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Abstract Sequential Monte Carlo particle filters (PFs) are useful for estimating
nonlinear non-Gaussian dynamic system parameters. As these algorithms are re-
cursive, their real-time implementation can be computationally complex. In this
paper, we analyze the bottlenecks in existing parallel PF algorithms, and propose
a new approach that integrates parallel PFs with independent Metropolis-Hastings
(PPF-IMH) resampling algorithms to improve root mean-squared estimation er-
ror (RMSE) performance. We implement the new PPF-IMH algorithm on a Xilinx
Virtex-5 field programmable gate array (FPGA) platform. For a one-dimensional
problem with 1,000 particles, the PPF-IMH architecture with four processing ele-
ments uses less than 5% of a Virtex-5 FPGA’s resource and takes 5.85 µs for one
iteration. We also incorporate waveform-agile tracking techniques into the PPF-
IMH algorithm. We demonstrate a significant performance improvement when the
waveform is adaptively designed at each time step with 6.84 µs FPGA processing
time per iteration.
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1 Introduction

Particle filtering is a sequential Bayesian estimation technique that has been used
for estimating parameters of nonlinear and non-Gaussian dynamic systems in ap-
plications such as target tracking and biomedical signal processing [2–4]. Although
Kalman filters can provide optimal parameter estimates for linear dynamic sys-
tems in additive Gaussian noise [5], they are not applicable when the systems are
highly nonlinear. Extended versions of Kalman filters provide local linearization
techniques, but particle filtering has been found to provide more accurate estima-
tion performance [2, 6–8]. One disadvantage of particle filters (PF), however, is
that they are computationally intensive as they are sequential Monte Carlo tech-
niques. Our objective in this paper is to present a method that can be used to
parallelize the PF for real-time implementation with minimum loss in algorithm
performance.

An important application of particle filtering is waveform-agile sensing, where
the waveform is adaptively configured at each time. The sensing performance has
been shown to increase when the parameters of transmitted waveforms (in ac-
tive sensing) are adaptively designed or the parameters of observed waveforms (in
passive sensing) are optimally selected at each time step [9–11]. However, as the
waveform parameters need to be adaptively updated at each time step, the com-
putational complexity of waveform design is very high. When waveform-agility is
integrated into particle filtering, the computational complexity can become un-
manageable. However, if the PF can be implemented in parallel and efficiently,
real-time implementation of adaptive waveform design schemes will become more
feasible.

There are three major operations in PF processing: particle generation, weight
calculation, and resampling. As shown in [12,13], the bottleneck in real-time PF im-
plementation is the resampling operation. Several modifications of the resampling
algorithm, such as residual-systematic resampling and threshold based resampling,
were proposed to reduce computational complexity [14–16]. The threshold based
resampling algorithm in [14] was modified to obtain the compact resampling algo-
rithm that helped improved tracking performance in [17–19]. A systematic resam-
pling algorithm with non-normalized weights was proposed in [16] to improve the
PF pipelined implementation. In [20], a particle-tagging quantization scheme was
used to make the number of particles a power of two and thus reduce the hardware
complexity of the PF residual resampling algorithm.

The aforementioned resampling algorithms are modified versions of the system-
atic resampling algorithm [8] or residual resampling algorithm [21]. For both al-
gorithms, resampling cannot be computed unless knowledge of all particle weights
is available, and that poses a considerable challenge for pipelined implementation.
In order to eliminate this bottleneck, independent Metropolis-Hastings (IMH) re-
sampling can be employed as it can start as soon as the first particle weight is
available [22, 23]. Another important issue in PF hardware implementation is the
ability to parallelize the PF computation. While parallel architectures have been
proposed in [14, 16, 23], the communication between parallel processing units and
the central processing unit is a significant overhead. In our previous work, we
proposed an algorithm which significantly reduced the communication overhead
though at the cost of degradation in estimation performance [24].
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In this paper, we develop a parallel PF algorithm that can improve estimation
performance with minimal overhead. The algorithm can be mapped onto a parallel
and pipelined architecture and is capable of meeting the requirements of real-time
processing. We apply the proposed algorithm to waveform-agile sensing to improve
dynamic state estimation performance. Our contributions are as follows.

– Algorithmic Enhancements. In order to efficiently parallelize the PF computa-
tion, we propose an algorithm which uses the independent Metropolis-Hastings
(IMH) sampler with the parallel PF (PPF) algorithm. We analyze the perfor-
mance of the new PPF-IMH algorithm and show that it has superior perfor-
mance when compared to the PPF in [24], and minimal performance degrada-
tion when compared to a non-parallel PF. We also demonstrate that the new
PPF-IMH algorithm significantly reduces the communication overhead when
mapped onto a parallel architecture.

– Hardware Implementation. We present a pipelined and parallel architecture to
implement the proposed PPF-IMH algorithm and map it onto a Xilinx FPGA
hardware platform. Experimental results show that it can meet the require-
ments of real-time processing with fairly low resource usage, for instance, 5%
of the slice resource of a Xilinx Virtex-5 FPGA.

– Application in Waveform-agile Sensing. We incorporate waveform agile sensing
techniques into PPF-IMH algorithm in order to increase the state parameter
estimation performance. We demonstrate the estimation performance improve-
ment using a waveform-agile tracking application. We also implement the pro-
posed integrated waveform-agile PPF-IMH system on an FPGA platform and
show that it can be used for real-time processing applications.

The rest of the paper is organized as follows. We first review the particle fil-
tering algorithm for estimating dynamic system state parameters in Section 2. In
Section 3, we propose the hardware and FPGA implementation of the parallel
particle filter with independent Metropolis-Hastings resampling. In Section 4, we
apply the PPF-IMH in waveform-agile sensing and present its FPGA implementa-
tion for a target tracking application example. In Section 5 and 6, we demonstrate
our numerical and experimental results for both algorithmic and hardware perfor-
mance improvements.

2 Particle Filtering

Particle filtering is a sequential Monte Carlo method that is used to estimate
the dynamic state parameters of nonlinear and/or non-Gaussian systems [6, 7].
The estimation is performed by approximating the posterior probability density
function of the unknown state parameters at each time step given measurements
up to that time step. Specifically, we consider a dynamic system described by the
following state space model

xk = f(xk−1) + nk (1)

zk = h(xk) + vk , (2)

where xk is the vector of Nx unknown parameters at time step k, zk is the vector
of Nz measurements at time step k, f(·): RNx

→ RNx
is a (possibly) nonlinear

state-transition function, h(·): RNx
→ RNz

is a (possibly) nonlinear function that
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relates the state vector with the measurement vector, nk is the state modeling
error vector, and vk is the measurement noise vector. The state estimate could be
obtained directly in closed form using a Kalman filter if both functions in (1) and
(2) are linear and both the modeling error and measurement noise are Gaussian
processes [5]. When the Kalman filter cannot be used, the particle filter (PF) has
been shown to approximate the joint posterior probability density function of xk at

time k using a set of N random samples or particles, x
(i)
k , and their corresponding

weights, w
(i)
k , i = 1, . . . , N , as:

p(xk|zk) ≈
N∑
i=1

w
(i)
k δ(xk − x

(i)
k ) .

where δ(·) is a Dirac delta function. Using this approximation, the estimated state

parameter vector can be obtained as x̂k ≈
∑N

i=1 w
(i)
k x

(i)
k .

There are different PF algorithms, depending on the choice of importance den-
sity used to compute the weights [7,8]. One of the most commonly used algorithms
is the sequential importance resampling (SIR) PF that consists of the following
basic three steps:

1. Particle generation. The particles x
(i)
k are drawn from an importance density

function q(xk|x
(i)
k−1, z1:k), where z1:k = {z1, . . . , zk}.

2. Weight computation. The corresponding weights are calculated as

w
(i)
k ∝ w

(i)
k−1

p
(
zk|x

(i)
k

)
p
(
x
(i)
k |x(i)

k−1

)
q
(
x
(i)
k |x(i)

k−1, z1:k

)
and then normalized so that

∑N
i=1 w

(i)
k =1. Note that the importance density

is often chosen to be the prior density function q(xk|x
(i)
k−1, z1:k) = p(xk|x

(i)
k−1).

This simplifies the weight computation to w
(i)
k ∝ w

(i)
k−1p(zk|x

(i)
k ).

3. Resampling. The particles are resampled to avoid particle degeneracy, which
occurs when most particle weights are close to zero, resulting in a poor repre-
sentation of the posterior probability density function [7]. Resampling avoids
degeneracy by eliminating particles with low importance weights and replicat-
ing particles with high importance weights.

Even with the simplified weight computation, the SIR PF can be very com-
putationally intensive as the number of particles is large. For example, in a radar
tracking problem, a PF using N ≈ 1, 000 particles requires about 30N additions,
20N multiplications, and N exponential calculations per iteration. Thus, the over-
all computational complexity is very high.

Real-time implementation of SIR PF requires the use of pipelining and paral-
lel processing. Particle generation and weight calculation can be easily parallelized
and pipelined since they do not have any data dependencies [14]. The bottleneck
is systematic resampling for the following reasons. First, systematic resampling re-
quires the knowledge of all normalized weights which makes it hard to be pipelined
with other steps. Secondly, systematic resampling requires a large volume of par-
ticle information exchange in the resampling process, resulting in a huge commu-
nication overhead [16].
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Algorithm 1 Metropolis-Hastings algorithm [23]

Choose a starting point
(
x
(0)
k , w

(0)
k

)
for i = 1 to N do

From x
(i)
k , draw samples (and compute corresponding weights) (x∗

k, w
∗
k) from q

(
x∗
k|x

(i)
k

)
Compute probability α

(
x
(i)
k ,x∗

k

)
= min

{
p(x∗

k) q
(
x
(i)
k

|x∗
k

)
p
(
x
(i)
k

)
q
(
x∗
k
|x(j)

k

) , 1
}

(
x
(i+1)
k , w

(i+1)
k

)
=

(x∗
k, w

∗
k), with probability α

(
x
(i)
k ,x∗

k

)(
x
(i)
k , w

(i)
k

)
, with probability 1− α

(
x
(i)
k ,x∗

k

)
end for

3 Parallel PF with Independent Metropolis-Hastings Sampling

In this section, we propose a new particle filtering algorithm and its hardware
architecture with low communication overhead, good tracking performance com-
parable to PF with systematic resampling, and support for parallel and pipeline
processing.

3.1 Metropolis-Hastings Algorithm

We use the Metropolis-Hastings (MH) algorithm to perform PF resampling in or-
der to overcome the hardware implementation limitation [1]. As the MH resampling
computation can start as soon as the first particle weight becomes available [23].
Specifically, the Metropolis-Hastings (MH) algorithm does not require all the par-

ticles as it can generate a Markov chain in which the current state x
(i+1)
k depends

on the previous state x
(i)
k [25]. In particular, the MH algorithm can draw sam-

ples from a desired probability density function p(xk) given a proposal probability
density function q(xk). The steps of the MH algorithm are described in Algorithm
1.

In Algorithm 1, the step of accepting the sample x∗
k can be implemented by

first generating the uniform sample u ∼ U(0, 1), and then performing [22]

(
x
(i+1)
k , w

(i+1)
k

)
=


(x∗

k, w
∗
k) u ≤ min

{
w∗
k/w

(i)
k , 1

}
(
x
(i)
k , w

(i)
k

)
u > min

{
w∗
k/w

(i)
k , 1

} .

The independent Metropolis-Hastings (IMH) algorithm can be obtained when

q(x∗k|x
(i)
k ) is independent of x

(i)
k in Algorithm 1. Note that, as there is no need

to wait for all the particles and their weights to become available [22], the IMH
algorithm is suitable for pipeline and parallel hardware implementation.

3.2 PPF-IMH Hardware Implementation

We propose a parallel PF algorithm which can be mapped into a multiple pro-
cessing element architecture. The processing elements (PE) perform the major PF
computational workload (particle generation, weight evaluation and resampling),
and a central unit (CU) performs global computations and coordinates the PEs
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activities. If the PF is implemented by computing the systematic resampling in the
CU, all the importance weights would have to be transferred, resulting in a huge
communication overhead. In [24], we developed a method which can significantly
reduce the amount of data communication overhead. The main idea was to divide
the particles into several groups in each PE and use the average of each group
as the new particle. However, this method results in an estimation performance
degradation. To improve estimation performance while keeping the communication
overhead low, we propose to use the IMH resampling in each PE before commu-

nication with the CU. Using the IMH resampling, the particles x̃
(i)
k , i = 1, . . . , N ,

are resampled to obtain x
(i)
k in order to more accurately represent the posterior

probability density function. The information of the resampled particles is then
sent to the CU. Also, since the IMH resampler can be easily pipelined with the
other steps, the processing period is not increased.

The new PPF-IMH algorithm is described next in detail. We distribute M

particles to P PEs, so N=M/P particles are assigned to each PE. The mth PE,
m = 1, . . . , P , executes the processing steps in Algorithm 2 (sampling, weights

computation, and IMH resampling) to generate the resampled particle set x
(i)
k,m,

i = 1, . . . , N . Note that in Algorithm 2, we use (N +Nb) particles since at the end
of the processing, we will discard Nb samples from the start of the sequence as
they may not converge to a good estimate [23].

Next, we present the one-dimensional grouping method that is used to reduce
the communication overhead in Algorithm 3. First, we find the local minima and

local maxima of the mth PE as xmin,m = mini x
(i)
k,m and xmax,m = maxi x

(i)
k,m,

respectively, and then transmit them to the CU. The CU then finds the global
maxima xMax and global minima xMin, and sends them back to all the PEs. Based
on xMax and xMin, the particles in each PE are divided into G = ⌈(xMax−xMin)/δ⌉
groups, where ⌈a⌉ represents the smallest integer greater than a [24]. Note that
δ provides the range of each group; if δ is large, then the number of groups in
each PE is small and thus the algorithm precision is low. The mth PE calculates
the average particle value xmean,j,m and particle weight wmean,j,m of group j,
j = 1, . . . , G, and transmits them to the CU. The CU uses these values to compute
the particle replication factor ρj . It also ensures that the replication factor is an

integer number by simple rounding-off operations and that
∑G

j=1 ρj = N .

This grouping method can be extended to multi-dimensional problem by op-

erating Algorithm 3 on each of the dimensions of the particles. Assuming x
(i)
k =

[x
(i)
1,k x

(i)
2,k . . . x

(i)
D,k]

T is aD dimensional particle, then mini x
(i)
k = [mini x

(i)
1,k mini x

(i)
2,k . . .

mini x
(i)
D,k]

T and maxi x
(i)
k = [maxi x

(i)
1,k maxi x

(i)
2,k . . . maxi x

(i)
D,k]

T . Local extrema

xmin,m = mini x
(i)
k,m and xmax,m = maxi x

(i)
k,m of the mth PE are transmitted to

CU and global extrema xMax and xMin are sent back to PE. Here xmin,m, xmax,m,
xMax and xMin are all D dimensional vectors. For each dimension, particles are
divided into G groups based on xMax and xMin and thus, there are G×D groups.
Then the average particle value xmean,j,m and particle weight wmean,j,m of group
j, j = 1, . . . , G ×D, are calculated and transmitted to the CU for calculating the
particle replication factor ρj .

The PPF-IMH algorithm has advantages both in terms of algorithm and hard-

ware performance. In each PE, the particles x
(i)
k , i = 1, . . . , N are resampled using

the IMH; thus particles with high weights are replicated and particles with low
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Algorithm 2 Parallel Particle Filter with IMH

Input zk and initial set x
(i)
0 ∼ p(x0), i = 1, . . . , N

for k = 1 to K time step do

Sampling {Generate particles and weights}
for i = 1 to (N +Nb) do

J(i) ∼ U [1, N ] {Discrete uniform distribution}
x̃
(i)
k ∼ p

(
x
(i)
k |x(J(i))

k−1

)
Calculate w̃

(i)
k = p

(
zk|x̃

(i)
k

)
end for

IMH resampling

Initialize the chain
(
x̄
(1)
k , w̄

(1)
k

)
=

(
x̃
(1)
k , w̃

(1)
k

)
for i = 2 to (N +Nb) do

u ∼ U(0, 1)

α
(
x̄
(i−1)
k , x̃

(i)
k

)
= min

{
w̃

(i)
k /w̄

(i−1)
k , 1

}
(
x̄
(i)
k , w̄

(i)
k

)
=


(
x̃
(i)
k , w̃

(i)
k

)
, u ≤ α

(
x̄
(i−1)
k , x̃

(i)
k

)(
x̄
(i−1)
k , w̄

(i−1)
k

)
, u > α

(
x̄
(i−1)
k , x̃

(i)
k

)
end for

Assign
{(

x
(i)
k , w

(i)
k

)
, i = 1, . . . , N

}
to

{(
x̄
(i)
k , w̄

(i)
k

)
, i = (Nb + 1), . . . , (N +Nb)

}
end for

weights are discarded. The remaining particles represent the posterior probability
density function more accurately, resulting in improved performance. The PPF-
IMH also results in reduced communication overhead. Specifically, in a traditional
parallel architecture,M weights andM index factors have to be shared between the
PEs and the CU, and, in the worst case scenario, there could beM/2 inter-PE com-
munications [14]. For comparison, in the PPF-IMH, only the mth PE range factors
xmin,m, xmax,m, xMin, and xMax, the average weights wmean,j,m, j = 1, . . . , G×D,
and the replication factors ρj , j = 1, . . . , G×D need to be transferred between the
mth PE and the CU. Also, there is no inter-PE communication. As a result, the
communication is reduced to (2G × D × P ) + (4 × P ), where G is the number of
groups in each PE, D is the vector dimension and P is the number of PEs. Also,
since the IMH resampler does not need all the normalized weights, resampling can
start once the first weight is computed. Thus the computation time of the PPF-
IMH method increases very mildly when compared to the parallel PF algorithm
in [24].

3.3 PPF-IMH FPGA Implementation

The overall block diagram of the proposed PPF-IMH hardware implementation
architecture is shown in Figure 1 which consists of four PEs and one CU. Local
PF processing steps, such as particle generation, weight evaluation and IMH re-
sampling, are executed in each PE. Global processing steps, such as computing
global range and replication factors, are executed in the CU. Each PE commu-
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Algorithm 3 Grouping method

Given particles and weights of the mth PE
(
x
(i)
k,m, w

(i)
k,m

)
, m = 1, . . . , P

Find the local extrema at the mth PE
for m = 1 to P do

xmin,m = mini x
(i)
k,m

xmax,m = maxi x
(i)
k,m

Transmit xmin,m and xmax,m to the CU
end for

Find global extrema in the CU
xMin = minm xmin,m

xMax = maxm xmax,m

Send xMin and xMax back to the PEs

Divide particles into groups based on global extrema
Calculate the averages for each group in the PEs
for j = 1 to G do

xmean,j,m = 1
Nj

∑
i∈Groupj

x
(i)
k,m

wmean,j,m = 1
Nj

∑
i∈Groupj

w
(i)
k,m

Send wmean,j,m to the CU
Calculate replication factor ρj based on wmean,j,m

Send ρj to each PE (operate in the CU)
end for

nicates with the CU, but there is no communication among PEs. Figure 1 also
shows the data that is transferred between the PE and the CU.

3.4 Processing Element Architecture

The PE block diagram is shown in Figure 2. The PE processes the input particles
and executes the sampling, weighting and IMH sampling steps. After sampling,
the particles are stored in the particle memory (PMEM), and the replicated par-
ticle index factors are stored in the replicated particle index memory (RMEM).
Using the index from RMEM, each PE reads the resampled particles from PMEM,
computes the local range factors xmax,m, xmin,m and transmits them to the CU.
After receiving the global range factors xMin, xMax, the resampled particles are
divided into G groups, and the average particles xmean,j,m and average weights
wmean,j,m for the jth group are calculated. Next, the average weights of each
group wmean,j,m are sent to the CU to compute the replication factor ρj . The
mean particles xmean,j,m are read from the mean particle memory (MPMEM) and
sent to the sampling unit for generating particles at the next time step.

Figure 3 shows the IMH sampler architecture. When computing the acceptance
probability, we use the modified method in [26] to avoid division computation. In
particular, in our case, we accept particles following the procedure

(
x
(i)
k , w

(i)
k

)
=


(
x̃
(i)
k , w̃

(i)
k

)
, uw

(i−1)
k ≤ w̃

(i)
k(

x
(i−1)
k , w

(i−1)
k

)
, uw

(i−1)
k > w̃

(i)
k ,

where u ∼ U(0, 1). Specifically, the weight of a newly generated particle is first
compared with the product of the uniformly distributed random variable u and
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Fig. 1 PPF-IMH architecture with four PEs: PE1, PE2, PE3, and PE4. The mth PE, m =
1, . . . , 4 sends the average weights wmean,j,m, local minima xmin,m, local maxima xmax,m to
the CU and CU sends global minima xMin and global maxima xMax to the PEs.
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i

k
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x
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w
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m m
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Fig. 2 Block diagram of a PE.

the weight of the last accepted particle in the chain. If the new particle weight is
larger, it remains in the chain and its index is assigned to a new replicate index
labeled ri; otherwise, it is replicated once more, and the replicate index ri remains
unchanged.

The group-and-mean unit is used to divide the particles into different groups,
based on the global ranges, and to calculate particle and weight averages in each
group. For the one-dimensional problem, the architecture of this unit is shown
in Figure 4. First, using the global range factors xMin, xMax, and the number of
groups G, the range for each group, δ = (xMax − xMin)/G is computed. Then,
the thresholds γ of each group are generated based on δ as γj = xMin + (j − 1)δ,
j = 1, . . . , G. Each particle is then compared to the thresholds and placed in the
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Fig. 3 Block diagram of the IMH sampler.

corresponding group. The particle values are accumulated, and the number of
particles is counted in each group. Finally, the mean value xmean,j and the mean
weight wmean,j are computed for each group. For multi-dimensional problem, since
the computations for each dimension are independent, we apply this procedure to
each dimension in parallel.

threshold1

threshold2

thresholdG

comparison

comparison
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i
x

∑
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÷
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∑
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1

G

δ
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Fig. 4 Block diagram of the group-and-mean unit.

3.5 Central Unit Architecture

The CU executes global computations such as global range and replication factor
computations. Its architecture is shown in Figure 5. Two comparators and multi-
plexers (MUXs) are used to generate xMin and xMax. If the new local range xMin

is smaller than the last accepted global range xMin, we assign xmin,m to xmin, or
keep the last value of xMin and a similar procedure is used to find xMax. We use an
accumulator and a multiplier to compute the replication factor. The accumulator
inputs, wmean,j,m, are normalized to guarantee that

∑G×D
j=1 ρj = N . Thus, after

each iteration, the number of PE particles is unchanged.
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Fig. 5 Block diagram of the CU.

4 Waveform-agile Sensing and Implementation

4.1 Waveform-agile Sensing Algorithm

The dynamic system described by the state-space equations (1) and (2) assumes
that measurements zk are observed at time step k. In certain applications, these
measurements could be determined by transmitted waveform sk(t;θk), with known
fixed parameters θk. One possible way to improve the estimation performance of
the state parameters is to adaptively control the transmit waveform parameters θk
at each time step k. Specifically, waveform-agile sensing is a closed-loop feedback
optimization procedure that allows adaptive selection of the waveform parameters
to be transmitted at the next time-step in order to optimize a cost function [9–11].
As our objective here is to accurately estimate the dynamic state xk, we can choose
the cost function to be the MSE for the next time step.

We assume that the waveform sk(t;θk) to be transmitted at time step k has
a parameter vector θk that can be adaptively selected. The received waveform is
analyzed to obtain the measurement vector zk in Equation (2), and, consequently,
the measurement noise vector vk in Equation (2) is assumed to have a covariance
matrix R(θk) that depends on θk. Using zk, we can obtain an estimate of the
target state, x̂k; thus the estimation error depends on the choice of θk. The pro-
posed PPF-IMF approach can be applied to derive an efficient implementation of
waveform-agile sensing. In particular, we will use the proposed PPF-IMF formu-

lation to draw particles x
(i)
k from an importance density q(xk|x

(i)
k−1, zk,θ0, . . . , θk),

estimate the posterior probability density function and adaptively choose the wave-
form parameter θ̂k that optimizes the predicted MSE in estimating xk [10].

The covariance matrix for the target state estimate at time step k is given by

P(θk) = Exk,zk|z1:k−1
[(xk − x̂k)

T (xk − x̂k)]

where E[·] is the expectation operator and x̂k is the estimate of xk given the mea-
surement sequence z1:k−1. Under a high signal-to-noise ratio (SNR) assumption,
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the covariance matrix of error estimation can be approximated by the posterior
Cramér-Rao lower bound (PCRLB) [2, 27–29]

P(θk) ≈ PCRLB(θk) (3)

that depends on the waveform parameter vector θk. The PCRLB can be computed
from the predicted Fisher information matrix Ik using [2]

PCRLB(θk) = I−1
k (θk)

where

Ik(θk) = Q−1 + E
[
H̃

T
k R

−1(θk)H̃k

]
−Q−1F

(
Ik−1(θk−1) + FTQ−1F

)−1

FTQ−1

=
(
Q−1 + FT I−1

k−1(θk−1)F
)−1

+ E
[
H̃

T
k R

−1(θk)H̃k

]
,

H̃k+1 = [∇xk+1h
T
k+1(xk+1)]

T and ∇ denotes gradient operation. The specific rep-
resentation of the measurement noise covariance R is related to the waveform type
and parameters, and will be describe in Equation (7). Thus, the covariance matrix
of error estimation can be calculated iteratively as

P(θk) ≈
((

Q−1 + FTP(θk−1)F
)−1

+ E
[
HkR

−1(θk)Hk

])−1

(4)

where Hk = ∇xkh
T
k (xk) .

The optimal waveform to be transmitted at the next time step is then obtained
by optimizing the predicted MSE using P(θk) in Equation (4). The waveform-agile
sensing problem can thus be stated as the selection of the waveform parameter

θ̂k = argmin
θk

Tr
(
P(θk)

)
,

where θ̂k is the optimally chosen waveform parameter vector and Tr(·) is the
matrix trace.

4.2 Waveform-agile Tracking Application

We consider a waveform-agile tracking application problem, where a target’s po-
sition and velocity in a 2-D Cartesian coordinate system need to be estimated.
The target is tracked using a phased-array radar system, transmitting waveforms
from a class of generalized frequency-modulated (GFM) waveforms with complex
Gaussian envelopes [30]. A GFM waveform, at time step k, is given by

sk(t;θk) = (πα2
k)

−1/4 e−0.5(t/tr)
2/α2

k ej2πβkξ(t/tr), (5)

where αk is the shape parameter of the Gaussian envelope, βk is the frequency
modulation (FM) rate, ξ(t/tr) is the time-varying phase function, and tr = 1 s is a
reference time. The waveform parameter vector that can be configured is given by
θk = [αk βk]

T . An example of waveforms we use are linear FM (LFM) waveforms;
these are waveforms with quadratic phase function ξ(t/tr) = (t/tr)

2.
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The target state at time k can be represented as xk = [xk yk ẋk ẏk]
T , where

(xk, yk) and (ẋk, ẏk) are the position and velocity of the target, respectively, in 2-D
Cartesian coordinates. For this system, the state-transition is linear, so Equation
(1) can be rewritten as xk = F xk−1+nk. Here, the process noise nk has covariance
matrix given by Q. The state transfer function F and Q are given by

F =


1 0 δt 0
0 1 0 δt
0 0 1 0
0 0 0 1

 and Q = q


δ2t /3 0 δ2t /2 0
0 δ2t /3 0 δ2t /2

δ2t /2 0 δt 0
0 δ2t /2 0 δt

 , (6)

where δt is the step interval and q is the intensity factor. If the radar is located at
position (0, 0), the nonlinear relation between xk and zk is given by

zk = [rk ṙk φk]
T + vk

=

[(
x2k + y2k

)1/2
(ẋk xk + ẏk yk)/rk arctan (yk/xk)

]T
+ vk

and vk is measurement noise with zero mean and covariance matrix Rk(θk).
In order to compute the covariance matrix of error estimation in (4), we first

compute H̃k = [∇xkh
T
k (xk)]

T as

∇xkh
T
k (xk) =



∂rk
∂xk

∂ṙk
∂xk

∂φk

∂xk

∂rk
∂yk

∂ṙk
∂yk

∂φk

∂yk

∂rk
∂ẋk

∂ṙk
∂ẋk

∂φk

∂ẋk

∂rk
∂ẏk

∂ṙk
∂ẏk

∂φk

∂ẏk

 =



2xk
c rk

2 fc
c

(
ẋk
rk

− ṙkxk
r2k

)
−yk
r2k

2 yk
c rk

2 fc
c

(
ẏk
rk

− ṙkyk
r2k

)
xk
r2k

0
2 fc
c

(xk/rk) 0

0
2 fc
c

(yk/rk) 0


,

where fc is the carrier frequency of the waveform and c is the waveform speed of
propagation in the medium. The noise covariance matrix R(θk) is a 3× 3 matrix
that, for the GFM waveform in (5), is given by [30]

R(θk) = ηk


1

2α2
k
+ g(βk) 2πd(βk) 0

2πd(βk) (2π)2α2
k/2 0

0 0 ψ

 . (7)

Here, ηk is the SNR, ψ is determined by the radar array properties and is inde-
pendent of waveform parameter θk and

g(βk) = (2πβk)
2

∫ ∞

−∞

1

αk
√
π

exp (−t2 ξ2(t)/α2
k) dt

d(βk) = (2πβk)
2

∫ ∞

−∞

t

αk
√
π

exp (t2 ξ′(t)/α2
k) dt .

We can optimally choose the waveform parameter θk to minimize the PCRLB
using the following three steps.
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Fig. 6 Block diagram of tracking with waveform-agile design.

– Prediction. Predict the target state at time k as x̃k = Fx̂k−1, where x̂k−1 is the
estimated state at time (k − 1) using the PPF-IMH algorithm.

– Optimization. Use x̃k to calculate E[H̃
T
k R

−1(θk)H̃k] ≈ HT
k (x̃k)R

−1(θk)Hk(x̃k).
Calculate PCRLB(θk) for every possible waveform parameter and choose θopt

k ,
which minimizes PCRLB(θk).

– Updating. Update observation noise covariance R(θopt
k ).

We can see that the computational complexity of the waveform-agile design
method is fairly high as 2 matrix additions, 5 matrix multiplications and 5 matrix
inversions (including a 4 × 4 matrix inversion) are included for each waveform
parameter set. In the next section, we will modify the algorithm and make it
amenable for FPGA hardware implementation.

4.3 FPGA implementation of waveform-agile design

The overall block diagram of the hardware architecture for waveform-agile design
is shown in Figure 6. It consists of a PPF-IMH PF unit (described in Section 3.2)
and a waveform-agile design unit. At each time step k, we use the PPF-IMH to
obtain x̂k, which is the estimation of xk given measurements z0 to zk. Waveform-
agile design steps such as prediction, optimization and updating, are operated in
the waveform-agile design unit.

Prediction
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ˆ ˆ
k kX FX+ =

Optimization

min{ }PCRLB
θ

Updating

1 1( )opt opt

k R kR f θ+ +=
1

opt

kθ + 1

opt

kR +1
ˆ
kX +

1... Lθ θ

ˆ
kX

all parameter sets

Fig. 7 Architecture of waveform-agile design unit.

The waveform-agile design block diagram is shown in Figure 7. The most
computationally intensive step is the optimization. In the original optimization
method, we find R(θopt

k ) by

θopt
k = min

θk

Tr

{(
(Q−1 + FT I−1

k−1(θk−1)F)
−1 + H̃

T
k R

−1(θk)H̃k

)−1
}
.
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This involves a 4×4 matrix inversion, which is difficult to implement in hardware.
Using Woodbury’s matrix identity [31], we modify the algorithm in order to reduce
the computational complexity as

θopt
k = min

θk

Tr

{((
Q−1 + FT I−1

k−1(θk−1)F
)−1

+ H̃
T
k R

−1(θk)H̃k

)−1
}

= min
θk

Tr

{
C+CH̃

T
(
−R(θk)− H̃kCH̃

T
k

)−1

H̃kK

}
= min

θk

Tr
{
CH̃

T
k D

−1H̃kC
}
.

Here, C is a symmetric matrix that is given by

C = Q−1 + FT I−1
k−1(θk−1)F =


a 0 b 0
0 a 0 b
b 0 d 0
0 b 0 d

 ,
where a, b and d do not depend on θk and D = −R(θk)−H̃kCH̃

T
k is a 3×3 matrix.

As a result, we simplify the 4×4 matrix inverse problem into a 3×3 matrix inverse
problem. Furthermore, using

H̃k+1CH̃
T
k+1 =


4a/c2 4bfc/c

2 0

4bfc/c
2 4dfc

2/c2 0

0 0 a/r2k+1

 ,
and by substituting R(θk), and simplifying the matrix computation, we obtain

D = −

A11 A12 0
A21 A22 0
0 0 B

 = −


2/αk + 4a/c2 4bfc/c

2 0

4bfc/c
2 2αk + 4df2c /c

2 0

0 0 ψ + a/r2k

 .
The inverse matrix can be represented as

D−1 = −


A22/ζ −A12/ζ 0

−A12/ζ A11/ζ 0

0 0 1/B


where ζ = |A11A22 − A2

12|. Thus, the 3 × 3 matrix inversion requires only 13
multipliers, 5 adders and 2 dividers.

5 Algorithm Performance Results

5.1 PPF-IMH Simulation

We demonstrate the performance of our proposed PPF-IMH system using two
dynamic state-space examples that have been previously used in the literature for
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comparison. The first system, state-space Model 1, depends on a 1-D dynamic
state parameter xk and is described by the following equations [32]

xk+1 = 1+ sin(0.04πk) + 0.5xk + vk

zk =

{
0.2x2k + nk, if k ≤ 30

0.5xk − 2 + nk, if k > 30
. (8)

Here, vk is a random process modeled by a Gamma random variable with shape
parameter 3 and scale parameter 2, and nk is zero-mean, additive white Gaussian
noise with variance 10−5. The second example, state-space Model 2, is also a 1-D
state space system in [7]

xk+1 = 0.5xk + 25
xk

1 + x2k
+ 8cos (1.2 k) + vk

zk =
1

20
x2k + nk (9)

where vk and nk are zero-mean, Gaussian random variables with variances σ2v = 10
and σ2n = 1, respectively.

The performance is given by RMSE, computed as

RMSE =

(
1

K

K∑
k=1

1

MC

MC∑
l=1

(
x̂k,l − xk

)2)1/2

.

Here, K = 30 is the simulation path length, MC = 100 is the number of Monte
Carlo simulations, xk is the true state k and x̂k,l is the estimated state parameter
in the lth Monte Carlo iteration at time k.

5.2 Effect of Number of Groups

In the proposed PPF-IMH algorithm, we divide the particles in each PE into G
groups and use the average of each group as the new particle. The choice of G is
crucial as it impacts the estimation accuracy. Figure 8 shows the RMSE tracking
performance with respect to G for Model 1. Here the number of particles is chosen
to be 1,000 and 2,000, and the number of PEs is chosen to be 1, 2 and 4. In all
cases, we can see that as G increases, the RMSE decreases. But when G is greater
than an optimal value Gopt, then there is no significant improvement in the RMSE.
The Gopt value depends on the number of particles in each PE. From Figure 8,
we can see that for N=1,000 particles, when P=4 PEs then Gopt ≈ 10, when P=2
then Gopt ≈ 15 and when P=1 then Gopt ≈ 20. For N=2,000 particles, when P=4
then Gopt ≈ 15; this is similar to the case of N=1,000 and P=2. Furthermore,
since for large G the hardware resource utilization is also higher, here we choose
G=10.
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Fig. 8 RMSE performance of different group numbers and PE numbers

5.3 Estimation Performance

We use a P=4 PE parallel architecture for numerical simulations, where each
PE processes 250 particles. We apply the parallel algorithm in [24] and also the
new PPF-IMH algorithm to Model 1 and Model 2 systems. The corresponding
estimation results are shown in Figure 9 and Figure 10. Table 1 shows the RMSE
performance for the two models. As we can see, the RMSE performance of the PPF-
IMH algorithm is significantly better when compared to the parallel algorithm
in [24] for both models. In addition, the RMSE performance of the PPF-IMH is
close to the PF with systematic resampling, which means that the performance
degradation due to parallelization in [24] is compensated by IMH resampling.

Table 1 Comparison of RMSE performances.

Algorithms RMSE for RMSE for
Model 1 Model 2

Systematic resampling 0.24 4.06
Parallel algorithm in [24] 0.36 6.19
Proposed PPF-IMH algorithm 0.26 4.34

5.4 Waveform-Agile Target Tracking Algorithm Simulation

The simulation setup consists of a single target moving in a 2-D plane. The initial
position and velocity of the target are x0 = [5000 5000 100 100]T . We set
the waveform parameters to 106 < αk < 1014 and βk = 0. For the case without
waveform design, we choose mid range value αk = 109. We use N=1,000 particles
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Fig. 10 Comparison of estimation performance for Model 2.

to track the target. The tracking results with and without waveform design for the
x and y positions are shown in Figures 11(a) and 11(b), and Table 2 compares the
tracking RMSE. We can see that the tracking performance with waveform design
is much better and the RMSE is improved by about 10 times for x and y position
estimation.
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Fig. 11 RMSE of the (a) x-position and (b) y-position at each time step, demonstrating the
improvement in performance when the waveform is adaptively selected at each time step.

Table 2 Comparison of RMSE performances.

State Parameter Numerical simulation Numerical simulation FPGA implementation
without with with

Waveform-agility Waveform-agility Waveform-agility
x-position 141.82 15.12 37.57
y-position 161.52 13.91 33.27
ẋ-velocity 30.53 17.46 22.56
ẏ-velocity 37.00 16.18 20.23

6 Hardware Performance Results

6.1 PPF-IMH Implementation

The PPF-IMH hardware architecture for the system state estimation in Model
1 is implemented using Verilog HDL and synthesized on Xilinx Virtex-5 device
(XC5VSX240T). The design was verified using Modelsim. Both the P=1 PE serial
architecture and the P=4 PE parallel architectures were implemented. The RMSE
values for the P=1 and P=4 PE architectures are 0.2686 and 0.3172, respectively.
The RMSE is higher than the Matlab generated numerical results because of the
14 bits fixed-point FPGA implementation.

Resource utilization: Table 3 summarizes the P=1 and P=4 PE architecture
resource utilization. The sinusoidal and exponential functions are implemented
using CORDIC units, and the rest of the units are implemented using DSP cores.
For P=4 PE implementation, the PE and CU occupied slices utilizations are 408
(1%) and 420 (1%), respectively. Our resource usage is fairly low, for instance,
only about 5% of the slice resource in a Xilinx Virtex-5 FPGA. Thus, such an
implementation can support a much larger number of particles or multiple PFs
which are required in biomedical signal processing applications [4].

Execution Time: Figure 12 shows the timing for one iteration of the proposed
method for a system using N=1,000 particles and P=4 PEs. For our implemen-
tation, Ls = 21 is the sampling step delay determined by the sinusoid calculation
time, Lw = 24 is the weighting latency determined by the time for calculating
the exponential functions, Lr = 2 is the latency of the global range calcula-
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Table 3 Resource utilization comparison.

Unit Occupied Slice Slice Block DSP48Es
Slices Registers LUTs RAM

P=1 398 1,292 1,363 5 10
processing (1%) (1%) (1%) (1%) (1%)
element
P=4 2,052 5,749 6,352 18 46
processing (5%) (3%) (4%) (3%) (4%)
element

tion, Lm = 18 is the time for computing the average value, and Lρ = 20 is the
time for calculating the replication factor. Thus, one PPF-IMH iteration takes
Ls + Lw + N + Lr + N + Lm + Lρ = 585 cycles. For a system clock rate of 100
MHz, the total processing period for one iteration is Ttotal=5.85 µs.

IMH sampler

Sampling

Weight computing

Global 

ranging

Group

Mean

ρ

Ls Lw N Lr N Lm

Compute     

Lp

Fig. 12 Execution time of proposed method.

Communication overhead: The communication overhead of the proposed algo-
rithm for a system using N=1,000 particles, P=4 PEs and G=10 groups is 96
bytes. This is a significant reduction compared with the traditional algorithm
whose communication overhead is 2,500 bytes.

Scalability: Figures 13(a) and 13(b) show the execution time and communication
overhead, respectively, for one processing iteration with respect to the number P of
PEs for the proposed parallel architecture. The processing period curve saturates
when P is large because there is no significant speedup when M/P approaches the
constant latency L. In this case, the latency is given by L = Ls+Lw+Lr+Lm+Lρ =
85 cycles. From Figure 8, the RMSE performance slightly decreases as P increases.
Thus, for a N=1,000 particle system, the P=4 PEs is a good choice.

In many applications such as in biomedical signal processing, the dimension
of the state space is very large [4]. Consequently, a very large number of particles
is required for satisfactory performance. In such cases, the processing time can
be further reduced by using more PEs. Figure 13(a) shows the processing period
for N=2,000 and N=4,000 particles. For these cases, a P=8 PEs architecture is a
good choice.

From Figure 13(b), we can see that the communication overhead curve in-
creases linearly with respect to P , and the slope is equal to 2G+4, where G is the
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number of groups in each PE. Thus, a lower value of G is more desirable for lower
communication overhead. Unfortunately, a lower value of G results in degraded
RMSE performance and thus the choice of G is a compromise between RMSE
performance and communication overhead.
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Fig. 13 Scalability of the proposed parallel architecture.

6.2 Target Tracking Hardware Synthesis Results

The waveform-agile radar tracking hardware architecture described in Section 4.2
is implemented using Verilog HDL and synthesized on a Xilinx Virtex-5 device
(XC5VSX240T). The design was also verified using Modelsim. Here, we use a P=4
PEs PPF-IMH parallel architecture for a N=1,000 particle system. The particle
weights are represented using 18-bit fixed-point. The target tracking result of the
FPGA implementation is shown in Figure 14 to match well with the simulation
results. The RMSE results from hardware experiments are shown in Table 2. Use
of fixed-point data format degrades the performance since extremely small values
are determined to be zero.

waveform
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Fig. 14 Execution time of waveform-agile radar tracking problem.
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Resource utilization: Table 4 summarizes the resource utilization for the
waveform-agile design unit and the P = 4 PEs parallel architecture. The sinu-
soidal and exponential functions are implemented using CORDIC units, other
calculations are implemented using DSP cores. We can see that the hardware re-
source utilization rate is fairly low; only about 10% of the total hardware resource
is used. Thus, 10 such architectures should be able to fit onto a single Xilinx
Virtex-5 platform.

Table 4 Resource utilization on Xilinx XC5VSX240T.

Unit Occupied Slice Slice Block DSP48Es
Slices Registers LUTs Ram

Waveform-agile 673 735 2229 3 45
design part (1%) (1%) (1%) (1%) (4%)
P=4 3,261 7,590 10,710 48 96
processing (8%) (5%) (7%) (9%) (9%)
element

Execution Time: Figure 14 shows the timing chart for one iteration of the pro-
posed radar target tracking system. We can see that additional LWA cycles are
needed to obtain the optimal waveform parameter. In our design, LWA = 59. In
addition, Ls = 4 is the delay of the sampling step, Lw = 56 is the weighting la-
tency determined by the calculation period of the exponential functions, Lr = 2
is the latency of the global range calculation, Lm = 29 is the time to compute
the average value and Lρ = 34 is the latency for calculating the replication factor.
Thus, one iteration takes Ls + Lw + N + Lr + N + Lm + Lρ + LWA=684 cycles.
For a system clock rate of 100 MHz, the total processing period for one iteration
is Ttotal = 6.84 µs.

7 Conclusions

In this paper, we proposed an efficient parallel architecture for implementing par-
ticle filters. This architecture can achieve both high speed and accurate estimation
performance by using the independent Metropolis-Hastings sampler with the par-
allel PF implementation. The proposed method was also implemented on a Xilinx
Virtex-5 FPGA platform. While it is difficult to give a fair comparison with other
FPGA based implementations due to differences in models and number of particles,
we can still claim that the proposed algorithm modification provided a reduced
computational time with a slightly higher resource utilization. We integrated the
waveform agile sensing technique into the new PPF-IMH algorithm to adaptively
and efficiently increase dynamic state estimation performance. Simulations based
on waveform-agile target tracking application demonstrated that the estimation
performance is significantly improved and the processing speed is faster due to the
PF parallelization.
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