
A Context-Aware Middleware for Applications in Mobile Ad
Hoc Environments

Carl-Fredrik Sørensen
∗

, Maomao Wu, Thirunavukkarasu Sivaharan, Gordon S. Blair,
Paul Okanda, Adrian Friday, Hector Duran-Limon

Computing Department, Lancaster University
Bailrigg, Lancaster, LA1 4YR, U.K.

Tel: +44 (0) 1524 593315
email:carlfrs@idi.ntnu.no, {maomao, t.sivaharan, gordon, okanda, adrian, duranlim}@comp.lancs.ac.uk

ABSTRACT
Novel ubiquitous computing applications such as intelligent vehi-
cles, smart buildings, and traffic management require special prop-
erties that traditional computing applications do not support, such
as context-awareness, massive decentralisation, autonomous behaviour,
adaptivity, proactivity, and innate collaboration. This paper presents
a new computational model and middleware that reflect support for
the required the properties. The sentient object model is proposed
by the CORTEX 1 project to support the construction of ubiquitous
applications. A flexible, run-time reconfigurable component-based
middleware has been built to provide run-time support to engineer
the sentient object programming paradigm. An application infras-
tructure using sentient objects to enable cooperation between au-
tonomous and proactive vehicles has been implemented to demon-
strate the appropriateness of the computational model and the va-
lidity of the middleware for pervasive mobile ad hoc computing.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques—
Modules and interfaces; C.2.4 [Computer-Communication Net-
works]: Distributed Systems—Distributed applications;
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Wireless communication

Keywords
Middleware, components, context-awareness, sentient objects, ad
hoc wireless network

∗Department of Computer and Information Science, Norwegian
University of Science and Technology (NTNU). NO-7491 Trond-
heim, Norway
1This paper is part of the CORTEX (CO-operating Real-time sen-
Tient objects:architecture and EXperimental evaluation) project.
The CORTEX project is supported by the EC, through project IST-
FET-2000-26031. http://cortex.di.fc.ul.pt

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
2nd Workshop on Middleware for Pervasive and Ad-Hoc Computing
Toronto, Canada
Copyright 2004 ACM 1-58113-951-9 ...$5.00.

1. INTRODUCTION
The technical evolution in wireless networks, mobile and sensor

technology has made the vision of ubiquitous computing coming
closer to reality. Autonomous applications that in a proactive man-
ner operate independently of direct human control are increasingly
being developed to provide a more seamless and invisible support
to the users. One of the challenges of this evolution has been to
create ”intelligent” middleware and to design appropriate compu-
tational models for this new generation of applications. Such mid-
dleware should address the basic challenges raised by wireless mo-
bile ad hoc network (MANET) applications, and support the growth
and adaptability to new technologies, and provide applications with
ways to enforce non-functional quality attributes like reliability and
timeliness.

Academia and industry are both showing interest in research to
exploit the new possibilities opened by the technological evolution.
Car manufacturers, e.g., have initated projects to develop similar
applications as investigated in this paper, e.g., the ConnectedDriv
project by BMW [8] and the Intelligent Transportation Systems
(ITS) program at the General Motors [1]. Such complex real-time
dependable applications are difficult to engineer using traditional
systems development techniques and paradigms.

The CORTEX project has identified the key characteristics that
the new generation of applications may possess: Sentience – the
ability to perceive the state of the surrounding environment; Au-
tonomy – components should be capable of acting in a decentral-
ized and autonomous fashion; Time criticality – applications will
typically interact with the physical environment, and will have to
cope with timeliness constraints; Safety criticality – typical ap-
plications will interact with human users, whose well-being will
frequently rely on them; Geographical dispersion - typical appli-
cations will integrate components that are scattered over buildings,
cities, countries, and continents; Mobility – applications residing
in mobile devices must possess the ability to physically move and
discover new neighbours and interact and share information; Evo-
lution – applications will have to cope with changing conditions
during their lifetimes.

It is unlikely that any application at the same time will possess all
these characteristics. The most challenging applications are prob-
ably those that mix autonomy of application participants, derived
from sentience, with the need to maintain a consistent view of the
application environment while cooperating with other participants.

In this paper, we present a middleware platform which addresses
the challenges raised by the application domain involving autonomous
mobile physical objects that cooperate with other objects, either
mobile or static, by capturing information in real-time from sen-

sors event messages propagated in a MANET.
The rest of the paper is organised as follows: Section 2 presents

the application domain, Section 3 presents the sentient object model,
and Section 4 presents the component framework and the middle-
ware developed. Section 5 presents related work, and finally, Sec-
tion 6 concludes the paper.

2. COOPERATING CARS
To investigate the unique challenges posed by ubiquitous appli-

cations built upon MANETs, we decided to build an application
based on intelligent vehicles. This facilitates to investigate the fea-
sibility and appropriateness of the programming model and mid-
dleware platform based on a concrete prototype application. Us-
ing real hardware for the demonstration ensures that our proposals
are directly usable and do not depend on hidden idealistic assump-
tions. Moreover, the intelligent vehicle applications are an active
research area. Cars are increasingly being equipped with different
types of embedded sensors ranging from position and obstacle sen-
sors to sensors indicating road and weather conditions. Cars with
embedded sensors thus provide a rich set of context information.
By making the sensor information available to other cars, a car can
derive certain traffic conditions directly from the provided sensor
information. Car-to-car communication thus has three major goals:
1. Dissemination of traffic information derived from the embedded
sensors; 2. Cooperation of cars to assist the driver in critical situ-
ations; and 3. Interaction between remote cars.
Traffic scenarios are inherently safety critical. An ultimate level of
predictability and safety is particularly necessary in the tight coor-
dination tasks in and between the cars. To model various forms of
the aforementioned cases and to validate the middleware platform
using real hardware, we have constructed a small number of au-
tonomous robot cars. The robot cars have been instrumented with
GPS2, compass, and ultra-sonic sensors3 and it is controlled by an
iPAQ mounted on the car. Sensor information is collected by the
iPAQ and used to provide actuations, e.g., change of course, reduc-
tion of speed, and in the case of obstructions or other safety critical
events, to stop the car. Relevant information is notified to other cars
using the ad hoc mode of IEEE 802.11b WLAN network.

3. SENTIENT OBJECT MODEL
The CORTEX project proposes the sentient object (SO) pro-

gramming model for pervasive and ad hoc computing applications.
The SO programming abstraction allows developers to design dis-
tributed applications in terms of sentient objects, instead of decom-
posing them into components parts such as messaging protocols,
sensor fusions, context representation and inference engine. Those
applications that have already been built has shown to facilitate
good application design and hide the complexity from the appli-
cation designer. The cooperating car demo application is designed
using the sentient object model as described in [6]. A sentient ob-
ject (SO) is a mobile (not mobile code), intelligent software com-
ponent that is able to sense its environment by consuming events
via event channels from sensors and/or other SOs, fuse the sensor
data and derive higher level context, perform context-based rea-
soning using some control logic and actuate physical aspects by
publishing events via event channels to respective actuators. SOs
are context-aware; aware of both their internal state and the state of
their local environment; and are cooperative by exchanging higher
level context information via event channels.
2A Trimble Lassen LP GPS module is used in our cars.
3Thanks to Joe Finney and Angie Chandler for construction of the
cars augmented with a token ring network and an array of sensors.

4. COMPONENT FRAMEWORK OF SEN-
TIENT OBJECTS

Sentient objects (SO) provide an abstraction for very common
behaviour in pervasive ad hoc computing: Sensing and viewing the
behaviour of neighbour entities and based on a RT-Image of the
environmental context, reason about it, and actuate environmental
objects. E.g., a car modelled as a SO can view the location of its
nearest car or a traffic light signal state, reason about it, and then ac-
tuate or alter its navigation. This behaviour involves spontaneously
discovering neighbour nodes and interacting with them to share
context data, and possibly to cooperate with each other to attain
common goals (e.g., cars cooperate to avoid collisions). The SOs
capture useful, light weight mechanisms that match the essence of
many distributed computing mechanisms in pervasive ad hoc com-
puting domain. For the application designer to address a specific
domain in terms of SOs, an underlying goal of the middleware is
to provide a suitable interface that provides the basic functional-
ity identified in Section 3. We have designed and implemented a
component framework-based middleware platform to provide the
run-time support for the SOs to fulfil this goal. The middleware
consists of several component frameworks (CF) where each of the
CFs addresses certain research areas. The Publish-Subscribe CF
is used for discovery of mobile entities in its proximity, commu-
nication and data sharing data among distributed entities forming
MANETs. The Group communication CF is used to provide a
group communication protocol suite that provides the support to
route events in mobile ad hoc networks. The Context CF provides
the facility for sensor fusion and the inference engine. The QoS
management CF arbitrates the allocation of resources and provides
facilities for monitoring and adaptating the QoS. The Timely Com-
puting base (TCB) [3] is used to monitor the QoS of the event chan-
nels operating over MANETs; The goal of the middleware platform
is to provide support for CORTEX applications and to support the
sentient object (SO) abstraction. Figure 1 shows the SO model of
the cooperating car demo application. In this model, in each car, the
external environment is sensed by different sensors and consumed
by the SOs as sensor readings. The execution platform (iPaq) and
the wireless network are in the model also regarded as external en-
vironments by the SOs. The external environment produces envi-
ronmental events that can be captured by the sensors. The sensor
readings are sent as internal events to the subscribing SOs. The
SOs can also subscribe to events from other SOs. Such events are
received as external events. Two types of SOs have been mod-
elled in our cooperating car application: The car SO and the QoS
Management SO. Both receive events from ”sensors” or virtual sen-
sors, and actuate by sending internal events to the other SOs which
would trigger adaptation of a certain component configuration, and
to the actual actuators (e.g. the speed control).

Previous experiences in construction of reflective middleware [2]
have motivated us to use reflection, component technology and
component frameworks (CF) to create a middleware platform for
MANETs. In pervasive mobile ad hoc networks, a dynamic envi-
ronment is the norm rather than the exception. This mandates the
middleware platform to be deployment time configurable and run-
time reconfigurable. Clearly the demands of a given application
and its associated environment will vary over time and situation,
both in terms of fine grained adaptation (tuning parameters), and
at a courser grained level (e.g. switching components). To sup-
port this level of configuration and reconfiguration, we have chosen
to build our middleware based on the reflective component model
OpenCOM [5]. This technology allows introspection of the run-
ning system and adaptation of any aspect of the system at run-time,

permitting ultimate flexibility. OpenCOM is based on Microsoft
COM, and is adaptive and reconfigurable. The middleware plat-
form is implemented for Windows CE

4.1 Context CF
The context CF in Figure 1 provides the functionality of the con-

trol engine of a sentient object and consists of a sensor fusion and
an inference engine component. It offers gaussian modelling al-
gorithms and dead-reckoning functionality. The context CF sub-
scribes to events from the sensors and possibly from other sen-
tient objects, and fuse the multi-source sensor data and derives
higher level context, the inference engine constitutes the expert
logic which reason about context and take autonomous decisions.
The decisions are in-turn published to respective actuators and sen-
tient objects.

4.1.1 Sensory Capture and Fusion
Uncertainty is a major problem while sensing the environment

due to the inherent limitations of sensors with respect to accuracy
and precision. Several methods have been explored to handle this
problem. Statistical methods, such as Gaussian modeling and max-
imum likelihood estimation can give more accurate estimation of
target values from the imprecise raw sensor data; dead-reckoning
can be used if there is insufficient traffic or delays from the sensor
capture; Bayesian networks are also proposed to do sensor fusion
and to measure the effectiveness of other context derivation meth-
ods given inherently uncertain and noisy sensor data. The combina-
tion of low-level sensors to a sensor detecting more complex events
is denoted as sensor fusion, the resulting sensor is called a virtual
sensor. It should be noted that the correlation of multiple sensors
has to be performed in the receivers, which requires the general
availability of sensor information.

A widely-used method in sensor fusion and machine learning is
the Gaussian modelling and multivariate Gaussian modelling. Raw
data samples from the sensors at certain target values need to be
gathered to establish some multivariate Gaussian distribution func-
tions. Ultrasonic sensor readings were collected at certain target
values, i.e. various distances from the sensors to the obstacle ahead.
When new readings arrive while the car moves, they are fed into the
established Gaussian functions, and the highest value of the current
readings will be the most probable target value. We can thus ob-
tain the most probable distance to an obstacle using Gaussian mod-
elling. This technique was used in the car demo to detect pedestri-
ans and non-event publishing obstacles within 3m range from the
car. The ultrasonic sensors on the robot car had the capability to
detect objects within 3m range.

Dead-reckoning techniques were used to compensate for insuf-
ficient data and latency in transmissions. Instead of relying on
the latent current sensor readings for fusion, historical data is pro-
cessed during run-time to generate more reliable and real-time val-
ues. This technique was especially useful in the car application for
sensors, such as GPS which have unpredictable real positional up-
date delays. The cars were able calculate their own ’dead-reckoned’
position and update their own trajectory using extrapolation algo-
rithms to compensate for the GPS latency.

4.1.2 Inference Engine
The autonomous behaviour of a SO is supported by an instance

of an inference engine embodied in the SO. Low-level context, ei-
ther directly derived from sensor readings or received through the
event channels is fed into a rule-based inference engine to derive
high-level context according to some rules specified in the rule-base
inside the inference engine. When high-level context has been de-

rived, the conditional rules (specified by the application program-
mer) are used to reason about the context and execute external
functions that have been defined by the user to do e.g. actuations.
Context data is represented as ”facts” within the CORTEX infer-
ence engine. Internally, SOs can interact with the inference en-
gine by asserting and retracting these facts. A rule-based infer-
ence engine CLIPS - C Language Integrated Production System
[9] has been chosen as a base for the inference engine. CLIPS pro-
vides a cohesive tool for handling a wide variety of knowledge with
support for three different programming paradigms: rule-based,
object-oriented and procedural. Using the rule-based programming
paradigm provided by CLIPS, rules can be specified to generate
high-level context from fused sensor data or derived low-level con-
text. CLIPS also provides ways for the programmers to define their
own user functions, and these functions can also be called from
the CLIPS rules script file. This makes it possible to automatically
perform actuations when a certain context is derived from the in-
ference engine. One of the important features of our approach is
that the paradigm facilitates uniform treatment of both context and
QoS data. E.g, CLIPS script based rule files are written by the ap-
plication programmer to control the navigation of the cars in the
Car SO. Similarly QoS management policies are written in CLIPS
script file for the QoS management sentient object.

4.2 Publish-Subscribe CF
The key to the implementation of a sentient object is the publish-

subscribe (P-S) communication model used for both discovery of
neighbouring nodes and data sharing. When a SO wants to share
its context data, the data is published using the P-S communica-
tion model. The receiving SOs subscribe to the events of interest.
The P-S CF takes care of event routing and event filtering from a
publisher to subscribers. This decouples the publisher and the sub-
scribers, they are anonymous and the communication style is asyn-
chronous. These properties are well suited for MANETs. How-
ever, the state-of-the-art P-S middleware are based on centralised
event brokers that mediate between publishers and subscribers. The
MANETs cannot support centralised fixed servers or fixed system
wide services. Thus, we have specifically designed the P-S CF for
MANETs. The design was inspired by STEAM [7]. The P-S CF is
based on an implicit event model. The P-S CF differs from other
P-S systems in that it does not rely on the presence of any separate
infrastructure and supports distributed techniques for identifying
and delivering events of interest based on location. The P-S CF
support both publisher and subscriber side event filtering, by us-
ing a query or subscription language called Filter Event Language
(FEL) to express the preferences. FEL can be used to create sub-
ject, content, and context filters, which are also componentised and
can be dynamically reconfigured. In the implicit event model, there
are thus no event brokers or mediators; instead event filtering func-
tions are implemented at both the subscriber and the publisher side
in a decentralised manner.

Publishers and subscribers are anonymous, and subscribers should
be able to interpret the events without a priori knowledge of the ex-
act event data structure. A generic event dialect is therefore needed,
which can be understood by all publishers and subscribers in the
system. The events in the P-S CF are represented in XML, and a
generic XML profile defines the generic event dialect. The XML
based events provide for easy interoperability and extensibility of
the event dialect. Events are published to a notional event chan-
nel allowing one-to-many distribution of events. The events are
routed from publisher(s) to subscriber(s) using multicast protocols.
The multicast protocols are addressed in the Group Communication
(GC) CF.

Figure 1: The Sentient Object Model of the Car Scenario

The GC CF provides a range of multicast protocols. The P-S CF
can flexibly select a group communication protocol from the GC
CF, which currently supports a probabilistic ad hoc multicast pro-
tocol, an IP multicast based protocol, and a local (shared memory)
group communication protocol. The probabilistic ad hoc multicast
protocol was implemented for MANETs with high node mobility,
where keeping shared routing information within the nodes is un-
suitable as the network topology is rapidly changing.

5. RELATED WORK
Different approaches of middleware in UbiComp have been in-

vestigated, e.g., Gaia and MobiPADS. Gaia [10] is a metaoperating
system built as a distributed middleware infrastructure that coordi-
nates software entities and heterogeneous networked devices con-
tained in a physical space. Gaia supports development and exe-
cution of portable applications in active spaces. Users, services,
data, and locations are represented in the active spaces, and are ma-
nipulated dynamically and in coordination. Context is important
to Gaia’s applications, which have access to context via a ”con-
text file system”. However, context is externalised and is not a first
class entity that drives the behaviour of the active space systems.
We believe that active space applications could easily be modelled
as sentient objects and potentially benefit from our paradigm.

The MobiPADS system [4] is a reflective-based middleware de-
signed to support context-aware processing by providing an exe-
cution platform to enable active service deployment and reconfig-
uration of the service composition in response to environments of
varying contexts. MobiPADS supports dynamic adaptation at both
the middleware and application layers to provide flexible config-
uration of resources to optimize the operations of mobile applica-
tions. The reflective model in MobiPADS provides metainterfaces
to make applications able to directly participate in computation
adaptation in response to the changing context. A mobile appli-
cation can access contextual information, the service configuration
and adaptation strategy, and examine and modify these entities to
obtain optimal service provision.

6. CONCLUSION
In this paper, we have presented a middleware for mobile ad hoc

environments. The prototype implementation of the autonomus car
application scenario provides a very rich application domain to ex-

plore context-awareness. The sentient object programming model
has proven to be very usable as a programming abstraction, for de-
velopment of such applications, particularly because of the intrin-
sic support for context-awareness. The context reasoning engine
and middleware developed have successfully been used in an au-
tonomous car application in a real mobile ad hoc wireless environ-
ment. There is a need for middleware in this area to ease the bur-
den on the application developer and also to provide support for the
management of non-functional concerns such as timeliness proper-
ties. The properties of configurability and re-configurability inher-
ent in our approach are highly suited to this domain, for example
to select configurations suitable for a given embedded device and
also to encourage the construction of adaptable or autonomic sys-
tems. The middleware developed is reusable and may potentially
also be (re)used in other application domains like smart buildings
and retail systems. Investigating the generality and application of
the approach in other domains is interesting for future work.

7. REFERENCES
[1] S. Ashley. Smart Cars and Automated Highways. Mechanical

Engineering Magzine, May 1998.
[2] G. S. Blair, et.al. The Design and Implementation of Open ORB

version 2. IEEE Distributed Systems Online Journal, 2(6), 2001.
[3] A. Casimiro and P. Verı́ssimo. Using the Timely Computing Base for

Dependable QoS Adaptation. 20th IEEE Symposium on Reliable
Distributed Systems, pages 208–217, New Orleans, USA, Oct 2001.

[4] A. T. Chan and S.-N. Chuang. MobiPADS: A Reflective Middleware
for Context-Aware Mobile Computing. IEEE Trans. on Software
Engineering, 29(12):1072–1085, 2003.

[5] M. Clarke, G. S. Blair, et al. An Efficient Component Model for the
Construction of Adaptive Middleware. IFIP/ACM Middleware2001,
Heidelberg, Germany, Nov 2001.

[6] A. Fitzpatrick, et al. Towards a Sentient Object Model. Workshop on
Engineering Context-Aware Object Oriented Systems and
Environments (ECOOSE), Seattle, WA, USA, Nov 2002.

[7] R. Meier and V. Cahill. STEAM: Event-based Middleware for
Wireless Ad Hoc Networks. Int’l Workshop on Distributed
Event-Based Systems (ICDSC/DEBS02), pages 639–644, Vienna,
Austria, 2002.

[8] Automotive Intelligence News. Talking Cars For Less Congestion –
The Future Of Telematics. http://www.autointell-news.com/, 2003.

[9] G. Riley. CLIPS – A Tool for Building Expert Systems.
http://www.ghg.net/clips/CLIPS.html, 2003.

[10] M. Román, et al. A Middleware Infrastructure for Active Spaces.
IEEE Pervasive Computing, 1(4):74–82, Oct–Dec 2002.

