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Abstract. The use of fingerprints as a biometric is both the oldest
mode of computer aided personal identification and the most relied-upon
technology in use today. However, current acquisition methods have
some challenging and peculiar difficulties. For higher performance fin-
gerprint data acquisition and verification, a novel non-contact 3D finger-
print scanner was investigated, where both the detailed 3D and albedo
information of the finger is obtained. The obtained high resolution 3D
prints are further converted into 3D unraveled ones, to be compatible
with traditional 2D automatic fingerprint identification systems. As a re-
sult, many limitations imposed upon conventional fingerprint capture and
processing can be reduced by the unobtrusiveness of this approach and
the extra depth information acquired. In order to compare the quality and
matching performances of 3D unraveled with traditional 2D plain finger-
prints, in this paper, both 3D prints and their 2D plain counterparts were
collected. The print quality and matching performances are evaluated
and analyzed by using National Institute of Standard Technology finger-
print software. Experimental results show that the 3D unraveled print
outperforms the 2D one in both quality and matching performances. c©
2010 Society of Photo-Optical Instrumentation Engineers DOI: 10.0000/000.000
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1 Introduction

Biometrics is an automated method of identifying a person
based on a physiological or behavioral characteristic. Among
all the bio-identification systems, fingerprint based systems
have gained immense popularity1–5 due to the high level of
uniqueness attributed to fingerprints and favorable technical
factors like compact and inexpensive sensors and fast com-
puting software. Automatic Fingerprint Identification Sys-
tems (AFIS), developed initially for use by law enforcement
agencies, are being widely used for general identification
and fraud prevention. Higher matching performance can be
achieved if a fingerprint’s quality is sufficiently good and the
overall database integrity is improved.6

Traditional fingerprint acquisition is performed in 2D us-
ing contact methods which have evolved over the last cen-
tury, from ink (rolled or plain) to capacitive, ultrasonic, pyro-
electric, thermal, and optoelectronic approaches.7–10 In many
applications that require high precision fingerprints, limita-
tions are imposed upon the current fingerprint capture tech-
nologies11–13 including:

1) obligatory maintenance of a clean sensor or prism sur-
face;

2) uncontrollability and non-uniformity of the finger pres-
sure on the device;

3) permanent or semi-permanent change of the finger ridge
structure due to injuries or heavy manual labors;

4) residues from the previous fingerprint capture;

5) data distortion under different illumination, environ-
mental, and finger skin conditions; and

6) extra scanning time and motion artifacts incurred in
technologies that require finger rolling.

The majority of these limitations arise due to the physical
contact of the finger surface with the sensor plate or the non-
linear distortion introduced by the 3D-to-2D mapping during
image acquisition.14 To address these issues, several novel
technologies have been developed15–18 that avoid direct con-
tact between the sensor and the skin.

Parziale et al17 proposed a multi-camera, touchless, fin-
gerprint scanner that acquires different finger views com-
bined together to provide a 3D representation of the finger-
print. Due to the lack of contact between the elastic skin of
the finger and any rigid surface, the acquired images pre-
serve the fingerprints “ground-truth” without skin deforma-
tion during acquisition. However employing the shape-from-
silhouette scanning technique, the ridge information is ob-
tained from the surface reflection variation (i.e. albedo) in-
formation. Thus, the fingerprint is sensitive to surface color,
surface reflectance, geometric factors, and some other ef-
fects. And since the accurate 3D information is not available
when unraveling their 3D print into a 2D print compatible
with current 2D AFIS,19 the distortion caused by unraveling
is hard to control.

In order to achieve significant improvements over the man-
ner in which fingerprint images are currently acquired, a
non-contact 3D fingerprint scanner was investigated employ-
ing structured light illumination (SLI) as a means of extract-
ing the 3D shape of fingerprint ridges using multiple, com-
modity digital cameras in conjunction with a novel SLI tech-
nique to acquire the fingerprint scan without physical contact
between sensor and finger. The non-contact 3D fingerprint
scanner was developed by Flashscan3D LLC. and the Uni-
versity of Kentucky. As shown in Fig. 1, the system mainly
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Fig. 1 The non-contact 3D fingerprint scanner.

consists of a projector and a camera. To minimize the ef-
fects of finger movement during scanning and depth of fo-
cus, the fingernail rests against a support. The system relies
on 3D image acquisition through an SLI approach where the
phase measuring profilometry (PMP) pattern strategy20–22 is
employed. The advantages of the non-contact 3D fingerprint
scanning and processing technology include:

1) non-contact defuses distortion that exists in conven-
tional fingerprint acquisition system;

2) simultaneous acquisition of both albedo and ridge depth
information of fingers;

3) automated fingerprint entry in no need of interaction
with the operator;

4) real-time feedback for users to make position adjust-
ment;

5) robustness to contamination of fingers and residues of
previous users;

6) robustness to clutter and fraud because of the difficul-
ties in faking 3D fingerprints;

7) fast scanning (0.7 second) and data processing (less
than 1 second); and

8) low cost by using an off-the-shelf commodity camera
and projector.

Furthermore to be compatible with 2D AFIS, we developed
a fit-tube algorithm which unravels the 3D print into 2D. Be-
cause both texture and ridge depth information are available
in the 3D scans, ridge information can be extracted from both
albedo and depth for improved ridge detail.

In this paper, we present a thorough evaluation of the re-
sulting unwrapped fingerprint scans produced by the 3D scan-
ner, which we compare to scans produced by a traditional
2D scanner, the Cogent CSD450. For this purpose, we em-
ploy the National Institute of Standard Technology (NIST)
quality algorithms where experimental results show that the
measured quality metrics of the 3D prints follow similar pat-
terns of traditional 2D prints. Thus, we demonstrate that the
statistical metrics, generated by the NIST algorithm, for tra-
ditional 2D fingerprint quality evaluation, can also be used

to evaluate the quality of unraveled 3D prints. And compar-
isons between the quality metrics of 2D and 3D prints indi-
cate that the 3D prints achieve higher overall image quality,
higher local image quality, more high quality minutiae, and
higher classification confidence number than scans recorded
by the contact-based scanner. Finally, we employ the NIST
matching algorithm, which is based on minutiae matching
between prints,where experimental results show that the 3D
prints achieve better matching performance than those col-
lected on the 2D scanner.

The rest of this paper is organized as follows. Sec. 2 de-
scribes the 3D acquisition setup. Sec. 3 presents the meth-
ods to convert 3D scans to 2D flat equivalent finger images.
Sec. 4 discusses and compares the fingerprint quality eval-
uations of unraveled 3D and 2D prints. Sec. 5 presents and
compares the matching performances of unraveled 3D and
2D prints. Sec. 6 outlines the conclusion and future works.

2 Fingerprint Acquisition

The 3D fingerprint scanner employs the PMP technique for
3D data acquisition. Compared to other structure light algo-
rithms like single spot, light stripe, and gray code projection,
the PMP technique obtains the same precision using fewer
patterns23 where the projected light pattern is expressed as

Ip
n(xp, yp) = Ap +Bp cos(2πf

yp

L
+ 2πn/N), (1)

where (xp, yp) are the projector coordinates, Ap and Bp are
projector constants, the subscript n represents the pattern in-
dex, N is the total number of patterns, f is the frequency of
the sine wave, and L is the length of the sine wave (length or
height resolution of the projector).24

From the camera viewpoint, the captured image is dis-
torted by the object topology in terms of

Ic
n(xc, yc) = Ac(xc, yc)+Bc(xc, yc) cos[φ(xc, yc)− 2πn

N
],

(2)
where Ic

n(xc, yc) represents the intensity of nth pattern at
pixel location (xc, yc) of the captured image, Ac and Bc are
the albedo and modulation information, and φ(xc, yc) rep-
resents the phase value at pixel location (xc, yc) of the cap-
tured sine wave pattern. Thus, φ(xc, yc) can be computed
from the captured images as follows

φ(xc, yc) = arctan

[ ∑N
n=1 I

c
n(xc, yc) sin(2πn/N)∑N

n=1 I
c
n(xc, yc) cos(2πn/N)

]
.

(3)
As the phase value can only be estimated between [−π, π],
the value of projector coordinate is between [−1/2f, 1/2f ],
which will limit the measurable depth range of objects.

Once the value of φ(xc, yc) is obtained, the projector co-
ordinate yp of a 3D point with a camera coordinate (xc, yc)
can be recovered from

yp(xc, yc) = φ(xc, yc)
L

2πf
. (4)

Based on (xc, yc, yp(xc, yc)), the 3D depth can be computed
using the perspective projection matrix obtained through a
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Fit tube to the 3D surface

Input 3D fingerprint scan
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Fig. 3 Flowchart for the 3D data processing.

joint projector and camera calibration.25, 26 Further, the albedo
image is:

Ac(xc, yc) =
1
N

N∑
n=1

Ic
n(xc, yc), (5)

In the scanner, a total of N = 10 phase shift patterns with
frequency f = 16 cycles/field of view is chosen to make a
trade-off between scanning time and resolution. The system
takes 0.7 second for scanning with the obtained image res-
olution is as high as 1, 420 × 2, 064. Figure 2 shows the a
3D fingerprint obtained by the scanner, where the detailed
albedo and 3D information are obtained.

3 Virtual Flattening

In order to unravel the 3D prints into 2D, we developed
the fit-tube algorithm from the fit-sphere algorithm.18 This
section summarizes the fit-tube algorithm. The 3D finger-
print is composed of point clouds where each point, within
the cloud, corresponds to a pixel of the camera and is as-
signed a position in 3-D space along with a gray-scale albedo
value (Fig. 2). Traditional 2-D fingerprint scans are extracted
from these clouds through a virtual unraveling process sum-
marized by the flowchart of Fig. 3. To start, the unravel-
ing algorithm fits a deformable tube to the 3-D point cloud,
achieved by deriving best fitting circles, spaced 0.508 mm
(500 rings per inch) apart, along the vertical axis of the fin-
ger. Along each ring, two 1-D, discrete-time, signals are ex-
tracted at a sampling period of 0.508 mm (500 samples per
inch). The first signal is the distance between the ring of
fixed radius and the nearest neighboring point within the
cloud, while the second is the albedo signal for these same
points.

The signal representing the distance between scan points
and the best-fit ring is further processed by means of band-
pass filtering, where the high-frequency band contains mostly
process noise from the camera and projector while the low-
frequency band represents the difference in shape of the fin-
ger versus the best-fit tube. The preserved mid-frequency
band contains fingerprint ridge and valley information that

are rescaled, in value, to range from 0 to 255 (8-bits per
pixel grayscale). Now by lining up the 1-D signals, side-by-
side, for all rings forming the deformable tube, two sepa-
rate, flattened fingerprint images are created, where the first
image is the albedo fingerprint corresponding to Ac(xc, yc),
in Eq. 5, while the second is the 3-D print obtained from
(xc, yc, yp(xc, yc)). It is this second signal that is unique to
the SLI scanning method; whereas, the albedo component is
consistent with that produced by Parziale et al.17

In order to take advantage of this added information pro-
vided by depth, the two scans need to be fused together by
first converting the two images to a common reference space
by means of binarizing the grayscale unraveled prints. Then,
NIST MINDTCT algorithm (see in Sec. 4) is employed to
measure the local quality of the two images. The MINDTCT
divides the images into 8×8 pixel blocks and then assigns
an image quality score to each block. A composite image is
then produced by choosing, on a block by block basis, the
image with the better local image quality. In this way, the
composite image will always have a higher average local im-
age quality score than either of the two component images.
As a final step, out of focus regions of the fingerprint, along
the outer ring of the observed scan area, are cropped out of
the scan since these regions have poor PMP signal strength
and, hence, poor ridge detail. But even with this cropping,
our experiments show a scan area approximately 4.4% larger
than that of the Cogent CSD450 for the same subject set. Ex-
amples of unraveled 3D and traditional 2D fingerprints and
their quality maps are shown in Fig. 4, where darker color
represents lower quality and the black area is the background
with no information. The poor quality area in the center of
the prints is due to the high curvature of the ridges.27

4 Image Quality Analysis

Many biometric studies have addressed the problem of as-
sessing fingerprint image quality28–30 looking at features like
local orientation information, global uniformity and conti-
nuity, amplitude and variance of spectral bases, or effective
feature number of fingerprint images. Studies have also been
performed showing that image quality assessment can accu-
rately predict matching performance31 where scanners with
higher average image quality scores achieve higher recogni-
tion performance.27

For measuring the scan quality of 3D fingerprint scans, we
rely on the NIST Biometric Image Software (NBIS) quality
and matching performance analysis tools. The NBIS is pub-
lic domain software organized into several major systems.27

First, the PCASYS system is a prototype classifier that sep-
arates fingerprints into basic pattern-level classes such as
arch, left loop, right loop, scar, tented arch, or whorl. PCASYS
also outputs an estimated posterior probability of the hypoth-
esized class, which is a measure of the confidence that may
be assigned to the classifier’s decision. Improved scan qual-
ity will result in higher PCASYS confidence levels, closer to
1, in its corresponding class.

The MINDTCT system takes a fingerprint image and lo-
cates all minutiae in the image, assigning to each minutia
point its location, orientation, type, and quality. To locally
analyze the image, MINDTCT divides the image into a grid
of blocks with 8×8 pixels in each block and assesses the
quality of each block. The information in these maps is in-
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(a) (b) (c) (d)

Fig. 2 A 3D fingerprint illustrated in (a) and (c) albedo (surface reflectance variations) and (b) and (d) in 3D where (c) and (d) show a cropped
portion of the fingerprint.

(a) (b) (c) (d)

Fig. 4 (a) A 3D unraveled fingerprint. (b) Quality map of the 3D unraveled fingerprint. (c) A traditional 2D fingerprint. (d) Quality map of the
traditional 2D fingerprint.

tegrated into one general map and contains 5 levels of quality
(4 being the highest quality and 0 being the lowest). MINDTCT
also computes quality or reliability measures to be associ-
ated with each detected minutiae point. A quality value in
the range from 0.01 to 0.99 is assigned to each minutiae,
where a quality number greater than 0.75 are considered to
be highly reliable.27 The better the image quality, the higher
the number of reliable minutiae detected.

The NFIQ system measures the overall quality of a fin-
gerprint image sample. NFIQ classifies the fingerprint im-
ages into 5 classes wherein a quality number 1 represents
excellent quality and 5 poor quality. Several example fin-
gerprint images along with the corresponding image quality
metrics are shown in Fig. 5 where we note that a superior
scanning technology should generate a higher number of re-
liable minutiae (greater than 20), more blocks with high local
quality (zone4 representing the highest local quality), and a
lower overall image quality number (1 representing the high-
est overall quality).

Now having the above set of image quality metrics, our
goal is to analyze and compare the performance of the non-
contact, SLI scanner versus a commercially available system
(the Cogent CSD450) using a common subject pool. For this
purpose, we constructed a fingerprint composed of 440 3D
as well as 440 conventional fingerprint scans taken from 12

human subjects. For the 3D prints, all ten fingers of each sub-
ject were scanned using the SLI prototype scanner, described
in Sec. 2, that were unraveled into 2D equivalent images,
as described in Sec. 3, and processed with the NIST filters,
described above. The corresponding 2D plain images were
similarly processed by the NIST filters. Statistical analysis
of the NBIS metrics was performed using the Sigma Stat
software (SPSS Inc. , IL) and the data was evaluated with
one-way ANOVA. All pairwise, multiple comparisons were
conducted with the Turkey method32 where statistical signif-
icance was considered when the p value is less than 0.05.

4.1 2D Fingerprint Analysis

Looking first at the scan quality metrics applied to traditional
2D fingerprint scans, Fig. 6 (a) illustrates the distributions
of local image quality scores versus overall image quality.
From these distributions, it can be seen that:

• as the overall quality of the fingerprints decreases from
1 (best) to 5 (unusable), the number of 8 × 8 pixel
blocks with the best local image quality score (zone4)
also decreases; whereas, the number of blocks in zones
1-3 increases;

• the number of 8 × 8 pixel blocks with the best local
quality, zone4, among different overall image qual-
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(a) (b) (c)

Fig. 6 Quality analysis for 2D plain fingerprint images. (a) Distributions of informative blocks over local quality zones with respect to overall quality
numbers. (b) Distributions of minutiae over minutiae quality numbers with respect to overall image quality numbers. (c) Plot of classification
confidence numbers with respect to overall quality numbers.

qn = 1
qz4 =73.93%
min75 = 75

qn = 2
qz4 =60.55%
min75 = 34

qn = 2
qz4 =67.15%
min75 = 37

qn = 1
qz4 =73.07%
min75 = 49

qn = 2
qz4 =67.15%
min75 = 37

qn = 1
qz4 =59.40%
min75 = 38

Fig. 5 Six unraveled 3D fingerprints with their corresponding quality
metrics. The qn is the overall quality number with 1 as the highest
overall quality. The qz4 represents the percentage of highest local
quality blocks. And min75 is the number of reliable minutiae.

ities (1∼5) are significantly different (with p values
less than 0.001); and

• the number of 8×8 pixel blocks with lesser local qual-
ity lack consistent statistical properties among differ-
ent overall image qualities and cannot be used to eval-
uate scanner performance.

These observations are summarized by saying that, with re-
gards to local image quality, only the number of 8× 8 pixel
blocks in the best local quality zone (zone4) is useful for
evaluating 2D plain fingerprints.

With regards to minutiae quality scores, Fig. 6 (b) shows
the distributions of the number of detected minutiae versus
their minutiae quality scores, greater than 0.55, 0.65, 0.75,
0.85 and 0.95, versus overall image quality. It can be ob-
served from these distributions that the number of minu-
tiae in categories >85 and >95, do not decrease in a sta-

tistically significant way with the overall quality number;
hence, minutiae quality numbers greater than either 0.85 or
0.95 are not reliable measures for quantifying scanner per-
formance. On the other hand, reliable minutiae in categories
of >55, >65, and >75 follow similar patterns, decreasing as
the overall quality decreases. Statistical analysis shows a sig-
nificant difference for all pairwise comparisons in these three
categories with p values less than 0.01. Moreover, Tabassi et
al27 observed that, generally, fingerprints having 20 minutiae
with reliability greater than 0.75 are more likely to be iden-
tified correctly by fingerprint matching systems. Thus, the
number of minutiae with reliability greater than 0.75 will be
our sole metric for evaluating scan quality using minutiae
quality scores.

As a final measure of scan quality using 2D fingerprint
scans, Fig. 6 (c) shows the classification confidence num-
bers, obtained by PCASYS, with respect to overall image
quality. These confidence scores shows no statistically sig-
nificant difference for the best, good, and average quality
fingerprints, but it reduces significantly as the overall quality
of fingerprints further deteriorates. So the classification con-
fidence number, especially for the comparison between im-
ages above and below average quality, can be a fourth metric
for 2D plain fingerprints evaluation.

4.2 3D Fingerprint Analysis

Looking now at fingerprint scans acquired through SLI, Fig. 7
(a) illustrates the distributions of local image quality scores
versus overall image quality where it can be seen that the
3D print case is similar to that of the 2D print. However,
there is difference: as the overall quality of the fingerprints
decreases from 1 (best) to 5 (unusable), the number of 8× 8
pixel blocks in the highest of the four local image quality
scores, zone4, also decreases, which not as convincingly as
for 2D prints. These observations are summarized by saying
that only the number of 8× 8 pixel blocks with local quality
score 2 and 4 are useful for evaluating 3D fingerprints.

With regards to minutiae quality scores of unraveled 3D
prints, Fig. 7 (b) shows the distributions of the number of
detected minutiae. It can be seen that for unraveled 3D prints
the numbers of minutiae in all categories have a similar pat-
tern: roughly decreasing as the overall image quality de-
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(a) (b) (c)

Fig. 7 Quality analysis for unraveled 3D fingerprints. (a) Distributions of informative blocks over local quality zones with respect to overall quality
numbers. (b) Distributions of minutiae over minutiae quality numbers with respect to overall image quality numbers. (c) Plot of classification
confidence numbers with respect to overall image quality numbers.

(a) (b)

Fig. 8 (a) The distributions of informative blocks over different local
quality zones for 2D plain fingerprints and unraveled 3D fingerprints.
(b) Distributions of samples over different overall image quality num-
bers.

creases from best and good to average and poor. The number
of minutiae with reliability greater than 0.75 shows a pat-
tern similar to that observed for 2D fingerprints: significantly
higher for high overall quality (best and good) images than
for low overall quality (average and poor) images. Similar as
in the 2D case, we also chose the number of minutiae with
reliability greater than 0.75 for evaluating unraveled 3D print
quality using minutiae quality scores.

Figure 7 (c) shows the classification confidence numbers
with respect to overall image quality numbers for unraveled
3D prints. Similar as the 2D case, the confidence number
shows no statistically significant difference, but it reduces
significantly for images with the poor overall quality. Thus,
as in 2D plain, the contrast between the fingerprints above
and below the average quality becomes useful for the quality
evaluation of unraveled 3D fingerprints.

The above results show that all the statistical metrics, gen-
erated by the NIST software, for traditional 2D fingerprint
quality evaluation, can also be used to evaluate the quality of
unraveled fingerprints obtained from the unraveled 3D scans.
The scanner performance can be quantified by the scanned
image quality.

4.3 Comparing 2D and 3D

For a quantitative analysis of 2D versus 3D fingerprint scan-
ners, we compared the 2D plain fingerprints with the un-

(a) (b)

Fig. 9 (a) Number of high quality minutiae for 2D plain fingerprints
and 3D unraveled fingerprints. (b) Classification confidence numbers
with respect to different image quality numbers.

raveled 3D fingerprint images using the following indexes:
1) the distributions of informative blocks over different lo-
cal qualities (zones); 2) the distributions of fingerprint over
different overall quality numbers; 3) number of high quality
minutiae with reliability greater than 0.75; and 4) confidence
number with respect to different overall quality numbers. As
shown in Fig. 8 (a), the 3D unraveled fingerprints achieve
more blocks in local quality zone 4 (best) than the traditional
2D prints.

Figure 8 (b) shows the distributions of image qualities for
2D and 3D data sets where 3D prints have a higher percent-
age of highest-quality images (63.75%) whereas 57.71% of
2D fingerprints score this same quality rating. But given the
fact that the Cogent CSD450 rejects scans of extremely poor
quality, the percentage of highest quality scans acquired by
the CSD450 is artificially high. So for a fair comparison in
average overall quality numbers, we can reject an equal num-
ber of poorest quality scans from those collected by the 3D
scanner. By doing so, the average overall image quality of
3D prints is 1.1519, whereas for 2D prints, the average im-
age quality score is 1.7125.

Figure 9 (a) shows the comparison between the average
minutiae number with quality greater than 0.75 for 3D and
2D prints. The 2D samples have 19.88 qualified minutiae on
average, while the 3D samples have 41.25. More specifically
in terms of qualified minutiae number, the 2D fingerprints
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Fig. 10 Distributions of genuine and impostor scores for (a) 2D plain
fingerprints and (b)unraveled 3D fingerprints.
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Fig. 11 Receiver Operating Characteristics (ROCs) of 2D plain and
unraveled 3D fingerprints.

score 23.92, 21.16, 8.75, and 8.78 for overall quality number
from 1 to 4; the 3D fingerprints score 39.54, 56.14, 23.00,
and 32.37, respectively.

In the previous sections, the confidence number showed
no statistically significant difference for image quality num-
bers of 1 to 3, but it dropped significantly for images with
quality number 4. From Fig. 9 (b), it can be seen that the 3D
unraveled prints achieve a higher average confidence num-
ber in both high (qn≤ 3) and low (qn> 3) overall quality
prints. Given the fact that the quality of center scan area of a
fingerprint is what the NIST classification software is most
concerned with, Fig. 9 (b) also suggests that, as the overall
image quality decreases, the center area quality of the 3D
fingerprint does not drop as significantly as it does for 2D
prints.

5 Matching Performance

The BOZORTH system is NBIS’ tool for matching two sets
of minutiae in a rotationally independent manner. The al-
gorithm transforms each set of minutiae into a specialized
rotationally invariant graph. To compute a matching score
between two fingerprints, the algorithm iteratively searches
between both fingers’ graphs for subsets that are “compati-
ble”, i.e. co-ordinate locations and orientations of the minu-
tiae represented, within the subgraphs, are similar enough to
each other based on the defined tolerances. The more nodes

contained within a compatible subgraph, the higher the ac-
cumulated match similarity score.

Here, the similarity scores of a genuine (i.e. among the
same person) comparisons are called genuine scores, while
the similarity scores of imposter (i.e. among different per-
sons) comparisons are named imposter scores. Since for dif-
ferent fingers, e.g. thumb and index finger, the basic shape
is different, the imposter scores are generally low. To per-
form reasonable and efficient analysis of the 3D system, we
only matched the same finger from different persons, where
for the same finger there are two randomly selected scans
to get one imposter score. For each data set, there are 1,228
genuine scores, and 11,627 imposter scores. The higher sim-
ilarity score, the higher the likelihood that these fingerprints
come from the same finger. Figure 10 shows the histogram
of genuine and imposter scores for all the subjects in both
traditional 2D and unraveled 3D databases.

Using the BOSORTH3 algorithm, the better fingerprint
scanner system should yield a clearer distinction between
genuine and imposter score distributions. Overlapping of gen-
uine and imposter distributions indicates false acceptance/rejection:
some given samples may be matched falsely. Fig. 10 shows
the similarity score distributions of genuine (solid lines) and
imposter (dashed lines) fingerprints use two sets of data where
the unraveled 3D data yields a better distinction between
genuine and imposter scores. Further, let M(Sm) denote the
cumulative distribution function (SDF) of the genuine scores
and N(Sn) the CDF of the imposter scores. The Detection
Error Tradeoff Characteristic (DET) is a plot of the false im-
poster rate, FNMR = M(Sm), against the false match
rate, FMR = 1 − N(Sn), for all values of Sm and Sn.
The DET, and equivalent Receiver Operating Characteristic
(ROC),33, 34 are the most used statement of the performance
of the fingerprint verification system. The ROCs of 2D plain
and unraveled 3D fingerprints are shown in Fig. 11.

To illustrate the performance of two systems more specif-
ically, we can choose different operating thresholds. And
the False Acceptance Rate (FAR) and True Acceptance Rate
(TAR) values are computed at each operating threshold. For
a generally specific FAR, usually 0.01, the TAR for the 3D
system is 0.97, while the 2D system is 0.77. And for a FAR
of 0.1, the TAR of the 3D system is 0.99, while the 2D sys-
tem is 0.90. Thus, the 3D fingerprint data set achieves a bet-
ter matching performance in terms of ROC.

6 Conclusion

In this paper, we present a thorough evaluation of non-contact
3D fingerprints after unraveling them into 2D equivalent ones,
using the quality and matching algorithms developed by NIST,
originally proposed for conventional 2D fingerprints. Exper-
imental results demonstrate that the superior quality and match-
ing performance is achieved by the unraveled 3D fingerprint.
During the research, we found that the ridge depth infor-
mation adds additional features to the albedo features based
on quality measures. Having the 3D surface information al-
lows for a consistent flattening with the distortions diffused
uniformly across the print. Conventional flat prints distort
less uniformly and only provide less features being those
only against the rigid surface. Thus, the non-contact 3D print
outperforms the traditional contact 2D plain counterpart in
terms of the number of high quality features and matching
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(a) (b) (c)

Fig. 12 The fingerprint scan. (a) A 2D plain fingerprint. (b) The corresponding 3D scan. (c) The 2D unraveled equivalent obtained from 3D scan.

performance.
For visually confirmation of these results, a typical 2D

plain fingerprint obtained from the Cogent CSD450 scanner
and a typical 3D print are shown in Fig. 12 where, from vi-
sual inspection, it can be seen that: 1) for most parts, ridges
are clear in both 2D plain and unraveled 3D fingerprints; 2)
the 2D plain fingerprint has a small empty area in the top-
right part due to a dented scar on the finger; 3) ridges in the
unraveled 3D fingerprint are more equally spaced which in-
dicates less distortion in 3D data; and 4) there are several
concave scars in the fingerprint where 3D uncovers more
ridge information than 2D plain.

Currently, we did not use the gray level 3D because both
peak and valley information is present whereas prints on
class exclude regions of none contact. Thus, the compari-
son between 3D flattened gray level prints and conventional
prints may be complicated. Future studies will involve gray
level print matching. Future research will also extend the
present studies with different matching algorithms and fu-
ture scanner improvements.

Because most 2D print systems operate under the assump-
tion that the print to be compared are obtained using the
same sensor and, hence, are restricted in their ability to match
or compare print originating from different sensors, the inter-
operability for 2D sensors has been studied by A. Ross and
A. Jain.35 However, there is little effort has been made for
the interoperability between 3D and 2D sensors. And since
current fingerprints are traditional 2D ones, the issue of 3D
to 2D matching becomes especially important. Thus, we will
continue to work on interoperability between 3D and 2D fin-
gerprints.
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