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Abstract. Embedding probability distributions into a sufficiently rich
(characteristic) reproducing kernel Hilbert space enables us to take higher
order statistics into account. Characterization also retains effective sta-
tistical relation between inputs and outputs in regression and classifi-
cation. Recent works established conditions for characteristic kernels on
groups and semigroups. Here we study characteristic kernels on periodic
domains, rotation matrices, and histograms. Such structured domains
are relevant for homogeneity testing, forward kinematics, forward dy-
namics, inverse dynamics, etc. Our kernel-based methods with tailored
characteristic kernels outperform previous methods on robotics problems
and also on a widely used benchmark for recognition of human actions
in videos.
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1 Introduction

Kernel methods solve difficult non-parametric problems by embedding data
points in higher-dimensional reproducing kernel Hilbert spaces (RKHS). This
property makes kernel methods useful and strong tools to be used in different
tasks. They were successfully applied to a wide range of learning tasks such
as regression and classification [16]. Recent studies focused on mapping random
variables into RKHS to collect linear statistics in RKHS which in turn were used
to derive their meaning in the original space [8], [19], [20]. When the embedding
is injective, the RKHS is said to be characteristic [5]. Such mappings allow for
testing whether two distributions coincide [8],[9], or for finding the most pre-
dictive subspace in regression [6]. The most predictive (effective) subspace in
regression is obtained by isolating the features that capture the statistical rela-
tionship between inputs and targets.

Characteristic kernels are defined on non-compact and complex domains.
Sriperumbudur et al. [20] showed that a continuous shift-invariant R-valued



positive definite kernel on Rn is characteristic if and only if the support of its
Fourier transform is the entire Rn. Fukumizu et al. [7] extended Fourier anal-
ysis to groups and semigroups and obtained necessary conditions for defining
characteristic kernels on spaces other than Rn.

The main contribution of this paper is empirical evaluation of characteristic
kernels. We investigate characteristic kernels on structured domains (groups/
semigroups) for various kernel-based methods: Maximum Mean Discrepancy
(MMD) [8], [9] as a non-parametric hypothesis test, Support Vector Regres-
sion with ε-insensitive loss function (ε-SVR) [18], Gaussian Process Regression
(GPR) [14] as a non-parametric regression method, and Support Vector Ma-
chines (SVM) [16] to classify human actions in videos. We provide experimental
evidence that these kernel-based methods with appropriate kernels lead to sig-
nificant performance gains.

Section 2 briefly reviews kernel-based methods. Section 3 introduces novel
characteristic kernels on periodic data, the orthogonal group SO(3), and his-
tograms. Section 4 experimentally confirms their theoretical advantages: we ob-
tain state-of-the-art results in homogeneity testing, forward kinematics, forward
dynamics, inverse dynamics, and recognition of human actions in videos.

2 Kernel-Based Learning Methods

In this section we briefly review some of kernel-based methods that we use to
investigate our characteristic kernels.

2.1 A Non-Parametric Statistical Test

One basic statistic on Euclidean space is the mean. By embedding the distribu-
tions into RKHS, the corresponding factor is the mean element. The distance be-
tween mapped mean elements is known as Maximum Mean Discrepancy (MMD)
[8], [9]. The definition of MMD is given in the following theorem:

Theorem 1. Let (X ,B) be a metric space, and let P,Q be two Borel prob-
ability measures defined on X . Then P = Q if and only if MMD(P,Q) = 0,
where

MMD(P,Q) :=‖ µP − µQ ‖H
=‖ EP [k(x, .)]− EQ[k(y, .)] ‖H

= (Ex,x′∼P [k(x, x′)] + Ey,y′∼Q[k(y, y′)]− 2Ex∼P,y∼Q[k(x, y)])
1
2 (1)

One application of MMD is homogeneity testing, which tests whether the samples
were drawn from different distributions. We compare MMD to another two-
sample test suited for periodic distributions, namely, the Uniform Scores Test
(UST) [4]. UST is not a kernel-based method.



Uniform Scores Test (UST) UST [4] is a two-sample test which tests whether
distributions of circular data coincide. In UST each distribution is represented
by a radius. The null hypothesis is rejected if the summation of radii is too large.
Here we define UST more precisely.

Suppose we have ni samples where i = 1, 2, .., r. We treat sample n1 =
{θ1, ..., θn} as linear data, re-arrange them in ascending order, and assign rank
ri to each θi. The circular rank of θi is then defined as γi = 2πri/n, for i =
1, ..., n. We denote γi as the uniform score corresponding to θi. We take all
N = n1 + ... + nr data values as a single sample and calculate their circular
ranks. Let γij denote the circular rank of θij among all the data. For each
sample ni, i = 1, ..., r, we calculate

Ci =
ni∑
j=1

cosγij , Si =
ni∑
j=1

sinγij (2)

and hence the test statistics

Wr = 2
r∑
i=1

(C2
i + S2

i )/ni (3)

If Wr is too large, we reject the null hypothesis that the distributions are iden-
tical.

2.2 Non-parametric Regression Methods for Model Learning

The task of regression is to learn the input/target mapping, to predict target
values for query inputs.

Support Vector Regression with ε-Insensitive Loss function (ε-SVR)
The goal of ε-SVR regression is to find a mapping function f(x) which for each
training input x deviates from its target by at most ε, and simultaneously is as
flat as possible. According to [19], f(x) is

l∑
i=1

(αi − α∗i )K(xi, x) + b. (4)

where K(xi, x) = φ(xi)Tφ(x), and i ranges over the training points. The solution
of a quadratic optimization problem determines the quantities α∗i , αi, and b.

Gaussian Processes Regression (GPR) Gaussian Process Regression (GPR)
[14] uses a linear model to find a latent function f(x). Uncertainty is modeled
probabilistically by:

f ∼ N(0, ΦΣΦT ) ∼ N(0,K) (5)

where matrix Φ describes transformation columns φ(x) for all cases in the train-
ing set, Σ is the covariance matrix of the weights, and K is a positive semidefinite
matrix with elements Ki,j = k(xi, xj) for some covariance function k(., .).



2.3 Classification: Support Vector Machines

Consider the problem of separating the training set into two classes. If we assume
that the two classes can be separated by a hyperplane w.x + b = 0 in some
space H, and that we have no prior knowledge about the data distribution, then
the optimal hyperplane maximizes the margin [16]. Optimal values for w and
b can be found by solving a constrained minimization problem, using Lagrange
multipliers αi(i = 1, .., l). The classifier is defined as:

f(x) = sgn

(
l∑
i=1

αiyiK(xi, x) + b

)
(6)

where K is the kernel mapping data points to RKHS H, and αi and b are found
using an SVC learning algorithm. Those xi with nonzero αi are called the support
vectors.

3 Characteristic Kernels on Structured Domains

Characteristic kernels were defined on non-compact domain like entire Rn. Sripe-
rumbudur et al. [20] showed that if and only if the support of Fourier transform
of a shift invariant positive definite kernel is the entire Rn, this kernel is char-
acteristic. A question that naturally arises is whether characteristic kernels can
be defined on spaces besides Rn. Several such domains constitute topological
groups/semigroups. Fukumizu et al. [7] based on extensions of Fourier analysis
to groups and semigroups established necessary and sufficient conditions of in-
troducing characteristic kernels. Our main contribution in this paper is to study
these characteristic kernels defined by their algebraic structure and assess them
in relevant applications. For the sake of this purpose, thanks to the established
conditions and theorems by Fukumizu et al. [7] we define our proper character-
istic kernels. We investigate characteristic kernels on Locally Compact Abelian
(LCA) groups (periodic data), Compact Groups (rotation matrices), and Abelian
Semigroups (histogram-based data). In this section we clarify our characteris-
tic kernels, thereafter relevant experiments and evaluations will be discussed in
section 4.

3.1 Shift Invariant Characteristic Kernels on LCA groups

Periodic domains are examples of Locally Compact Abelian groups which we
consider in this study. To define our proper characteristic kernels on periodic
domains, we use Theorems 7 and 8 of [7] which describe necessary and sufficient
conditions for kernels on LCA groups to be characteristic, as well as Corollary 9
of [7] on the multiplication of shift-invariant characteristic kernels, which is again
a characteristic kernel. Our novel characteristic kernels on periodic domains are:

1. k1(x, y) =
∏l
i=1(π − (xi − yi)mod 2π)2,

2. k2(x, y) =
∏l
i=1(cosh(π − (xi − yi)mod2π),



3. k3(x, y) =
∏l
i=1(− log(1− 2α cos(xi − yi) + α2),

4. k4(x, y) =
∏l
i=1(1− α2)/(1− 2α cos(xi − yi) + α2),

where l denotes the input dimension. Periodic domains are relevant for two-
sample testing, and in regression tasks like forward kinematics, forward dynam-
ics, and inverse dynamics. In the case of forward dynamics besides periodic data
we have torques which do not belong to periodic domain. We work with the
following justified characteristic kernels in that case:

1. k5(x, y) =
∏m
i=1(π − (xi − yi)mod 2π)2 ·Gaussian(xm,..,l, ym,..,l),

2. k6(x, y) =
∏m
i=1(cosh(π − (xi − yi)mod2π) ·Gaussian(xm,..,l, ym,..,l),

3. k7(x, y) =
∏m
i=1(− log(1− 2α cos(xi − yi) + α2) ·Gaussian(xm,..,l, ym,..,l),

4. k8(x, y) =
∏m
i=1(1−α2)/(1−2α cos(xi−yi)+α2) ·Gaussian(xm,..,l, ym,..,l).

3.2 Characteristic Kernels on Compact Groups

Famous examples of non-Abelian topological groups are the ones consisting of
matrices, such as the orthogonal group SO(3). According to Theorems 11 and
12 of [7], we define proper kernels on rotation matrices {A,B} ∈ R3. Let cos θ =
1
2Tr[B

−1A], and 0 ≤ θ ≤ π, we formulate the characteristic kernels as follows:

k1(A,B) =
1

sin θ

∞∑
n=0

sin((2n+ 1)θ)
(2n+ 1)3

=
πθ(π − θ)

8 sin θ
. (7)

k2(A,B) =
∞∑
n=0

α2n+1 sin((2n+ 1)θ)
(2n+ 1) sin θ

=
1

2 sin θ
arctan

(
2α sin θ
1− α2

)
. (8)

3.3 Characteristic Kernels on Abelian Semigroups

Now consider histograms as an example of Abelian semigroups such as (Rn+,+).
Theorems 13 and 14 of [7] obtain necessary and sufficient conditions for tailored
kernels for histogram-based information. Let a = (ai)ni=1 and b = (bi)ni=1, (ai ≥
0, bi ≥ 0) be non-negative measures on n points. We use the following character-
istic kernel:

k(a, b) = e−β
∑n

i=1

√
ai+bi . (9)

where β ≥ 0 and X ∈ R. Another tailored kernel for histogram-based data which
is not a characteristic kernel is Generalized Histogram Intersection (GHI) kernel.
In [1] GHI was introduced as a positive-definite kernel:

KGHI(a, b) =
m∑
i=1

min{| aβi |, | b
β
i |}, (a, b) ∈ X × X (10)

We compare the results of these two kernels in human action classification task
in section 4.4.



(a) uniform distribution (b) 1 + sin(x) distribution

(c) 1 + sin(3x) (d) 1 + sin(6x)

Fig. 1: (a)represents an example of circular data [0, 2π) with uniform distribution,
(b), (c), and (d) are periodic data with distribution 1 + sin(ωx) and ω equal to
1, 3, and 6 respectively. Higher perturbation frequencies make the perturbed
distribution much closer to the uniform distribution, and the discrimination
more difficult.

4 Experiments and Evaluations

Now we confirm theoretical advantages of characteristic kernels on various prac-
tical applications.

4.1 MMD for Two-Sample Testing

One application of MMD is for two-sample tests, which involve testing the null
hypothesis H0 : P = Q versus H1 : P 6= Q. Two-sample tests require a measure
of distance between probabilities and a notion of whether this distance is statis-
tically significant. Our MMD test determines the test threshold by the bootstrap
procedure [8]. In this study we consider this application of MMD to compare
two artificially generated distributions of periodic nature. Suppose we obtain the
first sample from a uniform distribution P. The other sample is drawn from a
perturbed uniform distribution Q : 1+sin(ωx). For higher perturbation frequen-
cies ω (where 1/ω is smaller), it becomes harder to discriminate Q from P— see
Figure 1.



Figure 2 shows the acceptance percentage of null hypothesis with MMD dur-
ing 1000 runs with a user-defined significance level 0.05. The quality of MMD as
a statistic depends on the richness of RKHS H which is defined by a measurable
kernel. Characteristic kernels [5], [6] yield an RKHS for which probabilities have
unique images. Here we use characteristic kernels k1, k2, k3, and k4 in MMD
with l = 1 and hyper-parameter α = 0.9 for kernels k3 and k4. MMD discrimi-

Fig. 2: Acceptance percentage of H0 : P = Q for MMD and UST, with user-
defined significance level of 0.05 during 1000 runs, and 1

ω = 0, 1
6 ,

1
5 ,

1
4 ,

1
3 ,

1
2 ,

and 1. P is a uniform distribution of circular data, and Q is 1 + sin(ωx).

nated subtle changes between the distributions with the justified characteristic
kernels on periodic domain. This can be seen from different acceptance percent-
age of H0 in Figure 2. MMD has the best performance with k4 which needs
tuning a hyper-parameter α. We compared the result of MMD with UST. We
observe that UST can not deal with subtle nonlinear changes in distributions. It
gives true results when P and Q are either completely similar or dissimilar.

4.2 Applications of Regression

Given a training set of data points D = {(x1, y1), ...(xl, yl)} where the xi ∈ Rn
are inputs and the yi ∈ R1 are the corresponding targets, the task of regression
is to learn the input/target mapping, to predict target values for query inputs.
Fukimuzu et al. [5], [6] showed that characterization allows us to derive a contrast
function for estimation of the effective subspace. The effective subspace can help
to retain the statistical relationship between x and y by isolating the features
that capture this relation. We evaluated characteristic kernels k1, k2, k3, and k4

in forward kinematics and inverse dynamics for datasets with periodic nature.
For forward dynamics problem, characteristic kernels k5, k6, k7, and k8 are used.



Forward kinematics Kinematics studies motion ignoring the forces which
cause it. The forward kinematics of a revolute robot arm are described by the
function T = f(θ, φ), where θ is the vector of joint angles, φ are the param-
eters describing the kinematics of the arm, and T is the 4 × 4 homogeneous
transformation matrix [2].

We use the 8 input Kin dataset (http://www.cs.utoronto.ca/~delve/
data/kin/desc.html). It is generated from a realistic simulation of the for-
ward kinematics of an 8 link all-revolute robot arm. The task is to predict the
distance of the end-effector from a target, given the angular position of the 8
joints, the link twist angles, link lengths and link offset distances. Combinations
of the following attributes are considered in datasets:

1. output : highly nonlinear (n) vs. fairly linear (f)

2. predicted value : medium noise (m) vs. high noise(h)

We use a training set of size 1024, 4096 test instances and the validation set
of size 3072. The hyper-parameters α and σ in kernels k3, k4, and Guassian
kernel respectively were tuned during the 5-fold leave-one-out cross validation
procedure. Support vector regression with ε insensitive loss function (ε− SV R)
is used as our non-parametric regression method. A run consisted of model selec-
tion, training and testing, and the confidence interval over Mean Squared Errors
(MSE) results are obtained over 10 runs. In this task the input dimension is 8. l
is set to 8 in the formula of our characteristic kernels of section 3.1. In Figure 3,
the results of ε− SV R with ε = 0.01 on four datasets of 8-input Kin (Kin-8fm,
Kin-8fh, Kin-8nm, and Kin-8nh) are depicted. Figure 3 demonstrates that tai-
lored characteristic kernels on the LCA group work better than Gaussian kernel
which is just characteristic. We compared our best results on the above datasets
to the results given by GPR [14], K-Nearest Neighbor (K-NN), Linear Regres-
sion (LR), Multi-Layer Perceptrons (MLP) with single hidden layer and early
stopping [14], and mixtures of experts trained by Bayesian methods (HME)[22].
The results reported in Table 1. Results of 22 methods (by Ghahramani) on
the same datasets are available at http://www.cs.toronto.edu/~delve/data/
kin/desc.html. The reported results show that GPR obtained better results
than LR, as it captures the nonlinear relationship between data points by a
Gaussian kernel and the affect of noise with probabilistic nature of the method.
This draws the attention to our datasets which are generated by fairly linear
and nonlinear movements of robot arm in combination with noise. Moreover the
results of GPR in comparison with HME as another Bayesian based method is
better which shows the superiority of kernel-based methods. The nonlinearities
captured by MLP and GPR produced comparable results with better perfor-
mance for GPR. Our results showed that ε− SV R and a tailored characteristic
kernel on periodic data outperforms the other methods. This highlights the fact
that in kernel-based methods selection of an appropriate kernel according to the
nature of available data leads to significant performance gains. Our results with
tailored characteristic kernels for periodic data confirm this fact.



Fig. 3: The result of ε-SVR for forward kinematics task on Kin-8fm, Kin-8fh,
Kin-8nm, and Kin-8nh datasets. The results of ε-SVR is based on characteristic
kernels k1, k2, k3, k4 (section 3.1), and Gaussian kernel with ε = 0.01, α = 0.9,
for k3, and k4, and σ = 10 for Gaussian kernel.

Table 1: Best results of ε-SVR with characteristic kernel k4 in comparison with
reported results on the Kin family of datasets. Our results are obtained with
ε = 0.01 in ε-SVR and the kernel k4 with hyper-parameter α = 0.9. Rounded
standard deviation of MSEs are also reported.

Method Kin-8fm Kin-8fh Kin-8nm Kin-8nh

ε-SVR 0.001 ± 0.0001 0.001± 0.0001 0.002± 0.0001 0.002± 0.0001
GPR 0.25 ± 0.0001 0.02 ± 0.01 0.43 ± 0.1 0.1 ± 0.2
HME 0.26 ± 0.0001 0.03 ± 0.01 0.48 ± 0.3 0.28± 0.2
KNN 0.29 ± 0.0001 0.08 ± 0.01 0.65 ± 0.1 0.45 ± 0.2
LR 0.28 ± 0.0001 0.06 ± 0.01 0.65 ± 0.1 0.45 ± 0.2
MLP 0.26 ± 0.0001 0.03 ± 0.02 0.42 ± 0.01 0.1 ± 0.2

Forward dynamics To simulate robot control systems, forward dynamics com-
putes joint accelerations and actuator torques, given position and velocity state
[2]. We used the 8 input Pumadyn dataset at http://www.cs.utoronto.ca/

~delve/data/pumadyn/desc.html. It was synthetically generated from a real-
istic simulation of the dynamics of a Puma560 robot arm. The task is to predict
the angular acceleration of the robot arm links, given angular positions, ve-
locities, torques. The combination of fairly linear and nonlinear movements of
robot arm with unpredictability captured by medium or high amount of noise
generate 4 datasets (Pdyn-8fm, Pdyn-8fh, Pdyn-8nm, and Pdyn-8nh). We used
characteristic kernels k5, k6, k7, and k8 in this task. All the settings are like in
the forward kinematics case. Figure 4 shows the justified characteristic kernels
have better performance than Gaussian kernel. We compared our best results
to those obtained by GPR [14], K-Nearest Neighbor (K-NN), Linear Regression



Fig. 4: The result of ε-SVR for forward dynamics task on Pdyn-8fm, Pdyn-8fh,
Pdyn-8nm, and Pdyn-8nh. The results of ε-SVR is based on characteristic kernels
k5, k6, k7, and k8 (section 3.1) with ε = 0.01, α = 0.9 for k7, and k8 respectively,
and σ = 10 for Gaussian kernel.

Table 2: Best results of our ε-SVR with characteristic kernel k8, as well as ear-
lier reported results on the Pumadyn family of datasets. The results are ob-
tained with ε = 0.01 in ε-SVR and the kernel k8 with hyper-parameter α = 0.9.
Rounded standard deviation of MSEs are also reported.

Method P-8fm P-8fh P-8nm P-8nh

ε-SVR 0.01±0.0001 0.01 ±0.0001 0.01 ±0.0001 0.01 ±0.0001
GPR 0.39 ± 0.001 0.05 ± 0.1 0.32± 0.01 0.03 ± 0.2
HME 0.41 ± 0.001 0.06 ± 0.1 0.37 ± 0.5 0.04 ± 0.3
KNN 0.41 ± 0.001 0.15 ± 0.1 0.52 ± 0.01 0.3 ± 0.1
LR 0.48 ± 0.001 0.08 ± 0.1 0.55 ± 0.01 0.48 ± 0.1
MLP 0.4 ± 0.001 0.06 ± 0.2 0.35 ± 0.01 0.033± 0.1

(LR), MLP with early stopping and single hidden layer [14], mixtures of experts
trained by Bayesian methods (HME) [22] in Table 2. Results of 25 methods
(by Ghahramani) are available at http://www.cs.toronto.edu/~delve/data/
pumadyn/desc.html. Like the reported results in the forward kinematics case,
the results of kernel based method GPR are better than those of linear Regres-
sion, and is better than HME method which is a Bayesian method. The results
of GPR and MLP are comparable although the performance of GPR is better.
The best outcome is for our ε-SVR method with justified characteristic kernels
on datasets. ε-SVR captures the nonlinearity, and the relation of observations
with tailored characteristic kernels.

Inverse Dynamics Finding sufficiently accurate dynamic models of rigid body
equations in automatic robot control is difficult due to unmodeled nonlinearities,



complex friction and actuator dynamics. Imprecise prediction of joint torques
leads to poor control performance and may even damage the system. Learning
more precise inverse dynamics models from measured data by regression is an
interesting alternative. Here we compare ε−SV R and GPR as regression meth-
ods for computing inverse dynamics, which could be used for automatic robot
control (e.g., [13]).

The inverse dynamic model [2] is given in the rigid-body formulation u =
M(q)q̈+F (q, q̇), where q, q̇, q̈ are joint angles, angular velocities and angular ac-
celerations of the robot. M(q) denotes the inertia matrix and F (q, q̇) the internal
forces. Let us define the inverse dynamic model by u = f(q, q̇, q̈); the regression
task is to learn f .

We use the 7-DOF SARCOS anthropomorphic robot arm data http://www.
gaussianprocess.org/gpml/data. Each observation in the data set consists of
21 input features (7 joint positions, 7 joint velocities, and 7 joint accelerations)
and the corresponding 7 joint torques for the 7-DOF. There are two disjoint sets,
one for training and one for testing. We use only 1100 examples of the training
set for training, but the entire test set for testing. Results are shown in terms
of normalized Mean Squared Errors (nMSEs) defined as MSE divided by target
variance. Results of ε − SV R and GPR are shown in Figure 5. ε − SV R and
GPR with tailored characteristic kernels work better than with the Gaussian
kernel. Their results are comparable with slightly better performance in ε-SVR.
The larger errors for the 5th and 6th DOF show that nonlinearities (e.g. hydrolic
cables, complex friction) can not be approximated well using just the rigid body
functions. This is an example of the difficulty of using an analytical model for
control in practice.

Yeung et al. [21] investigated different training sample sizes for GPR. They
achieved the same result as reported in the current paper with GPR and Gaus-
sian kernel over training set of size 1100 with the mean of nMSE = 1.06 and
the standard deviation of nMSE = 0.12. They further improved their results
by multi-task learning and reported the mean of nMSE =0.35 and the standard
deviation of nMSE= 0.49 for multi-task GPR. From our improvement for both ε-
SVR and GPR with tailored characteristic kernels in comparison with Gaussian
kernel (Figure 5) we expect to see a performance boost in multi-task learning,
but this is a topic of future work.

4.3 Rotation Matrices in Forward Kinematics

As mentioned before the task in forward kinematics is to find T = f(θ, φ),
where T a the 4×4 homogeneous rotation matrix ( an example of SO(3) group).
We considered the solution of the regression task with ε-SVR and the tailored
characteristic kernels on rotation matrices of formula 7, 8, and Gaussian kernel
on Kin-8nh dataset. We obtained the following results:

1. k1(A,B) ⇒ MSE = 0.009

2. k2(A,B) with α = 0.9 ⇒ MSE = 0.006



(a) Results of ε − SV R with tailored
characteristic kernels on periodic do-
mains and Gaussian kernel with ε = 0.01
and α = 0.5 for k3, and k4, and σ = 21
for Gaussian kernel.

(b) Results of GPR with the same tai-
lored characteristic kernels are used in
ε− SV R and Gaussian kernel.

Fig. 5: The results of ε-SVR and GPR with characteristic kernels k1, k2, k3, k4,
and Gaussian kernel on SARCOS dataset.

3. Gaussian kernel with σ = 0.05 ⇒ MSE = 0.005

Unexpectedly, Gaussian kernel worked better than justified kernels on the SO(3)
group.

4.4 Abelian Semigroups: Classification of Human Actions

One example of Abelian semigroups are histograms. As many authors in com-
puter vision area are working with kernel-based methods and histograms (for
example, see the recent VOC2006 object classification challenge), it is worth
studying kernel classes suitable for histogram-based information. We use the ac-
tion descriptors introduced by Danafar and Gheissari [3], which are histograms
of optical flow and capture both local and global information about actions.
These feature vectors are described in Figure 6. We use the challenging human
action video database of KTH [17]. It contains 6 types of human actions: walk-
ing, jogging, running, boxing, hand waving, and hand clapping, performed by 25
people in four different scenarios: outdoors (s1), outdoors with scale variations
(s2), outdoors with different clothes (s3), and indoors (s4). Some samples from
this dataset are shown in Figure 7.

Our action recognition approach is based on SVM. The database is divided
into three parts: training, testing and validation. 8 subjects were used for train-
ing, 9 for test and 8 for validation. The validation data is first used to tune the
hyper-parameter β of GHI kernel and our defined characteristic kernel with a
5-fold leave-one-out cross validation procedure. Danafar and Gheissari [3] recog-
nized actions with SVMs and the GHI Kernel.



Fig. 6: The features used in our supervised classifier are described in [3]; a single
feature vector (right) is computed for each sequence by concatenating data com-
ing from each frame of the sequence (left). In each frame, Harris interest points
are used to recover a tight bounding box, which is vertically partitioned in three
regions. The topmost 1/5 of the bounding box approximately contains the head
and the neck. The middle 2/5 contains the torso and hands, and the bottom
2/5 of the bounding box contains the legs. Such segmentation is obviously ap-
proximated, and the resulting features would still be usable in cases where the
assumptions are not met. Flow data in each region is summarized in separate
histograms for the horizontal and vertical directions.

The crucial condition an SVM kernel should satisfy is to be positive definite,
meaning that the SVM problem is convex, and hence the solution of its objec-
tive function is unique. Characteristic kernels have positive definite property and
have been shown to be more discriminative; because characterization can capture
effective statistical and discriminative relationship between response variables
from an explanatory variables [5], [6]. Our reported accuracy of 93.1% obtained
with characteristic kernels is a very significant improvement with respect to the
accuracy of 83.5% reported in [3], obtained using Histogram Intersection Kernel
in the same setting. We also compared our characteristic kernel for histogram-
based data to the Gaussian kernel, which is also characteristic but is not tailored
to histogram-based data. In our experiments, the accuracy of Gaussian kernel
is 33.8% which is much lower than our result of 93.1%. Confusion matrices in
the three cases are reported in Figure 8. Therefore we conclude that our exper-
imental results are due to our kernel being both characteristic and suitable for
histogram-based data; removing any of the two properties results in a significant
performance loss.

In Table 3 recognition results of various methods on the KTH dataset are
compared. Our overall rate exceeds previously reported results and is comparable
to 93.4% reported rate in [11], demonstrating superiority of our method. In [15]
and [11], the authors benefited from stronger feature vectors as combination of
shape and motion and reported high accuracy rates rather than motion feature
which is used here. This concludes that the achievement of higher recognition
rate with stronger histogram-based feature vector is promising.



Fig. 7: Example images from video sequences in KTH dataset.

Table 3: Recognition results of various methods on the KTH dataset. The recog-
nition rate reported by Jhuang et al. (2007) is obtained on video sequences from
scenarios 1 and 4 only. Other reported rates are on all scenarios.

Method Recognition rate %

SVM by charac. Kernel 93.1
Lin et al. [11] 93.4
Schindler and Van Gool [15] 92.7
Jhuang et al. [10] 91.7
Danafar & Gheissari [3] 85.3
Niebles et al. [12] 83.3
Schüldt et al. [17] 71.7

5 Conclusion

We studied empirically characteristic kernels on structured domains, yielding
powerful kernel-based methods for structured data. Characteristic kernels for
periodic domains and SO(3) were applied to homogeneity testing, forward kine-
matics, forward dynamics, and inverse dynamics for robotics. Our methods out-
performed other published methods on the 8-input Kin forward kinematics data
set, and the 8-input Pumadyn forward dynamics data set. We also used tailored
characteristic kernels on histogram-based action descriptors to recognize human
actions in video. Our results on the KTH database of human actions are com-
parable to or better than those of previous state-of-the-art methods. Ongoing
work aims at improving inverse dynamics results through multi-task kernel-based
learning with our tailored characteristic kernels.



(a) Results of GHI kernel
as a positive definite kernel
with β = 1 and overall ac-
curacy rate of 85.3%.

(b) Results of Gaussian ker-
nel as a characteristic kernel
with σ = 21 and overall ac-
curacy rate of 33.8%.

(c)Results of the tailored
characteristic kernel on
histogram-based data with
β = 0.001 and overall
accuracy rate of 93.1%.

Fig. 8: Confusion matrices obtained on the KTH dataset with descriptors [3],
using SVM and the indicated kernels. Figure(a) shows the recognition rates of
histogram Intersection kernel which is a positive definite but not a character-
istic kernel. Figure (b) denotes the result of a characteristic kernel (Gaussian)
which is not tailored to histogram-based information. Figure (c) is the result of
characteristic kernel which is tailored to histograms.
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