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a  b  s  t  r  a  c  t

Hybrid  renewable  energy  system  has  been  introduced  as  a green  and  reliable  power  system  for  remote
areas. There  is  a steady  increase  in  usage  of  hybrid  renewable  energy  units  and  consequently  optimization
problem  solving  for this  system  is a necessity.  In recent  years,  researchers  are  interested  in using  multi-
objective  optimization  methods  for this  issue.  Therefore,  in  the present  study,  an  overview  of  applied
eywords:
ulti-objective optimization
ybrid system
tand-alone
enewable energy

multi-objective  methods  by  using  evolutionary  algorithms  for hybrid  renewable  energy systems  was
proposed  to  help  the  present  and  future  research  works.  The  result  shows  that  there  are a  few studies
about optimization  of  many  objects  in a  hybrid  system  by these  algorithms  and  the  most  popular  applied
methods  are  genetic  algorithm  and  particle  swarm  optimization.

© 2012 Elsevier Ltd. All rights reserved.
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. Introduction

As the world energy demand will increase up to 53% by 2035 [1],
he usage of renewable energy has been steadily increasing over the

energy producers to look at cleaner forms of generating electricity
in order to combat global warming caused by green house gases [4]
as shown in Fig. 1 [5].

On the other hand, an important decision for governments and
ast few years to help solving acute problems of energy and envi-
onmental concerns especially global warming [2,3]. Furthermore,
pecial legislation on energy, which came into effect in 2003, forces

Abbreviations: RE, renewable energy; PV, photovoltaic; GA, genetic algorithm;
ETs, renewable energy technologies; VRLA, valve regulated lead acid; SOC, state
f  charge; HRES, hybrid renewable energy system; LP, linear programming; EUE,
xpected unnerved energy; LCOE, levelized cost of energy; LCE, life cycle emissions;
BMO, honey bee mating optimization; MOEA, multi-objective evolutionary algo-

ithms; MPPT, maximum power point tracking; GHG, green house gases; HBMO,
oney bee mating optimization; PSO, particle swarm optimization; EA, evolutionary
lgorithm; AI, artificial intelligence.
∗ Corresponding author. Tel.: +60 172797162.

E-mail address: Mfadaee@gmail.com (M.  Fadaee).

364-0321/$ – see front matter ©  2012 Elsevier Ltd. All rights reserved.
oi:10.1016/j.rser.2012.02.071
companies is whether or not to establish renewable energy sys-
tems in a given place, and to decide which renewable energy source
or combination of sources is the best choice [6].  Combination of
sources to form a single renewable energy system can be called as
hybrid renewable energy system (HRES). HRESs are usually more
reliable and less costly than other type of renewable systems that
rely on a single source of energy [3,7–9].  HRESs use different source
of energy and their advantages are: increasing the efficiency, reli-
ability life time of battery bank, reducing the cost of battery bank,
longer variations in average wind speed, and about 26–40% saving

as compared to only photovoltaic (PV) systems [4]. HRES is becom-
ing popular for remote area power generation applications due to
advances in renewable energy technologies and subsequent rise in
prices of petroleum products [10]. Most rural areas do not have

dx.doi.org/10.1016/j.rser.2012.02.071
http://www.sciencedirect.com/science/journal/13640321
http://www.elsevier.com/locate/rser
mailto:Mfadaee@gmail.com
dx.doi.org/10.1016/j.rser.2012.02.071
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tions in the solution space. A Pareto optimal solution cannot be
improved with respect to any objective without worsening at least
one objective. The set of all feasible non-dominated solutions in
solution space is referred to the Pareto optimal set, and for a given
Fig. 1. World CO2 emissions from fuel combustion.

ccess to electricity, and to provide electricity in these areas by
ncreasing the scope of the electrical grid is often costly and has
hallenges [4].  Therefore the HRES is the best choice.

Various aspects and problems must be taken into account when
he major discuss is about the optimization of a stand-alone hybrid
ystem [11,12]. Optimizing cost, reliability, design and control,
lacement and acceptable power quality are some of these prob-

ems [13]. In recent research works for optimization of a RE unit,
here are an increase in usage of evolutionary computations, due
o they are suitable for multi-objective issues by implementing

 heuristic algorithm. Researchers in recent years applied multi-
bjective evolutionary algorithms (MOEA) to solve one of those
roblems. MOEA, which classified in population based methods
11] are suitable for this problem because they have the ability to
ttain the global optimum [15].

Although there are many research works about optimization of
 HRES [13–25,52],  but there are a few works that consider more
han one object in optimization problem of a HRES by using evolu-
ionary algorithm (EA) [10,23–27].  This review goes on to offer an
verview of latest research advances in multi-objective optimiza-
ion methods that applied for a HRES.

. Multi-objective optimization

In this section, adaptability of multi-objective optimization
ethods with proposed problems will be discussed. Based on pre-

ious works, the multi-objective approaches are accurate and real
or many complicated optimization problems [28] by consider-
ng many conflicting objectives and keep the priority of each one
ased on their importance [28]. In the last decade, evolution-
ry approaches have been the primary tools to solve real-world
ulti-objective problems [28]. On the other sides, there are many

hortcomings in studies of single-objective methods, which are for-
ulated as a problem whose goal is to find the “best” solution,
hich corresponds to the minimum or maximum value of a sin-

le objective function that group all different objectives into one
29]. Thus, using multi-objective algorithms allow decision-makers
o think about the trade-offs between different benefits of differ-
nt objects and choose the prior one [29]. Many, or even most,
eal engineering problems actually do multiple-objectives, such as

inimizing cost, maximizing performance, maximizing reliability,

tc. These are difficult but realistic problems [6,30].  These methods
an provide solutions to increasing complex energy management
roblems [31].
Fig. 2. Published items in recent 20 years.

Taking into account information from the ISI web of knowledge,
Fig. 2 shows the published items about multi-objective optimiza-
tion in a period of 20 years. It can be observed that high number of
researchers have interested in this research area.

Although in years 2010 and 2011 less amount of publications are
published in this research area, but the large number of citations
(Fig. 3) on these years really show the overall interest in the subject.

There are two  general approaches to multiple-objective opti-
mization. One is to combine the individual objective functions into a
single composite [28]. The second general approach is to determine
an entire Pareto optimal solution set or a representative subset [28].

In Pareto based approaches, a decision-maker is considered who
wishes to optimize many objectives where the objectives are non-
commensurable and the decision-maker has no clear preference of
the objectives relative to each other. In this situation a solution is
said to be Pareto optimal if it is not dominated by any other solu-
Fig. 3. Citations in recent 20 years.
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Fig. 4. Pareto front of a MOEA [23].

areto optimal set, the corresponding objective function values in
he objective space are called the Pareto front. For many prob-
ems, the number of Pareto optimal solutions is enormous (perhaps
nfinite) [28].

The ultimate goal of a multi-objective optimization algorithm
s to identify solutions in the Pareto optimal set. However, iden-
ifying the entire Pareto optimal set, for many multi-objective
roblems, is practically impossible due to its size. Therefore, a prac-
ical approach to multi-objective optimization is to investigate a set
f solutions (the best-known Pareto set) that represents the Pareto
ptimal set as well as possible. With these concerns in mind, a
ulti-objective optimization approach should achieve the follow-

ng three conflicting goals [28]:

. The best-known Pareto front should be as closed as possible to
the true Pareto front. Ideally, the best-known Pareto set should
be a subset of the Pareto optimal set.

. Solutions in the best-known Pareto set should be uniformly dis-
tributed and diverse over of the Pareto front in order to provide
the decision-maker a true picture of trade-offs.

. The best-known Pareto front should capture the whole spectrum
of the Pareto front. This requires investigating solutions at the
extreme ends of the objective function space.

Identifying the Pareto front from a set of points in a multi-
bjective space is the most important and also the most
ime-consuming task in multi-objective optimization. Usually, this
s done through called no dominated sorting. Fig. 4 shows all men-
ioned above [23].

Therefore, applications of heuristic approaches, Pareto-based
ulti-objective optimization and parallel processing are promis-

ng research areas in the field of renewable and sustainable energy
6].

. Multi-objective optimization methods applied to
ifferent HRES

This section will explain the proper optimization methods for
olving obstacles against of hybrid units. In several papers, many
bjective methods for solving problems in RE systems are stated
nd a few of them propose them to be applied in HRES. A review
f these methods for HRES from the point of view of placement,
izing, operation, design, planning and control is provided below.
Konak et al. [28] carried out overview and tutorial describing
enetic algorithm (GA) developed specifically for problems with
ultiple objectives. This paper concludes GA is a popular meta-

euristic that is particularly well suited for this class of problems.
ble Energy Reviews 16 (2012) 3364– 3369

The first popular method applied for many objective optimiza-
tions of HERS in recent years is GA. GA has been proved to be a
good method to solve large scale and combinatorial optimization
problem [32]. In [22], Dufo-López and Bernal-Agustín used GAs to
optimize a control strategy for a PV–diesel–battery–hydrogen sys-
tem. In a prior paper [33], they described optimization of the hybrid
PV–diesel system using GAs by HOGA software. Masoum [13]
improved GA for optimal placement of a hybrid PV–wind system
among given candidate locations. In reference [2] an improved GA is
developed for achieving the optimization of the hybrid RE system
by considering its operation during its lifetime. In recent papers,
sizing problem in hybrid systems is discussed more than other
problems such as placement, cost, and even design and control
strategy. Cinar et al. [34] demonstrated an application of a hybrid
model, improving the forward feeding back-propagation model
with GA. Kalantar and Mousavi [35] accomplished optimal sizing
and economical analysis of the wind–micro turbine–PV–battery
hybrid system using GAs for minimizing the annualized cost of
system. In another research, Ould Bilal [16] optimized sizing of a
hybrid solar–wind–battery system through multi-objective genetic
algorithm with two  principal aims of the minimization of the annu-
alized cost system and the minimization of the loss of power supply
probability. Koutroulis et al. [15] proposed optimal sizing of stand-
alone PV–wind generator systems using GAs. Yang [17] recom-
mended an optimal sizing method to optimize the configurations
of a hybrid solar–wind system employing battery banks based on a
GA. The optimal sizing method was developed to calculate the opti-
mum  system configuration that can achieve the customers required
loss of power supply probability (LPSP) with a minimum annualized
cost of system (ACS). Bourouni et al. [36] presented a new model
based on the GAs allowing the generation of several individuals
(possible solutions) for coupling small Reverse Osmosis unit to RES.

The second favorite method in recent papers for this problem is
particle swarm optimization (PSO). In [37], an evolutionary particle
swarm optimization approach was  proposed to solve the wind–PV
capacity coordination for a time-of-use rate industrial user. Kaviani
[14] presented an advanced variation of PSO algorithm for optimal
design of a reliable hydrogen-based stand-alone wind–PV gener-
ating system with aim of minimization of annualized cost of the
hybrid system. Hakimi and Tafreshi [24] demonstrated PSO algo-
rithm that used for optimal sizing of a stand-alone hybrid power
system for Kahnouj area in southeast of Iran with aim of mini-
mizing the total costs of the system. Boonbumroong et al. [38]
optimized the configuration of a typical AC-coupling stand-alone
hybrid power system by PSO to minimize the total cost through
the useful life of the system at Chik Island in Thailand. The soft-
ware used in this work is HOMERpro. Moghaddam [39] presented
an expert multi-objective adaptive modified PSO for optimal oper-
ation of a typical micro-grid with RE sources accompanied by a
back-up micro-turbine–fuel cell–battery hybrid power source with
aim to level the power mismatch or to store the surplus of energy
when it is needed. In this paper, for improving the optimization
process, a hybrid PSO algorithm based on a Chaotic Local Search
(CLS) mechanism and a Fuzzy Self Adaptive (FSA) structure was uti-
lized. Avril et al. [27] presented a multi-objective design of hybrid
PV–battery based on PSO.

A few researchers exactly focus on optimization of many objects
in a RE. Niknam [10] used HBMO algorithm for multi-objective
placement of renewable energy resources. Although Niknam’s
paper can be summarized as optimal sitting and sizing of renew-
able electricity generators, but it is not for HRES. Brenal [33] applied
an EA for the efficient design and control of hybrid systems of elec-

trical energy generation, obtaining good solutions but needing low
computational effort. Ban õs et al. [6] reviewed the current state of
the art in computational optimization methods applied to renew-
able and sustainable energy, and concluded that some researchers
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Fig. 5. Block diagram of a conventional PV–battery system.

ave solved multi-objective problems related to renewable energy
ystems using Pareto-optimization techniques. Zhou [25] concen-
rated on reviewing the current state of research on optimum sizing
f stand-alone hybrid solar–wind power generation systems with
raphical construction method, probabilistic approach, iterative
pproach and artificial intelligence method and introduced several
oftware tools for designing of hybrid systems, such as HOMER,
YBRID2, HOGA and HYBRIDS.

Beside all mentioned, some authors [26] work on a triple multi-
bjective design of isolated hybrid systems which minimizing the
otal cost throughout the useful life of the installation, pollutant
missions (CO2) and unmet load by MOEA.

Whereas the stand-alone HRES design and performance depend
o location and climate [11,40,49],  this paper will discuss optimiza-
ion of various types of hybrid systems separately.

.1. PV–battery HRES

Nowadays, the available application area and the installation
f PV system are rapidly growing by a number of factors such as
lobal warming, energy security, technology improvements and
ecreasing costs. In particular, stand-alone PV generation systems
re attractive and indispensable electricity source for the security
amera devices, streetlights, electric signs and weather observa-
ion systems where some of them may  be placed in remote or

ountainous locations [41].
The energy storage devices are necessary to the stand-alone PV

eneration system. The battery charging and discharging control
ith the maximum power of PV array is the key point to increase

fficiency of the generation system [42]. A typical stand-alone sys-
em, as shown in Fig. 5, incorporates a photovoltaic panel, regulator
DC–DC converter), energy storage system (rechargeable battery),
nd load [43].

Generally the most common storage technology employed is the
alve regulated lead acid (VRLA) battery because of its low cost and
ide availability. Photovoltaic panel is not an ideal source for bat-

ery charging; the output is unreliable and heavily dependent on
eather conditions, therefore an optimum charge/discharge cycle

annot be guaranteed, resulting in a low battery state of charge
SOC). Sizing the battery is related to the cost; in photovoltaic sys-
ems the batteries are replaced typically every 3–5 years depending
n the application [43,44].

The off-grid or stand-alone PV system incorporates large
mounts of battery storage to provide power for a certain number
f days (and nights) when sun is not available. The array of solar
anels must be large enough to power all energy needs at the site
nd recharge the batteries at the same time. The aim is to optimize
he battery hybrid storage system to reduce the size of the bat-
ery and extend the life of the battery by avoiding deep discharge

hrough high currents [43].

Badejani [20] simulated a stand-alone PV-energy storage system
n HOMER environment for sizing optimization, which minimizes
he system cost. But the proposed stand-alone system is not a HRES;
Fig. 6. Block diagram of a conventional PV–wind–battery system.

it is a telecom power system. In another paper [6],  the potential
of artificial intelligence (AI) as a design tool for the optimal sizing
of PV–battery systems was  explored. Additionally, the advantage
of using an AI-based sizing of PV systems is that it provides good
optimization, especially in isolated areas, where the weather data
are not always available.

In some cases, this type of hybrid system is used for street
lighting. Lagorse [18] explained about sizing optimization of a
stand-alone street lighting system powered by a hybrid system
using fuel cell, PV and battery. He used two  optimization algo-
rithms: first the GA to find the approximate global optimum and
then a simplex algorithm to enhance the previous result. In another
case [45], optimization of the size of a solar thermal electricity plant
by means of genetic algorithms is discussed.

3.2. PV–wind–battery HRES

The PV–wind–battery HRES use three power systems, which
are each capable of operating in stand-alone operation in order to
ensure availability for load demand together. The controller devel-
oped for this system monitors the status of availability and connects
the load to the available source. Fig. 6 shows the conceptual model
of the PV–wind–battery HRES [21].

To improve the performance of the system under different envi-
ronmental conditions, MPPT of the photovoltaic system and blade
angle pitch control of wind turbines were included [20,46]. Mousavi
Badejani [20] presented an effective methodology for design and
modeling of hybrid wind–photovoltaic systems including their
planning and analysis using discrete optimization of cost function
and energy balance calculation.

3.3. PV–wind–diesel–battery HRES

Hybrid PV–wind or PV–wind–diesel systems with battery stor-
ages have been widely studied in the technical literature [23]. Given
that PV and wind systems are still relatively expensive in their
installation costs, hybrid systems, which include a diesel genera-
tor, often have a lower installation cost than single-type renewable
systems [23]. Also, this kind of HRES has been introduced as the
most common hybrid system [11].

Saif, Gad Elrab and Kirtley [47] proposed a multi-objective opti-
mization of a PV–wind–diesel–battery HRES. They formulated the
problem as a linear programming (LP) model with two  objectives:
minimizing total cost and minimizing total CO2 emissions, while
capping the expected unnerved energy (EUE).

Dufo-López et al. [23] described an application of the strength
Pareto EA to the multi-objective optimization of a stand-alone
PV–wind–diesel system with battery storages. The objectives to be

minimized are the levelized cost of energy (LCOE) and the equiva-
lent CO2 life cycle emissions (LCE).

Belfkira [21] evaluated a methodology of sizing optimization of
a stand-alone hybrid wind–PV–diesel–battery energy system with
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ig. 7. Block diagram of a conventional PV–wind–diesel–battery system [23].

im of minimizing total cost of the system while guaranteeing the
vailability of the energy. Fig. 7 shows the Block diagram of a con-
entional PV–wind–diesel–battery system.

.4. Other HRESs

The overall RE system performance and design are very sensitive
o local weather conditions [48]. Thus it is very essential to propose

 certain HRES for a definite location.
Kenfack [49] presented size optimization model for micro

ydro-PV–diesel–battery hybrid system in a village in Cameroon.
akos [50] carried out operation of a hybrid wind-hydro power sys-
em aiming at producing low cost electricity in the island of Ikaria
n Greece. In [51] Dalton analyzed PV, wind, battery, diesel system
or subtropical coastal area of Queensland, Australia.

. Conclusion

This paper provides an overview of the latest research works
bout the use of multi-optimization algorithms for placement, siz-
ng, design, planning and control problems in the field of renewable
nd sustainable energy. The first finding of this review is that
lthough there are a large number of optimization methods for RE,
owever a few of them have discussed around multi-objective opti-
ization of stand-alone hybrid renewable energy system by using

euristic algorithm.
The second finding is indication of a fast and significance growth

f using MOEA for engineering problems. As we mentioned the
RES design is very sensitive to local conditions, thus, there is

 promising research area in finding solution for many objec-
ive optimizations by MOEA in a special place. Future research
an be focused on application of a specific evolutionary algo-
ithm for a multi-objective optimization of a HRES in a proposed
rea.

Among various EAs, this review concludes that the using of GA
nd PSO are the most useful and promising methods in HRES design.
hese two methods are heuristic algorithms, which gain global
ptima, and this is the important reason for applying them.
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