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We give a comprehensive summary of the results on self-guided beams, bright spatial solitary waves, empha-
sizing the most recent advances. To be stable in a bulk medium, such beams should propagate in a non-Kerr
medium. It is emphasized that all spatial solitons are generically the same, independent of the type of non-
linear medium, and such free-propagating beams can execute interesting dynamics, including spiraling around
one another, self-tapering, periodically changing their shape, cross section, or polarization, and inelastically
colliding to annihilate one another, fuse, or create a new beam. Most of these types of solitary-wave dynamics
have recently been confirmed experimentally for self-guided beams propagating in different non-Kerr materi-
als. Significantly, there exists no temporal analog (e.g., for pulse propagation in fibers) even for stationary
spatial solitons of a bulk medium. © 1997 Optical Society of America [S0740-3224(97)03211-6]
1. INTRODUCTION
Recent years have shown increased interest in self-guided
localized beams propagating in bulk nonlinear materials
(see, e.g., Ref. 1 and references therein). These are free-
standing beams that do not require waveguides. Such
beams are commonly referred to by physicists as bright
spatial solitons even though they do not adhere to the for-
mal mathematical definition of solitons, which is solely
the preserve of a one-dimensional beam of a cubic Kerr
medium described in the paraxial approximation.

One of the important recent advances in this field was
the development of the unifying conceptual approach1

based on the notion that a self-guided beam induces a
waveguide, permitting direct application of the physics
and results of the theory of linear guided waves. The ob-
servation that a beam creates a waveguide and guides it-
self in it is old. For example, the notion of the soliton-
induced waveguide2 was clearly stated in some early
papers on the self-focusing of light by Chiao et al.3 and
Akhmanov et al.,4 and it has been rediscovered often
since that time (see, e.g., Ref. 5 as a typical example).
But it was not realized until recently that this concept
alone could be used by means of a self-consistency prin-
ciple to permit novel predictions and to yield new closed-
form expressions for both stationary-beam propagation
and for beam dynamical evolution and even for beam in-
teractions (see the original papers6–9,11–16 and also the re-
view papers1,17,18). This idea has significantly extended
our knowledge of self-guided beams in non-Kerr media,
allowing a theoretical approach to be developed even in
cases far from those described by integrable models. The
most important fact is that many of the predicted phe-
nomena have now been confirmed experimentally.

Our purpose in the present paper is to give a compre-
hensive summary of the main theoretical advances in the
theory of self-guided beams, based on the linear perspec-
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tive concept. Because a comprehensive review of dark
spatial solitons is available elsewhere,19 here we concen-
trate mostly on spatially localized beams, known as
bright solitons, with fields monotonically decreasing from
the beam center. After giving some background physics,
we first emphasize that a stationary (scalar) bright soli-
ton in an isotropic nonlinear medium must have a cross
section that is circularly symmetric20 and that the medi-
um’s nonlinearity must be in some sense saturating (non-
cubic or non-Kerr; e.g., see Ref. 6) if the beam is to be
stable in a bulk material.9 Second, our discussion is re-
lated mostly to the dynamics of beams in bulk materials.
We particularly emphasize that there is no temporal ana-
log of spatial bright solitons17 for reasons elaborated be-
low.

2. PHYSICAL BACKGROUND
Simple physics explains the existence of spatial
solitons.1,20 First we recall the physics of an optical
waveguide (see, e.g., Ref. 21). Optical beams have an in-
nate tendency to spread as they propagate in a homoge-
neous medium. However, beam diffraction can be com-
pensated for by beam refraction if the refractive index is
increased in the region of the beam. The resulting opti-
cal waveguide can provide an exact balance between dif-
fraction and refraction if the medium is uniform in the di-
rection of propagation.

A similar effect of diffraction suppression can be pro-
duced solely by nonlinearity. As has been well estab-
lished in many experiments,22 some materials can exhibit
considerable optical nonlinearity when their properties
are modified by light propagation. In particular, if a non-
linearity leads to a change of the refractive index of the
medium in such a way that it generates an effective posi-
tive lens to the beam, the beam can become self-trapped
1997 Optical Society of America



3026 J. Opt. Soc. Am. B/Vol. 14, No. 11 /November 1997 A. W. Snyder and Y. S. Kivshar
and propagate unchanged (stationary propagation) with-
out any external waveguiding structure.3 These station-
ary self-guided beams are known as spatial optical soli-
tons, which can exist with profiles of a certain form
allowing local compensation of the beam diffraction by the
nonlinearity-induced change in the material’s refractive
index.

Until recently optical soliton theory was based prima-
rily on the nonlinear Schrödinger equation,23 describing
one-dimensional beams of a Kerr (cubic) nonlinear me-
dium in the so-called paraxial approximation. This cer-
tainly is the appropriate model for temporal solitons
propagating enormous distances along existing optical fi-
bers. But the model is both inappropriate and unphysi-
cal for bright spatial beams propagating in bulk materi-
als. Indeed, as was recognized long ago (see, e.g., Ref.
24), stationary solutions of the (2 1 1)-dimensional non-
linear Schrödinger equation are unstable and exhibit col-
lapse (see, e.g., Refs. 25 and 26). Saturation has been
suggested as a way to stabilize the self-focused beams
(see, e.g., Ref. 27), the effect also known in some other
fields (see, e.g., Ref. 28). Recent advances in this field20

have been based on a very simple physics and the so-
called qualitative approach, showing that stationary
beams must have a circular cross section and that they
must also propagate in a non-Kerr (particularly, saturat-
ing) medium if they are to be stable in a bulk medium.
The first elegant closed-form expression for stable beams
of circular symmetry, the so-called induced optical fiber,
was presented in Ref. 6. Furthermore, theory has also
shown that the behaviors of beams in non-Kerr materials
are qualitatively similar and that, in general, they all
obey a generalized nonlinear Schrödinger equation.1

This has led to a number of predictions about spatial soli-
tons and their dynamical evolution and interactions that
are not possible from the one-dimensional nonlinear
Schrödinger equation.1,16,17 Finally, applications of spa-
tial solitons involve millimeter lengths and not the kilo-
meters of temporal solitons.

From this perspective we understand that there is no
simple mapping between temporal and spatial solitons in
bulk materials. Spatial solitons are a much richer and
more complex phenomenon. Recent experiments, par-
ticularly those in the past year or so, have borne out many
of the theoretical predictions mentioned above, especially
those for non-Kerr materials.

In particular, it was recently demonstrated theoreti-
cally and experimentally that self-guided beams can be
observed in materials with a strong photorefractive
effect,29–32 in vapors with strong saturation of the refrac-
tive index,33,34 and also as a result of the phase-matched
two- and three-wave parametric interactions in x (2) non-
linear crystals.35–37 In all these cases propagation of
self-guided waves is observed in non-Kerr materials that
are described by models more general than the cubic non-
linear Schrödinger equation.

3. UNIFYING CONCEPTUAL APPROACH
That a stationary self-guided beam is a mode of the wave-
guide it induces is self-evident and has been known for
more than 30 years, from the first prediction of the
phenomenon.2–4 Yet only recently has it been recognized
that this fact provides the foundations for a self-
consistent method for actually obtaining closed-form ex-
pressions for both stationary and nonstationary self-
guided beams (spatial solitons) as well as their
interactions (see overviews presented in Refs. 1, 12, and
18). This new theoretical approach—called the linear
perspective—has led to many predictions that ultimately
have been confirmed experimentally.

The success of the linear perspective concept is based
on the fact that all spatial solitary waves are qualitatively
the same. In particular, all stationary self-guided beams
can be treated as the modes of a (linear) axially uniform
waveguide. This waveguide is induced by the interaction
of light with the nonlinear medium and is in general an-
isotropic, e.g., as for the two-wave solitary waves of a qua-
dratic [or x (2)] medium (see Ref. 1). This elementary con-
cept allows us to borrow physics and exact soliton
descriptions directly from the pages of waveguide theory
even without any prior knowledge of solitons.1,12,18 More
generally, soliton dynamics can also be understood from
this elementary approach, but the induced waveguides
are then axially nonuniform.1,16 All of this applies to dif-
ferent nonlinear media, including wave mixing in x (2) me-
dia (see Section 9 of Ref. 1) and self-trapping in photore-
fractive materials, as pointed out in Ref. 1. Conceptually
speaking, nonlinear beams interact with matter to create
their own waveguides. We emphasize that these
waveguides are linear and that they can be of arbitrary
shape and form. Beams then propagate along their own
induced waveguide according to the familiar physics of
linear optics. For example, in the simplest case a soliton
is one mode of the waveguide it induces; more generally,
it is any two modes of the induced waveguide, which ex-
plains the coexistence of different classes of solitons such
as dark and bright. Vector solitons are the exceptional
case in which the modes are degenerate.1,12 Periodic
(higher-order) solitons can be viewed as being created by
the beating of two or several modes,13 and so on. This
significantly generalizes the soliton as originally
envisaged3 and provides the first physical explanation for
mysterious phenomena such as radiation free collisions
and periodic oscillations that result from scaling up a
soliton.23 The fact that every nonlinear problem has a
linear equivalent provides a powerful conceptual tool, one
that guides us in a physical manner to the fundamental
equations and to their solutions, as well as providing us
the insight necessary for predictions and for interpreting
experiments.

Spatial optical solitons are solutions of Maxwell’s equa-
tions. These equations are greatly simplified for solitons
of any practical material when the weak-guidance ap-
proximation is assumed to be valid. We emphasize that
this is solely because the maximum refractive index ap-
proximately equals the minimum refractive index, so that
the components of the vector electric field E obeys

2ikn0
]E
]z

1 ¹'
2 E 1 k2~n2

• E 2 n0
2E! 5 0, (1)

where E is the vector that describes the slowly varying
wave envelope, ¹'

2 5 (]2/]x2) 1 (]2/]y2), n0 is the re-
fractive index at zero intensity, and n 5 n(uEu2) is the
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tensor refractive index induced by a beam of finite ampli-
tude. This result is easily derived directly from Max-
well’s equations (see Section 8 of Ref. 1). Equation (1)
can also be derived for wave mixing; then the components
of the electric field are the harmonic envelopes.1

4. STATIONARY SPATIAL SOLITONS
A rich variety of stationary non-Kerr solitons exist in
analogy with those of a Kerr medium. The fundamental
physical concept that a soliton is (self-consistently) a
mode of the effective linear waveguide it induces1 allows
us, in principle, to gain a deep insight into the properties
of solitary waves, knowing the structure and the type of
this waveguide. For non-Kerr bright solitons of any di-
mension many useful physical results, including exis-
tence and stability, can be extracted with the help of an
even simpler, qualitative approach, the soliton sketch,20

based on the fact that a stationary soliton is a balance be-
tween the beam diffraction and the nonlinearity-induced
change in the refractive index.

Stationary scalar solitary waves have the form

E~r, z ! 5 eE~r; b!exp~ibz !, (2)

where r 5 (x, y), e is the unit polarization vector, and
E(r; b) is a real envelope that depends on the propaga-
tion constant b. The parameter b defines both the shape
and the intensity of the stationary beam. For the sta-
tionary beam E(r; b) does not involve the spatial dis-
tance z when Eq. (2) is reduced to a simple eigenvalue
equation. Profiles of the stationary waves can be found
as separatrix trajectories that start from and return to a
critical point corresponding to vanishing boundary condi-
tions, E(r; b) → 0 for uru → `. From the mathematical
point of view the regions of the existence of bright-
solitary-wave solutions with decaying tails can be deter-
mined by analysis of the critical points. For scalar soli-
tons the corresponding ordinary differential equations are
integrable (a system with one degree of freedom), and the
structure of the critical points does not allow the exis-
tence of complicated (e.g., multihump12,38,39) solutions.
For vector solitons, e.g., two different orthogonal (degen-
erate) modes of the waveguide they induce (see Ref. 12
and also Ref. 1, Sections 3.1 and 3.2), the stationary
waves are described by a system of coupled (and generally
nonintegrable) ordinary differential equations that may
display many exotic solutions (including multihump local-
ized solutions, solutions with oscillating tails, etc.), which
are all usually unstable. The existence of such solitons is
a direct consequence of the complex critical points of the
corresponding dynamical system describing the station-
ary localized modes.

Two-component solitons, or the more general cases of
vector solitons, were first studied by Berkhoer and
Zakharov,40 and later Manakov41 demonstrated the exis-
tence of exact analytical solutions for this kind of two-
component solitary wave, the so-called Manakov solitons.
Vector solitary waves were discussed in their application
to temporal solitons in optical fibers,38 and they were also
demonstrated experimentally.42,43 However, as was
shown in Ref. 12, a vector spatial soliton is a very particu-
lar case of a more general dynamic soliton, which can be
described as two different modes of its induced wave-
guide. Among other things, this leads to interesting pre-
dictions about the beam polarization dynamics.1,12

Apart from the vortex soliton,9,10 no other spatial soli-
ton is mathematically stable in a Kerr (cubic)
nonlinearity.9 However, simple physical reasoning
shows that nonlocality or saturation imposes stability.20

Furthermore, it can be shown20 for scalar solitons that
stationary beams must have a circularly symmetric cross
section. Clearly there is no temporal analog of bright
spatial solitons, i.e., beams that have circular cross sec-
tions and propagate in non-Kerr materials. Just as there
are many types of circular (linear) waveguide profile,
there exist correspondingly many types of induced wave-
guide, depending on the medium. We consider only
monotonically decreasing spatial (bright) solitons, but
dark solitons exist that are dimmer than their flat back-
ground, and so do brightlike dark solitons that are
brighter than their flat tails.44 A qualitative theory was
recently developed20 that enables us to determine the ex-
istence and stability of bright solitons simply by inspect-
ing the refractive index versus intensity curve that char-
acterizes any scalar nonlinear medium. This gives a
direct physical meaning to abstract mathematical con-
cepts such as bifurcation. The first analytical expression
for a stable soliton of circular cross section was for an
ideal saturating medium, and that led to the prediction of
stable induced optical fibers for light-guiding light.6

Subsequently, the logarithmic nonlinearity16 was shown
to have stationary solitons that are independent of inten-
sity. Both of these theoretically predicted phenomena
were observed experimentally.30,33 It was also predicted
that there are stationary vector solitons in which the two
field components are orthogonal (a mode of an induced an-
isotropic waveguide) but travel at the same speed.1,12

This is a contrived situation. More generally the two
components travel at different speeds, causing a rotation
of polarization as first predicted in Ref. 12. This can ex-
plain the possibility of having two parallel vector
solitons,14 which would not be possible with scalar self-
localized beams.

Solitons in nonlocal media. Above, we have been con-
sidering solitons in a nonlinear medium with a purely lo-
cal response. In that case the intensity at position x pro-
duces a change in the refractive index at the given point x
only. Solitary waves can be also supported by nonlocal
nonlinearities such as, for example, photorefractive mate-
rials. In such materials a light beam of radius r creates
a circularly symmetrical refractive-index change whose
spatial extent is rm . The smaller r/rm , the more highly
nonlocal the process. The collisions, interactions and de-
formations of solitons in a highly nonlocal medium are so-
lutions of the effective equation for a linear harmonic os-
cillation and hence have an elegant description.45 A
highly nonlocal medium is unique in that it can support
(scalar) stationary beams of noncircular symmetry.

5. SOLITON STABILITY
Existence of stationary solutions in a non-Kerr medium
does not guarantee the stability of self-guided beams, and
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therefore the stability becomes one of the most important
issues for the analysis of self-trapping in a non-Kerr me-
dium. Bright solitons of any dimension are known to be
stable provided25,26,46 db/dP . 0, where P
5 *VuE (r; b)u2dr is the beam power and b is the soliton
propagation constant. A simple mathematical relation
tells us20 that the condition for solitary-wave stability can
be simplified to the form dI/dP . 0, where I is the maxi-
mum intensity of the beam. The stability criterion for
guided waves becomes more complicated in the case of
spatially inhomogeneous media, e.g., in waveguide struc-
tures (see, e.g., Refs. 47 and 48), but general results have
now been obtained even for the case of arbitrary
nonlinearity.26

This criterion of soliton stability is usually valid for the
bright solitons that constitute a one-parameter family,
i.e., those whose shape is defined solely by the beam
propagation constant or the maximum intensity. In par-
ticular, it has also been shown that a similar criterion ap-
plies for two-wave solitons in x (2) materials.49

Linear stability analysis does not allow us to predict
the subsequent evolution of unstable (bright and dark)
solitons. This can be investigated with the help of the
numerical beam propagation method. Recently an el-
egant analytical approach, valid near the point of the soli-
ton stability change (stability threshold), was suggested
and elaborated in detail50,51 for solitary waves described
by the generalized nonlinear Schrödinger equation. This
allows us to analyze the nonlinear regime of the soliton
instability when the beams diffract, collapse, or switch to
a novel (stable) state with long-lived oscillations of their
amplitude. These periodic or oscillating solitons12 are
generally possible in models of different dimensions, and
they are due to the existence of soliton internal modes51;
this phenomenon can also be understood as a beating be-
tween two (or more) modes of the induced waveguides.13

Many novel soliton states demonstrated recently for
the case of two interacting fields are unstable; i.e., they
cannot be realized experimentally. A general theory of
stability for bright vector solitons, rotating or dynamic
solitons,12 is still an open problem. However, recently it
was demonstrated that the threshold of instability for
two-parameter solitons, analogous to the condition db/dP
for the scalar solitons, is given by the following criterion:

]~F 1 , F 2!

]~b1 , b2!
[

]F 1

]b1

]F 2

]b2
2

]F 1

]b2

]F 2

]b1
5 0, (3)

where F j ( j 5 1, 2) are two powerlike (Manley–Rowe) in-
variants of the system describing coupled (e.g., bright–
dark) solitons or vector solitons of two interacting polar-
izations and b j are two independent parameters of the
stationary localized (soliton) solution. This result seems
to be valid for any dimension and for different types of
vector (or coupled) soliton described by two independent
parameters introduced by two nontrivial invariants of the
model. For example, in the case of coupled bright–dark
solitons, F 1 is the power of the bright component P, and
b1 is the propagation constant of the bright component,
whereas F 2 is the total momentum M and b2 is the soli-
ton velocity V.52 The same result holds for the stability
of three-wave parametric solitons in a x (2) medium53 and
for the models in which Galilean invariance is absent,
such as two-wave parametric solitons with the walk-off
effect.53 In this latter case the second parameter is the
soliton velocity V, and the second invariant is the soliton
momentum M.

6. SOLITON DYNAMICS
Since the Kerr solitons in (1 1 1) dimensions are de-
scribed by the integrable cubic nonlinear Schrödinger
equation, soliton interactions are known to be elastic.
This is, however, not the case for solitons in three-
dimensional space in non-Kerr materials, those that have
a rich dynamics and exhibit many interesting features of
their interaction, including spiraling, fusion, and genera-
tion of new solitons.

The challenging problem of theory is to describe the
trajectory of beams that are not stationary and to describe
them in (2 1 1) dimensions. No temporal analogue ex-
ists for such problems. This is clearly a difficult task, so
it has in the past been necessary to restrict the treatment
to merely delivering beam stability.

Soliton steering in three dimensions, including spiral-
ling. One of the important physical concepts that allows
us to treat beam propagation and interaction is the notion
that a self-guided beam moving in a medium with a
slowly varying refractive index can be described as an ef-
fective optical ray. The ray (or geometrical optics)
method is well known (e.g., see Ref. 21) and is used to ac-
count for various phenomena of scattering and to account
for wave propagation in acoustics and electrodynamics
(see, e.g., Ref. 54). Applied to self-guided beams through
the method of invariants,7 the ray method allows us to de-
scribe the beam trajectories like rays in a graded index fi-
ber. Indeed, in a medium with a slowly varying refrac-
tive index the quasi-stationary beam [Eq. (2)] can be
presented in the form

E~r, z ! 5 Ê~r 2 r0 ; b!exp@iS~r 2 r0 , z !#, (4)

assuming that the beam propagation constant, b
5 ]S/]z, varies slow with z. Equations for the beam
trajectory r0(z) can be then derived from the relations for
the invariants of the model [Eq. (1)], the power P
5 * uE u2dA, and the Hamiltonian H 5 *$u¹'E u2

2 k2F(I)%dA, where F(I) 5 *0
I (n2 2 n0

2)dI. These
equations are

dr0

dz
5 k,

dk
dz

5 2
]W
]r0

, (5)

where, for a single beam, the effective potential W is de-
fined as

W~r0 , z ! 5
E ~n2 2 n0

2!uE u2dA

n0
2E uE u2dA

.

Similar equations hold when the change of the refractive
index is produced by another beam, with a modification of
the effective potential W.

This powerful method allows us to treat a variety of dif-
ferent problems involving beam propagation in a non-
Kerr medium. Significantly, some theoretical predic-



A. W. Snyder and Y. S. Kivshar Vol. 14, No. 11 /November 1997 /J. Opt. Soc. Am. B 3029
tions have now been confirmed experimentally: First,
theory has predicted that stationary beams of circular
cross section can spiral about each other when propagat-
ing in a saturating medium.7,8 In other words, it is actu-
ally possible to control the direction of one beam with an-
other beam in a bulk medium. This was recently
observed experimentally.55

Furthermore, it was recently shown to be possible to
treat the solitons as particles with mass and to directly
calculate their interaction from the classical force laws
that predate Maxwell’s equations.14

Soliton collisions. A simple qualitative theory
predicted11 that colliding beams in any non-Kerr medium
can annihilate each other, fuse, or give birth to any num-
ber of new solitons. This was also observed
experimentally.56,57

Dynamics of a single beam: mighty morphing solitons.
Most important, a simple exact solution,16 which leads to
the evolution of the beam intensity described by the ex-
pression

I 5 I0

rx0ry0

rxry
expS 2

x2

rx
2 2

y2

ry
2D ,

allows us to demonstrate analytically how Gaussian (la-
serlike) beams evolve dynamically as they propagate in a
medium with a logarithmic nonlinearity. In a nonsta-
tionary regime the beam characteristic radii, rx and ry ,
vary periodically, and in general at every fixed distance
the beam cross section is elliptical. The elliptical cross
section changes as the beam propagates. This was re-
cently observed58 experimentally, and it was also shown
that the logarithmic nonlinearity is an excellent model for
realistic saturation. It seems that Gaussian-like beams
will behave similarly in a wide variety of non-Kerr mate-
rials.

7. LIGHT-GUIDING LIGHT
If bright light beams can induce a stable optical fiber,6

then such beams can guide a beam of another frequency
or polarization or steer8 and direct11 another bright beam
in (2 1 1) dimensions. We put both phenomena under
the category of light-guiding light for (three-dimensional)
photonic devices. This is an area much promoted by both
theoretical predictions1,6,8,11,59 and experimental
observation.31,33,34,37,60 The past few years have wit-
nessed enormous progress in this field.

8. CONCLUSIONS
This paper has presented a summary of the recent theo-
retical advances in three-dimensional self-guided beams
(spatial optical solitons) propagating in non-Kerr media.
While the variety of self-guided beams in non-Kerr mate-
rials is rich, they are all generically similar, independent
of their origin, including solitary waves in photorefractive
and x (2) materials. Such a notion permits the develop-
ment of a unifying conceptual approach based on the
physics of induced optical waveguides. Indeed, from the
physical point of view all spatial solitary waves can be
treated as modes (or combinations of different modes) of
the waveguides they induce, and their dynamical proper-
ties are similar to those of optical rays. There is no tem-
poral analog of spatial solitons propagating in bulk mate-
rials. Recent experiments (Refs. 30, 31, 33, 34, 37, 55,
57, 58) have confirmed a number of theoretical predic-
tions, including: stable solitons of circular symmetric
cross section6 (induced optical fibers leading to light-
guiding light), directing solitons in three dimensions, e.g.,
solitons that can spiral about one another,7,8 inelastic col-
lisions leading to fusion, annihilation, or the birth of new
beams,11 and, finally, periodic changes of beam shape and
beam cross section when the beam is not stationary.16
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