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Abstract

We investigated differences in visual search of dangerous
events between security experts and naı̈ve observers during
the observation of large scenes, typically encountered on the
grandstand of stadiums during soccer matches. Our main tech-
nical objective was the reduction of computational effort re-
quired for the detection and recognition of such events. To
overcome the scarcity and legal issues associated with real
footage, we designed a new algorithm for the synthesis of
crowd scenes with well-controlled statistical properties. We
characterize the relative importance of saliency and expert
knowledge for the generation of correct detections and the vi-
sual search strategies for both security experts and naı̈ve ob-
servers. We found that during the first few seconds of this
search task, experts and naive observers look at the scenes in
a similar fashion, but experts see more. We compare the re-
sults with theoretical models for saliency and event classifica-
tion. We show that the recognition model can deliver reason-
able classification/detection performance even when operating
under real-time constraints. When real-time operation is not a
concern, performance can be improved further by allowing the
model to grow.

1 Introduction

The detection of security-relevant events (SRE) in large crowds
is a difficult vision problem, both for human observers and for
computerized monitoring systems. In particular, the detection
and recognition of such events in crowds comprised of hun-
dreds or thousands of people may incur a computational cost
which is prohibitive for real-time applications on current com-
modity hardware when event recognition is carried out on ev-
ery part of a visual scene. Yet, human experts can perform this
task quite adeptly. To draw inspiration for system design, we
therefore investigated differences in visual search of danger-

ous events between security experts and naı̈ve observers dur-
ing the observation of large scenes, typically encountered on
the grandstand of stadiums during soccer matches.

Ideally, we would have liked to use real footage for our
experiments. However, since security relevant events are both
rare and unavailable for legal reasons, we designed a new al-
gorithm for the synthesis of crowd scenes, which we call the
”Tübingen hooligan simulator” (THS). Like [1, 12], we built
a statistical generator for dynamic crowd scenes containing
> 1000 people with realistic variability and well-defined statis-
tics of the occurrence of SREs. We did not attempt to sim-
ulate single people, because generating realistic interactions
(e.g. brawl) is too difficult. Instead, we recorded small groups
of interacting people as the ’building blocks’ for our generator.
This algorithm is described in section 2.

Subjects were eye-tracked during the observation of the
synthesized scenes. In section 3, we characterize the relative
importance of saliency and expert knowledge for the genera-
tion of correct detections and the visual search strategies for
both types of observers. We found that during the first few sec-
onds of this search task, experts and naive observers look at the
scenes in a similar fashion, but experts see more. This suggests
that the fixation behavior of both observers types is driven by
(low-level) saliency, whereas event classification performance
is strongly influenced by expert training.

Since THS allows for the generation of large amounts of
SRE video data, it can also be used for training and benchmark-
ing computer monitoring approaches. We compare the results
with theoretical models for saliency and event classification
in section 4: an approach for saliency computation based on
low-level features (section 4.1), and a non-parametric graph-
ical Bayesian recognition model that was trained with expert
knowledge derived from scenes containing SREs (section 4.3),
exploiting optic flow features extracted with a neurally plausi-
ble algorithm described in section 4.2 and the Bayesian optic
flow from [15].

We show that the recognition model can deliver reasonable
classification/detection performance even when operating un-
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Normal Security-relevant
waving arms brawl (x3)
waving flags fast dispersal

hopping moving up/down over seats
swaying pushing others (or or many)

angry gesturing walking along filled seat rows
sitting vandalism against chairs

standing throwing objects
orderly exiting/entering lighting/passing Bengal torches

Table 1. Events which typically occur during a soccer matches
in the audience. Left column: normal events, i.e. not security
relevant. Right column: security relevant. The 3 types of brawl
are: 1.) all people fight, 2.) two groups converge to fight and
3.) two people fight within a peaceful group.

der real-time constraints. When real-time performance is not a
concern, performance can be improved further by allowing the
model to grow.

2 The Tübingen Hooligan Simulator

A data set for the investigation into the detection and recogni-
tion of behavioral patterns should be comprised of a collection
of videos pertinent to the application domain. For a soccer sta-
dium application, one would therefore like to use recordings
from real soccer matches. However, this approach is prob-
lematic for several reasons: firstly, most soccer matches are
(fortunately) relatively peaceful affairs. Thus, security-relevant
scenes are hard to obtain. Secondly, even if they were obtain-
able, legal constraints prohibit their storage beyond a short time
interval, making them unsuitable as benchmark data. Thirdly,
as a consequence of the scarcity of security-relevant scenes, a
data set compiled from stadium recordings would almost cer-
tainly not contain all events which are considered security-
relevant in the stadium context by security professionals. To
deal with these problems, we created a benchmark data set
by re-enacting relevant events. We contacted officers of the
Düsseldorf police (Polizeiinspektion Nord) in charge of sta-
dium security at the Esprit arena to obtain the expert knowl-
edge necessary to decide which events to include. Past expe-
rience had shown that the communication between police of-
ficers and scientists can be fraught with difficulties, stemming
mostly from differences in experience with SREs. We decided
to overcome these difficulties by implementing a prototyping
approach. We began with a telephone interview, during which
we compiled a list of normal (i.e. not security relevant) and
SREs. The full list of SREs is shown in table 1.

Subsequently, we re-enacted these events in a lecture the-
ater with a group of ≈ 10 lay actors. We repeated each event
multiple times in different parts of the lecture theater, the re-
sulting videos were overlaid to create the impression of a larger
crowd. Two frames from the videos can be seen in fig. 1.
We showed these videos to the police officers, asking them for
feedback with regard to:

• realism,

• completeness of both normal events and SREs,

• and the correctness of the labels (normal vs. security-
relevant).

Virtually all videos were deemed sufficiently realistic by
the police officers. However, they pointed out some missing
events, such as smoke bombs or the burning of flags, for which
we have yet to devise a viable re-enactment strategy. Moreover,
some events which we initially considered security-relevant are
part of the ’normal’ set and vice versa. This feedback, which
would not have been obtainable without our reenaction of the
events, highlights the importance of refining such data sets
through prototyping.

To construct a realistic and sufficiently difficult detection
task, we built visual scenes by embedding the SREs in neigh-
borhoods of normal events. This was accomplished by ran-
domly filling a 7x7 grid of event patches with normal events.
Spatial contiguity between patches was promoted by populat-
ing the grid with events drawn from a Markov random field
with nearest-neighbor interactions [5], see fig. 2. We per-
formed Gibbs sampling with ≈ 50000 burn-in iterations to ob-
tain samples from the equilibrium distribution. For the genera-
tion of stadium-like blocks of behavior, we used attractive po-
tentials that were stronger vertically than horizontally. Isolated
behaviors (e.g. flag-waving) were connected to their neighbors
through repulsive potentials.

In half of the scenes thus generated, we placed a security
relevant event somewhere on the grid. Figure 3 shows an ex-
ample frame from the resulting scenes.

Figure 1. Two frames from the Tübingen hooligan simula-
tor. Left: waving crowd, a normal behavior. Right: brawl, a
security-relevant event.

3 Human Psychophysics
For a quantitative investigation into the search strategy em-
ployed by human observers, we conducted eye-tracking exper-
iments with one of the officers and 13 naı̈ve subjects. We used
a Tobii X120 mobile eye-tracking system. The stimulus mate-
rial consisted of 10 blocks of 22 synthesized movie clips, each
of which had a duration of 4.7s. Half of the clips contained
a SRE, we randomized the event order in each block. Sub-
jects were acquainted with the stimuli during an initial training
phase. Subsequently, they were asked to report whether they
saw a relevant event, and if so, which and where. Furthermore,
subjects were instructed to keep their fixation on the relevant
event until the end of the clip.

We computed several gaze statistics from the eye-tracking
data and evaluated whether there was a significant difference
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Figure 2. We synthesized large crowd scenes by drawing
events (see table 1) from a Markov random field with regular
grid topology [5]. Each node represents a discrete random vari-
able xi,j ∈ {1, . . . , M} specifying the patch type (scene) at po-
sition (i, j). Spatial contiguity was promoted through nearest-
neighbor interaction potentials Ψ(xi,j , xk,l).

Figure 3. A typical frame generated by the simulator. The
green circle (not visible in the experiment) indicates the posi-
tion of the security-relevant event, here: brawl.

(p = 0.05, two-tailed t-test) between experts and naı̈ve ob-
servers. The results are summarized in table 2. For the majority
of events, we did not find a significant difference between the
two observer types, i.e. experts and naı̈ve observers use very
similar fixation strategy. We hypothesize that both are driven
by saliency [8].

The results of the behavioral task (verbal event reporting)
are shown in table 3. The expert’s classification and detection
accuracies are clearly higher than those of the naı̈ve observers.
In other words, experts and naı̈ve observers look in a similar
fashion, but experts see more. Furthermore, if the expert erred,
it was always a miss and never a false positive, as indicated
by his high precision. This type of bias was explained by the
expert by the cost of intervention: deploying a task-force to
deal with a SREs requires a lot of effort. On the other hand,
if e.g. a brawl dies down after a few seconds, no intervention
is necessary at all. Hence, misses are more tolerable than false
positives.

gaze statistic fraction of significant differences
number of fixated events 5/11

fixation time 2/11
time to fixation 1/11

Table 2. Fraction of significant differences between human ex-
perts and naı̈ve observers. ’5/11’ means: we found a significant
difference between expert and naı̈ve observers for 5 out of 11
events (see table 1). Significance was determined with a 2-
tailed t-test, p = 0.05. For the majority of events, we did not
find a significant difference between the two observer types.

human recognition performance
expert naı̈ve

classification 0.90 0.75
detection 0.90 0.79

recall 0.79 0.66
precision 1.0 0.89

Table 3. Human recognition performance measure. Classifica-
tion rate: fraction of correctly named events. Detection rate:
fraction of correct distinctions between ’security-relevant’ and
’normal’. Recall: probability that an event is detected, given
that it is relevant. Precision: probability that an event is rele-
vant, given that it is detected.

4 Bio-inspired crowd monitoring

Our above observations about the roles of saliency and ex-
pert knowledge during the visual search for SREs show that
it might not be necessary to perform (computationally expen-
sive) recognition on the whole video stream. Rather, it appears
to be sufficient to run recognition only on those parts of the
stream which are highly salient. While this approach runs the
risk of missing SREs if they are not salient enough, both the
expert’s behavior as well as his verbal feedback indicate that a
certain amount of misses is tolerable. We therefore compared
a machine vision saliency approach to human observers, to test
whether it provides the required level of (fast) filtering of the
video stream. The results are described in section 4.1. In sec-
tion 4.3, we detail experiments with a simple, but real-time ca-
pable recognition system which processes the salient regions
of the video stream. The input to this recognition system is
(bio-inspired) optic flow, which we describe in section 4.2.

4.1 Comparison of human and machine vision saliency

Of the numerous machine vision saliency approaches available,
we used Attention based on Information Maximization (AIM)
[8]. AIM was reported to yield human-like results in visual
search tasks on static natural images [8]. In a nutshell, AIM
learns an ICA decomposition of the images, and collects local
statistics of the ICA coefficients. It then computes a saliency
measure for each point in an image by evaluating the self-
information [9] of the ICA coefficients at this point under the
distribution of the surround.

Since we do not have direct access to the perceived



’saliency’ of the human observers, we compare humans and
AIM via the saliency rank of the SREs. For humans, we de-
fined the saliency rank of an SRE as the number of patches
which were fixated for at least 100 ms until the target SRE was
fixated for the first time. The AIM saliency rank is obtained by
ordering the patches by their average saliency.

saliency ranks
median 25% 75%

expert 6 3 10
naı̈ve 4.8 2.9 6.2
AIM 6 2 10

Table 4. Comparison of human and AIM [8] saliency averaged
across all SREs. For humans, we defined the saliency rank as
the number of fixations ≥ 100 ms until the target event was
fixated. For AIM, we computed the saliency value at every
pixel, averaged across patches and ordered the events accord-
ing to those averages. Saliency ranks of both AIM and human
observers were comparable.

Table 4 shows the results. Median saliency ranks and 1st
and 3rd quartiles have comparable values between humans and
AIM. Moreover, recall that our video clips were comprised of
49 event patches. A median saliency rank of 6 implies that on
average, saliency-based filtering of the scene provides a reduc-
tion of computation effort by a factor > 8.

We therefore find that an AIM spatio-temporal saliency ap-
proach is well suited as a pre-processing step for detecting
SREs in crowd scenes.

4.2 Optic flow

We aim at comparing the behavioral detection results with au-
tomatic processing results derived from simulating a model of
visual perception. We pursue a biologically inspired modeling
approach to achieve human-like performance in visual process-
ing. The model utilized here makes use of spatio-temporal flow
patterns as primary features for event detection and differenti-
ation. The architecture consists of several hierarchically orga-
nized stages of processing, each of which is an abstract rep-
resentation of a cortical area with cells and representations of
different selectivities. The mechanism is an algorithmic vari-
ant of a neurodynamical model previously described in detail in
[3, 7], which has recently been extended by considering form-
motion interaction [4]. The present algorithmic variants of the
model architecture considers the initial stages of motion de-
tection and subsequent integration. To achieve the necessary
efficiency the individual stages of processing along the neural
hierarchy were realized by utilizing discrete image processing
mechanisms. This gained a significant increase in processing
speed and improvement of robustness concerning the applica-
tion to real-world sequences as well as the achievement of man-
ageable storage requirements.

Initial candidate motions are detected by a discrete match-
ing mechanism based on an extended class of rank-order ap-
proaches using the Census transform [2]). Here, numerical di-

rectional derivatives of the luminance function are calculated
at each spatial location where each difference value is mapped
into one of three classes depending on the sign of the slope
function, i.e. whether it is positive, negative, or approximately
zero (given a tolerance value). The binarized values for each
directional derivative constitute a vector to represent the lo-
cal structure of the input. Correspondences of image patches
between two frames of an image sequence are established at
locations using the Hamming metric as distance measure. Can-
didates with zero Hamming distance (same Census values) de-
termine an initial motion correspondence, or hypothesis, which
includes a weight which indicates the likelihood (confidence)
of a particular velocity at a given position.

The initial motion detection is run for two successive
frames in a backward reference fashion, namely for frames t0
and t−∆t. The matching is efficiently calculated by evaluating
the Hamming distance for image shifts ranging from 1 pixel
up to the diagonal image size D. Consequently, the detectable
speeds for two-frame matches are given by ‖u‖ = ∆x/∆t. In
order to detect movements with sub-pixel speed, the matching
is calculated between frames with reduced temporal sampling
rate, i.e. n · ∆t, with n = {2, 3}. The utilization of addi-
tional frames with larger temporal distances re-scales the low-
amplitude velocities to detectable speeds, leading to increased
direction and speed resolution and, thus, smoother flow field
representations.

The processing of image flow is organized in a modular
fashion involving a three-stage processing cascade. In the first
stage the motion likelihoods derived from a processing stage
(e.g., initial motion detection in model area V1) are fed for-
ward to the subsequent stage. In our model architecture this
next level corresponds to area MT where initial estimates from
model area V1 are integrated. The computation of a likelihood
representation of motion estimation in model area MT operates
on a coarser spatial scale (V1:MT ratio is 1:5) by integrating
feed-forward activities from the previous stage. In other words,
the bottom-up integration of likelihoods can be considered as
a stage of input filtering over space and velocity. In accor-
dance with the visual cortical architecture MT activities gen-
erate a modulation signal that is fed back to the previous stage
in order to enhance the likelihood of predicted hypotheses. The
modulation that defines the second stage of the cascade works
in accordance with the linking hypothesis [11] to multiplica-
tively enhance the likelihoods of matching motion hypotheses.
Top-down enhancement can only be effective where bottom-
up input activation exists. If feedback activity is absent the
bottom-up feed-forward likelihood is retained. Thus, the driv-
ing bottom-up activation and modulating top-down activities
have an asymmetric role as feedback cannot generate new hy-
potheses on their own. In order to enhance as well as suppress
hypothesis another stage is required that reduces and contrast
enhances local distributions of activations. This is achieved
by the third stage of the cascade that realizes a divisive inhi-
bition of likelihoods for hypotheses between a pool of motion
selective units in a given neighborhood around a target posi-
tion. Such a process of mutual inhibition keeps the likelihoods
within bounds. In other words, divisive inhibition tends to nor-



malize the overall activation of cells. In conjunction with the
stage of modulatory enhancement the normalization allows the
likelihoods to be increased or suppressed. If a likelihood has
been increased by matching feedback it subsequently receives
a competitive advantage during the divisive inhibition. In case
it has not received substantial modulatory enhancement the unit
contributes less to the pool of activations and is thus inhibited in
the competition. This functionality implements basic elements
of the biased competition theory as proposed for attention se-
lection by [13].

Figure 4. Generic stages of the motion computation architec-
ture (for details, see text).

Overall, the computational stages of proposed scheme is di-
rectly related to the recent proposal of the normalization model
of attention selection [14]. Our model mechanism demon-
strates that mechanisms of biased competition generalize to the
earlier stages of sensory processing as well (see Fig.4). Also
the generic mechanism can be interpreted in a Bayesian frame-
work. The filtered input generates the bottom-up driving input
activation which is subsequently multiplied by the top-down
attention field. This field is driven by a spatially homogeneous
tonic input which is overlaid by top-down signals generated by
higher levels of processing. The attention field can be con-
sidered as a spatio-temporal prior of the motion field that is
continuously updated through the course of recurrent motion
computation. After the modulation the likelihoods are spatially
pooled and subsequently divided by the summed activity. This
defines the suppressive field to calculate the pool normaliza-
tion such that the activities are rescaled to the range between 0
and 1. Thus, the likelihoods after enhancement and normaliza-
tion can be considered as probabilities for the confidence of the
presence of a motion hypothesis.

4.3 Recognition results

To carry out the recognition within a salient region of the
video stream, we experimented with a spatio-temporal bag-of-
features model. Such models are popular in computer vision
for offering a good compromise between reasonable recogni-
tion performance and computational simplicity, consider e.g.
histograms of oriented gradients for pedestrian detection [10].
A graphical model representation of our approach is shown in
figure 5. Since we are interested in motion patterns, the input x
to our model are small patches of optic flow, computed either

with the bio-inspired approach described in section 4.2 or the
Bayesian optic flow from [15]. Both give comparable results.

A salient region of a scene is decomposed into P such
patches whose optic flow x within a time interval ∆T is mod-
eled as a space-time bag m of features z. Each bag is associ-
ated with a label l. A video stream is modeled as a sequence of
N such labeled feature bags. We experimented with 1st order
features, here: Gaussian clusters with diagonal covariance ma-
trices, and 2nd order features, here: Gaussian clusters having
full covariance matrices.

x

z l

m

∆T
P

N

recognition perf.
classification 0.73

detection 0.91
recall 0.92

precision 0.95

Figure 5. Left: a graphical model representation of the crowd
motion pattern recognition approach. A salient region of a
scene is decomposed into P patches whose optic flow x within
a time interval ∆T is modeled as a space-time bag m of fea-
tures z. Each bag is associated with a label l. A video stream is
modeled as a sequence of N such labeled feature bags. Right:
the model’s recognition performance measure for a model with
60 full-covariance Gaussian features. While the classification
performance is significantly lower the human expert’s (see ta-
ble 3), the detection rate is comparable.

Since we did not know the number of features z nor the
number of feature-bags m in advance, we equipped both with
a (truncated) Dirichlet process prior, whose parameters were
learned via variational Bayesian expectation maximization [6].
We used half of our data for training (≈ 7500 frames), the other
half for validation. Rates are conditional on event occurence
statistics after saliency based pre-filtering. The results for a
model with at most 60 full covariance Gaussian features per
bag is shown in fig 5, right. While the model’s classification
performance can not match a human expert, its detection per-
formance can. Its recall is higher than that of the expert, but at
the expense of some false positives.

We also investigated the scaling of run-time and classifica-
tion/detection performance as a function of the upper bound on
the number of features per bag. Furthermore, we experimented
with the effect of using 1st (diagonal covariance) and 2nd (full
covariance) order features. As fig. 6 shows, 2nd order features
are clearly superior. Real-time operation, i.e. processing more
than 10 frames per second, can be achieved with ≤ 30 features
per bag1, when some recognition performance is sacrificed.

1C++ implementation running on 4 cores



Figure 6. Top: scaling of runtime with number of features z
(see fig. 5). Real-time operation can be achieved with ≤ 30
features. Bottom: scaling of classification and detection rates
with the number and type of features. 1st-order features: Gaus-
sian clusters with diagonal covariance matrices. 2nd-order
features: Gaussian clusters with full covariance matrices, i.e.
marginalized PCA decompositions of the optic flow patches.

5 Conclusions

We have demonstrated that the computational effort required
for the detection and recognition of SREs can be effectively re-
duced by focusing only on those regions of the video stream
which are highly salient. This approach is also taken by human
(expert) observers. It will invariably generate some misses, but
those are generally found tolerable. The costly mistakes are
usually false positives, since they may trigger intervention mea-
sures. Future work should therefore focus on reducing the false
positives to near zero, while keeping the miss rate in the ac-
ceptable range. In addition, we have begun to synthesize SRE
scenes in a real soccer stadium to further increase the realism
and relevance of our experiments.
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