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State-of-the-art in Visual Attention Modeling
Ali Borji, Member, IEEE, and Laurent Itti, Member, IEEE

Abstract—Modeling visual attention — particularly stimulus-driven, saliency-based attention — has been a very active research
area over the past 25 years. Many different models of attention are now available, which aside from lending theoretical
contributions to other fields, have demonstrated successful applications in computer vision, mobile robotics, and cognitive
systems. Here we review, from a computational perspective, the basic concepts of attention implemented in these models.
We present a taxonomy of nearly 65 models, which provides a critical comparison of approaches, their capabilities, and
shortcomings. In particular, thirteen criteria derived from behavioral and computational studies are formulated for qualitative
comparison of attention models. Furthermore, we address several challenging issues with models, including biological plausibility
of the computations, correlation with eye movement datasets, bottom-up and top-down dissociation, and constructing meaningful
performance measures. Finally, we highlight current research trends in attention modeling and provide insights for future.

Index Terms—Visual attention, bottom-up attention, top-down attention, saliency, eye movements, regions of interest, gaze
control, scene interpretation, visual search, gist.
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1 INTRODUCTION

ARICH stream of visual data (108 − 109 bits) enters
our eyes every second [1][2]. Processing this data in

real-time is an extremely daunting task without the help
of clever mechanisms to reduce the amount of erroneous
visual data. High-level cognitive and complex processes
such as object recognition or scene interpretation rely on
data that has been transformed in such a way to be tractable.
The mechanism this paper will discuss is referred to as
visual attention - and at its core lies an idea of a selection
mechanism and a notion of relevance. In humans, attention
is facilitated by a retina that has evolved a high-resolution
central fovea and a low-resolution periphery. While visual
attention guides this anatomical structure to important parts
of the scene to gather more detailed information, the main
question is on the computational mechanisms underlying
this guidance.

In recent decades, many facets of science have been
aimed towards answering this question. Psychologists have
studied behavioral correlates of visual attention such as
change blindness [3][4], inattentional blindness [5], and
attentional blink [6]. Neurophysiologists have shown how
neurons accommodate themselves to better represent objects
of interest [27][28]. Computational neuroscientists have built
realistic neural network models to simulate and explain
attentional behaviors (e.g., [29][30]). Inspired by these stud-
ies, robotists and computer vision scientists have tried to
tackle the inherent problem of computational complexity to
build systems capable of working in real-time (e.g., [14][15]).
Although there are many models available now in the
research areas mentioned above, here we limit ourselves to
models that can compute saliency maps (please see next
section for definitions) from any image or video input. For
a review on computational models of visual attention in
general, including biased competition [10], selective tuning
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Fig. 1. Taxonomy of visual attention studies. Ellipses with
solid borders illustrate our scope in this paper.

[15], normalization models of attention [181], and many
others, please refer to [8]. Reviews of attention models from
psychological, neurobiological, and computational perspec-
tives can be found in [9][77][10][12][202][204][224]. Fig. 1
shows a taxonomy of attentional studies and highlights our
scope in this review.

1.1 Definitions
While the terms attention, saliency, and gaze are often
used interchangeably, each has a more subtle definition that
allows their delineation.

Attention is a general concept covering all factors that in-
fluence selection mechanisms, whether they be scene-driven
bottom-up (BU) or expectation-driven top-down (TD).

Saliency intuitively characterizes some parts of a scene —
which could be objects or regions — that appear to an
observer to stand out relative to their neighboring parts. The
term “salient” is often considered in the context of bottom-
up computations [18][14].

Gaze, a coordinated motion of the eyes and head, has
often been used as a proxy for attention in natural behavior
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Fig. 2. Neuromorphic Vision C++ Toolkit (iNVT) developed at
iLab, USC, http://ilab.usc.edu/toolkit/. A saccade is targeted
to the location that is different from its surroundings in several
features. In this frame from a video, attention is strongly
driven by motion saliency.

(see [99]). For instance, a human or a robot has to interact
with surrounding objects and control the gaze to perform a
task while moving in the environment. In this sense, gaze
control engages vision, action, and attention simultaneously
to perform sensorimotor coordination necessary for the
required behavior (e.g., reaching and grasping).

1.2 Origins

The basis of many attention models dates back to Treis-
man & Gelade’s [81] “Feature Integration Theory” where
they stated which visual features are important and how
they are combined to direct human attention over pop-out
and conjunction search tasks. Koch and Ullman [18] then
proposed a feed-forward model to combine these features
and introduced the concept of a saliency map which is a
topographic map that represents conspicuousness of scene
locations. They also introduced a winner-take-all neural
network that selects the most salient location and employs
an inhibition of return mechanism to allow the focus of
attention to shift to the next most salient location. Several
systems were then created implementing related models
which could process digital images [15][16][17]. The first
complete implementation and verification of the Koch &
Ullman model was proposed by Itti et al. [14] (see Fig. 2)
and was applied to synthetic as well as natural scenes. Since
then, there has been increasing interest in the field. Various
approaches with different assumptions for attention mod-
eling have been proposed and have been evaluated against
different datasets. In the following sections, we present a
unified conceptual framework in which we describe the
advantages and disadvantages of each model against one
another. We give the reader insight into the current state of
the art in attention modeling and identify open problems
and issues still facing researchers.

The main concerns in modeling attention are how, when,
and why we select behaviorally-relevant image regions.
Due to these factors, several definitions and computational
perspectives are available. A general approach is to take
inspiration from the anatomy and functionality of the early
human visual system, which is highly evolved to solve these
problems (e.g., [14][15][16][191]). Alternatively, some studies
have hypothesized what function visual attention may serve

and have formulated it in a computational framework.
For instance, it has been claimed that visual attention is
attracted to the most informative [144], the most surprising
scene regions [145], or those regions that maximize reward
regarding a task [109].

1.3 Empirical Foundations
Attentional models have commonly been validated against
eye movements of human observers. Eye movements con-
vey important information regarding cognitive processes
such as reading, visual search, and scene perception. As
such, they often are treated as a proxy for shifts of attention.
For instance, in scene perception and visual search, when
the stimulus is more cluttered, fixations become longer and
saccades become shorter [19]. The difficulty of the task
(e.g., reading for comprehension versus reading for gist, or
searching for a person in a scene versus looking at the scene
for a memory test) obviously influences eye movement
behavior [19]. Although both attention and eye movement
prediction models are often validated against eye data, there
are slight differences in scope, approaches, stimuli, and level
of detail. Models for eye movement prediction (saccade pro-
gramming) try to understand mathematical and theoretical
underpinnings of attention. Some examples include search
processes (e.g., optimal search theory [20]), information
maximization models [21], Mr. Chips: an ideal-observer
model of reading [25], EMMA (Eye Movements and Move-
ment of Attention) model [139], HMM model for controlling
eye movements [26], and constrained random walk model
[175]). To that end, they usually use simple controlled
stimuli, while on the other hand, attention models utilize
a combination of heuristics, cognitive and neural evidence,
and tools from machine learning and computer vision to
explain eye movements in both simple and complex scenes.
Attention models are also often concerned with practical
applicability. Reviewing all movement prediction models is
beyond the scope of this paper. The interested reader is
referred to [22][23][127] for eye movement studies and [24]
for a breadth-first survey of eye tracking applications.

Note that eye movements do not always tell the whole
story and there are other metrics which can be used for
model evaluation. For example, accuracy in correctly report-
ing a change in an image (i.e., search-blindness [5]), or pre-
dicting what attention grabbing items one will remember,
show important aspects of attention which are missed by
sole analysis of eye movements. Many attention models in
visual search have also been tested by accurately estimating
reaction times (RT) (e.g., RT/setsize slopes in pop-out and
conjunction search tasks [224][191]).

1.4 Applications
In this paper, we focus on describing the attention models
themselves. There are, however, many technological appli-
cations of these models which have been developed over the
years and which have further increased interest in attention
modeling. We organize the applications of attention model-
ing into three categories: vision and graphics, robotics, and
those in other areas as shown in Fig. 3.

1.5 Statement and Organization
Attention is difficult to define formally in a way that is
universally agreed upon. However, from a computational
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Category Application References

Image segmentation Mishra and Aloimonos, 2009, Maki et al., 2000

Image quality assessment Ma and Zhang, 2008, Ninassi et al., 2007 

Image matching Walther et al., 2006, Siagian and Itti, 2009, Frintrop and Jensfelt, 
2008

Image rendering DeCarlo and Santella, 2002

Image and video compression Ouerhani et al., 2003, Itti, 2004, Guo and Zhang, 2010.

Image thumbnailing Marchesotti et al., 2009, Le Meur et al., 2006, Suh et al., 2003

Image super-resolution Jacobson et al, 2010

Image re-targeting (thumbnailing)
Setlur et al., 2005, Chamaret et al., 2008, Goferman et al., 2010, 
Achanta et al., 2009, Marchesotti et al., 2009, Le Meur et al., 2006, 
Suh et al., 2003

Image superresolution Sadaka and Karam, 2009

Video summarization Marat et al., 2007, Ma et al., 2005

Scene classification Siagian and Itti, 2009 

Object detection Frintrop, 2006, Navalpakkam and Itti, 2006, Fritz et al., 2005, Butko 
and Movellan, 2009, Viola and Jones, 2004, Ehinger et al., 2009.

Salient object detection Liu et al, 2007, Goferman et al. 2010, Achanta et al., 2009, Rosin, 
2009.

Object recognition
Salah et al., 2002, Walther et al., 2006 and 2007, Frintrop, 2006, 
Mitri et al., 2005, Gao and Vasconcelos, 2004 and 2009, Han and 
Vasconcelos 2010, Paletta et al., 2005.

Visual tracking Mahadevan and Vasconcelos, 2009, Frintrop, 2010

Dynamic lighting Seif El-Nasr, 2009 

Video shot detection Boccignone et al., 2005

Interest point detection Kadir and Brady, 2001, Kienzle et al., 2007.

Automatic collage creation Goferman et al., 2010, Wang et al., 2006.

Face segmentation and tracking Li and Ngan, 2008

Active vision Mertsching et al., 1999, Vijaykumar et al., 2001, Dankers, 2007, Borji 
et al., 2010

Robot Localization Siagian and Itti, 2009, Ouerhani et al., 2005

Robot Navigation Baluja and Pomerlau, 1997, Scheier and Egner, 1997

Human-robot interaction Breazeal, 1999, Heidemann et al., 2004, Belardininelli, 2008, Nagai, 
2009, Muhl, 2007

Synthetic vision for simulated 
actors

Courty and Marchand, 2003

Advertising Rosenholtz et al. 2011, Liu et al., 2008

Finding tumors in mammograms Hong and Brady, 2003

Retinal prostheses Parick et al., 2010
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Fig. 3. Some applications of visual attention modeling.

standpoint, many models of visual attention (at least those
tested against first few seconds of eye movements in free-
viewing) can be unified under the following general prob-
lem statement. Assume K subjects have viewed a set of N
images I = {Ii}Ni=1. Let Lk

i = {pk
ij , tkij}n

k
i

j=1 be the vector of
eye fixations (saccades) pk

ij = (xk
ij , yk

ij) and their correspond-
ing occurrence time tkij for the k-th subject over image Ii. Let
the number of fixations of this subject over i-th image be nk

i .
The goal of attention modeling is to find a function (stimuli-
saliency mapping) f ∈ F which minimizes the error on
eye fixation prediction, i.e,

∑K
k=1

∑N
i=1 m(f(Iki ),Lk

i ), where
m ∈ M is a distance measure (defined in section 2.7).
An important point here is that the above definition better
suits bottom-up models of overt visual attention, and may
not necessarily cover some other aspects of visual attention
(e.g., covert attention or top-down factors) that cannot be
explained by eye movements.

Here we present a systematic review of major attention
models that we apply to arbitrary images. In section 2, we
first introduce several factors to categorize these models.
In section 3, we then summarize and classify attention
models according to these factors. Limitations and issues
in attention modeling are then discussed in section 4 and
are followed by conclusions in section 5.

2 CATEGORIZATION FACTORS

We start by introducing 13 factors (f1..13) that will be used
later for categorization of attention models. These factors
have their roots in behavioral and computational studies
of attention. Some factors describe models (f1,2,3, f8..11),
others (f4..7, f12,13) are not directly related, but are just as
important as they determine the scope of applicability of
different models.

2.1 Bottom-up vs. Top-down Models
A major distinction among models is whether they rely on
bottom-up influences (f1), top-down influences (f2), or a
combination of both.

Bottom-up cues are mainly based on characteristics of a
visual scene (stimulus-driven)[75], whereas top-down cues
(goal-driven) are determined by cognitive phenomena like
knowledge, expectations, reward, and current goals.

Regions of interest that attract our attention in a bottom-
up manner must be sufficiently distinctive with respect to
surrounding features. This attentional mechanism is also
called exogenous, automatic, reflexive, or peripherally cued
[78]. Bottom-up attention is fast, involuntary, and most
likely feed-forward. A prototypical example of bottom-up
attention is looking at a scene with only one horizontal bar
among several vertical bars where attention is immediately
drawn to the horizontal bar [81]. While many models fall
in this category, they can only explain a small fraction of
eye movements since the majority of fixations are driven
by task [177].

On the other hand, top-down attention is slow, task-
driven, voluntary, and closed-loop [77]. One of the most
famous examples of top-down attention guidance is from
Yarbus in 1967 [79], who showed that eye movements
depend on the current task with the following experiment:
subjects were asked to watch the same scene (a room with
a family and an unexpected visitor entering the room)
under different conditions (questions) such as ”estimate the
material circumstances of the family”, ”what are the ages
of the people?”, or simply to freely examine the scene. Eye
movements differed considerably for each of these cases.

Models have explored three major sources of top-down
influences in response to this question: How do we decide
where to look?. Some models address visual search in which
attention is drawn toward features of a target object we are
looking for. Some other models investigate the role of scene
context or gist to constrain locations that we look at. In
some cases, it is hard to precisely say where or what we
are looking at since a complex task governs eye fixations,
for example in driving. While in principle, task demands on
attention subsumes the other two factors, in practice models
have been focusing on each of them separately. Scene layout
has also been proposed as a source of top-down attention
[80][93] and is here considered together with scene context.

1) Object Features. There is a considerable amount of
evidence for target-driven attentional guidance in real-
world search tasks [84][85][23][83]. In classical search tasks,
target features are a ubiquitous source of attention guidance
[81][82][83]. Consider a search over simple search arrays in
which the target is a red item: attention is rapidly directed
toward the red item in the scene. Compare this with a more
complex target object, such as a pedestrian in a natural
scene, where although it is difficult to define the target, there
are still some features (e.g., upright form, round head, and
straight body) to direct visual attention [87].

The guided search theory [82] proposes that attention
can be biased toward targets of interest by modulating the
relative gains through which different features contribute to
attention. To return to our prior example, when looking for
a red object, a higher gain would be assigned to red color.
Navalpakkam et al. [51] derived the optimal integration of
cues (channels of the BU saliency model [14]) for detection
of a target in terms of maximizing the signal-to-noise ratio of
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the target versus background. In [50], a weighting function
based on a measure of object uniqueness was applied to
each map before summing up the maps for locating an
object. Butko et al. [161] modeled object search based on the
same principles of visual search as stated by Najemnik et al.
[20] in a partially observable framework for face detection
and tracking, but they did not apply it to explain eye
fixations while searching for a face. Borji et al. [89] used evo-
lutionary algorithms to search in a space of basic saliency
model parameters for finding the target. Elazary and Itti [90]
proposed a model where top-down attention can tune both
the preferred feature (e.g., a particular hue) and the tuning
width of feature detectors, giving rise to more flexible top-
down modulation compared to simply adjusting the gains
of fixed feature detectors. Last but not least are studies such
as [147][215][141] that derive a measure of saliency from
formulating search for a target object.

The aforementioned studies on the role of object features
in visual search are closely related to object detection meth-
ods in computer vision. Some object detection approaches
(e.g., Deformable Part Model by Felzenszwalb et al. [206]
and the Attentional Cascade of Viola and Jones [220]) have
high detection accuracy for several objects such as cars,
persons, and faces. In contrast to cognitive models, such
approaches are often purely computational. Research on
how these two areas are related will likely yield mutual
benefits for both.

2) Scene Context. Following a brief presentation of an
image (∼80 ms or less), an observer is able to report
essential characteristics of a scene [176][71]. This very rough
representation of a scene, so called ”gist”, does not con-
tain many details about individual objects but can provide
sufficient information for coarse scene discrimination (e.g.,
indoor vs. outdoor). It is important to note that gist does
not necessarily reveal the semantic category of a scene.
Chun and Jiang [91] have shown that targets appearing in
repeated configurations relative to some background (dis-
tractor) objects were detected more quickly [71]. Semantic
associations among objects in a scene (e.g., a computer is
often placed on top of a desk) or contextual cues have also
been shown to play a significant role in the guidance of eye
movements [199][84].

Several models for gist utilizing different types of low-
level features have been presented. Oliva and Torralba [93],
computed the magnitude spectrum of a Windowed Fourier
Transform over non-overlapping windows in an image.
They then applied principal component analysis (PCA) and
independent component analysis (ICA) to reduce feature
dimensions. Renninger and Malik [94] applied Gabor filters
to an input image and then extracted 100 universal textons
selected from a training set using K-means clustering. Their
gist vector was a histogram of these universal textons.
Siagian and Itti [95] used biological center-surround features
from orientation, color, and intensity channels for modeling
gist. Torralba [92] used wavelet decomposition tuned to
6 orientations and 4 scales. To extract gist, a vector is
computed by averaging each filter output over a 4 × 4 grid.
Similarly he applied PCA to the resultant 384D vectors to
derive a 80D gist vector. For a comparison of gist models,
please refer to [96][95].

Gist representations have become increasingly popular in
computer vision since they provide rich global yet discrim-
inative information useful for many applications such as

search in the large-scale scene datasets available today [116],
limiting the search to locations likely to contain an object of
interest [92][87], scene completion [205], and modeling top-
down attention [101][218]). It can thus be seen that research
in this area has the potential to be very promising.

3) Task Demands. Task has a strong influence on de-
ployment of attention [79]. It has been claimed that visual
scenes are interpreted in a need-based manner to serve
task demands [97]. Hayhoe et al. [99] showed that there
is a strong relationship between visual cognition and eye
movements when dealing with complex tasks. Subjects
performing a visually-guided task were found to direct a
majority of fixations toward task-relevant locations [99]. It
is often possible to infer the algorithm a subject has in mind
from the pattern of her eye movements. For example, in
a “block-copying” task where subjects had to replicate an
assemblage of elementary building blocks, the observers’
algorithm for completing the task was revealed by patterns
of eye-movements. Subjects first selected a target block in
the model to verify the block’s position, then fixated the
workspace to place the new block in the corresponding
location [216]. Other research has studied high-level ac-
counts of gaze behavior in natural environments for tasks
such as sandwich making, driving, playing cricket, and
walking (see Henderson and Hollingworth [177], Rensink
[178], Land and Hayhoe [135], and Bailensen and Yee [179]).
Sodhi et al. [180] studied how distractors while driving
such as adjusting the radio or answering a phone affect eye
movements.

The prevailing view is that bottom-up and top-down
attention are combined to direct our attentional behavior.
An integration method should be able to explain when and
how to attend to a top-down visual item or skip it for the
sake of a bottom-up salient cue. Recently, [13] proposed
a Bayesian approach that explains the optimal integration
of reward as a top-down attentional cue, and contrast or
orientation as a bottom-up cue in humans. Navalpakkam
and Itti [80] proposed a cognitive model for task-driven
attention constrained by the assumption that the algorithm
for solving the task was already available. Peters and Itti
[101] learned a top-down mapping from scene gist to eye
fixations in video game playing. Integration was simply
formulated as multiplication of BU and TD components.

2.2 Spatial vs. Spatio-temporal Models
In the real-world, we are faced with visual information
that constantly changes due to egocentric movements or
dynamics of the world. Visual selection is then dependent
on both current scene saliency as well as the accumulated
knowledge from previous time points. Therefore, an atten-
tion model should be able to capture scene regions that are
important in a spatio-temporal manner.

To be detailed in section 3, almost all attention mod-
els include a spatial component. We can distinguish be-
tween two types of modeling temporal information in
saliency modeling: 1) Some bottom-up models use the
motion channel to capture human fixations drawn to
moving stimuli [119]. More recently, several researchers
have started modeling temporal effects on bottom-up
saliency (e.g., [143][104][105]). 2) On the other hand, some
models [109][218][26][25][102] aim to capture the spatio-
temporal aspects of a task for example by learning se-
quences of attended objects or actions as the task progresses.
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For instance, the Attention Gate Model (AGM) [183], em-
phasizes the temporal response properties of attention and
quantitatively describes the order and timing for humans
attending to sequential target stimuli. Previous information
about images, eye fixations, image content at fixations, phys-
ical actions, as well as other sensory stimuli (e.g., auditory)
can be exploited to predict the next eye movement. Adding
a temporal dimension and the realism of natural interactive
tasks brings a number of complications in predicting gaze
targets within a computational model.

Suitable environments for modeling temporal aspects of
visual attention are dynamic and interactive setups such as
movies and games. Boiman and Irani [122] proposed an ap-
proach for irregularity detection from videos by comparing
texture patches of actions with a learned dataset of irregular
actions. Temporal information was limited to the stimulus
level and did not include higher cognitive functions such as
the sequence of items processed at the focus of attention or
actions performed while playing the games. Some methods
derive static and dynamic saliency maps and propose meth-
ods to fuse them (e.g., Jia Li et al. [133] and Marat et al. [49]).
In [103], a spatio-temporal attention modeling approach for
videos is presented by combining motion contrast derived
from the homography between two images and spatial
contrast calculated from color histograms. Virtual reality
(VR) environments have also been used in [99][109][97].
Some other models dealing with the temporal dimension
are [105][108][103]. We postpone the explanation of these
approaches to section 3.

Factors f3 indicates whether a model uses spatial only or
spatio-temporal information for saliency estimation.

2.3 Overt vs. Covert attention

Attention can be differentiated based on its attribute as
“overt” versus “covert”. Overt attention is the process of di-
recting the fovea towards a stimulus while covert attention
is mentally focusing onto one of several possible sensory
stimuli. An example of covert attention is staring at a person
who is talking but being aware of visual space outside the
central foveal vision. Another example is driving, where
a driver keeps his eyes on the road while simultaneously
covertly monitoring the status of signs and lights. The
current belief is that covert attention is a mechanism for
quickly scanning the field of view for an interesting location.
This covert shift is linked to eye movement circuitry that
sets up a saccade to that location (overt attention) [203].
However, this does not completely explain complex inter-
actions between covert and overt attention. For instance,
it is possible to attend to the right hand corner field of
view and actively suppress eye movements to that location.
Most of these models detect regions that attract eye fixations
and few explain overt orientation of eyes along with head
movements. Lack of computational frameworks for covert
attention might be because behavioral mechanisms and
functions of covert attention are still unknown. Further, it
is not known yet how to measure covert attention.

Because of a great deal of overlap between overt and
covert attention and since they are not exclusive concepts,
saliency models could be considered as modeling both overt
and covert mechanisms. However, in depth discussion of
this topic goes beyond our scope and merits of this paper
and demands special treatment elsewhere.

2.4 Space-based vs. Object-based Models

There is no unique agreement on the unit of attentional
scale: Do we attend to spatial locations, to features, or to
objects? The majority of psychophysical and neurobiologi-
cal studies are about space-based attention (e.g., Posner’s
spatial cueing paradigm [98][111]). There is also strong
evidence for feature-based attention (detecting an odd item
in one feature dimension [81] or tuning curve adjustments
of feature selective neurons [7]) and object-based attention
(selectivity attending to one of two objects, e.g., face vs.
vase illusion [112][113][84]). The current belief is that these
theories are not mutually exclusive and visual attention
can be deployed to each of these candidate units, implying
there is no single unit of attention. Humans are capable
of attending to multiple (between four and five) regions of
interest simultaneously [114][115].

In the context of modeling, a majority of models are
space-based (see Fig. 7). It is also viable to think that humans
work and reason with objects (compared with rough pixel
values) as main building blocks of top-down attentional
effects [84]. Some object-based attentional models have pre-
viously been proposed, but they lack explanation for eye
fixations (e.g., Sun and Fisher [117], Borji et al. [88]). This
shortcoming makes verification of their plausibility difficult.
For example, the limitation of the Sun and Fisher [117]
model is the use of human segmentation of the images;
it employs information that may not be available in the
pre-attentive stage (before the objects in the image are
recognized). Availability of object-tagged image and video
datasets (e.g., LabelMe Image and Video [116][188]) has
made conducting effective research in this direction possi-
ble. The link between object-based and space-based models
remains to be addressed in the future. Feature-based models
(e.g., [51][83]) adjust properties of some feature detectors
in an attempt to make a target object more salient in a
distracting background. Because of the close relationship
between visual features and objects, in this paper we cate-
gorize feature-based models under object-based models as
shown in Fig. 7.

The ninth factor f9, indicates whether a model is space-
based or object-based - meaning that it needs to work with
objects instead of raw spatial locations.

2.5 Features

Traditionally, according to feature integration theory (FIT)
and behavioral studies [81][82][118], three features have
been used in computational models of attention: intensity
(or intensity contrast, or luminance contrast), color, and
orientation. Intensity is usually implemented as the aver-
age of three color channels (e.g., [14][117]) and processed
by center-surround processes inspired by neural responses
in lateral geniculate nucleus (LGN) [10] and V1 cortex.
Color is implemented as red-green and blue-yellow chan-
nels inspired by color-opponent neurons in V1 cortex, or
alternatively by using other color spaces such as HSV
[50] or Lab [160]. Orientation is often implemented as a
convolution with oriented Gabor filters or by the application
of oriented masks. Motion was first used in [119] and was
implemented by applying directional masks to the image
(in the primate brain motion is derived by the neurons at
MT and MST regions which are selective to direction of
motion). Some studies have also added specific features for

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.XXX, NO.XXX, XXXXX 2010 6

directing attention like skin hue [120], face [167], horizontal
line [93], wavelet [133], gist [92][93], center-bias [123], cur-
vature [124], spatial resolution [125], optical flow [15][126],
flicker [119], multiple superimposed orientations (crosses or
corners) [127], entropy [129], ellipses [128], symmetry [136],
texture contrast [131], above average saliency [131], depth
[130], and local center-surround contrast [189]. While most
models have used the features proposed by FIT [81], some
approaches have incorporated other features like Difference
of Gaussians (DOG) [144][141] and features derived from
natural scenes by ICA and PCA algorithms [92][142]. For
target search, some have employed the structural descrip-
tion of objects such as the histogram of local orientations
[87][199]. For detailed information regarding important fea-
tures in visual search and direction of attention, please refer
to [118][81][82]. Factor f10, categorizes models based on
features they use.

2.6 Stimuli and Task Type
Visual stimulus can be first distinguished as being either
static (e.g., search arrays, still photographs; factor f4) or
dynamic (e.g., videos, games; factor f5). Video games are
interactive and highly dynamic since they do not generate
the same stimuli each run and have nearly natural render-
ings, though they still lag behind the statistics of natural
scenes and do not have the same noise distribution. The
setups here are more complex, more controversial, and more
computationally intensive. They also engage a large number
of cognitive behaviors.

The second distinction is between synthetic stimuli (Ga-
bor patches, search arrays, cartoons, virtual environments,
games; factor f6) and natural stimuli (or approximations
thereof, including photographs and videos of natural scenes;
factor f7). Since humans live in a dynamic world, video
and interactive environments provide a more faithful rep-
resentation of the task facing the visual system than static
images. Another interesting domain for studying attentional
behavior, agents in virtual reality setups, can be seen in the
work of Sprague and Ballard [109], who employed a realistic
human agent in VR and used reinforcement learning (RL) to
coordinate action selection and visual perception in a side-
walk navigation task involving avoiding obstacles, staying
on the sidewalk, and collecting litter.

Factor f8 distinguishes among task types. The three most
widely explored tasks to date in the context of attention
modeling are: (1) Free viewing tasks, in which subjects are
supposed to freely watch the stimuli (there is no task or
question here, but many internal cognitive tasks are usually
engaged), (2) Visual search tasks where subjects are asked
to find an odd item or a specific object in a natural scene,
and (3) Interactive tasks. In many real-world situations,
tasks such as driving and playing soccer engage subjects
tremendously. These complex tasks involve many subtasks
such as visual search, object tracking, and focused and
divided attention.

2.7 Evaluation Measures
So we have a model that outputs a saliency map S, and we
have to quantitatively evaluate it by comparing it with eye
movement data (or click positions) G. How do you compare
these? We can think of them as probability distributions, and
use Kullback-Leibler (KL) or Percentile metrics to measure

distance between distributions. Or we can consider S as
a binary classifier and use signal detection theory analysis
(Area Under the ROC Curve (AUC) metric) to asses the
performance of this classifier. We can also think of S and
G as random variables and use Correlation Coefficient (CC)
or Normalized Scanpath Saliency (NSS) to measure their
statistical relationship. Another way is to think of G as
a sequence of eye fixations (scanpath) and compare this
sequence with the sequence of fixations chosen by a saliency
model (string-edit distance).

While in principle any model might be evaluated using
any measure, in Fig. 7 we list in factor f12 the measures
which were used by the authors of each model. In the rest,
when we use Estimated Saliency Maps (ESM S), we mean
a saliency map of a model, and by Ground-truth Saliency
Map (GSM G), we mean a map that is built by combining
recorded eye fixations from all subjects or combining tagged
salient regions by human subjects for each image.

From another perspective, evaluation measures for at-
tention modeling can be classified into three categories: 1)
point-based, 2) region-based, and 3) subjective evaluation.
In point-based measures, salient points from ESMs are com-
pared to GSMs made by combining eye fixations. Region-
based measures are useful for evaluating attention models
over regional saliency datasets by comparing the ESMs and
labeled salient regions (GSM annotated by human subjects)
[133]. In [103], subjective scores on estimated saliency maps
were reported on three levels: “Good”, “Acceptable”, and
“Failed”. The problem with such subjective evaluation is
that it is difficult to extend it to large-scale datasets.

In the following, we focus on explaining those metrics
with more consensus from the literature and provide point-
ers for others (Percentile [134] and Fixation Saliency Method
(FS) [131][182]) for reference.

Kullback-Leibler (KL) Divergence. The KL divergence
is usually used to measure distance between two proba-
bility distributions. In the context of saliency, it is used
to measure the distance between distributions of saliency
values at human vs. random eye positions [145][77]. Let
ti = 1 · · ·N be N human saccades in the experimental
session. For a saliency model, ESM is sampled (or averaged
in a small vicinity) at the human saccade xi,human and at
a random point xi,random. The saliency magnitude at the
sampled locations is then normalized to the range [0,1]. The
histogram of these values in q bins covering the range [0,1]
across all saccades is then calculated. Hk and Rk are the
fraction of points in bin k for salient and random points.
Finally the difference between these histograms with the
(symmetric) KL divergence (A.k.a relative entropy) is:

KL =
1

2

q∑
k=1

(
Hklog

Hk

Rk
+Rklog

Rk

Hk

)
(1)

Models that can better predict human fixations exhibit
higher KL divergence, since observers typically gaze to-
wards a minority of regions with the highest model re-
sponses while avoiding the majority of regions with low
model responses. Advantages of KL divergence over other
scoring schemes [212][131] are: 1) Other measures essen-
tially calculate the rightward shift of Hk histogram rela-
tive to the Rk histogram, whereas KL is sensitive to any
difference between the histograms, and 2) KL is invariant
to reparameterizations, such that applying any continuous
monotonic nonlinearity (e.g., S3,

√
S, eS) to ESM values
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S does not affect scoring. One disadvantage of the KL
divergence is that it does not have a well-defined upper
bound — as the two histograms become completely non-
overlapping, the KL divergence approaches infinity.

Normalized Scanpath Saliency (NSS). The normalized
scanpath saliency [134][131] is defined as the response value
at the human eye position, (xh, yh), in a model’s ESM
that has been normalized to have zero mean and unit
standard deviation NSS = 1

σs
(S(xh, yh) − μS). Similar to

the percentile measure, NSS is computed once for each
saccade, and subsequently the mean and standard error
are computed across the set of NSS scores. NSS = 1
indicates that the subjects’ eye positions fall in a region
whose predicted density is one standard deviation above
average. Meanwhile NSS ≤ 0 indicates that the model
performs no better than picking a random position on the
map. Unlike KL and percentile, NSS is not invariant to
reparameterizations. Please see [134] for an illustration of
NSS calculation.

Area Under Curve (AUC). AUC is the area under Re-
ceiver Operating Characteristic (ROC) [195] curve. As the
most popular measure in the community, ROC is used for
the evaluation of a binary classifier system with a variable
threshold (usually used to classify between two methods
like saliency vs. random). Using this measure, the model’s
ESM is treated as a binary classifier on every pixel in the
image; pixels with larger saliency values than a threshold
are classified as fixated while the rest of the pixels are
classified as non-fixated [144][167]. Human fixations are
then used as ground truth. By varying the threshold, the
ROC curve is drawn as the false positive rate vs. true positive
rate, and the area under this curve indicates how well the
saliency map predicts actual human eye fixations. Perfect
prediction corresponds to a score of 1. This measure has the
desired characteristic of transformation invariance, in that
area under the ROC curve does not change when applying
any monotonically increasing function to the saliency mea-
sure. Please see [192] for an illustration of ROC calculation.

Linear Correlation Coefficient (CC). This measure is
widely used to compare the relationship between two
images for applications such as image registration, object
recognition, and disparity measurement [196][197]. The lin-
ear correlation coefficient measures the strength of a linear
relationship between two variables:

CC(G,S) =

∑
x,y(G(x, y)− μG).(S(x, y)− μS)√

σ2
G.σ

2
S

(2)

where G and S represent the GSM (fixation map, a map
with 1’s at fixation locations, usually convolved with a
Gaussian) and the ESM, respectively. μ and σ2 are the mean
and the variance of the values in these maps. An interesting
advantage of CC is the capacity to compare two variables
by providing a single scalar value between -1 and +1. When
the correlation is close to +1/−1 there is almost a perfectly
linear relationship between the two variables.

String Editing Distance. To compare the regions of inter-
est selected by a saliency model (mROI) to human regions
of interest (hROI) using this measure, saliency maps and
human eye movements are first clustered to some regions.
Then ROIs are ordered by the value assigned by the saliency
algorithm or temporal ordering of human fixations in the
scanpath. The results are strings of ordered points such

as: stringh = “abcfeffgdc“ and strings = “afbffdcdf“.
The string editing similarity index Ss is then defined by
an optimization algorithm with unit cost assigned to the
three different operations: deletion, insertion, and substitution.
Finally the sequential similarity between the two strings
is defined as: similarity = 1 − Ss

|strings| . For our example
strings, above similarity is 1 − 6/9 = 0.34 (see [198][127]
for more information on string editing distance). Please
see [127] for an illustration of this score.

2.8 Datasets

There are several eye movement datasets of still images (for
studying static attention) and videos (for studying dynamic
attention). In Fig. 7 we list as factor f13 some available
datasets. Here we only mention those datasets that are
mainly used for evaluation and comparison of attention
models, though there are many other works that have
gathered special-purpose data (e.g., for driving, sandwich
making, and block copying [135]).

Figs. 4 and 5 show summaries of image and video eye
movements datasets (For a few, labeled salient regions are
available). Researchers have also used mouse tracking to
estimate attention. Although this type of data is noisier,
some early results show a reasonably good ground-truth
approximation. For instance, Scheier and Egner [61] showed
that mouse movement patterns are close to eye-tracking
patterns. A web-based mouse tracking application was set
up at the TCTS laboratory [110]. Other potentially useful
datasets (which are not eye-movement datasets) are tagged-
object datasets like PASCAL and Video LabelMe. Some
attentional works have used this type of data (e.g., [116]).

3 ATTENTION MODELS

In this section, models are explained based on their mecha-
nism to obtain saliency. Some models fall into more than one
category. In the rest of this review, we focus only on those
models which have been implemented in software and
can process arbitrary digital images and return correspond-
ing saliency maps. Models are introduced in chronological
order. Note that here we are more interested in models
of saliency instead of those approaches that detect and
segment the most salient region or object in a scene. While
these models use a saliency operator at the initial stage, their
main goal is not to explain attentional behavior. However,
some methods have further inspired subsequent saliency
models. Here, we reserve the term ”saliency detection“ to
refer to such approaches.

3.1 Cognitive Models (C)

Almost all attentional models are directly or indirectly
inspired by cognitive concepts. The ones that have more
bindings to psychological or neurophysiological findings
are described in this section.

Itti et al.’s basic model [14] uses three feature channels
color, intensity, and orientation. This model has been the
basis of later models and the standard benchmark for
comparison. It has been shown to correlate with human eye
movements in free-viewing tasks [131][184]. An input image
is subsampled into a Gaussian pyramid and each pyramid
level σ is decomposed into channels for Red (R), Green (G),
Blue (B), Yellow (Y ), Intensity (I), and local orientations
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Description

Kienzle et al. [165] 14 200 1024 x 768 60 3 8-bit grayscale stimuli presented on a 19-inch Iiyama CRT at full screen size corresponding to 37o  27o of visual angle.

Einhauser et al. [84] 7 54 640 x 480 50 -

Overall 32,225 fixations with average fixation duration as 370±293 ms and 11.9 fixations per image. The average distance of 
subsequent fixation points on the screen is 127 pixels(19o). Authors restricted their analysis to 76o 55o regions which accounts 
for 92% (29,725) of all fixations. Stimuli was presented using NEC LT 157 projector at resolution 1024  768 at 60Hz on 
average spanned 133  100cm, corresponding to 37o

  27o of visual angle.

Ouerhani et al. [210] 6 - 640 x 480 70 5
Age range (24-34), with normal or corrected-to-normal acuity as well as normal color vision. Stimulus presented on a 19” monitor 
subtending 29o  22o. Task was “just look at the image”. Eyetracker: EyeLink, SenseoMotoric Instruments GmbH. Recording at 
250Hz, accuracy 0.5o

  1o accuracy with a 3 3 point grid calibration sequence.

Bruce and Tsotsos 
[144]

20 120 681 x 511 75 4
Images (indoor and outdoor) were presented at random with 2 s gray mask in between on a 21-inch CRT monitor. The eye tracking 
apparatus consisted of an ERICA workstation including Hitachi CCD camera with an IR emitting LED. Stimuli were color images and 
task was free viewing. Link: www-sop.inria.fr/members/Neil.Bruce

Stark and Choi [211] 7 15 - 40 4 Bright Purkinje reflection captured by a video camera. Stimulus size was 15  20cm yielding to 21o  29o with the 0.5-1 degree 
accuracy. Images were terrain photographs, landscapes and paintings. Task was free viewing.

Chikkerur et al. [154] 8 220 640 x 480 70 5
Scenes contained cars (4.6 ± 3.8) and pedestrians (2.1 ± 2.2)- visual angle: 16  12. Subjects were asked to count the number of 
cars or pedestrians. Using an ETL 400 ISCAN, table-mounted video-based eye tracker at 240 HZ and accuracy of 0.5o. (age:18-
35). Images were 100 from x and 120 from LabelMe. Link: http://www.sharat.org/

Torralba et al. [92] 24 36 15.8 x 11.9 - -

In people search task, 14 stimuli out of 36 contained no people and 22 included 1-6 people. The same set (36 indoor) images was 
used for painting search (17 images without any paintings and rest with 1-6 paintings) and for mug search (half without and half 
with 1-6 mugs). Eyetracking was performed by a Generation 5.5 SRI Dual Purkinje Image Eyetracker, sampling at 1000Hz. Color 
photos displayed on a NEC Multisync P750 monitor (143Hz refresh). Mean target size was 1.05%(1.24%) of the image size for 
people, 7.3%(7.6%) for painting and 0.5% (0.4%) for mugs. Link: http://people.csail.mit.edu/torralba/GlobalFeaturesAndAttention/

Judd et al. [166] 15 1003 Various 48 3

Images were collected from Flicker creative commons and LabelMe datasets. The longest dimension was 1024 with other ranging 
from 405 to 1024. There were 779 landscape images and 228 portrait images. Images were freely viewed with 1 sec gray 
screen between each two. Camera was recalibrated after every 50 images. First fixation was discarded. Age range: 18-35. 
Link: http://people.csail.mit.edu/tjudd/WherePeopleLook/index.html

Cerf et al. [167] 7 250 1024 x 768 80 -

Eye position of subjects were acquired at 1000Hz using an Eyelink 1000 (SR Research, Osgoode, Canada). The task had three 
phases: 1) free viewing, 2) searching for face, an object, banana, cell phone, toy car, etc shown by a probe image, and 3) 100 
image recognition memory task where subjects had to answer with y/n whether they had seen the image before. Stimuli 
subtended 28o

  21o of visual angle. Link: http://www.fifadb.com/

Peters et al. [134] 12 100/
class

- 75 -

ISCAN Inc eye tracker was used to sample eye movements at 120Hz. Age range: 18-25; four did free-viewing over (outdoor photos, 
overhead satellite imagery, and fractals). Another 4 did free-viewing over involving Gabor snakes and Gabor arrays. Seven subjects 
did a contour detection task. Resolution was 1000  1000 to 1536  1024 subtending a visual angle of 15.8o  15.8o to 16.2o  
25 o. Link: http://ilab.usc.edu

Reinagel and Zador 
[212]

5 77 640 x 480 79 10
Images were 69 nature scenes, 38 man-made objects such as buildings, 17 animals or humans and 8 synthetics. An RK-416 
infrared Pupil Tracking System and a 21-inch monitor was used. The whole image subtended 28o  21o of visual angle. Subjects 
were instructed to “Study the images“. Estimated tracking error was 0.5o. Link: http://zadorlab.cshl.edu/

Hwang and Pomplun 
[87]

30 160 1280 x 1024 - 10
Age range: 19-40. Stimuli were 160 photographs (1280  1024) real-world scenes including landscapes, home interiors, and city 
scenes and covered 20o  20o of visual angle. An SR research EyeLink II system. Stimuli presented on 19-inch Del P992 monitor 
(85Hz refresh rate), the whole image subtended 28o

  21o. Link: http://www.cs.umb.edu/~marc/

Kootstra et al.,  
[136]

31 99 1024 x 768 70 -
Eyelink head-mounted eye tracking (SR research) was used and was recalibrated before each session. Age range: 17-32. Task was 
free viewing. Stimuli were: 12 Animals, 12 Automan, 16 Buildings, 20 flowers, 41 natural scenes and were shown on a 18-inch 
CRT monitor (36  27 cm). Link: http://www.csc.kth.se/~kootstra/

Tatler [123] 14 48 800 x 600 60 - Eyelink-I eye tracker was used. Subjetcs had normal or corrected to normal vision with age range 17-32. Image subtended 30o  
22o and were presented on a 17-inch SVGA color monitor (74 Hz refresh). Task was free viewing. Link: http://www.activevisionlab.org/

Engmann et al.,
       [182]

8 90 1280 x 1024 85 -

Subjetcs had normal or corrected-to-normal vision and normal color vision with age range 20-27 (avg: 22.3). Stimuli were 
presented on a 19.7” EIZO FlexScan F77S CRT monitor (100 Hz refresh). Natural scenes selected from the Zurich natural image 
database (Einhauser et al. [99]) which only rarely contain isolated nameable objects or man-made artifacts at resolution 2048  

1536. Image subtended 26o  18o 17-inch SVGA color monitor. Task was free viewing. Eye tracker was Eyelink-2000 (SR 
Research Ltd. Canada) with 13 point calibration.

Engelke et al. [213] 30 7 512 x 512 60 8 Images were 4 human faces (“Barbara”), 1 “Glodhill” face (gurilla) and 1 “Peppers” images. Eye tracker was EyeTech TM3 and task 
was free viewing. Each image was presented for 8 sec with a gray screen with central fixation in between.

Le Meur et al. [41] 40 46 800 x 600 * -
Stimuli were 46 degraded versions of 10 color images using spatial filtering. Task was free viewing. Eye tracker was made by 
Cambridge Research Corporation. Viewing distance was four times the TV monitor height. 
Link: http://www.irisa.fr/temics/staff/lemeur                                                          

Ehinger et al. [87] 14 912 800 x 600 75 15
Stimuli were color images (half with a pedestrian) with resolution 800  600 and were shown on a 21-inch CRT monitor with 
resolution 1024  768 and refresh rate 100Hz. A 240 Hz ISCAN RK-464 video-based eye tracker was used for recording. The 
task was to decide wether a pedestrain is in the scene or not. Link: http://cvcl.mit.edu/searchmodels/

Rajashekar et al. 
[174]

29 101 1042 x 768 134 -
Subjects were 18 males, 11 females with mean age of 27. Eye tracker was made by Image Systems Corp, MN. Grayscale images 
were shown on a 21-inch grayscale gamma corrected monitor with resolution 1024  768. The task was free viewing. 
Link: http://live.ece.utexas.edu/research/doves/

Fig. 4. Some benchmark eye movement datasets over still images often used to evaluate visual attention models.

(Oθ). From these channels, center-surround “feature maps”
fl for different features l are constructed and normalized. In
each channel, maps are summed across scale and normal-
ized again:

fl = N
(

4∑
c=2

c+4∑
s=c+3

fl,c,s

)
, ∀l ∈ LI ∪ LC ∪ LO

LI = {I}, LC = {RG,BY }, LO = {0◦, 45◦, 90◦, 135◦} (3)

These maps are linearly summed and normalized once
more to yield the “conspicuity maps”:

CI = fI , CC = N (
∑
l∈LC

fl), CO = N (
∑
l∈LO

fl) (4)

Finally, conspicuity maps are linearly combined once
more to generate the saliency map: S = 1

3

∑
k∈{I,C,O} Ck.

There are at least four implementations of this model:
iNVT by Itti [14], Saliency Toolbox (STB) by Walther [35],
VOCUS by Frintrop [50], and a Matlab code by Harel
[121]. In [119], this model was extended by adding motion
and flicker contrasts to video domain. Zhaoping Li [170],
introduced a neural implementation for saliency map in V1
area that can also account for search difficulty in pop-out
and conjunction search tasks.

Le Meur et al. [41] proposed an approach for bottom-up
saliency based on the structure of the human visual system
(HVS). Contrast sensitivity functions, perceptual decompo-
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Dataset  Features Feature Value

C 50 clips (0:06-1:30 min each), 25 min total, 6GB for 46K frames
S 8 (3 female, 5 male) subjects with normal corrected vision, Ages 23-32, From mixed ethnicities
T “Follow main actors and actions, try to underestand overall what happens in each clip.”

ST Complex video stimuli involving TV programs, outdoor sceces, video games Outdoor day & night, parks, crowds, 
rooftop bar. etc.

D ISCAN RK-464 eye tracker, 240 HZ recording, 9 point calibration after every 5 clips, 640  480 resolution at 
60.27HZ doublescan, 33.185ms/movie frame, (x,y) of each saccade

L http://crcns.org/data-sets/eye/eye-1

C 50 video clips (4-7 subjects on each video clip)
S 8 subjects different from subjects of CRCNS

D This dataset was created by cutting video clips of CRCNS into 1-3s ”clipets” and reassembling those clippets in 
random order. Other aspects were the same as the original dataset.

L http://crcns.org/data-sets/eye/eye-1

C 431 videos with total length of 7.5 hours, 764,806 frames in total with 62,356 key frames
S 23 (17 male and 4 female) subjects with age range between 21-37

ST 6 genres: documentary, ad, cartoon, news, movie and surveillance

D 10-23 subjects per each clip were assigned to manually label the salient regions with one or multiple rectangles 
from key frames. Drawback with this dataset is rectangular labeling but this may be resolved with 
segmentation, inefficiney to evaluate whatever

L http://www.jdl.ac.cn/user/jiali/

C 24 game-play sessions, 185 GB for 216K frames, 8,449 saccades of ampitude 2o or more
S 5(3 male, 2 female) subjetcs with normal corrected vision
T ”Play 4 or 5 five-minute segments of the Nintendo GameCube games”

ST Games include Mario Kart, Wave Race, Super Mario Sunshine, Hulk and Pac Man World.

D Subjects were seated viewing distance of 80 cm (28o  21o usable field of view) Stimuli were presented on a 
22” computer monitor (LaCie Corp; 640  480, 75 HZ refresh, mean screen luminance 30cd/m2, room 
luminance 4 cd/m2) ISCAN RK-464 eye tracker, 240 HZ recording, 9 point calibration after before game 
segment Frames were grabbed using a dual-CPU Linux computer with SCHED FIFO schedulingto ensure 
micorsecond accurate timing.

L http://ilab.usc.edu/rjpeters/

C 2 clips, 10, young adults, normal and mildly mentally retarded
T "One minute long clips from back and white movie ”Who’s afraid of Virgnia Woolf”

D A head mounted eye-tracker (ISCAN Inc.) was used. The eye tracker employs dark pupil- corneal reflection video-
occulography and had accuracy within ±0.3o over a horizontal and range of ±20o, with a sampling rate of 60 
Hz. The subjects sat 63.5 cm from the 48.3 cm screen on which the movie was shown at a resolution of 640  
480 pixels.

L http://sites.google.com/site/fredshic/home

C 53 short video clips (25 fps, 720  576 pixels ), 1700 frames
S 15 (3f,12m) subjects with age range 23-40 and had normal or corrected to normal vision

ST Each clip  1-3sec long, 324 clip snippets. There was not a particular task or question. TV shows, TV news, 
animated movies, commercials, sport and music. Indoor, out-door, day-time, night-time)

D The clip snippets were strung to form 20 clips of 30 seconds (30.20 ± 0.61). Eye positions were recorded at 
500 Hz (20 eye positions per frame for two eyes) using a Eyelink II (SR Research). Participants were positioned 
with their chin supported on a 21” color monitor (75 HZ) at a viewing distance of 57cm (40o

  30o usable field 
of view). A calibration was carried out at every five stimuli and a control drfit was done before each stimuli. 

L http://start1g.ovh.net/~qgsmabaq/sophie/index.php

C 7 clips (25 Hz, 352  288 pixels ), 2451 frames, Each clip  4.5-33.8 sec long

S 17-27 subject for different clips with normal or corrected to normal vision
Free viewing

ST
T

Faces, sporting events, audiencesm, landscape, logos, incrustations, low and high satiotemporal
D Dual-Purkinje eye tracker from Cambridge Research Corporation. Sampling frequency was 50Hz.

L
CRT display 800  600 pixels, 25o  27o. Distance to screen was 81 cm.

CRCNS - 
MTV [145]

CRCNS - 
ORIG [145]

C: Clips; S: Subjects; T: Task; ST: Stimuli Type; D: Description; L: Link 

Le Meur
et al. [138]

Shic and 
Scassellati [74]

Peters and Itti 
[101]

Jia Li 
et al. [133]

Marat
et al. [49]

http://www.irisa.fr/temics/staff/lemeur 

Fig. 5. Some benchmark eye movement datasets over video stimuli for evaluating visual attention prediction.

sition, visual masking, and center-surround interactions are
some of the features implemented in this model. Later, Le
Meur et al. [138] extended this model to spatio-temporal
domain by fusing achromatic, chromatic and temporal in-
formation. In this new model, early visual features are
extracted from the visual input into several separate parallel
channels. A feature map is obtained for each channel, then
a unique saliency map is built from the combination of
those channels. The major novelty proposed here lies in the
inclusion of the temporal dimension as well as the addition
of a coherent normalization scheme.

Navalpakkam and Itti [51] modeled visual search as a top-
down gain optimization problem by maximizing the signal-
to-noise ratio (SNR) of the target vs. distractors instead
of learning explicit fusion functions. That is, they learned
linear weights for feature combination by maximizing the
ratio between target saliency and distractor saliency.

Kootstra et al. [136] developed three symmetry-saliency
operators and compared them with human eye tracking
data. Their method is based on the isotropic symmetry and
radial symmetry operators of Reisfeld et al. [137] and the
color symmetry of Heidemann [64]. Kootstra et al. extended
these operators to multi-scale symmetry-saliency models.
The authors showed that their model performs significantly
better on symmetric stimuli compared to the Itti et al. [14].

Marat et al. [104] proposed a bottom-up approach for
spatio-temporal saliency prediction in video stimuli. This
model extracts two signals from the video stream corre-
sponding to parvocellular and magnocellular cells of the
retina. From these signals, two static and dynamic saliency
maps are derived and fused into a spatio-temporal map.
Prediction results of this model were better for the first few
frames of each clip snippet.

Murray et al. [200] introduced a model based on a low
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level vision system in three steps: 1) visual stimuli are pro-
cessed according to what is known about the early human
visual pathway (color-opponent and luminance channels,
followed by a multi-scale decomposition), 2) a simulation
of the inhibition mechanisms present in cells of the visual
cortex normalize their response to stimulus contrast, and 3)
information is integrated at multiple scales by performing
an inverse wavelet transform directly on weights computed
from the non-linearization of the cortical outputs.

Cognitive models have the advantage of expanding our
view of biological underpinnings of visual attention. This
further helps understanding computational principles or
neural mechanisms of this process as well as other complex
dependent processes such as object recognition.

3.2 Bayesian Models (B)

Bayesian modeling is used for combining sensory evidence
with prior constraints. In these models, prior knowledge
(e.g., scene context or gist) and sensory information (e.g.,
target features) are probabilistically combined according to
Bayes’ rule (e.g., to detect an object of interest).

Torralba [92] and Oliva et al. [140] proposed a Bayesian
framework for visual search tasks. Bottom-up saliency is de-
rived from their formulation as 1

p(f |fG)
where fG represents

a global feature that summarizes the probability density of
presence of the target object in the scene, based on analysis
of the scene gist. Following the same direction, Ehinger
et al. [87] linearly integrated three components (bottom-
up saliency, gist, and object features) for explaining eye
movements in looking for people in a database of about
900 natural scenes.

Itti and Baldi [145] defined surprising stimuli as those
which significantly change beliefs of an observer. This
is modeled in a Bayesian framework by computing the
KL divergence between posterior and prior beliefs. This
notion is applied both over space (surprise arises when
observing image features at one visual location affects the
observer’s beliefs derived from neighboring locations) and
time (surprise then arises when observing image features at
one point in time affects beliefs established from previous
observations).

Zhang et al. [141] proposed a definition of saliency, known
as SUN: Saliency Using Natural statistics, by considering
what the visual system is trying to optimize when directing
attention. The resulting model is a Bayesian framework in
which bottom-up saliency emerges naturally as the self-
information of visual features, and overall saliency (incor-
porating top-down information with bottom-up saliency)
emerges as the point-wise mutual information between
local image features and the search target’s features when
searching for a target. Since this model provides a general
framework for many models, we describe it in more detail.

SUN’s formula for bottom-up saliency is similar to the
work of Oliva et al. [140], Torralba [92], and Bruce and
Tsotsos [144], in that they are all based on the notion of
self-information (local information). However, differences
between current image statistics and natural statistics lead
to radically different kinds of self-information. Briefly, the
motivating factor for using self-information with the statis-
tics of the current image is that a foreground object is
likely to have features that are distinct from those of the
background. Since targets are observed less frequently than

background during an organism’s lifetime, rare features are
more likely to indicate targets.

Let Z denote a pixel in the image, C whether or not a
point belongs to a target class and L the location of a point
(pixel coordinates). Also, let F be the visual features of a
point. Having these, the saliency sz of a point z is defined
as P (C = 1|F = fz, L = lz) where fz and lz are the feature
and location of z. Using the Bayes rule and assuming that
features and locations are independent and conditionally
independent given C = 1, then saliency of a point is:

log sz = −log P (F = fz) + log P (F = fz |C = 1)

+log P (C = 1|L = lz) (5)

The first term at the right side is the self-information
(bottom-up saliency) and it depends only on the visual
features observed at the point Z. The second term on the
right is the log-likelihood which favors feature values that
are consistent with prior knowledge of the target (e.g., if
the target is known to be green the log-likelihood will take
larger values for a green point than for a blue point). The
third term is the location prior which captures top-down
knowledge of the target’s location and is independent of
visual features of the object. For example, this term may
capture knowledge about some target being often found in
the top-left quadrant of an image.

Zhang et al. [142] extended the SUN model to dynamic
scenes by introducing temporal filters (Difference of Expo-
nentials) and fitting a generalized Gaussian distribution to
the estimated distribution for each filter response. This was
implemented by first applying a bank of spatio-temporal
filters to each video frame, then for any video, the model
calculates its features and estimates the bottom-up saliency
for each point. The filters were designed to be both efficient
and similar to the human visual system. The probability
distributions of these spatio-temporal features were learned
from a set of videos from natural environments.

Jia Li et al. [133] presented a Bayesian multi-task learn-
ing framework for visual attention in video. Bottom-up
saliency modeled by multi-scale wavelet decomposition was
fused with different top-down components trained by a
multi-task learning algorithm. The goal was to learn task-
related “stimulus-to-saliency” functions, similar to [101].
This model also learns different strategies for fusing bottom-
up and top-down maps to obtain the final attention map.

Boccignone [55] addressed joint segmentation and saliency
computation in dynamic scenes, using a mixture of Dirichlet
processes as a basis for object-based visual attention. He also
proposed an approach for partitioning a video into shots
based on a foveated representation of a video.

A key benefit of Bayesian models is their ability to learn
from data and their ability to unify many factors in a
principled manor. Bayesian models can, for example, take
advantage of the statistics of natural scenes or other features
that attract attention.

3.3 Decision Theoretic Models (D)
The decision-theoretic interpretation states that perceptual
systems evolve to produce decisions about the states of
the surrounding environment that are optimal in a decision
theoretic sense (e.g., minimum probability of error). The
overarching point is that visual attention should be driven
by optimality with respect to the end task.
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Gao and Vasconcelos [146] argued that for recognition,
salient features are those that best distinguish a class
of interest from all other visual classes. They then de-
fined top-down attention as classification with minimal
expected error. Specifically, given some set of features F =
{F1, · · · , Fd}, a location l and a class label C with Cl = 0
corresponding to samples drawn from the surround region
and Cl = 1 corresponding to samples drawn from a smaller
central region centered at l, the judgment of saliency then
corresponds to a measure of mutual information, computed
as I(F,C) =

∑d
i=1 I(Fi, C). They used DOG and Gabor fil-

ters, measuring the saliency of a point as the KL divergence
between the histogram of filter responses at the point and
the histogram of filter responses in the surrounding region.
In [185], the same authors used this framework for bottom-
up saliency by combining it with center-surround image
processing. They also incorporated motion features (optical
flow) between pairs of consecutive images to their model
to account for dynamic stimuli. They adopted a dynamic
texture model using a Kalman filter in order to capture the
motion patterns in dynamic scenes.

Here we show the Bayesian computation of (5) is a special
case of the Decision theoretic model. Saliency computation
in the entire decision theoretic approach boils down to
calculating the target posterior probability P (C = 1|F = fz)
(the output of their simple cells [215]). By applying Bayesian
rule, we have:

P (Cl = 1|Fl = fz) = σ
(
log

P (Fl = fz |Cl = 1)P (Cl = 1)

P (Fl = fz |Cl = 0)P (Cl = 0)

)
(6)

where σ(x) = (1+ e−x)−1 is the sigmoid function. The log
likelihood ratio inside the sigmoid can be trivially written
(using the independence assumptions of [141]) as:

−logP (F = fz |C = 0)+ logP (F = fz |C = 1)+
P (C = 1|L = lz)

P (C = 0|L = lz)
(7)

which is the same as (5) under the following assumptions:
1) P (F = fz|C = 0) = P (F = fz) and 2) P (C = 0|L =
lz) = K, for some constant K. Assumption 1 states that
the feature distribution in the absence of the target is the
same as the feature distribution for the set of natural images.
Since the overwhelming majority of natural images do not
have the target, this is really not much of an assumption.
The two distributions are virtually identical. Assumption 2
simply states that the absence of the target is equally likely
in all image locations. This, again, seems like a very mild
assumption.

Because of above connections, both Decision theoretic and
Bayesian approaches have a biologically plausible imple-
mentation, which has been extensively discussed by Vascon-
celos and colleagues [223][147][215]. The Bayesian methods
can be mapped to a network with a layer of simple cells
and the decision theoretic models to a network with a layer
of simple and a layer of complex cells. The simple cell layer
in fact can also implement AIM [144] and Rosenholtz [191]
models in Section 3.4, Elazary and Itti [90], and probably
some more. So, while these models have not been directly
derived from biology, they can be implemented as cognitive
models.

Gao and Vasconcelos [147] used discriminant saliency
model for visual recognition and showed good performance
on PASCAL 2006 dataset.

Mahadevan and Vasconcelos [105] presented an unsuper-
vised algorithm for spatio-temporal saliency based on bi-
ological mechanisms of motion-based perceptual grouping.
It is an extension of the discriminant saliency model [146].
Combining center-surround saliency with the power of
dynamic textures made their model applicable to highly
dynamic backgrounds and moving cameras.

In Gu et al. [148], an activation map was first computed
by extracting primary visual features and detecting mean-
ingful objects from the scene. An adaptable retinal filter
was applied to this map to generate “regions of interest”
(ROIs whose locations correspond to these activation peaks
and whose sizes were estimated by an iterative adjustment
algorithm). The focus of attention was moved serially over
the detected ROIs by a decision theoretic mechanism. The
generated sequence of eye fixations was determined from a
perceptual benefit function based on perceptual costs and
rewards, while the time distribution of different ROIs was
estimated by memory learning and decaying.

Decision theoretic models have been very successful in
computer vision applications such as classification while
achieving high accuracy in fixation prediction.

3.4 Information Theoretic Models (I)
These models are based on the premise that localized
saliency computation serves to maximize information sam-
pled from one’s environment. They deal with selecting the
most informative parts of a scene and discarding the rest.

Rosenholtz [191][193] designed a model of visual search
which could also be used for saliency prediction over an
image in free-viewing. First, features of each point, pi,
are derived in an appropriate uniform feature space (e.g.,
uniform color space). Then, from the distribution of the
features, mean, μ, and covariance,

∑
, of distractor features

are computed. The model then defines target saliency as
the Mahalanobis distance, Δ, between the target feature
vector, T , and the mean of the distractor distribution, where
Δ2 = (T − μ)

′ ∑−1(T − μ). This model is similar to
[92][141][160] in the sense that it estimates 1/P (x) (rarity of
a feature or self-information) for each image location x. This
model also underlies a clutter measure of natural scenes
(same authors [189]). An online version of this model is
available at [194].

Bruce and Tsotsos [144] proposed the AIM model (At-
tention based on Information Maximization) which uses
Shannon’s self-information measure for calculating saliency
of image regions. Saliency of a local image region is the
information that region conveys relative to its surroundings.
Information of a visual feature X is I(X) = −log p(X),
which is inversely proportional to the likelihood of ob-
serving X (i.e., p(X)). To estimate I(X), the probability
density function p(X) must be estimated. Over RGB images,
considering a local patch of size M × N , X has the high
dimensionality of 3 × M × N . To make the estimation of
p(X) feasible, they used ICA to reduce the dimensionality
of the problem to estimating 3 × M × N 1D probability
density functions. To find the bases of ICA, they used a
large sample of RGB patches drawn from natural scenes.
For a given image, the 1D pdf for each ICA basis vector
is first computed using non-parametric density estimation.
Then, at each image location, the probability of observing
the RGB values in a local image patch is the product of the
corresponding ICA basis likelihoods for that patch.
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Hou and Zhang [151] introduced the Incremental Coding
Length (ICL) approach to measure the respective entropy
gain of each feature. The goal was to maximize the entropy
of the sample visual features. By selecting features with
large coding length increments, the computational system
can achieve attention selectivity in both dynamic and static
scenes. They proposed ICL as a principle by which energy
is distributed in the attention system. In this principle,
the salient visual cues correspond to unexpected features.
According to the definition of ICL, these features may
elicit entropy gain in the perception state and are therefore
assigned high energy.

Mancas [152] hypothesized that attention is attracted by
minority features in an image. The basic operation is to
count similar image areas by analyzing histograms which
makes this approach closely related to Shannon’s self-
information measure. Instead of comparing only isolated
pixels it takes into account the spatial relationships of areas
surrounding each pixel (e.g., mean and variance). Two types
of rarity models are introduced: Global and Local. While
global rarity considers uniqueness of features over entire
image, some image details may still appear salient due
to local contrast or rarity. Similar to the center-surround
ideas of [14], they used a multi-scale approach for the
computation of local contrast.

Seo and Milanfar [108] proposed the Saliency prediction
by Self-Resemblance (SDSR) approach. First a local image
structure at each pixel is represented by a matrix of local
descriptors (local regression kernels), which are robust in
the presence of noise and image distortions. Then, matrix
cosine similarity (a generalization of cosine similarity) is
employed to measure the resemblance of each pixel to its
surroundings. For each pixel, the resulting saliency map
represents the statistical likelihood of its feature matrix Fi

given the feature matrices Fj of the surrounding pixels:

si =
1∑N

j=1 exp(
−1+ρ(Fi,Fj)

σ2 )
(8)

where ρ(Fi, Fj) is the matrix cosine similarity between
two feature maps Fi and Fj , and σ is a local weighting
parameter. The columns of local feature matrices represent
the output of local steering kernels which are modeled as:

K(xl − xi) =

√
det(Ci)

h2
exp

{
(xl − xi)

TCl(xl − xi)

−2h2

}
(9)

where l = 1, ..., P , P is the number of the pixels in a
local window, h is a global smoothing parameter, and the
matrix Cl is a covariance matrix estimated from a collection
of spatial gradient vectors within the local analysis window
around a sampling position xl = [x1, x2]

T
l .

Yin Li et al. [171] proposed a visual saliency model
based on conditional entropy for both image and video.
Saliency was defined as the minimum uncertainty of a
local region given its surrounding area (namely the min-
imum conditional entropy), when perceptional distortion
is considered. They approximated the conditional entropy
by the lossy coding length of multivariate Gaussian data.
The final saliency map was accumulated by pixels and
further segmented to detect the proto-objects. Yan et al. [186]
proposed a newer version of this model by adding a multi
resolution scheme to it.

Wang et al. [201], introduced a model to simulate hu-
man saccadic scanpaths on natural images by integrating

three related factors guiding eye movements sequentially:
1) reference sensory responses, 2) fovea-periphery resolution
discrepancy, and 3) visual working memory. They compute
three multi-band filter response maps for each eye move-
ment which are then combined into multi-band residual
filter response maps. Finally, they compute residual percep-
tual information (RPI) at each location. The next fixation is
selected as the location with the maximal RPI value.

3.5 Graphical Models (G)

A graphical model is a probabilistic framework in which a
graph denotes the conditional independence structure be-
tween random variables. Attention models in this category
treat eye movements as a time series. Since there are hidden
variables influencing the generation of eye movements,
approaches like Hidden Markov Models (HMM), Dynamic
Bayesian Networks (DBN), and Conditional Random Fields
(CRF) have been incorporated.

Salah et al. [52] proposed an approach for attention and
applied it to handwritten digit and face recognition. In the
first step (Attentive level), a bottom-up saliency map is
constructed using simple features. In the intermediate level
“what” and “where” information is extracted by dividing
the image space into uniform regions and training a single-
layer perceptron over each region in a supervised manner.
Eventually this information is combined at the associative
level with a discrete Observable Markov Model (OMM).
Regions visited by a fovea are treated as states of the OMM.
An inhibition of return allows the fovea to focus on the other
positions in the image.

Liu et al. [43] proposed a set of novel features and adopted
a Conditional Random Field to combine these features for
salient object detection on their regional saliency dataset.
Later, they extended this approach to detect salient object
sequences in videos [48]. They presented a supervised ap-
proach for salient object detection, formulated as an image
segmentation problem using a set of local, regional and
global salient object features. A CRF was trained and eval-
uated on a large image database containing 20,000 labeled
images by multiple users.

Harel et al. [121] introduced Graph-Based Visual Saliency
(GBVS). They extract feature maps at multiple spatial scales.
A scale-space pyramid is first derived from image features:
intensity, color, and orientation (similar to Itti et al. [14]).
Then, a fully-connected graph over all grid locations of
each feature map is built. Weights between two nodes are
assigned proportional to the similarity of feature values
and their spatial distance. The dissimilarity between two
positions (i, j) and (p, q) in the feature map, with respective
feature values M(i, j) and M(p, q), is defined as:

d((i, j) ‖ (p, q)) = |log M(i, j)

M(p, q)
| (10)

The directed edge from node (i, j) to node (p, q) is then
assigned a weight proportional to their dissimilarity and
their distance on lattice M :

w((i, j), (p, q)) = d((i, j) ‖ (p, q)).F (i− p, j − q)

where F (a, b) = exp
(
− a2 + b2

2σ2

)
(11)

The resulting graphs are treated as Markov chains by
normalizing the weights of the outbound edges of each node
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to 1 and by defining an equivalence relation between nodes
and states, as well as between edge weights and transition
probabilities. Their equilibrium distribution is adopted as
the activation and saliency maps. In the equilibrium dis-
tribution, nodes that are highly dissimilar to surrounding
nodes will be assigned large values. The activation maps
are finally normalized to emphasize conspicuous detail, and
then combined into a single overall map.

Avraham et al. [153] introduced the E-saliency (Extended
saliency) model by utilizing a graphical model approxima-
tion to extend their static saliency model based on self simi-
larities. The algorithm is essentially a method for estimating
the probability that a candidate is a target. The E-Saliency
algorithm is as follows: 1) Candidates are selected using
some segmentation process, 2) The preference for a small
number of expected targets (and possibly other preferences)
is used to set the initial (prior) probability for each candidate
to be a target, 3) The visual similarity is measured between
every two candidates to infer the correlations between the
corresponding labels, 4) Label dependencies are represented
using a Bayesian network, 5) The N most likely joint label
assignments are found, and 6) Saliency of each candidate is
deduced by marginalization.

Pang et al. [102] presented a stochastic model of visual
attention based on the signal detection theory account of
visual search and attention [155]. Human visual attention
is not deterministic and people may attend to different
locations on the same visual input at the same time. They
proposed a dynamic Bayesian network to predict where
humans typically focus in a video scene. Their model
consists of four layers. In the first layer, a saliency map
(Itti’s) is derived that shows the average saliency response
in each location in a video frame. Then in the second layer, a
stochastic saliency map converts the saliency map into natu-
ral human responses through a Gaussian state space model.
As to the third layer, an eye movement pattern controls the
degree of overt shifts of attention through a Hidden Markov
Model and finally an eye focusing density map predicts
positions that people likely pay attention to based on the
stochastic saliency map and eye movement patterns. They
reported a significant improvement in eye fixation detection
over previous efforts at the cost of decreased speed.

Chikkerur et al. [154] proposed a model similar to the
model of Rao et al. [217] based on assumptions that the
goal of the visual system is to know what is where and
that visual processing happens sequentially. In this model,
attention emerges as the inference in a Bayesian graphical
model which implements interactions between ventral and
dorsal areas. This model is able to explain some physiolog-
ical data (neural responses in ventral stream (V4 and PIT)
and dorsal stream (LIP and FEF)) as well as psychophysical
data (human fixations in free viewing and search tasks).

Graphical models could be seen as a generalized ver-
sion of Bayesian models. This allows them to model more
complex attention mechanisms over space and time which
results in good prediction power (e.g., [121]). The drawbacks
lie in model complexity, especially when it comes to training
and readability.

3.6 Spectral Analysis Models (S)

Instead of processing an image in the spatial domain, mod-
els in this category derive saliency in the frequency domain.

Hou and Zhang [150] developed the spectral residual
saliency model based on the idea that similarities imply
redundancies. They propose that statistical singularities in
the spectrum may be responsible for anomalous regions in
the image, where proto-objects become conspicuous. Given
an input image I(x), amplitude A(f) and phase P(f) are
derived. Then, the log spectrum L(f) is computed from
the down-sampled image. From L(f), the spectral residual
R(f) can be obtained by multiplying L(f) with hn(f) which
is an n×n local average filter and subtracting the result from
itself. Using the inverse Fourier transform, they construct
the saliency map in the spatial domain. The value of each
point in the saliency map is then squared to indicate the
estimation error. Finally, they smooth the saliency map with
a Gaussian filter g(x) for better visual effect. The entire
process is summarized below:

A(f) = R
(
F [I(x)]

)
, (12)

P(f) = ϕ

(
F [I(x)]

)
,

L(f) = log
(
A(f)

)
,

R(f) = L(f)− hn(f) ∗ L(f),
S(x) = g(x) ∗ F−1

[
exp
(
R(f) + P(f)

)]2
where F and F−1 denote the Fourier and Inverse Fourier

Transforms, respectively. P denotes the phase spectrum
of the image, and is preserved during the process. Using
a threshold they find salient regions called proto objects
for fixation prediction. As a testament to its conceptual
clarity, residual saliency could be computed in 5 lines of
Matlab code [187]. But note that these lines exploit complex
functions that has long implementations (e.g., F and F−1).

Guo et al. [156] showed that incorporating the phase
spectrum of the Fourier transform instead of the amplitude
transform leads to better saliency predictions. Later, Guo
et al. [157] proposed a quaternion representation of an
image combining intensity, color, and motion features. They
called this method “phase spectrum of quaternion Fourier
transform (PQFT)” for computing spatio-temporal saliency
and applied it to videos. Taking advantage of the multi-
resolution representation of the wavelet, they also proposed
a foveation approach to improve coding efficiency in video
compression.

Achanta et al. [158] implemented a frequency-tuned ap-
proach to salient region detection using low-level features of
color and luminance. First, the input RGB image I is trans-
formed to CIE Lab color space. Then, the scalar saliency
map S for image I is computed as: S(x, y) = ‖Iμ − Iωhc‖
where Iμ is the arithmetic mean image feature vector, Iωhc

is a Gaussian blurred version of the original image using
a 5 × 5 separable binomial kernel, ‖.‖ is the L2 norm
(Euclidean distance), and x, y are the pixel coordinates.

Bian and Zhang [159] proposed the Spectral Whitening
(SW) model based on the idea that visual system bypasses
the redundant (frequently occurring, non-informative) fea-
tures while responding to rare (informative) features. They
used spectral whitening as a normalization procedure in the
construction of a map that only represents salient features
and localized motion while effectively suppressing redun-
dant (non-informative) background information and ego-
motion. First, a grayscale input image I(x, y) is low-pass fil-
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tered and subsampled. Next, a windowed Fourier transform
of the image is calculated as: f(u, v) = F [w(I(x, y))], where
F denotes the Fourier transform and w is a windowing
function. The normalized (flattened or whitened) spectral
response

(
n(u, v) = f(u, v)/‖f(u, v)‖

)
is transformed into

the spatial domain through the inverse Fourier transform
(F−1) squared to emphasize salient regions. Finally it is
convolved with a Gaussian low-pass filter g(u, v) to model
the spatial pooling operation of complex cells: S(x, y) =
g(u, v) ∗ ‖F−1[n(u, v)]‖2.

Spectral analysis models are simple to explain and imple-
ment. While still very successful, biological plausibility of
these models is not very clear.

3.7 Pattern Classification Models (P)

Machine learning approaches have also been used in mod-
eling visual attention by learning models from recorded
eye-fixations or labeled salient regions. Typically, attention
control works as a “stimuli-saliency“ function to select, re-
weight, and integrate the input visual stimuli. Note that
these models may not be purely bottom-up since they use
features that guide top-down attention (e.g., faces or text).

Kienzle et al. [165] introduced a non-parametric bottom-
up approach for learning attention directly from human eye
tracking data. The model consists of a nonlinear mapping
from an image patch to a real value, trained to yield positive
outputs on fixations, and negative outputs on randomly
selected image patches. The saliency function is determined
by its maximization of prediction performance on the ob-
served data. A support vector machine (SVM) was trained
to determine the saliency using the local intensities. For
videos, they proposed to learn a set of temporal filters from
eye-fixations to find the interesting locations.

The advantage of this approach is that it does not need a
priori assumptions about features that contribute to salience
or how these features are combined to a single salience
map. Also this method produces center-surround operators
analogous to receptive fields of neurons in early visual areas
(LGN and V1).

Peters and Itti [101] trained a simple regression classifier
to capture the task-dependent association between a given
scene (summarized by its gist) and preferred locations to
gaze at while human subjects were playing video games.
During testing of the model, the gist of a new scene is com-
puted for each video frame, and is used to compute the top-
down map. They showed that a point-wise multiplication
of bottom-up saliency with the top-down map learned in
this way results in higher prediction performance.

Judd et al. [166], similar to Kienzle et al. [165], trained a lin-
ear SVM from human fixation data using a set of low, mid,
and high-level image features to define salient locations.
Feature vectors from fixated locations and random locations,
were assigned +1 and −1 class labels, respectively. Their
results over a dataset of 1003 images observed by 15 subjects
(gathered by the same authors) show that combining all
aforementioned features plus distance from image center
produces the best eye fixation prediction performance.

As available eye movement data increases and with wider
spread of eye tracking devices supporting gathering mass
data, these models are becoming popular. This however,
makes models data-dependent thus influencing fair model
comparison, slow, and to some extent, black-box.

3.8 Other Models (O)

Some other attention models that do not fit into our cate-
gorization are discussed below.

Ramstrom and Christiansen [168] introduced a saliency
measure using multiple cues based on game theory concepts
inspired by the selective tuning approach of Tsotsos et al.
[15]. Feature maps are integrated using a scale pyramid
where the nodes are subject to trading on a market and the
outcome of the trading represents the saliency. They use the
spot-light mechanism for finding regions of interest.

Rao et al. [23] proposed a template matching type of
model by sliding a template of the desired target to every
location in the image and at each location compute salience
as some similarity measure between template and local
image patch.

Ma et al. [33] proposed a user attention model to video
contents by incorporating top-down factors into the classical
bottom-up framework by extracting semantic cues (e.g.,
face, speech, and camera motion). First, the video sequence
is decomposed into primary elements of basic channels.
Next, a set of attention modeling methods generate attention
maps separately. Finally, fusion schemes are employed to
obtain a comprehensive attention map which may be used
as importance ranking or the index of video content. They
applied this model to video summarization.

Rosin [169] proposed an edge-based scheme (EDS) for
saliency detection over grayscale images. First, a Sobel edge
detector is applied to the input image. Second, the graylevel
edge image is thresholded at multiple levels to produce a
set of binary edge images. Third, a distance transform is
applied to each of the binary edge images to propagate the
edge information. Finally, the gray-level distance transforms
are summed to obtain the overall saliency map. This ap-
proach has not been successful over color images.

Garcia-Diaz et al. [160] introduced the Adaptive Whitening
Saliency (AWS) model by adopting the variability in local
energy as a measure of saliency estimation. The input
image is transformed to Lab color space. The luminance (L)
channel is decomposed into multi-oriented multi-resolution
representation by means of Gabor-like bank of filters. The
opponent color components a and b undergo a multi-scale
decomposition. By decorrelating the multi-scale responses,
extracting from them a local measure of variability, and
further performing a local averaging they obtained a unified
and efficient measure of saliency. Decorrelation is achieved
by applying PCA over a set of multi-scale low level features.
Distinctiveness is measured using the Hoteling’s T 2 statistic.

Goferman et al. [46] proposed a context-aware saliency
detection model. Salient image regions are detected based
on four principles of human attention: 1) Local low-level
considerations such as color and contrast, 2) Global consid-
erations which suppress frequently occurring features while
maintaining features that deviate from the norm, 3) Visual
organization rules which state that visual forms may possess
one or several centers of gravity about which the form is
organized, and 4) High-level factors, such as human faces.
They applied their saliency method to two applications: re-
targeting and summarization.

Aside from the models discussed so far, there are several
other attention models that are relevant to the topic of
this review, though they do not explicitly generate saliency
maps. Here we mention them briefly.
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To overcome the problem of designing the state-space
for a complex task, an approach proposed by Sprague and
Ballard [109] decomposes a complex temporally-extended
task to simple behaviors (also called micro-behaviors), one
of which is to attend to obstacles or other objects in the
world. This behavior-based approach learns each micro-
behavior and uses arbitration to compose these behaviors
and solve complex tasks. This complete agent architecture is
of interest as it studies the role of attention while it interacts
and shares limited resources with other behaviors.

Based on the idea that vision serves action, Jodogne et
al. [162] introduced an approach for learning action-based
image classification known as Reinforcement Learning of
Visual Classes (RLVC). RLVC consists of two interleaved
learning processes: An RL unit which learns image to ac-
tion mappings and an image classifier which incrementally
learns to distinguish visual classes. RLVC is a feature-based
approach in which the entire image is processed to find
out whether a specific visual feature exists or not in order
to move in a binary decision tree. Inspired by RLVC and
U-TREE [163], Borji et al. [88] proposed a three-layered
approach for interactive object-based attention. Each time
the object that is most important to disambiguate appears,
a partially unknown state is attended by the biased bottom-
up saliency model and recognized. Then the appropriate
action for the scene is performed. Some other models in
this category are: Triesch et al. [97], Mirian et al. [100], and
Paletta et al. [164].

Walker et al. [21] built a model based on the idea that
humans fixate at those informative points in an image which
reduce our overall uncertainty about the visual stimulus -
similar to another approach by Lee and Yu [149]. This model
is a sequential information maximization approach whereby
each fixation is aimed at the most informative image loca-
tion given the knowledge acquired at each point. A foveated
representation is incorporated with reducing resolution as
distance increases from the center. Shape histogram edges
are used as features.

Lee and Yu [149] proposed that mutual information
among the cortical representations of the retinal image,
the priors constructed from our long-term visual expe-
rience, and a dynamic short-term internal representation
constructed from recent saccades, all provide a map for
guiding eye navigations. By directing the eyes to locations
of maximum complexity in neuronal ensemble responses
at each step, the automatic saccadic eye movement system
greedily collects information about the external world while
modifying the neural representations in the process. This
model is close to Najemnik & Geisler’s work [20].

To recap, here, we offer a unification of several
saliency models from a statistical viewpoint. The first class
measures bottom-up saliency as 1/P (x) or logP (x) or
EX [−logP (x)] which is the entropy. This includes Tor-
ralba and Oliva [92][93], SUN [141], AIM [144], Hou and
Zhang [151], and probably Yin Li [171]. Some other methods
are equivalent to this but with specific assumptions for
P (x). For example, Rosenholtz [191] assume a Gaussian,
and Seo and Milanfar [108] assumes that P (x) is a kernel
density estimate (with the kernel that appears inside the
summation on the denominator of (7)). Next, there is a class
of top-down models with the same saliency measure. For
example, Elazary and Itti [90] use logP (x|Y = 1) (where
Y = 1 means target presence) and assume a Gaussian

Feature Integration Theory (FIT), Triesman and Gelade, 1980

Koch and Ullman, 1985

Torralba,  2003
Oliva et al., 2003

Salah et al., 2002

Avraham and 
Lindenbaum, 2010

Pang et al.,  2008
Harel et al., 2006

Achanta et al., 2009

Achanta et al., 2009

Bian and Zhang, 2009

Chikkerur et al., 2010

Hou and Zhang, 2007

Guo et al., 2008

Guo et al., 2010

Kienzle et al, 2009

Peters and Itti, 2007
Top-down

Borji et al., 2011

Judd et al., 2009

Ehinger et al., 2009

Ramstrom and Christiansen, 2002

Rao et al., 2005
(visual search)

Rao et al., 2005

Liu et al., 2007

Torralba,  2003
Rosenholtz, 1998

Yin Li et al., 2009

Wang et al., 2011

Mancas, 2007
Seo and Milanfar, 
2009

Zhang et al., 2008
(spatial)

Itti and Baldi, 2005 (surprise model)

Gao and Vasconcelos, 2004 (Spatial)

Gao and Vasconcelos, 2009

Mahadevan and Vasconcelos, 
2010 (spatio-temporal)

Jia Li et al., 2010

Boccignoe, 2008

Bruce and Tsotsos, 2005 (Spatial)

Bruce and 
Tsotsos, 

2008
(spatio-temporal)

Gu et al., 2007

Hou and 
Zhang, 2008

Zhang et al., 2009 
(spatio-temporal)

Cognitive models

Baluja and 
Pomerleau, 
1994

Niebur 
and Koch,
1995

Itti et al., 1998

Itti, 2005

Itti et al., 2003

Milanse, 1993

Marat et al., 2009

VOCUS, Frintrop, 2006

STB, Walther et al., 2006

Murray et al., 2011

Navalpakkam 
and Itti, 2005

Borji et al.,
2010

Elazary and 
Itti, 2010

Frintrop,
2006

Le Meur et al., 2007

Le Meur et al., 2006

sp
at

ia
l -

 C
IO

CIOFM

visual search

Bayesian Models 

Graphical Models

Spectral Analysis Models

Pattern Classification Models

Other Models

Information Theoretic Models

Decision Theoretic Models

Kootstra et al., 2008 (symmetry model)Heidemann et al., 2004

Ma et al., 2005 (spatio-temporal)

Diaz et al., 2009

Rosin, 2009

Goferman et al., 2010

Fig. 6. A hierarchical illustration of described models. Solid
rectangles show salient region detection methods.

for P (x|Y = 1). SUN can also be seen like this, if you
call the first term of (5) a bottom-up component. But, as
discussed next, it is probably better to just consider it an
approximation to the methods in the third class. The third
class includes models that compute posterior probabilities
P (Y = 1|X) or likelihood ratios log[P (x|Y = 1)/P (x|Y =
0)]. This is the case of discriminant saliency [146][147][215]
but also appears in Harel et al. [121] (e.g. equation 10) and in
Liu et al. [43] (if you set the interaction potentials of a CRF
to zero, you end up with a computation of the posterior
P (Y = 1|X) at each location). All these methods model
the saliency of each location independently of the others.
The final class, graphical models, introduces connections
between spatial neighbors. These could be clique potentials
in CRFs, edge weights in Harel et al. [121], etc.

Fig. 6 shows a hierarchical illustration of models. A sum-
mary of attention models and their categorization according
to factors mentioned in section 2 is presented in Fig. 7.

4 DISCUSSION

There are a number of outstanding issues with attention
models that we discuss next.

A big challenge is the degree to which a model agrees
with biological findings. Why is such an agreement im-
portant? How can we judge whether a model is indeed
biologically plausible? While there is no clear answer to
these questions in the literature, here we give some hints
at their answer. In the context of attention, biologically
inspired models have resulted in higher accuracies in some
cases. In support of this statement, the Decision theoretic
[147][223] and (later) AWS model [160] (and perhaps some
other models) are good examples because they explains
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No Model Year f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13

1 Itti et al. [14] 1998 + - - + - - + f + CIO C - -
2 Privitera & Stark [127] 2000 + - - + - - + f + - O - Stark and Choi
3 Salah et al. [52] 2002 + + - + - - + - + O G DR Digit & Face
4 Itti et al. [119] 2003 + - + + + + + f + CIOFM C - -
5 Torralba [92] 2003 - + - + - - + s + CI B DR Torralba et al.
6 Sun & Fisher [117] 2003 + - - + - - + - - CIO G - -
7 Gao & Vasconcelos [146] 2004 - + - + - - + s - DCT D DR Brodatz, Caltech
8 Ouerhani et al. [210] 2004 + - - + - - + f + CIO+Corner C CC Ouerhani
9 Boccignone & Ferraro [175] 2004 + - + - + - + f - Optical Flow B - BEHAVE

10 Frintrop [50] 2005 + + + + + + + f/s +/- CIOM C - -
11 Itti & Baldi [145] 2005 + - + + + + - f + CIOFM B KL, AUC ORIG-MTV
12 Ma et al. [33] 2005 + - + + - - + f + M* O - -
13 Bruce & Tsotsos [144] 2006 + - - + - + + f + DOG, ICA I KL, ROC Bruce and Tsotsos
14 Navalpakkam & Itti [51] 2006 - + - + - + + s + CIO C - -
15 Zhai & Shah [103] 2006 + - + + + - + f + SIFT O - -
16 Harel et al. [121] 2006 + - - + - - + f + IO G AUC Bruce and Tsotsos
17 Le Meur et al. [41] 2006 + - - + - - + f + LM* C CC, KL Le Meur et al.
18 Walther & Koch [35] 2006 + - - + - + + f +/- CIO C - -
19 Peters & Itti [101] 2007 + + + + + - + i + CIOFM P KL, NSS Peters and Itti
20 Liu et al. [43] 2007 + - - + - - + f - Liu* G F-measure Regional
21 Shic & Scassellati [74] 2007 + - + + + - + f + CIOM C ROC Shic and Scassellati
22 Hou & Zhang [150] 2007 + - - + - + + f + FFT, DCT S NSS DB of Hou and Zhang, 2007
23 Cerf et al. [167] 2007 + + - + - + + f/s + CIO :) C AUC Cerf et al.
24 Le Meur et al. [138] 2007 + - + + + - + f + LM* C CC, KL Le Meur et al.
25 Mancas [152] 2007 + - + + + + + f + CI I CC Le Meur et al.
26 Guo et al. [156] 2008 + - - + - - + f + CIO D CC Self data
27 Zhang et al. [141] 2008 + - - + - + + f + DOG, ICA B KL, AUC Bruce and Tsotsos
28 Hou & Zhang [151] 2008 + - + + + - + f + ICA I AUC, KL Bruce and Tsotsos, ORIG
29 Pang et al. [102] 2008 + + + + + - + f + CIOM G NSS ORIG, Self data
30 Kootstra et al. [136] 2008 + - - + - - + f + Symmetry C CC Kootstra et al.
31 Ban et al. [172] 2008 + - + + + - + f + CIO+SYM I - -
32 Rajashekar et al. [174] 2008 + - - + - - + f + R* S CC Rajashekar et al.
33 Kienzle et al. [165] 2009 + - - + - - + f + I P K* Kienzle et al.
34 Marat et al. [49] 2009 + - + + + - + f + SM* C NSS Marat et al.
35 Judd et al. [166] 2009 + - - + - - + f + J* P AUC Judd et al.
36 Seo & Milanfar [108] 2009 + - + + + + + f + LSK I AUC, KL Bruce and Tsotsos, ORIG
37 Rosin [169] 2009 + - - + - - + f + C+ Edge O PR, F-measure DB of Liu et al, 2007
38 Yin Li et al. [171] 2009 - + + + + + + s + RGB S DR DB of Hou and Zhang, 2007
39 Bian & Zhang [159] 2009 + - + + + + + f + FFT S AUC Bruce and Tsotsos
40 Diaz et al. [160] 2009 + - - + - + + f + CIO O AUC Bruce and Tsotsos
41 Zhang et al. [142] 2009 + - + - + - + f + DOG, ICA B KL, AUC Bruce and Tsotsos
42 Achanta et al. [158] 2009 + - - + - - + f + DOG S PR DB of Liu et al, 2007
43 Gao et al. [147] 2009 + - + + + + + f + CIO D AUC Bruce and Tsotsos
44 Chikkerur et al. [154] 2010 + + - + - + + f/s +/- CIO B AUC Bruce and Tsotsos, Chikkerur
45 Mahadaven & Vasconcelos [106] 2010 + - + - + - + - + I D DR, AUC SVCL background data
46 Avraham & Lindenbaum [153] 2010 + + - + - + + f/s +/- CIO G DR, CC UWGT, Ouerhani et al.
47 Jia Li et al. [133] 2010 - + + + + - + f + CIO B AUC RSD, MTV, ORIG, Peters and Itti
48 Guo et al. [157] 2010 + - + + + + + f/s +/- FFT S DR Self data
49 Borji et al. [89] 2010 - + - + - + + s +/- CIO O DR -
50 Goeferman et al. [46] 2010 + - - + - - + - + C :) O AUC DB of Hou and Zhang, 2007
51 Murray et al. [200] 2011 + - - + - - + f + CIO C AUC, KL Bruce and Tsotsos, Judd et al.
52 Wang et al. [201] 2011 + - - + - - + f + ICA I AUC Self data

53 McCallum [163] 1995 - + - + - + - i + - R - Self data
54 Rao et al. [23] 1995 - + - + - - + s + CIO O - Self data
55 Ramstrom & Christiansen [168] 2002 - + - + - - + - + CI O - -
56 Sprague & Ballard [109] 2003 - + + - + + + i - S* R - -
57 Renninger et al. [94] 2004 - + - + - + - s - Edgelet I DR Self data
58 Navalpakkam & Itti [80] 2005 - + - + - + + - + CIO C - Self data
59 Paletta et al. [164] 2005 - + - + - - + - - SIFT R DR COIL-20, TSG-20
60 Jodogne & Piater [162] 2007 - + - + - - + i - SIFT R - -
61 Butko & Movellan [161] 2009 - + + + + + + s - - R - -
62 Verma & McOwan [214] 2009 + - - + - + - s - CIO O - -
63 Borji et al. [89] 2010 - + - + - - + i - CIO R - -

Top-down (general attention models)

Bottom-up (saliency models)

Fig. 7. Summary of visual attention models. Factors in order are: Bottom-up (f1), Top-down (f2), Spatial (-)/Spatio-temporal (+) (f3),
Static (f4), Dynamic (f5), Synthetic (f6) and Natural (f7) stimuli, Task-type (f8), Space-based(+)/Object-based(-) (f9), Features
(f10), Model type (f11), Measures (f12), and Used dataset (f13). In Task type (f8) column: free-viewing (f ); target search (s);
interactive (i). In Features (f10) column: M* = motion saliency, static saliency, camera motion, object (face) and aural saliency
(Speech-music); LM* = contrast sensitivity, perceptual decomposition, visual masking and center-surround interactions; Liu* = center-
surround histogram, multi-scale contrast and color spatial-distribution; R* = luminance, contrast, luminance-bandpass, contrast-
bandpass; SM* = orientation and motion; J* = CIO, horizontal line, face, people detector, gist, etc; S* = color matching, depth and
lines; :) = face. In Model type (f11) column, R means that a model is based RL. In Measures (f12) column: K* = used Wilcoxon-
Mann-Whitney test (The probability that a random chosen target patch receives higher saliency than a randomly chosen negative
one); DR means that models have used a measure of detection/classification rate to determine how successful was a model. PR
stands for Precision-Recall. In dataset (f13) column: Self data means that authors gathered their own data.
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Fig. 8. Sample images from image and video datasets along with eye fixations and predicted attention maps. As could be seen,
human and animal body and face, symmetry, and text attract human attention. Fourth row shows that these datasets are highly
center-biased mainly because there are some interesting objects at the image center (MEP map). Less center-bias at mean saliency
map of models indicates that a Gaussian in average works better than many models.

some basic behavioral data (e.g., nonlinearity against ori-
entation contrast, efficient (parallel) and inefficient (serial)
search, orientation and presence-absence asymmetries, and
Weber’s law [75]) well that has been less explored by other
models. These models are among the best in predicting
fixations over images and videos [160]. Hence, biological
plausibility could be rewarding. We believe that creating a
standard set of experiments for judging biological plausi-
bility of models would be a promising direction to take.
For some models, prediction of fixations is more important
than agreement with biology (e.g., pattern classification vs.
cognitive models). These models usually feed features to
some classifier - but what type of features or classifiers fall
under the realm of biologically inspired techniques? The
answer lies in the behavioral validity of each individual
feature as well as the classifier (e.g., faces or text, SVM vs.
Neural Networks). Note that these problems are not specific
to attention modeling and are applicable to other fields in
computer vision (e.g., object detection and recognition).

Regarding fair model comparison, results often disagree
when using different evaluation metrics. Therefore, a uni-
fied comparison framework is required - one that standard-
izes measures and datasets. We should also discuss the
treatment of image borders and its influence on results. For
example, KL and NSS measures are corrupted by an edge
effect due to variations in handling invalid filter responses
at the image borders. Zhang et al. [141] studied the impact
of varying amounts of edge effects on ROC score over a
dummy saliency map (consisting of all ones) and showed
that as the border increases, AUC and KL measures increase
as well. The dummy saliency map gave an ROC value of
0.5, a four-pixel black border gave 0.62, and an eight-pixel
black border map gave 0.73. The same 3 border sizes would
yield KL scores of 0, 0.12, and 0.25. Another challenge is
handling the center-bias that results from a high density of
eye fixations at the image center. Because of this, a trivial

Gaussian blob model scores higher than almost all saliency
models (see [166]). This can be partially verified from the
average eye fixation maps of three popular datasets shown
in Fig. 8. Comparing the mean saliency map of models
and the fixation distributions, it could be seen that Judd
et al. [166] model has higher center-bias due to explicitly
using the center feature, which leads to higher eye move-
ment prediction for this model as well. To eliminate the
border and center-bias effects, Zhang et al. [141] defined an
unshuffled AUC metric instead of the uniform AUC metric:
for an image, the positive sample set is composed of the
fixations of all subjects on that image and the negative set
is composed of the union of all fixations across all images -
except for the positive samples.

As shown by Figs. 4 and 5 many different eye movement
datasets are available, each one recorded in different experi-
mental conditions with different stimuli and tasks. Yet more
datasets are needed because the available ones suffer from
several drawbacks. Consider that current datasets do not tell
us about covert attention mechanisms at all and can only tell
us about overt attention (eye tracking). One approximation
can compare overt attention shifts to verbal or other reports,
whereby reported objects that were not fixated might have
been covertly attended to. There is also a lack of multi-
modal datasets in interactive environments. In this regard,
a promising new effort is to create tagged object datasets
similar to video LabelMe [188]. Bruce and Tsotsos [144] and
ORIG [184] are respectively the most widely used image and
video datasets though they are highly center-biased (see Fig.
8). Thus there is a need for standard benchmark datasets as
well as rigorous performance measures for attention model-
ing. Similar efforts have already been started amongst other
research communities, such as object recognition (PASCAL
challenge), text information retrieval (TREC datasets), and
face recognition (e.g., FERET).

The majority of models are bottom-up though it is known
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that top-down factors play a major role in directing attention
[177]. However, the field of attention modeling lacks prin-
cipled ways to model top-down attention components as
well as the interaction of bottom-up and top-down factors.
Feed-forward bottom-up models are general, easy to apply,
do not need training, and yield reasonable performance
making them good heuristics. On the other hand, top-down
definitions usually use feedback and employ learning mech-
anisms to adapt themselves to specific tasks/environments
and stimuli, making them more powerful but more complex
to deploy and test (e.g., need to train on large datasets).

Some models need many parameters to be tuned while
some others need fewer (e.g., spectral saliency models).
Methods such as Gao et al. [147], Itti et al. [14], Oliva et
al. [140], and Zhang et al. [142]) are based on Gabor or
DOG filters and require many design parameters such as
the number and type of filters, choice of non-linearities, and
normalization schemes. Properly tuning the parameters is
important in performance of these types of models.

Fig. 9 presents sample saliency maps of some models
discussed in this paper.

5 SUMMARY AND CONCLUSION

In this paper, we discussed recent advances in modeling
visual attention with an emphasis on bottom-up saliency
models. A large body of past research was reviewed and
organized in a unified context by qualitatively comparing
models over 15 experimental criteria. Advancement in this
field could greatly help solving other challenging vision
problems such as cluttered scene interpretation and object
recognition. In addition, there are many technological ap-
plications that can benefit from it. Several factors influenc-
ing bottom-up visual attention have been discovered by
behavioral researchers and have further inspired the mod-
eling community. However, there are several other factors
remaining to be discovered and investigated. Incorporating
those additional factors may help to bridge the gap between
human inter-observer (a map built from fixations of other
subjects over the same stimulus) and prediction accuracy of
computational models. With the recent rapid progress, there
is hope this may be accessible in the near future.

Most of the previous modeling research has been focused
on the bottom-up component of visual attention. While
previous efforts are appreciated, the field of visual attention
still lacks computational principles for task-driven attention.
A promising direction for future research is the develop-
ment of models that take into account time varying task
demands, especially in interactive, complex, and dynamic
environments. In addition, there is not yet a principled
computational understanding of covert and overt visual
attention, which should be clarified in the future. The solu-
tions are beyond the scope of computer vision and require
collaboration from the machine learning community.
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Fig. 9. Sample saliency maps of models over Bruce and Tsotsos
(left), Kootstra et al. (middle), and Judd et al. datasets. Black
rectangles means dataset was first used by that model.
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and A. Guérin-Dugué, “Modeling Spatio-temporal Saliency to
Predict Gaze Direction for Short Videos,” IJCV, 2009.

[105] V. Mahadevan and N. Vasconcelos, “Spatiotemporal Saliency
in Dynamic Scenes.” IEEE PAMI, vol. 32, no. 1, 2010.

[106] V. Mahadevan and N. Vasconcelos, “Saliency Based Discrim-
inant Tracking.” In IEEE (CVPR), 2009.

[107] N. Jacobson, Y-L. Lee, V. Mahadevan, N. Vasconcelos and
T.Q. Nguyen, “A Novel Approach to FRUC using Discriminant
Saliency and Frame Segmentation.” IEEE Transactions on Image
Processing, vol. 19, no. 11, pp. 2924-2934, 2010.

[108] H.J. Seo and P. Milanfar, “Static and Space-time Visual
Saliency Detection by Self-Resemblance,” Journal of Vision, vol.
9, no. 12, pp. 1-27, 2009.

[109] N. Sprague and D.H. Ballard, “Eye Movements for Reward
Maximization,” NIPS, 2003.

[110] http://tcts.fpms.ac.be/ mousetrack/
[111] J. Bisley and M. Goldberg, “Neuronal Activity in The Lateral

Intraparietal Area and Spatial Attention,” Science, 2003.
[112] J. Duncan, “Selective Attention and The Organization of

Visual Information,” J. Exp. Psych., vol. 113, pp. 501-517, 1984.
[113] B.J. Scholl, “Objects and Attention: The State of The Art,”

Cognition, vol. 80, pp. 1-46. 2001.
[114] Z. W. Pylyshyn and R. W. Storm, “Tracking Multiple Inde-

pendent Targets: Evidence for a Parallel Tracking Mechanism,”
Spatial Vision, vol. 3, pp. 179-197, 1988.

[115] E. Awh and H. Pashler, “Evidence For Split Attentional Foci,”
J. Exp.Psych. Hum. Percept. Perform., vol. 26, pp. 834-846, 2000.

[116] B.C. Russell, A. Torralba, K.P. Murphy, and W.T. Freeman,
“LabelMe: A Database and Web-based Tool for Image Annota-
tion,” IJCV, vol. 77, no. 1-3, pp. 157-173, 2008.

[117] Y. Sun and R. Fisher, “Object-based Visual Attention for
Computer Vision,” Artif. Intell., vol. 146, no. 1, pp. 77-123, 2003.

[118] J.M. Wolfe and T.S. Horowitz, “What Attributes Guide the
Deployment of Visual Attention and How Do They Do It?”
Nat. Rev. Neurosci., vol. 5, pp. 1-7, 2004.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.XXX, NO.XXX, XXXXX 2010 21

[119] L. Itti, N. Dhavale, and F. Pighin, “Realistic Avatar Eye
and Head Animation Using a Neurobiological Model of Visual
Attention,“ SPIE, vol. 5200, pp. 64-78, 2003.

[120] R. Rae, Gestikbasierte Mensch-Maschine-Kommunikation auf
der Grundlage visueller Aufmerksamkeit und Adaptivität.
Ph.D. thesis, Universität Bielefeld, Germany, 2000.

[121] J. Harel, C. Koch, and P. Perona, “Graph-based Visual
Saliency,” NIPS, vol. 19, pp. 545-552, 2006.

[122] O. Boiman and M. Irani, “Detecting Irregularities in Images
and in Video,” ICCV, 2005.

[123] B.W. Tatler, “The Central Fixation Bias in Scene Viewing:
Selecting an Optimal Viewing Position Independently of Motor
Bases and Image Feature Distributions,” J. Vision, 2007.

[124] R. Milanese, Detecting Salient Regions in an Image: From
Biological Evidence to Computer Implementation, Ph.D. thesis,
University of Geneva, Switzerland, 1993.

[125] F.H. Hamker, “The Emergence of Attention by Poulation-
based Inference and Its Role in Distributed Processing and Cog-
nitive Control of Vision,” J. Comput. Vision Image Understanding,
vol. 100, no. 1-2, pp. 64106. 2005.

[126] S. Vijayakumar, J. Conradt, T. Shibata, and S. Schaal, “Overt
Visual Attention For a Humanoid Robot,” IROS, 2001.

[127] C.M. Privitera and L.W. Stark, “Algorithms for Defining
Visual Regions-of-Interest: Comparison with Eye Fixations,”
IEEE PAMI, vol. 22, no. 9, pp. 970-982, 2000.

[128] K. Lee, H. Buxton, and J. Feng, “Selective Attention for Cue-
guided Search Using a Spiking Neural Network,” WAPCV, pp.
5562, 2003.

[129] T. Kadir and M. Brady, “Saliency, Scale and Image Descrip-
tion,” Int. J. Comput. Vision, vol. 45, no. 2, pp. 83-105, 2001.

[130] A. Maki, P. Nordlund, and J.O. Eklundh, “Attentional Scene
Segmentation: Integrating Depth and Motion,” Comput. Vision
Image Understanding, vol. 78, no. 3, pp. 351-373, 2000.

[131] D. Parkhurst, K. Law, and E. Niebur, “Modeling the Role of
Salience in The Allocation of Overt Visual Attention,” Vision
Res. vol. 42, no. 1, pp. 107-123, 2002.

[132] T.S. Horowitz, and J.M. Wolfe, “Visual Search Has No Mem-
ory,” Nature, vol. 394, pp. 575-577, 1998.

[133] J. Li, Y. Tian, T. Huang, and W. Gao, “Probabilistic Multi-Task
Learning for Visual Saliency Estimation in Video,” IJCV, 2010.

[134] R. Peters, A. Iyer, L. Itti, and C. Koch, “Components of
Bottom-up Gaze Allocation in Natural Images,” Vis. Res., 2005.

[135] M. Land and M. Hayhoe, “In What Ways Do Eye Movements
Contribute to Everyday Activities?” Vis. Res., vol. 41, 2001.

[136] G. Kootstra, A. Nederveen, and B. de Boer, “Paying Attention
to Symmetry,” BMVC, pp. 1115-1125, 2008.

[137] D. Reisfeld, H. Wolfson, and Y. Yeshurun, “Context-free
Attentional Operators: The Generalized Symmetry Transform,”
Int. Journal of Computer Vision, vol. 14, no. 2, pp. 119-130, 1995.

[138] O. Le Meur, P. Le Callet and D. Barba, “Predicting Visual
Fixations on Video Based on Low-level Visual Features,” Vision
Research, vol. 47/19, pp. 2483-2498, 2007.

[139] D.D. Salvucci, “An Integrated Model of Eye Movements and
Visual Encoding,” Cognitive Systems Research, vol. 1, 2001.

[140] A. Oliva, A. Torralba, M.S. Castelhano, and J.M. Henderson,
“Top-down Control of Visual Attention in Object Detection,”
ICIP, pp. 253-256, 2003.

[141] L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and G. W.
Cottrell, “SUN: A Bayesian Framework for Saliency Using
Natural Statistics,” J. of Vision, vol. 8(7), no. 32, pp. 1-20, 2008.

[142] L. Zhang, M.H. Tong, and G.W. Cottrell, “SUNDAy: Saliency
Using Natural Statistics for Dynamic Analysis of Scenes,” In
Thirty-first Annual Cognitive Science Society Conference, 2009.

[143] N.D.B. Bruce and J.K. Tsotsos, “Spatiotemporal Saliency:
Towards a Hierarchical Representation of Visual Saliency,”
WAPCV, 2008.

[144] N.D.B. Bruce, J.K. Tsotsos, “Saliency Based on Information
Maximization,” NIPS, 2005.

[145] L. Itti and P. Baldi, “Bayesian Surprise Attracts Human
Attention,” NIPS, 2005.

[146] D. Gao and N. Vasconcelos, “Discriminant Saliency for Visual
Recognition from Cluttered Scenes,” NIPS, 2004.

[147] D. Gao, S. Han and N. Vasconcelos, “Discriminant Saliency,
the Detection of Suspicious Coincidences, and Applications to
Visual Recognition.” IEEE Trans. PAMI. vol. 31, no. 6, 2009.

[148] E. Gu, J. Wang, and N.I. Badler, “Generating Sequence of Eye
Fixations Using Decision-Theoretic Attention Model,” WAPCV,
pp. 277-29, 2007.

[149] T.S. Lee and S. Yu, ”An Information-theoretic Framework for
Understanding Saccadic Behaviors,“ NIPS, 2000.

[150] X. Hou and L. Zhang. ”Saliency Detection: A Spectral Resid-
ual Approach,“ CVPR, 2007.

[151] X. Hou and L. Zhang. ”Dynamic Visual Attention: Searching
for Coding Length Increments,“ NIPS, 2008.

[152] M. Mancas, Computational Attention: Modelisation and Ap-
plication to Audio and Image Processing, PhD. thesis, 2007.

[153] T. Avraham, M. Lindenbaum, ”Esaliency (Extended Saliency):
Meaningful Attention Using Stochastic Image Modeling,“ IEEE
PAMI, vol. 32, no. 4, pp. 693-708, 2010.

[154] S. Chikkerur, T. Serre, C. Tan, and T. Poggio, ”What and
Where: A Bayesian Inference Theory of Visual Attention,“
Vision Research, 2010.

[155] P. Verghese, ”Visual Search and Attention: A Signal Detection
Theory Approach,“ Neuron, vol. 31, pp. 523-535, 2001.

[156] C. Guo, Q. Ma, and L. Zhang, ”Spatio-Temporal Saliency
Detection Using Phase Spectrum of Quaternion Fourier Trans-
form,“ CVPR, 2008.

[157] C. Guo and L. Zhang, ”A Novel Multiresolution Spatiotem-
poral Saliency Detection Model and Its Applications in Image
and Video Compression,“ IEEE Transactions on Image Processing,
vol. 19, no. 1, pp. 185-198, 2010.

[158] R. Achanta, S.S. Hemami, F.J. Estrada, and S. Süsstrunk,
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