
A Dynamically Reconfigurable Asynchronous Processor For Low Power
Applications

K.A. Fawaz, T. Arslan, S. Khawam, M. Muir, I. Nousias, I. Lindsay, A. Erdogan

School of Engineering

University of Edinburgh, The King’s Buildings, Mayfield Road, Edinburgh, EH9 3JL, UK
K.Fawaz@ed.ac.uk

ABSTRACT

There is an increasing demand in high-throughput mobile
applications for programmability and energy efficiency.
Conventional mobile Central Processing Units (CPUs) and
Very Long Instruction Word (VLIW) processors cannot
meet these demands. In this paper, we present a novel
dynamically reconfigurable processor that targets these
requirements. The processor consists of a heterogeneous
array of coarse grain asynchronous cells. The architecture
maintains most of the benefits of custom asynchronous
design, while also providing programmability via
conventional high-level languages. When compared to an
equivalent synchronous design, our processor results in a
power reduction of up to 18%. Additionally, our processor
delivers considerably lower power consumption when
compared to a market leading VLIW and a low-power ARM
processor, while maintaining their throughput performance.
Our processor resulted in a reduction in power consumption
over the ARM7 processor of around 9.5 times when running
the bilinear demosaicing algorithm at the same throughput.

Index Terms— Asynchronous logic circuits,
Reconfigurable architectures

1. INTRODUCTION

Current architectures will not be able to cope with the
increasing demand of high-throughput mobile applications
for better programmability and energy efficiency. Typical
examples are mobile devices for next generation networks
where a high amount of image and signal processing is
required. Conventional mobile Central Processing Units
(CPUs) cannot meet the throughput demand, forcing
manufacturers to rely on custom hardware accelerators. This
sacrifices programmability, leading to increased product
lead-time and risk. Very Long Instruction Word (VLIW)
processors can offer an increase in performance over most
superscalar CPUs by taking advantage of instruction-level
parallelism. However, this increase is at the expense of high
power consumption and greater compiler complexity.
Reconfigurable datapaths offer better solutions when power

and area considerations are also taken into account for high
throughput applications (streaming). The two main
categories of reconfigurable datapaths are Fine-grain and
Coarse-grain architectures. Most mobile application
algorithms require datapaths one word in size. As a result,
coarse-grained reconfigurable computers are more suited for
such applications than fine-grained ones. There are several
available coarse-grain architecture designs [1]. Despite
providing good results in high computational performance
and flexibility, they typically either do not provide enough
power savings or are too difficult to program.

1.1. First step – RICA

A novel clocked reconfigurable datapath solution called
RICA has been successfully demonstrated at the University
of Edinburgh. The processor is programmed via
conventional high-level software languages like C [2]. This
allows existing code bases and skills to be leveraged, and
satisfies the demand for programmability in mobile
applications. RICA consists of an array of coarse-grain
customisable cells that can be dynamically reconfigured on
every clock cycle. RICA also controls its own
reconfiguration. In programmable logic devices, timing
requirements change depending on what datapath is being
mapped and the level of pipelining required. In most
programmable devices, the maximum operating frequency is
limited to the largest critical-path delay of all the steps of
the program being mapped. However, RICA improves the
operating frequency of a loaded program by estimating the
worst case timing of each mapped datapath in software and
programming it as part of the array’s configuration. A
programmable clock frequency is achieved by dividing the
main clock by an amount specified in the configuration. The
drawback of this approach is that it leads to complex clock
hardware. Additionally, there is always some idle time
whilst waiting for the last clock cycle to end.

1.2. Next step – Asynchronous

Asynchronous logic is a method of designing digital
systems without clocks. Global synchrony is replaced with

978-1-4244-8735-6/10/$26.00 c©2010 IEEE 76

local synchronisation amongst parts that exchange data.
Local synchronisation is achieved through the use of local
request (req) and acknowledge (ack) signaling called
handshakes [3]. The handshaking protocol implements
communication and synchronisation among the components
of an asynchronous datapath irrespective of its length.
 In this paper, we present and evaluate our novel
dynamically reconfigurable asynchronous processor
(DRAP) aimed at high-throughput mobile applications. By
basing our architecture on RICA and using asynchronous
design techniques, we achieve lower power consumption
than leading processors while maintaining a high level of
programmability. The main distinguishing features of our
reconfigurable architecture are as follows:
 • Fine-grain clock gating: Asynchronous logic
implements fine-grain clock gating by automatically turning
off unused circuits. This results in event-driven energy
consumption.
 • Inherent pipelining: The asynchronous cells contain
latches/flip-flops within them. As a result, a certain degree
of inherent pipelining is provided for repetitive executions
of datapaths.
 • Reduced software and hardware complexity:
Average-case communication between the array cells is
automatically enforced by handshaking irrespective of the
mapped datapath length. Therefore the need for both worst-
case datapath timing estimation and logic to implement
clock division (as in [2]) is eliminated.
 • Reduced program size: There is no need to save clock
information for every configuration step. Since
asynchronous cells already contain latches within them,
fewer pipelining dedicated registers than equivalent clocked
designs are needed. This achieves further memory savings
and also reduces the area of the design since fewer switches
and their configuration bits are required. We estimated that
our design would result in a 10-15% smaller program
memory size than that of the reconfigurable synchronous
architecture described in [2] (array of 500 operational cells
and 2000 registers).

2. RELATED WORK

2.1. The RICA processor

RICA based processors are coarse grained reconfigurable
computing fabrics, consisting of a heterogeneous array of
programmable cells on a programmable interconnect
network [2]. A diagram of a simplified RICA array is shown
in Fig. 1. The operational cells are chosen to match the data
width and functionality of RISC instructions in a typical C
compiler. They can be combined through the reconfigurable
interconnect network to perform more complex instructions
in a single configuration context - called a step. A
configuration step persists for the time to allow the sequence
of connected cells which form the critical path to complete,

and then the next configuration step is loaded. The main
features of RICA are as follows:
 • RICA uses the concept of distributed registers—a
significant fraction of the instruction cells are registers.
 • The array uses a Harvard memory architecture (to
maximise bandwidth)—the program memory and data
memory are separate. In many application domains, the
array can also have special-purpose stream memories (line
buffers) which further increase the on-chip bandwidth.
 • The structure of the core allows complex datapaths to
be constructed between the available operational cells.
 • The array is in control of its own reconfiguration: the
JUMP cell (Fig. 1) provides access to the program counter
and allows a mapped datapath to influence program control
flow [2].
 • To account for the varying critical path of each
configuration step, a reconfiguration rate controller (RRC)
is used to control the length of time (number of master clock
cycles) for which the configuration step persists. This value
is stored as part of each configuration context.

Program RAMProgram RAM

Data RAMData RAM

Reconfiguration
Rate Controller
Reconfiguration
Rate Controller

CONSTCONST

LOGICLOGIC

R5R5

CONSTCONST

R1R1I/OI/OR4R4

MULMUL R2R2 ADDADD

MEMMEMR0R0ADDADD

JUMPJUMPR3R3SHIFTSHIFT

Fig. 1: Simplified example of a RICA based architecture.

2.2. Asynchronous reconfigurable processors

The vast majority of proposals for reconfigurable
asynchronous processors target asynchronous fine-grain
FPGAs. Early designs were based on modifying existing
synchronous FPGA architectures by adjusting the functional
units [4], adding reconfigurable delay lines [5], or replacing
the clock by control signals generated by an array of timing
cells [6]. Recent attempts aim to design fully asynchronous
reconfigurable architectures. In [7] [8], asynchronous
dataflow-based fine-grain FPGAs using finely pipelined
dual-rail asynchronous circuits with four-phase handshaking
are presented. In [9], an asynchronous reconfigurable
architecture for cryptographic applications is presented; it
uses homogenous coarse-grain cells with 8-bit wide data.
This design is custom built for cryptographic applications
and uses dualrail four-phase handshaking protocol. A hybrid
architecture called Tartan is presented in [10]. It is
composed of a hierarchical coarse-grained asynchronous

77

Reconfigurable Fabric (RF) and a RISC CPU core. Tartan
uses the spatial computation model where applications
developed in C language are compiled and translated by
separate tools into RF logic netlist. The structure of the RF
is based on the synchronous Piperench architecture [11]
[12]. Tartan provides a successful example of applying
asynchronous design techniques to a synchronous
reconfigurable architecture to reduce energy consumption.

3. ASYNCHRONOUS DESIGN

This section gives background on commonly used
asynchronous signaling protocols, data encoding schemes
and delay models. Handshaking is the signaling scheme
implemented by asynchronous circuits. The medium upon
which two sub-systems communicate by handshaking is
called a channel: this includes the control channel (request
and acknowledge signals) and the data channel.

3.1. Signaling protocols

There are several choices of how to encode the alternating
events of the request and acknowledge onto specific control
wires. The two most pervasive signaling protocols are
described below [13][14]:
 • Two-phase signaling: In this protocol, each transition
has a meaning, i.e. each transition on a wire signals a
request or acknowledge. This means that two transitions are
needed to complete a handshaking event.
 • Four-phase signaling: This protocol uses the logical
level of the request and acknowledge wires to control the
handshake; to achieve this, both wires must return to logic
zero at the end of a handshake. This means that four
transitions are needed to complete an event.
 A quick comparison between the two signaling protocols
shows that four-phase leads to simpler and smaller hardware
than two-phase as it should be sensitive to only one edge. It
also allows more flexibility when transferring data. On the
other hand, two-phase signaling is potentially faster and
more power efficient than four-phase because it uses each
transition in a handshake. However, this is mostly not the
case as two-phase implementations require more logic
complexity than equivalent four-phase ones; this increased
logic complexity may consume more power than is saved by
the reduced control transitions [15].

3.2. Data encoding

There are two options for how data is encoded in the data
channel of an asynchronous circuit:
 • Bundled Data: Data is encoded using one wire for
each data bit and a separate wire to indicate validity of the
entire data. The datapath in this case is much like a
synchronous one. This approach is conservative in number
of required wires; however, it relies on the timing

assumption that the data is valid before the request signal is
raised [13] [14].
 • N-of-M codes: Data is encoded using M wires where
only N of the M wires are ever active. No data valid signal
is needed as validity is encoded within the M wires. This
encoding scheme potentially leads to lower power
consumption as fewer transitions on the wires occur
compared to bundled data [13] [14] [16].

3.3. Delay models

Asynchronous circuits can be regarded as computing
dynamically through time. Therefore a delay model is
critical in defining the dynamic behaviour of such circuits.
Delay models categorise circuits by the propagation delay
assumptions of the circuit components. Such models
provide a designer with a template for construction and
verification of the circuit. The delay models of most interest
for this paper are the Quasi Delay Insensitive (QDI) model
and the self-timed model using matched delays. More
information about the different asynchronous delay models
can be found in [13][14]. Dual-rail encoding is often used in
QDI designs where as bundled data is used with matched
delay circuits.

4. SYSTEM ARCHITECTURE

DRAP consists of a heterogeneous array of course-grained
asynchronous operational cells. Fig. 1 shows an abstract
view of the architecture. The operational cells are designed
using 4-phase handshaking protocol and bundled data
encoding. Bundled data encoding was preferred over Quasi-
delay insensitive encoding methods since it uses fewer wires
and would result in smaller cells. The operational cells are
interconnected through a network of programmable
switches to allow the creation of datapaths. In a similar way
to a CPU architecture, the configuration of the operational
cells and interconnects are changeable to execute different
blocks of instructions. The program memory contains the
configuration bits that control both the ICs and the
interconnect switches. Special cells in the core provide the
interface to the data and program memories.

4.1. Design of operational cells

Each operational cell is limited to a small number of
operations such as addition, multiplication, and logic
operations. Synthesis of the cells was done using the
automated decomposition tool Tide from Handshake
Solutions [17]. A high-level concurrent programming
language called Haste described the operational cells and
then synthesised in two stages to a Verilog netlist based on
cells from a standard-cell library. The first stage translates
the Haste code into an intermediate Handshake Circuit in a
transparent, syntax-directed process and the next stage maps
the Handshake Circuit to a structural Verilog netlist and for

78

initial circuit-level optimisation [17]. The resulting cell
includes two parts (Fig. 2): the datapath which contains flip-
flops, latches and combinatorial logic blocks, and the
control which contains matched delay chains and
asynchronous logic with feedback loops.

Control

Latches

Flip-flops

Latches

Logic
block 1

Logic
block 2

Matched
delay 1

Handshaking
signals

Reset

Data in Data out

Datapath

Matched
delay 2

Fig. 2: Asynchronous circuit block diagram with the Control

and Datapath.

;

→

||

→

x

f(x,y)

y

→

go

Transferrer Variable

SequencerRepeater

Active port Passive port

Parallel
composer

a

b

out

(a)

C Delay

f(x,y)
req

req

ack1 req

ack2

ack

(b)

Fig. 3: (a) Equivalent handshake circuit. (b) A closer look at
control signals.

 Fig. 3 shows the handshake circuit graph of a general 2-
input, 1-output operational cell. When the cell is activated, a
request signal is sent down both input channels a and b and
data from the channels will only be transferred to the
variables once both channels have acknowledged their
respective requests. The gate labelled “C” is a C-element
commonly found in asynchronous logic; it synchronises
signals by firing a transition on its output only after each of
its inputs have made transitions in the same direction. More

information on the design of the operational cells their
handshake circuits can be found in [18].
 In conventional synchronous design, invalid data
propagate through the inputs of cells and cause unnecessary
activity. Asynchronous logic implicitly implements fine-
grain “clock gating” by automatically turning off unused
parts of the design. Additionally, each asynchronous cell
will wait for the data at its input to become valid before
letting it through. Hence unnecessary computation in used
cells is eliminated and unused cells have no switching
activity.

4.2. Design of interconnect structure

The general interconnect structure of an asynchronous
reconfigurable architecture can be conceptually modeled
after that of an equivalent synchronous architecture.
However, asynchronous circuits require more wires than
their synchronous counterparts to communicate information.
In programmable asynchronous logic, a sender will
communicate with any number of receivers depending on
what is being programmed. The design of the interconnect
must take into account the need for conditional
acknowledge signal synchronisation. The traditional
techniques to perform conditional acknowledge
synchronisation, which are used in interconnect designs in
[7] [8] [9], result in increased complexity and number of
configuration bits compared to an equivalent interconnect
design for synchronous communication. A novel method for
conditional acknowledge synchronisation was developed by
the authors in [19]. Our technique minimises control and
configuration size compared to existing techniques.
 Different solutions are available for the circuit design
and for the topology of the switches, such as multiplexer-
based crossbar or the island-style mesh found in typical
FPGAs [20].
 Several interconnect structures have been tested and
compared. However, this comparison is beyond the scope of
this paper. For our sample array, we modeled the
interconnect design on the island-style structure. The
configurable routing switches are built around the
operational cell and allow each cell to communicate with its
four nearest neighbors. The routing switches were designed
to accommodate handshaking signals and perform
conditional acknowledge synchronisation using our
developed technique.

5. AUTOMATIC TOOL FLOW

An automatic tool flow has been developed in [2] for
hardware generation and programming of synchronous
coarse-grain arrays. The tools were extended to include
support for asynchronous arrays. There are two main
components of software support available for DRAP:
 Array hardware generation: The tool takes a definition
of the available operational cells in the array (types, count,

79

and positions) along with other parameters such as
interconnect bitwidth. The output is a synthesisable RTL
definition of the array, which can be used in a standard
system-on-chip (SoC) tool flow for verification, synthesis,
layout, and analysis such as power consumption and timing.
 Programming arrays from high-level languages (Fig.
4): The granularity and self-reconfigurability of the DRAP
architecture make it programmable in a broadly similar way
to standard CPUs. This allows existing developments and
methodologies such as optimising compilers to be used.
 Step 1: High-Level Compiler: Takes the high-level code
and transforms it into an intermediate assembly language.
This step is performed by the industry standard open source
GNU Compiler Collection (GCC) [21]. The resulting
assembly describes the program as a series of basic blocks,
each containing a list of instructions. Each instruction maps
directly onto a DRAP asynchronous operational cell. Since
GCC has grown up around CPU architectures, its output is
based on the supposition that instructions are executed in
sequence - i.e. one instruction per cycle; the compiler has no
knowledge about the parallelism available on DRAP.

C

COMPILER /
SCHEDULER
COMPILER /
SCHEDULER

ABSTRACT
NETLIST

ABSTRACT
NETLIST

MAPPERMAPPER

ROUTED NETLISTROUTED NETLIST

MDF

Fig. 4: Software flow for programming DRAP starting from

high-level C program.

 Step 2: DRAP Scheduling: In this step all the
optimisations related to the DRAP architecture are
performed. The DRAP scheduler takes the assembly output
of GCC and creates a sequence of netlists representing the
basic blocks of the program. Each netlist contains a group of
instructions that will be executed on DRAP. Temporary
registers allocated by GCC are replaced by simple wires.
The partitioning is done according to dependencies between
instructions: dependent instructions are connected in series,
whilst independent ones are in parallel. The scheduling
algorithm [22] takes into account the operational cell
resources and timing constraints in the array to maximise
cell occupancy and minimise the longest path delay.
 Step 3: Allocate and Route: For each netlist in the
program, the instructions are mapped to physical cells in the
array. As there can be numerous available operational cells
resources to which a given assembly instruction can be
allocated, a tool is provided to minimise the distance
between connected cells (similar to a standard place and
route tool like VPR [23]).

 Step 4: Configuration-Memory: From the mapped
netlists, we can simply generate the required content of the
configuration memory (program RAM).
 If the required performance determined by RTL
simulation is not met, then the high-level source code can be
modified or the mixture of cell resources changed.
Adjusting the hardware resources allows the architecture to
be tailored to the specific application domain where it is to
be used, thus saving area and power. Once array parameters
have been decided upon, the generated files can be used for
fabrication. If the algorithm continues to change during or
after the fabrication process then the code is simply
recompiled for those fixed resources.

Table I: Operational cells in sample array.
Cell Count Cell Count

ADD/COMP 65 LOGIC 20
MUL 20 MUX 65
REG 134 MEM 4

SHIFT 35 JUMP 1
CONST 40 SBUF 16

Table II: Comparing DRAP with C_RICA, and ASIC.

Algorithm Through-
put

DRAP C_RICA ASIC
Power (mw)

Bilinear
Demosaicing

23.6 MP/s 34.8 41 11.4

FFT 100 Mb/s 6.5 7.2 2.3
2D DCT 45 Mb/s 4.4 5.3 1.5
Viterbi 236 Mb/s 26.5 28.1 6.8

Table III: Comparing DRAP with ARM7, and TIC64.

Algorithm Through-
put

DRAP ARM7 TIC64
Power (mw)

Bilinear
Demosaicing

23.6 MP/s 34.8 326.4 408

FFT 100 Mb/s 6.5 52.6 132
2D DCT 45 Mb/s 4.4 31.8 57.2
Viterbi 236 Mb/s 26.5 162.9 285.2

6. EVALUATION

6.1. Sample design

A sample DRAP array was designed for comparison
purposes. It contains 400 18-bit asynchronous cells as listed
in Table I. These cells are interconnected using multiplexer-
based switches. The mixture of the operational cells was
manually selected to be adequate for general applications;
other combinations can be chosen to be tailored to an
application.
 With the selected type of interconnects and operational
cells, the reconfigurable core requires a total of 9260
configuration bits. The array was implemented using a
UMC 0.13-μm technology. The sample DRAP was
compared to an equivalent 400 cell array based on the RICA
architecture in [2] (0.13-μm) referred to as

80

Custom_RICA_400 (C_RICA). It was also compared to an
equivalent ASIC design of each of the tested algorithms
(0.13-μm), the ARM7-TDMI-S [24] (0.13-μm) and the
TIC64x 8-way VLIW [25].
 For our evaluation, we selected sample algorithms
representative of the more complex systems found in mobile
and imaging applications: Bilinear demosaicing [26], 8K
point radix-2 FFT [27], 2D DCT [28], and Viterbi [29]. All
the benchmarks are direct unoptimised C representations of
the algorithms—all optimisations are left for the C
compilers (Level-3/O3). For each benchmark, the power
consumption of each design was calculated for the same
throughput.

Normalised Power Consumption

0

0.5

1

1.5

2

2.5

3

Bilinear
Demosaicing

FFT 2-D DCT Viterbi

DRAP
ARM7
TIC64x

(a)

Normalised Power Consumption

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Bilinear
Demosaicing

1-D FFT 2-D DCT Viterbi

DRAP
C_RICA
ASIC

(b)

Fig. 5: Normalised power consumption graph of the
benchmarks on DRAP and other architectures. Power

normalised with respect to (a) ARM7, (b) ASIC.

 For the sample DRAP, C_RICA, and ASIC designs, the
power and area were found using post-layout simulations on
PrimePower from Synopsys (and post clock tree synthesis
for the synchronous designs). The ARM7 datasheet [24]
provides power and area value of the ARM core in 0.13-μm
technology, while [30] allows us to estimate the power
consumption of just the datapaths in the TI C64x. All these

power estimations were measured at 1.2-V operating
voltage and only focus on the energy consumed in the data
path without the memory.

6.2. Results

The results are listed in Tables II and III and Fig. 5. From
the table, we can see that for all the benchmarks we achieve
better performance on the DRAP than on the conventional
ARM7 CPU. The sample DRAP consumes around 6–10
times less power than the ARM7. However, it should be
pointed out that the proposed DRAP is capable of achieving
a much higher throughput performance than ARM7. When
compared to the C64x VLIW, DRAP achieves a reduction
in power consumption of 10–21 times. A big part of the
power reductions achieved over the four DSP systems are
savings gained by eliminating the register files and having
distributed registers. Compared to an equivalent ASIC
design of each algorithm, DRAP consumes only between
2.8-3.9 times more power.
 To evaluate the benefit of using an asynchronous
substrate, we compared DRAP to the equivalent C_RICA
array. Our design achieved a power consumption reduction
of up to 18% for the bilinear demosaicing algorithm when
running at the same throughput. This is a direct result of the
lower level of switching power in the asynchronous design
due to its inherent fine-grain clock gating. The reduction in
power comes at a cost of around 8% increase in area.
Additionally, due to the added delay introduced by the 4-
phase handshaking, it is estimated that the average
throughput of DRAP can be up to 10% less than the
maximum throughput which can be achieved by C_RICA.

7. CONCLUSION

In this paper, we presented a novel asynchronous coarse-
grain reconfigurable processor. DRAP was designed to be
energy efficient and programmable using high-level
languages in order to target high-throughput mobile
applications. By basing DRAP on the RICA architecture
described in [2], we built a processor which can be easily
reprogrammed through high-level languages. Energy
efficiency was achieved by applying asynchronous design
techniques on the operational cells and interconnect
structure, leading to implicit fine-grain clock gating. This
results in a lower level of switching power for datapaths
which persist for a large number of loop iterations. The
handshaking protocol of asynchronous design implements
communication and synchronisation among the components
of a datapath irrespective of its length. This allows DRAP to
map different datapath lengths without the need for complex
clocking schemes. Consequently, the hybrid software and
hardware solution used in clocked arrays was eliminated,
along with its contribution to configuration size. We
estimated that our design would result in a 10-15% smaller
program memory size than that of the reconfigurable

81

synchronous architecture presented in [2] (for an array of
500 operational cells and 2000 registers).
 Our results show that DRAP offers a significant
reduction in power consumption compared to leading
processors. DRAP outperforms ARM7 and the TI C64x
VLIW processors by providing 6–10 times and 10–21 times
less power consumption for a given throughput,
respectively. Compared to an equivalent synchronous design
based on [2], DRAP results in up to 18% reduction in power
consumption when running the same algorithm at the same
throughput. This comes at a cost of 8% increase in area. It is
also estimated that there may be up to 10% reduction in
maximum achievable throughput.

8. FURTHER WORK

The initial performance results of the asynchronous array
are encouraging. More changes can be done to improve
performance further: we aim to explore other interconnect
schemes, since only a small realm of possible architectures
have been examined - the island-style one. We also plan to
introduce pipelining at the interconnect level and also within
some operational cells in an effort to improve throughput.
As a further step, we plan to investigate using other data
encoding schemes and asynchronous techniques on the
proposed design. Finally, we have identified the need to test
the arrays in various ways: performing simulations on the
logic array and memory, and also quantifying the benefits of
the arrays in terms of storage requirements to these
programs.

9. ACKNOWLEDGEMENT

This research is sponsored by the Overseas Research
Student Awards Scheme (ORSAS) and by Edinburgh
University’s Institute for Integrated Micro and Nano
Systems (IMNS).

10. REFERENCES

[1] Zain-ul-Abdin and B. Svensson, “Evolution in Architectures

and Programming Methodologies of Reconfigurable
Computing”, Microprocessors and Microsystems, 2008.

[2] S. Khawam, I. Nousias, M. Milward, Y. Yi, M. Muir, and T.

Arslan, “The Reconfigurable Instruction Cell Array,” IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 16, no. 1, 2008.

[3] R. Manohar, “Reconfigurable Asynchronous Logic,” In IEEE

Custom Integrated Circuits Conference, 2006, CICC '06, pp.
13-20, 2006.

[4] S. Hauck, S. Burns, G. Borriello, and C. Ebeling, “An FPGA

for Implementing Asynchronous Circuits,” IEEE Design and
Test of Computers, vol. 11, no. 3, pp. 60-69, 1994.

[5] K. Maheswaran, “Implementing Self-Timed Circuits in Field
Programmable Gate Arrays,” master’s thesis, Univ. of
California Davis, 1995.

[6] R. Payne, “Asynchronous FPGA Architectures,” IEE

Computers and Digital Techniques, vol. 143, no. 5, 1996.

[7] J. Teifel and R. Manohar, “An Asynchronous Dataflow FPGA

Architecture,” IEEE Transactions on Computers, vol. 53, no.
11, pp. 1376–1392, 2004.

[8] C. G. Wong, A. J. Martin, and P. Thomas, “An Architecture

for Asynchronous FPGAs”, In IEEE International Conference
on Field-Programmable Technology, 2003.

[9] K. Sun, X. Pan, and J. Wang, “Design of a Novel

Asynchronous Reconfigurable Architecture for Cryptographic
Applications,” IEE International Multi-Symposiums on
Computer and Computational Sciences, IMSCCS 2006, pp.
751-757, 2006.

[10] M. Mishra, T. J. Callahan, T. Chelcea, G. Venkataramani, M.

Budiu, and S. C. Goldstein, “Tartan: Evaluating spatial
computation for whole program”, ASPLOS’06, October 2006.

[11] S. C. Goldstein, H. Schmit, et al. PipeRench: a coprocessor

for streaming multimedia acceleration. In International
Symposium on Computer Architecture (ISCA), pages 28–39,
May 1999.

[12] T. Bjerregaard, J. Sparsø, “A router architecture for

connection-oriented service guarantees in the MANGO
clockless network-on-chip”, In Proceedings of the Design,
Automation and Test in Europe Conference and Exhibitions
(DATE’05), Vol. 2, March 2005, pp. 1226-1231.

[13] A. Davis, S. M. Nowick, “An Introduction to Asynchronous

Circuit Design”. Technical Report UUCS-97-013, Computer
Science Department, University of Utah, Sep. 1997.

[14] J. Sparso, S. Furber, “Principles of Asynchronous Circuit

Design: A Systems Perspective”. European Low-Power
Initiative for Electronic System Design. Kluwer Academic
Publishers, ISBN: 0-7923-7613-7, Jan 2002.

[15] S. Furber, P. Woods, “Four-phase Micropipeline Latch

Control Circuits”. IEE Transactions on VLSI Systems, 4(2):
247-253, June 1996.

[16] T. Verhoeff, “Delay-Insensitive Codes – An Overview”.

Eindhoven University of Technology, January 1987.

[17] Handshake Solutions, http://www.handshakesolutions.com .

[18] K. Fawaz, T. Arslan, and I. Lindsay, “Implementation of

Highly Pipelined Datapaths on a Reconfigurable
Asynchronous Substrate”, 2009 NASA/ESA Conference on
Adaptive Hardware and Systems, 2009.

[19] K. Fawaz, T. Arslan, and I. Lindsay, “Conditional

Acknowledge Synchronisation in Asynchronous Interconnect

82

Switch Design”, 2009 NASA/ESA Conference on Adaptive
Hardware and Systems, 2009.

[20] J. Rose and S. Brown, "Flexibility of interconnection

structures for field-programmable gate arrays," IEEE J. Solid-
State Circuits, vol. 26, no. 3, pp. 277-282, Mar. 1990.

[21] GNU, Boston, MA, "GNU C compiler," 2005 [Online].

Available: http://gcc.gnu.org/

[22] Ying Yi , Ioannis Nousias , Mark Milward , Sami Khawam ,

Tughrul Arslan , Iain Lindsay, System-level scheduling on
instruction cell based reconfigurable systems, Proceedings of
the conference on Design, automation and test in Europe:
Proceedings, March 06-10, 2006, Munich, Germany.

[23] Vaughn Betz , Jonathan Rose, VPR: A new packing,

placement and routing tool for FPGA research, Proceedings
of the 7th International Workshop on Field-Programmable
Logic and Applications, p.213-222, September 01-03, 1997.

[24] ARM Ltd., Cambridge, U.K., "ARM7 thumb family

datasheet," ARM DOI 0035-3/02.02, 2002.

[25] S. Agarwala et al., "A 600-MHz VLIW DSP," IEEE J. Solid-
State Circuits , vol. 37, no. 11, pp. 1532-1544, Nov. 2002.

[26] X. Li, B. K. Gunturk, and L. Zhang, "Image demosaicing: A

systematic survey," in Proc. SPIE-IS&T Electronic Imaging,
Visual Communications and Image Processing, Jan. 2008.

[27] J. W. Cooley, J. W. Tukey, “An algorithm for the machine

calculation of complex Fourier series,” Math Comput. 19, pp.
297-301, 1965.

[28] D.W. Trainor, J.P. Heron, R.F. Woods, Implementation of the

2D DCT using a Xilinx XC6264 FPGA, IEEE Workshop on
Signal Processing System SiP97.

[29] A. Viterbi. A personal history of the viterbi algorithm. IEEE

Signal Processing Magazine, 23:120--142, 2006.

[30] G. Martinez, "TI TMS320VC5501/02 power consumption

summary," Appl. Rep. SPRAA48, 2004.

83

