. The conversion module allows hetero-
genous systems to be part of the same DISK system.

4 OBJECT-BASED MULTIPLE-WRITER MEMORY

CONSISTENCY PROTOCOL (OMW)

4.1 Protocol Description

The object-based, multiple-writer memory consistency proto-
col (OMW) implemented in DISK is adapted from the
update-based, multiple-writer Lazy Release Consistency

protocol introduced by Keleher in [20]. Taking advantage of
the object framework offered by the JVM, OMW adds the
following improvements to the original protocol: 1) Access
faults are completely avoided. Based on the thread structure,
OMW detects if an object may be accessed by a remote
processor and provides object copies as necessary. 2) Until
an object is accessible by a remote thread, the protocol
marks it as unshared, thus reducing the consistency overhead.
3) The OMW protocol is completely decentralized. Due to the
update nature of the protocol, all nodes have up-to-date
information about shared objects protected by synchroniza-
tion variables; hence, object directories are not required.

The object state transitions permitted by the protocol are
shown in Fig. 5. Initially, all objects are in the LOCAL state.
An object maintains this state as long as it is accessible from
a single thread. There is no consistency overhead for
objects in the LOCAL state. The addition of this state to
the OMW protocol was determined by the fact that more
than 90 percent of the Java heap is allocated to objects
that are not reachable outside the thread that created
them [12]; hence, they can be ignored by the consistency
protocol. To our knowledge, OMW is the only consistency
protocol that uses this observation to reduce the consis-
tency overhead. A LOCAL object changes its state to
READ-ONLY if the access-fault-avoidance algorithm detects
that the object has become shared. An object becomes
shared in one of the following two conditions:

Conditions for access fault avoidance:

1. The object is directly or indirectly reachable from
a thread object and the thread attached to this
object is started. If the newly started thread is
allocated to a remote processor, OMW provides
remote copies for all objects not available on the
destination processor but reachable from the
thread object. This operation is needed to avoid
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possible access faults from the destination pro-
cessor. The initial state for remote copies is
READ-ONLY.

2. The object is directly or indirectly reachable from
an updated object that is propagated to a remote
processor. Similarly with the previous case, OMW
provides remote copies for all objects not avail-
able on the remote processor but reachable from
the update.

The first write access to a READ-ONLY object generates a
write fault. Upon a write fault, OMW creates a copy of the
object (a twin) and changes the object state to READ-WRITE.
A READ-WRITE object moves back in the READ-ONLY
state when a synchronization variable is acquired by a
remote processor. When a synchronization variable is
yielded to a remote node, a write-notice for each modified
object is created (the write-notice being a bitmap of the
modified object fields), the twin is discarded, and the object
state is moved back to READ-ONLY. Based on the object
write-notices, OMW propagates only the modified object
fields (the diff) to the remote processor. According to the
access fault avoidance algorithm, copies of objects reachable
from the diffs are also propagated to the remote node. To
avoid excessive communication, OMW maintains for each
shared object a list of processors having a copy of the object
(the copyset). Objects reachable from diffs are sent to the
remote node only if the destination processor is not already
in the copyset.

OMW uses diff combining to reduce consistency network
traffic. An example of diff combining and the dangers
generated by this method is presented in Fig. 6. In Fig. 6,
three processors share two Java variables, X and Y, part of
the same Java object O. Accesses to variable X are
synchronized through lock LX and accesses to variable Y
are maintained consistent through lock LY. Java consistency
requires that before any lock acquire, all modified variables
be updated. Hence, when processor P2 acquires lock LX,
both X and Y are propagated from P1 to P2. The
inconsistency arises when processor P3 acquires lock LX.
Since up to this point there has been no communication
between node P2 and P3, processor P2 is not aware that P3
has seen the write to variable Y from P1. Hence, the
combined diff for object O sent from P2 to P3 includes both
variable X with value 2 and variable Y with value 1.
Applying the received diff on the local copy of object O on
node P3 overwrites the w(Y)2 operation, an illegal action
since, according to the data-race-free model, the operation
w(Y)1 on node P1 ªhappened beforeº w(Y)2 on node P2 [2].

The problem illustrated in Fig. 6 is avoided in DISK by not
accepting write notices that have already been seen on the
receiving node. Formally, each processor maintains an
interval matrix im with one row per processor. For example,
if im�p��q� � 2, the local node knows that processor p has seen
all write notices generated by processor q up to interval 2. On
each node, a new interval starts when a lock ownership is
either accepted from or yielded to a remote node.The
algorithms for sending and receiving update messages
are the following:

Algorithm 1. Algorithm for sending combined diffs to
processor p.

1. For all processors q, send to p all write notices
belonging to interval iq, where iq > im�p��q�.

2. For each object o modified in the sent intervals, build
the combined write notice sentwno as the bit OR of all
write notices for this object in the sent intervals:
sentwno � OR�wno; wno � iq and iq > im�p��q��.

3. For each object o modified in the sent intervals, build
the combined diff to include all fields marked in
sentwno.

4. Send the combined diffs.

Algorithm 2. Algorithm for receiving combined diffs.
1. Receive all intervals iq. If iq > im�this��q� accept this

interval. Otherwise, discard interval iq.
2. For each object o modified in the received intervals,

build the combined write notice recvwno as the bit OR
of the write notices part of accepted intervals:
recvwno � OR�wno; wno � iq and iq > im�this��q��.

3. For each object o modified in the received intervals,
receive the combined diff. Apply on the local copy
only fields marked in recvwno.

The diff sending/receiving operations are performed
when a synchronization variable is acquired by a remote
processor. In Java, every object is associated with a
synchronization variable. To reduce the overhead of the
synchronization operations, OMW marks synchronization
variables as shared only when the corresponding Java object
becomes shared. For unshared synchronization variables,
OMW uses the JVM built-in MONITORENTER and MON-
ITOREXIT operations. Only when a shared synchronization
variable is not available on the local processor a request is
sent to the corresponding synchronization variable direc-
tory. The request includes the interval timestamps of the
node requesting the synchronization variable. This informa-
tion is updated on the node granting the lock before diffs
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are constructed and sent. The Linearizability required by
the JVM specification for synchronization variables (see
Section 5) is provided by the lock directories. Fig. 7 details
the situation when two requests for the same synchroniza-
tion variable are sent to the synchronization variable
directory. This information is updated on the node granting
the lock before diffs are constructed and sent. The
Linearizability required by the JVM specification for
synchronization variables (see Section 5) is provided by
the lock directories. Fig. 7 details the situation when two
requests for the same synchronization variable are sent to
the synchronization variable directory. The lock directory
records the last request for each shared synchronization
variable. When processor P2 requests the lock owned by P1,
the lock directory records P2's address and forwards the
request to P1. When processor P3 requests the same lock,
the request is forwarded to processor P2, even though P2
may not own the synchronization variable yet. This simple
mechanism of forwarding a synchronization variable
request to the node with the last known request implements
a distributed ownership queue, as illustrated by the lock
yield messages in Fig. 7. The order given by the distributed
queue guarantees Linearizability.

The advantages of the OMW protocol are the following:

. First, the protocol minimizes its overhead by
automatically classifying objects as shared or
unshared. Previous work reports that in Java
90 percent of the objects are unshared objects
[12]. Because unshared objects have no consistency
overhead, the protocol's strategy to maintain
objects unshared as much as possible leads to
significant performance improvement. To our
knowledge, OMW is the only consistency protocol
that automatically detects when an object becomes
shared and uses this information to reduce its
overhead. Other DSM systems either consider all
objects shared [8] or they require the programmer
to annotate the shared objects [10], [23], [24].

. Second, the protocol does not require consistency
barriers for read accesses and the consistency
barriers for write accesses become very simple: their
only purpose is to initiate the transition from the
READ-ONLY to the READ-WRITE state. This
feature is very important for a DSM system with
all-software implementation for consistency barriers.

As shown in Section 6, OMW's consistency barriers
take an average of 3 percent of the sequential
execution time, versus an average of 110 percent
for the traditional invalidate-based protocols.

. Third, the protocol is almost completely decentra-
lized. Besides the lock directories required to
provide Linearizability for synchronization vari-
ables, the protocol maintains no centralized informa-
tion. Due to the update nature of the protocol,
processors have up-to-date information about all
shared objects. Hence, there is no need to maintain
centralized object directories or implement other
strategies to locate valid object copies.

The main disadvantage of the protocol is the potential

propagation of more objects than necessary. This may

happen in one of the two following situations:

. Objects that are not accessible anymore by a
processor are still updated during lock acquire
operations performed by the processor. This can be
avoided by a garbage collector that interacts with the
OMW protocol. When a shared object copy is no
longer accessible by a processor, the garbage
collector can remove the local processor from the
object copyset. During future update operations, the
copyset gets propagated to remote nodes which thus
become aware that this node is no longer interested
in the object. The DISK garbage collector does not
currently update object copysets, but the framework
for a possible interaction with the garbage collector
is prepared.

. Shared objects that are accessible by a processor, but
are not actually accessed, are still updated. Because
the objects are still accessible the garbage collector
cannot modify their copyset and the processor
continues to receive useless updates. The only
solution to avoid this problem is to use an invalidate
approach. However, for a system where most objects
are small [12] and the overhead of consistency
barriers for read accesses is large, an update
approach is an attractive solution. Other projects
have taken similar approaches [8].

The overhead of the additional object propagation is analyzed

in Section 6 where we compare OMW with a traditional

home-based, multiple-writer, lazy invalidate Release Con-

sistency protocol (LI) [5], [20]. The conclusion of this

comparison is that the invalidate protocol outperforms

OMW only for configurations with a large number of

processors and applications with tightly connected threads,

i.e., applications where the size of the shared objects is a

significant percent of the overall heap space.

4.2 Comparison with Other Memory Consistency
Protocols

In order to emphasize the novelty of the OMW protocol, we

compare it against the protocols used in three well-known

DSM systems: Munin [10], Midway [9], and Orca [8].

Comparison with Munin. Munin relies on the program-

mer to identify shared and unshared variables. OMW is

capable to automatically identify shared objects based on
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the Java thread structure. The consequences are two-fold:
first, OMW is able to execute Java applications without any
changes to the source code and, second, the consistency
overhead is reduced because OMW automatically main-
tains objects in the unshared state as much as possible.

OMW requires less messages than Munin's consistency
protocol. At lock release time, Munin sends object updates
to all processors in the object copyset. OMW sends updates
only to the processor acquiring the lock. Starting from the
assumption that programs are data-race free, all processors
eventually receive the updated information during syn-
chronization operations [20].

When Munin accesses an invalid object copy, a ªfollow
the probable ownerº strategy is used to locate the actual
object owner. The same strategy, which takes an indefinite
number of messages, is used to locate synchronization
variables. OMW does not need to locate valid object copies.
Due to its update nature, nodes have valid copies for all
accessible shared objects. Synchronization variables are
located using a distributed lock directory, strategy that
takes a constant number of three messages. For this reason,
OMW is a better candidate for a real-time system.

Munin uses a timer-based algorithm to mark unused
pages. OMW is capable to use much more accurate
information from a garbage collector to mark unneeded
objects.

Comparison with Midway. Midway uses the entry
consistency model, while OMW uses the lazy release
consistency model. The main difference between entry
consistency and lazy release consistency is that entry
consistency associates every shared object with a distinct
synchronization variable. When a synchronization variable
is acquired only the corresponding object is updated.
Similarly, OMW associates every Java object with a
synchronization variable, but when a synchronization
variable is acquired, all modified objects are updated. This
is a constraint imposed by the Java Virtual Machine
specification.

Similarly with Munin, Midway introduces new key-
words in the C language to mark shared variables. OMW
does not require any changes to the Java language. Shared
objects are identified at runtime with the same benefits
mentioned in the Munin comparison: ability to run
unmodified Java programs and consistency overhead
minimization.

Midway uses the same mechanism as Munin to locate
the owner of a synchronization variable. Again, OMW's
strategy requires a constant number of messages to locate
synchronization variables; thus, it has better worse-case
behavior and it is a better candidate for real-time protocol.

OMW and Midway share similar strategies to reduce the
overhead of the update messages. Both rely on the
ªhappens beforeº relation to reduce the number of objects
included in update messages, but with different implemen-
tations. Midway uses a global logical clock, while OMW
uses an interval matrix, where each matrix line corresponds
to one processor's view of the system.

Comparison with Orca. Orca implements sequential
consistency with a reliable broadcast mechanism that
replicates all object operations. OMW implements lazy

release consistency, which is known to achieve better
performance. OMW sends update information only during
synchronization variable acquire operations. The size of the
consistency messages is reduced by considering only
objects known to be present but out-of-date on the
destination node.

Orca considers all objects shared, but is capable of
changing object states between replicated and single-copy
based on the object access profiles. This runtime adaptation
is the closest behavior we found to OMW's runtime
classification of objects in shared or unshared. The
difference is that Orca uses a heuristic based on the ratio
of read to write accesses, while OMW uses the thread
structure to identify newly shared objects.

Both Orca and OMW use an update strategy instead of
the invalidate strategy typically used in page-based
systems. Both systems decided on the update strategy
based on the small average object size, which translates into
small overhead for the consistency messages and simpler
consistency barriers.

5 CORRECTNESS OF THE OMW PROTOCOL

This section demonstrates the compliance of the OMW
protocol introduced in Section 3 with the Java Virtual
Machine Specification. In order to prove the equivalence of
Release Consistency, the consistency model implemented in
DISK, with JVMS, the consistency model defined in the
JVMS, we provide nonoperational definitions for both
models and show that these new definitions are equivalent
for data-race-free programs.

The following conventions are used throughout this
section: The term processor identifies a Java thread.
Processor operations are limited to the following four:
READ, WRITE, ACQUIRE, and RELEASE. The READ operation
corresponds to the JVMS load

2 abstract operation and the
WRITE operation corresponds to the JVMS store opera-
tion. Note that no assumptions are made about the
underlying implementation of the memory system (we
do not use the read and write global memory access
JVMS operations). Similarly, the ACQUIRE and RELEASE

synchronization operations correspond to the lock and
unlock JVMS abstract operations.

The memory access unit is a variable. A Java variable is
defined in the JVMS as a storage location having either a
primitive type or a reference (pointer) type. Java objects
are collections of variables. From a memory perspective,
an object is similar to a page, the only major difference
being that Java objects have variable sizes while pages
have fixed sizes.

A local history of processor p, denoted Hp, is a sequence of
operations executed in the program order by processor p. If
o1 and o2 are two operations in Hp and o1 appears before o2,
then o1 precedes o2 in program order. The notation used is
o1!po o2 . A history H is a collection of all local histories. Hjx
is the subset of history H containing only operations on
variable x.

If H is a history, then S is a serialization of H if S is a linear
program sequence containing exactly the operations in H.
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The notation o1!S o2 indicates that o1 appears before o2 in
S. S is a legal serialization, if each READ operation returns the
value written by the most recent WRITE to the same
location.

The notation o1!E o2 indicates that operation o1 appears
before operation o2 in the wall-clock execution. This relation
is used to describe the Linearizability required for synchro-
nization operations in JVMC.

5.1 JVMC Nonoperational Definition

We define JVMC based on an abstract relation named ÿ!jvmc.
Intuitively, the ÿ!jvmc relation describes the JVMC bytecode
instruction dependencies. This is formally specified in
Definition 1.

Definition 1. For any two operations o1 and o2 in a history H,
o1ÿ!jvmco2 if one of the following conditions holds:

. (jvmc1): o1 and o2 are data-access operations (READ

or WRITE) on the same variable and o1!po o2.
. (jvmc2): o1 is a READ operation, o2 is a WRITE

operation, and o1!po o2.
. (jvmc3): o1 and o2 are two synchronization operations

(ACQUIRE or RELEASE) and o1!po o2.
. (jvmc4): o1 and o2 are two synchronization operations

and o1!E o2.
. (jvmc5): o1 is a data-access operation, o2 is a RELEASE

operation, and o1!po o2.
. (jvmc6): o1 is an ACQUIRE operation, o2 is a data-

access operation, and o1!po o2.
. (jvmc7): There is an operation o0 in H, such that

o1ÿ!jvmco0 and o0ÿ!jvmco2.

Definition 2. A history H is JVMC if there is a legal serialization S

of H such that, for any two operations in H o1 and o2, if o1ÿ!jvmco2,

then o1!E o2. A memory is JVMC if all acceptable histories under

this memory are JVMC.

Informally, conditions (jvmc1) and (jvmc2) describe the
data-access constraints from the JVMS (see also Appendix A).
Conditions (jvmc3) through (jvmc6) describe the JVMS
synchronization constraints and condition (jvmc7) pro-
vides the transitive closure for the ÿ!jvmc relation. Lemma 1
formalizes these observations.

Lemma 1. JVMC, as defined in Definition 2, is equivalent with
the memory consistency model of the Java Virtual Machine
defined in the JVMS.

The proof of Lemma 1 is presented in Appendix B.
For the sake of simplicity, Definition 1 ignores Java

volatile variables. The JVMS requires Linearizability for
volatile variable operations [14], so they can be added to
Definition 1 with two conditions similar to (jvm3) and (jvm4).

5.2 RC Nonoperational Definition

To make the comparison between JVMC and RC possible,
we provide a nonoperational RC definition using the same
formalizations as Section 5.1.

Gharachorloo et al. makes two implicit assumptions
before defining Release Consistency (Condition 3.1 in [13]):

1. The memory is coherent. This is formally expressed
in Definition 3.

2. Uniprocessor data dependencies are respected on

each processor. This is formally stated in Defini-

tion 5. Uniprocessor data dependencies are for-

mally expressed by relation o1!D o2 introduced in

Definition 4.

Definition 3. A memory is coherent if, for every variable x, there

is a legal serialization Sx of Hjx such that, if o1 and o2 are two

operations in Hjx and if o1!po o2, then o1!Sx o2 [4].

Definition 4. For any o1 and o2 two operations in a history H,
o1!D o2 if one of the following holds:

. DATA: o1 is a write, o2 is a read on the same variable,
and o1!po o2.

. ANTI: o1 is a read, o2 is a write on the same variable,
and o1!po o2.

. OUTPUT: o1 and o2 are write operations on the same
variable, and o1!po o2.

. INSTR: o1 is a read, o2 is a write, o1!po o2, and the value
stored by o2 is dependent on the value loaded by o1.

The first three conditions in Definition 4 are an

immediate translation of the classical data, anti, and

output dependencies between atomic high level instruc-

tions. INSTR dependency is needed here because we use

lower level memory access operations. The INSTR depen-

dency specifies that o1 is on the right-hand side and o2 is on

the left-hand side of the same high-level instruction. For

example, the addition a � b� c implies the following

INSTR dependencies: READ c! WRITE a and READ b !
WRITE a. Note that at this level of formal specification,

control dependencies are ignored. In Java, bytecode

control instructions do not act on memory locations

(variables); hence, they are not visible from the memory

perspective. Of course, control instructions have an

important role in generating processor histories. We

assume that all histories are computed with respect to

control dependencies.

Definition 5. A history Hp respects the uniprocessor

dependencies if there is a serialization Sp of Hp such that,

if o1 and o2 are two operations in Hp and o1!D o2, then

o1!Sp o2.

Because JVMC defines Linearizability for synchroniza-
tion operations, we need to compare JVMC with Release
Consistency with Linearizability for synchronization opera-
tions �RCl�. Making the observation that the operational
statements ªperformed beforeº and ªpreviousº used in [13]
are translated as ªappearing before in a legal serializationº
and ªprevious in the program orderº in a nonoperational
interpretation, we define the ÿ!rcl relation and �RCl� in
Definitions 6 and 7.

Definition 6. For any two operations o1 and o2 in a history H,
o1ÿ!rcl o2 if one of the following conditions holds:

. (rcl1): o1 and o2 are two synchronization operations
and o1!po o2.

. (rcl2): o1 and o2 are two synchronization operations
and o1!E o2.
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. (rcl3): o1 is an ACQUIRE operation, o2 is a data-access
operation, and o1!po o2.

. (rcl4): o1 is a data-access operation, o2 is a RELEASE

operation, and o1!po o2.
. (rcl5): There is an operation o0 in H such that o1ÿ!rcl o0

and o0ÿ!rcl o2.

Definition 7. A history H is RCl if there is a legal serialization S
of H, such that, for any two operations o1 and o2 in H, if
o1ÿ!rcl o2, then o1!S o2. Additionally, history H must be
coherent and uniprocessor dependencies must be respected in
all processor histories Hp part of H. A memory is RCl if all
acceptable histories under this memory are RCl.

5.3 Comparison between the JVMC and
RC Consistency Models

Lemma 2. JVMC is strictly stronger than RCl.

Proof. It is obvious that the conditions from Definition 6 are
similar with conditions (jvmc3) through (jvmc7) from
Definition 1. However, JVMC is stronger than RCl for the
following reasons: First, JVMC is stronger than Coher-
ence. JVMC requires a legal serialization of the global
history H with respect to condition (jvmc1), while
Coherence requires legal serializations of the same
condition only for subsets �Hjx� of the global history H.

Second, JVMC is stronger than Definition 5. Definition 5
requires that legal serializations of the!D relation exist for
local histories, while JVMC requires a legal serialization of
the global history with respect to Conditions (jvmc1) and
(jvmc2). Furthermore, Condition (jvmc1) is more restric-
tive than the DATA, ANTI, and OUTPUT dependencies
because it applies also to two READ operations on the
same variable. Condition (jvmc2) is stronger than the
INSTR dependency because it applies to all (READ, WRITE)
pairs if the READ operation precedes the WRITE operation
in program order, while the INSTR dependency imposes an
ordering only if the READ and WRITE operations are part
of the same high-level instruction. tu

Lemma 3. For data-race-free programs (or properly-labeled
programs in [13]), JVMC is equivalent with RCl.

Proof. The proof of this lemma follows from the observation
that RCsc is equivalent with Sequential Consistency (SC)
for data-race-free programs [13]. RCl is stronger than
RCsc; hence, RCl is stronger than SC. SC is obviously
stronger than conditions (jvmc1) and (jvmc2) in Defini-
tion 1, the only conditions that make JVMC stronger than
RCl. Hence, RCl is stronger than JVMC. We have shown
in Lemma 2 that JVMC is stronger than RCl; hence, for
data-race-free programs, RCl is equivalent with JVMC.tu

Lemma 3 shows that, under the assumption that
programs are data-race free, any consistency protocol
implementing RCl is correct according to the JVMS. This
statement proves the JVMS compliance of the OMW protocol,
an update-based, lazy Release Consistency protocol. How-
ever, for asynchronous algorithms, OMW is weaker than
JVMC. An informal proof of this statement is that multiple
writer protocols do not offer Coherence for concurrent
data accesses and JVMC is stronger than Coherence (see

Lemma 2). Formally, for a history H of an asynchronous

algorithm, OMW (or any other Release Consistency protocol)

does not guarantee a legal serialization with respect to

conditions (jvmc1) and (jvmc2) from Definition 1. Conditions

(jvmc1) and (jvmc2) are too strict for a distributed imple-

mentation because they require inter-node communication

outside synchronization intervals. In this paper, we do not

consider asynchronous algorithms; thus, we do not focus

on modifying the protocol to support asynchronous

algorithms.
The importance of the theoretical analysis performed in

this section is two-fold:

1. Lemma 3 proves that, for ªregularº (i.e., data-race
free) programs, OMW or, for that matter, any release
consistent protocol is JVMC compliant. This result
provides an important theoretical foundation for this
paper, considering that Java is a relatively new
language with a unique specification.

2. The uniqueness of the Java language is emphasized
by Lemma 2, which shows that, for asynchronous
programs, the constraints imposed by the JVMC are
stronger than those required by release consistency.
This observation proves that there are circumstances
under which release consistency protocols are
incorrect according to the JVMC. While we do not
handle these special situations, a JVMC-compliant
distributed JVM should implement special consis-
tency protocols to address these issues. To our
knowledge, no distributed JVM project implements,
or even mentions, this problem.

6 PERFORMANCE ANALYSIS

6.1 Performance Model

In this section, we analyze the performance of the OMW

protocol introduced in Section 3. The OMW executions are

compared with DISK executions using a traditional home-

based, multiple-writer, lazy invalidate Release Consistency

protocol (LI).
The performance of a software-implemented DSM system

is modeled using the following variables:

. N: the number of threads,

. P: the number of processors,

. t: the thread granularity,

. ts: the synchronization overhead,

. tc: the distributed thread creation overhead,

. to: the thread execution overhead,

and the following constants:

. �: the interconnection network overhead, defined as
the number of clock cycles needed to transmit one
byte of data, and

. �: the software consistency barrier overhead, defined
as the number of clock cycles needed to verify the
validity of an object.

The thread granularity is an application dependent para-

meter, a function of the problem size n and the number of

threads created by the application N. The synchronization

overhead ts can be expanded as ts � �cs � ds��, where cs is
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the overhead for control synchronization messages and ds is
the overhead for data appended to the synchronization

messages. Similarly, tc can be expressed as tc � �cc � dc��,

where cc is the overhead for the control messages required
for thread creation and dc is the overhead for the data

messages involved in the thread creation process. The
thread execution overhead to is expanded as to � tf � tb,
where tf is the access fault overhead and tb is the software

consistency barrier overhead. Both tf and tb are application
dependent. However, tb can be further expanded as

tb � �r� w��, where r is the number of consistency barriers

performed before read accesses and w is the number of
consistency barriers performed before write accesses.

Using these notations the speedup of a DSM system is
defined as:

S � T1

TN;P
; �1�

where T1 is the sequential execution time, defined as
T1 � N t, and TN;P is the distributed execution time on P
processors with N threads, defined by the following
formula:

TN;P � ts � tc � �t� to� N
P

� �
or �2�

TN;P � �cs � ds�� � �cc � dc�� � �t� tf � �r� w��� N
P

� �
:

�3�
Hence, the speedup of the DSM system is:

S � tN

�cs � ds�� � �cc � dc�� � �t� tf � �r� w��� N
P

� � : �4�

The DISK platform is targeted for computational
intensive natural language applications. Our previous work

indicated that the exploitation of intratask parallelism is

beneficial for an interactive question/answering system
[25]. Nevertheless, the distributed design introduced in [25]

required source code changes of the sequential question/

answering system. DISK can provide the same benefits
without requiring any source code modifications. Because

the question/answering system is not yet ported to Java, we

evaluate the performance of the OMW protocol on two
applications: a matrix multiplication program and the

traveling salesman problem. These applications were

selected because they are similar to the question/answering
application in two regards: First, they are computational

intensive and, second, intratask parallelism is exploited using

a master/worker strategy. An analysis of the system behavior
is performed for the OMW protocol and the LI protocol on

these two applications. In Section 6.4, this theoretical model is

compared with the results measured on DISK.

6.2 The Parallel Matrix Multiplication
Benchmark (MM)

Both benchmarks use a master/worker strategy. In the
MM benchmark, each worker thread computes a distinct
band from the output matrix. The main thread waits until

all workers are finished to read the output matrix. The

thread granularity t is t � n3

N , where n is the matrix

dimension.

6.2.1 Speedup for the OMW Protocol

The application and protocol dependent variables in the

speedup expression have the following values for the

OMW protocol:

. cs � N since N synchronization control messages are
required to synchronize the main thread with all
workers.

. ds � n2. Each worker thread appends its correspond-
ing band from the output matrix to the synchroniza-
tion message sent to the main thread.

. cc � N since N control messages are needed to create
the N worker threads.

. dc � 2n2P . During thread creation time, the two
input matrices are distributed to all P processors.

. tf � 0. As discussed in Section 4, the OMW protocol
avoids access faults completely.

. r � 0. The OMW protocol does not require consis-
tency barriers before read accesses.

. w � n2

N . Each worker thread performs a write access
to a shared object only when writing to its corre-
sponding band in the output matrix.

Using these expressions, the speedup becomes:

S �
n3

N N

�N � n2�� � �N � 2n2P �� � n3

N � 0� �0� n2

N��
� �

N
P

� � :
�5�

After simplification and ignoring the least significant terms,

the speedup expression is:

S � n

� � 2P� � n��
P

> 1: �6�

The analysis of this inequality in P indicates that the

following two conditions have to be true to have speedup

larger than 1 for the OMW protocol:

P >
nÿ � ÿ

���������������������������������������������
n2 � �2 ÿ 10n� ÿ 8��

p
4�

and �7�

P <
nÿ � �

���������������������������������������������
n2 � �2 ÿ 10n� ÿ 8��

p
4�

: �8�

6.2.2 Speedup for the LI Protocol

For the LI protocol, the application/protocol dependent

variables have the following values:

. cs � N since N synchronization control messages are
required to synchronize the main thread with all
workers.

. ds � n2. In the LI protocol, no data is appended to
synchronization messages, but the synchronization
messages received by the main thread are immedi-
ately followed by access faults on the output matrix,
access faults that will retrieve the computed matrix
from the worker threads.
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. cc � N since N control messages are needed to create
the N worker threads.

. dc � 0. No data is propagated during thread
creation.

. tf � 2n2 P
N . The access fault overhead to retrieve the

two input matrices on each processor is 2n2. This
overhead is equally divided among all N

P threads
running on each processor.

. r � n3

N . The LI protocol requires consistency bar-
riers before read accesses to shared objects. For the
MM benchmark this translates to read accesses to
the two input matrices.

. w � n2

N .

The MM speedup for the LI protocol is:

S �
n3

N N

�N � n2�� � �N � 0�� � n3

N � 2n2 P
N � �n

3

N � n2

N��
� �

N
P

� � :
�9�

After simplification, the speedup is:

S � n

3� � n�1���
P

> 1: �10�

Solving this inequality indicates that the following condi-

tion has to be true to have a speedup larger than one for the

LI protocol:

P >
n�� � 1�
nÿ 3�

: �11�

6.3 The Traveling Salesman Problem
Benchmark (TSP)

This program exhaustively searches for the shortest path
that contains all nodes in a graph, starting at any node. The
algorithm works as follows: The main thread builds a
shared stack of partial paths and then creates a number
of worker threads. Each worker repeatedly pops a path
from the stack and solves it storing the local best path
found. When the stack empties, the worker threads
compare their local best paths and the shortest path is
reported to the main thread. To simplify our analysis, we
use a fully connected graph of n vertices and the stack of
partial paths is initialized with n2 elements. The thread
granularity is t � nn

N .

6.3.1 Speedup for the OMW Protocol

The following expressions describe the OMW protocol:

. cs � n2 �N . All n2 accesses to the stack of partial
paths are synchronized. The synchronization be-
tween the main thread and the worker threads
requires N control messages.

. ds � Nn. At the final synchronization between each
worker thread and the main thread, the local best
path found is appended to the control messages.

. cc � N . N control messages are needed to create the
N worker threads.

. dc � 2n2P . During thread creation time, the graph and
the shared stack are distributed to all P processors.

. tf � 0. As discussed in Section 4, the OMW protocol
avoids access faults completely.

. r � 0. The OMW protocol does not require consis-
tency barriers before read accesses.

. w � n. Each worker thread performs a write access
to a shared object only when storing the local best
path in the main thread.

The TSP speedup for the OMW protocol is:

S � nn

�n2 �N �Nn�� � �N � 2n2P �� � nn

N � 0� n�ÿ �
N
P

� � :
�12�

The exponential terms are obviously dominant; hence, the
speedup can be simplified as:

S � P > 1: �13�

6.3.2 Speedup for the LI Protocol

The following expressions describe the LI protocol:

. cs � n2 �N . All n2 accesses to the stack of partial
paths are synchronized. The synchronization be-
tween the main thread and the worker threads
requires N control messages.

. ds � Nn. The main thread access faults following the
final synchronization between worker threads and
the main thread retrieve all local best paths.

. cc � N . N control messages are needed to create the
N worker threads.

. dc � 0. No data is propagated during thread crea-
tion.

. tf � 2n2 P
N . The access fault overhead to retrieve the

shared stack and the input graph is divided among
all threads running on the same processor.

. r � nn

N . The LI protocol inserts consistency barriers
before all read accesses to graph elements.

. w � n.

The TSP speedup for the LI protocol is:

S �
nn

�n2 �N �Nn�� � �N � 0�� � nn

N � 2n2 P
N � nn

N � n
ÿ �

�
ÿ �

N
P

� � :
�14�

Ignoring the nonexponential terms the speedup becomes:

S � P

1� � > 1; �15�

which means that the condition

P > 1� � �16�
has to be true to have a speedup larger than the one for the
LI protocol.

6.4 Measured Results

The tests presented in this section were performed on 16
450 MHz Pentium III computers running Linux kernel
2.2.12, connected by a 100 Mbps Ethernet network. For this
system, � � 36. The software consistency barrier is im-
plemented as a jump to the consistency routine, a load (to
load the object status word), a comparison, and a return, an
overhead of roughly 10 clock cycles; hence, � � 10.
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The MM benchmark was used with 640� 640 matrices
and 64 worker threads; hence, n � 640 and N � 64: For
these values, conditions (7) and (8) from Section 6.2.1
become:

P > 1:33 and �70�

P < 7:11: �80�
These conditions indicate that MM will show speedup for the
OMW protocol for up to seven processors. For the LI protocol,
condition (16) becomes:

P > 13:23; �160�
which indicates that only if more than 13 processors are
used, MM will show any speedup for the LI protocol.

The measured execution times for MM are presented in
Fig. 8. Fig. 8 compares the execution times for the OMW and
LI protocols with sequential executions denoted as ª1s.º
One-processor DISK executions are denoted with ª1d.º Due
to the single-node topology, the difference between the ª1sº
and ª1dº execution times is a good indication of DISK's
software consistency barrier overhead. The measured
execution times are very close to the results obtained from
our performance model. Indeed, OMW starts losing perfor-
mance for more than eight processors and LI shows some
speedup over the sequential execution only for 16 nodes.
OMW performs slightly better than the model due to two
improvements not covered by the performance model:

1. Even if the OMW protocol always sends more data
than the LI protocol, this data is always packed into
fewer messages than the LI protocol. For example,
OMW transmits approximately two times more data
than LI for the MM application, but this data is packed
into more than 50 times fewer messages (see Table 1).
This is caused by the fact that OMW appends all
consistency information to synchronization mes-
sages, while LI retrieves this information only in
response to an access fault. The strategy used by

the OMW protocol is a better match for the TCP/
IP protocol, a protocol optimized for batch data
transfer.

2. Due to the large message sizes, OMW messages are
good candidates for compression. For example, the
largest message in the MM application has 4.8 MB.
Compressing this message with the Lempel-Ziv
coding method yields an output of 45 KB, a buffer
more than 100 times smaller than the original. We
currently use only a very simple form of compres-
sion which detects similar array elements.

For the TSP benchmark, we used a 10-node fully connected

graph, n � 10, and 64 worker threads, N � 64. For � � 10,

the LI speedup condition from Section 6.3.2 becomes

P > 11. The measured execution times are presented in

Fig. 9. Fig. 9 indicates that OMW show speedup starting

with two processors, while LI shows speedup over the

sequential execution only over eight processors.
The conclusion of this analysis is that the OMW protocol

eliminates access faults and reduces the software barrier

overhead with the expense of a higher overhead for thread

creation and synchronization messages. For applications

with loosely-connected threads (i.e., applications where the

size of the shared data is significantly smaller than the heap

space), OMW always outperforms LI. TSP and our target

application, the question/answering system, fall in this

category. For problems where the size of the shared data is

significant (i.e., MM), OMW outperforms LI only for a

relatively small number of processors. The observed results
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Fig. 8. Measured execution times for MM.

TABLE 1
Measured Message Count and Size for the MM Benchmark



indicate that for our target applications, OMW is a more
atractive solution.

7 CONCLUSIONS

This paper describes DISK, a distributed Java Virtual
Machine for networks of heterogeneous workstations. DISK
is entirely implemented in user space with no references to
the virtual memory management unit, which makes it
portable to various classes of architectures. The novelty of
the system is the object-based, multiple-writer memory
consistency protocol (OMW). The OMW protocol mini-
mizes its overhead by automatically classifying objects as
shared or unshared. Because unshared objects have no
consistency overhead, the protocol's strategy to maintain
objects unshared as much as possible leads to significant
performance improvement. To our knowledge, OMW is the
only consistency protocol that automatically detects when
an object becomes shared and uses this information to
reduce its overhead. The OMW protocol is almost com-
pletely decentralized. Besides the lock directories required
to provide Linearizability for synchronization variables, the
protocol maintains no centralized information. The protocol
does not require consistency barriers for read accesses, and
the consistency barriers for write accesses are simplified.
This feature is very important for a DSM system with all-
software implementation for consistency barriers.

The Java compliance of the protocol is demonstrated by
comparing Release Consistency, the consistency model
implemented by OMW, with the Java Virtual Machine
memory consistency model (JVMC) as defined in the Java
Virtual Machine Specification. The comparison of these two
consistency models indicates that for data-race free pro-
grams, OMW is compliant with the JVM specification. The
applicability of this observation is large because most
programs written for weak consistency models are data-

race-free. However, for asynchronous programs the con-
straints imposed by the JVMC are stronger than those
required by release consistency. While we do not handle
asynchronous programs yet, a JVMC-compliant distributed
JVM should implement special consistency protocols to
address such situations. To our knowledge, no distributed
JVM project implements, or even mentions, this problem.

An analytical model for the distributed shared memory

system was introduced. The model shows that, for applica-

tions with loosely-connected threads (i.e., applications

where the size of the shared data is significantly smaller

than the heap space), OMW always outperforms invalidate

protocols. The traveling salesman problem and our target

application, the question/answering system, fall in this

category. For problems where the size of the shared data is

significant (i.e., matrix multiplication), OMW outperforms

invalidate protocols only for a relatively small number of

processors. The experimental results obtained on a network

of 16 Pentium III computers validate the analytical model.

Through these experiments it became clear that a single

protocol is not always the best solution for an object

oriented DSM. We envision a distributed Java Virtual

Machine with adaptable protocols, depending on the

application type and size.

APPENDIX A

JVMS MEMORY COHERENCE CONSTRAINTS

Fig. 10 shows a graphical representation of the abstract
memory hierarchy defined in the JVMS. Throughout the
paper we assume that the Java bytecode is correctly
generated by a Java compiler; hence, our focus is on the
constraints imposed on the interaction between the lowest
two layers of the memory hierarchy shown in Fig. 10: the
thread working memory and the global shared memory.
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Fig. 9. Measured execution times for TSP.



The JVMS defines the following constraints:3

General Constraints

. (JVMS1): The actions performed by any one thread
are totally ordered.

. (JVMS2): The actions performed by the main
memory for any one variable are totally ordered.

. (JVMS3): The actions performed by the main
memory for any one lock are totally ordered.

. (JVMS4): It is not permitted for an action to follow
itself.

Data-Access Constraints

. (JVMS5): For every load performed by T on its
working copy of V, there should be a corresponding
preceding read by the main memory on the master
copy of V.

. (JVMS6): For every store performed by T on its
working copy of V, there should be a corresponding
following write by the main memory.

. (JVMS7): Let A be a load or store of V by T and let
P be the corresponding read or write by the main
memory. Let B and Q be two other such operations
by T and the main memory (on V), correspondingly.
Now, if A precedes B, then P precedes Q.

Synchronization Constraints

. (JVMS8): Each lock and unlock action is per-
formed jointly by some thread and the main
memory.

. (JVMS9): Locks and unlocks of L are performed in
some sequential order which is consistent with the
program order of all threads.

. (JVMS10): A lock of L by T may occur only if for
every other thread, the number of preceding
unlocks equals the number of preceding locks.

. (JVMS11): An unlock of L by T may occur only if
the number of preceding unlocks of L by T is
strictly less than the number of preceding locks.

. (JVMS12): A store must intervene between an
assign of V by T and a subsequent unlock of L by

T, and the write, which corresponds to the store
must occur before the unlock by the main memory.

. (JVMS13): Between a lock of L by T and a
subsequent use or store of V by T, an assign or
load of V must appear. If what appears is a load,
then its corresponding read should appear after the
lock by the main memory.

APPENDIX B

PROOF oF LEMMA 1

The proof of this lemma is organized in two parts: The first
part shows that the JVMS definition is no weaker than
Definition 2. The second part shows that Definition 2 is no
weaker than the JVMS definition; hence, the two definitions
are equivalent.

Part 1. The JVMS definition is no weaker than Definition 2.
Given a JVMS history H we show that there is a

corresponding serialization conforming with Definition 2.

We note with � the timing of this history H. According to

constraint (JVMS4), the application of the JVMS con-

straints on timing � cannot contain a cycle; hence, the

JVMS constraints build a directed acyclic graph (DAG) on

H. Serialization S is obtained as follows:

1. Construct a serialization of all JVMS operations in
history H (Sall) by applying a topological sort on the
above DAG.

2. Consider Smain the subset of serialization Sall
containing only the main-memory operations (read,
write, lock, unlock).

3. Construct a serialization Sthread containing only
thread operations (load, store, lock, unlock).
Obtain serialization Sthread by replacing the main
memory data-access operations from Smain with their
corresponding thread operations (read with load,
write with store). This correspondence is defined
by constraints (JVMS5) and (JVMS6). The lock and
unlock operations are defined as atomic (constraint
(JVMS8)); hence, no replacing is needed.

4. Obtain serialization S by replacing the operations in
Sthread with the corresponding operations used in
Definitions 1 and 2 (load with read, store with
write, lock with acquire, and unlock with
release).

We claim that S is a legal serialization of relation ÿ!jvmc .
Serialization S is legal and conditions (jvmc1), (jvmc2)

and (jvmc7) are satisfied in this serialization [14].
Synchronization operations are defined as atomic (con-

straint (JVMS8)). This observation coupled with constraints
(JVMS3) and (JVMS9) implies Linearizability for synchro-
nization operations [16]. Linearizability provides an order-
ing consistent with all local program orders and the wall-
clock execution [16]. Hence, conditions (jvmc3) and (jvmc4)
are satisfied in serialization S.

Condition (jvmc5) is satisfied in serialization S: Let o1 be

a data-access operation (load or store in history H)

and o2 a RELEASE operation (unlock in history H) such

that o1!po o2. If o1 is a store operation, then o1!S o2 due

to constraint (JVMS12). If o1 is a load operation, then
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3. We use T to denote a Java thread, V to denote a variable, and L to
denote a lock.

Fig. 10. Java memory hierarchy.



o1!S o2 due to constraints (JVMS5) and (JVMS1). Similarly,

using constraints (JVMS1), (JVMS6), and (JVMS13), one

can show that condition (jvmc6) is satisfied in serialization

S; hence, serialization S conforms with Definition 2. tu
Part 2. Definition 2 is no weaker than the JVMS definition.

Given a history H of READ, WRITE, ACQUIRE, and

RELEASE operations conforming with Definition 2, we show

that there is a timing � of JVMS operations complying with

the JVMS constraints. If history H is JVMC, then there exists

a legal serialization S such that, if o1ÿ!jvmco2, then o1!S o2.

Based on serialization S, timing � is constructed as follows:

1. Construct serialization Smain by replacing all opera-
tions in S with the corresponding JVMS main-
memory operations: READ with read, WRITE with
write, ACQUIRE with lock, and RELEASE with
unlock.

2. Let � be initially Smain.
3. Iteratively extend � as follows: For every local history

in H, for each READ or WRITE operation add the
corresponding load or store JVMS operation to
timing � . The operations of each local history are
processed in program order. Use the following
insertion rules:

a. A load is inserted immediately after the
corresponding read already in � or after the
last load/store operation inserted, whichever
came last.

b. A store is inserted immediately after the last
load/store operation inserted.

We claim that timing � complies with the JVMS constraints.
Timing � complies with constraints (JVMS1), (JVMS2),

(JVMS4), (JVMS5), (JVMS6), and (JVMS7) [14].
Condition (jvmc3) provides an ordering for synchroniza-

tion operations consistent with all local program orders;
hence, constraint (JVMS9) is satisfied. Condition (jvmc4)
enforces this ordering to match the wall-clock execution,
which in the JVMS is the order in which the synchronization
operations are seen by the main memory. Hence, con-
straints (JVMS3) and (JVMS8) are satisfied.

Constraints (JVMS10) and (JVMS11) define mutual exclu-
sion and reentrancy for Java locks. We do not consider these
issues strictly related to the memory consistency model. We
just assume that serialization S is constructed with respect
for lock mutual exclusion and reentrancy; hence, constraints
(JVMS10) and (JVMS11) are satisfied in timing � .

If o1 is an ACQUIRE operation, o2 is a READ operation

in serialization S, and o1!po o2, then o1!S o2. In timing � ,

we replace o1 with a lock JVMS operation, o2 with a

read operation, and we insert a load operation after the

read. Hence, constraint (JVMS13) is satisfied.

If o1 is a WRITE operation, o2 is a RELEASE operation in

serialization S, and o1!po o2, then o1!S o2. In timing � , we

replace o1 with a write JVMS operation, o2 with an

unlock operation, and we insert a store operation. The

store operation is inserted before the write because

constraint (JVMS6) is satisfied [14]. Hence, constraint

(JVMS12) is also satisfied. tu
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