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ABSTRACT 

 
There is an increasing demand in high-throughput mobile 
applications for programmability and energy efficiency. 
Conventional mobile Central Processing Units (CPUs) and 
Very Long Instruction Word (VLIW) processors cannot 
meet these demands. In this paper, we present a novel 
dynamically reconfigurable processor that targets these 
requirements. The processor consists of a heterogeneous 
array of coarse grain asynchronous cells. The architecture 
maintains most of the benefits of custom asynchronous 
design, while also providing programmability via 
conventional high-level languages. When compared to an 
equivalent synchronous design, our processor results in a 
power reduction of up to 18%. Additionally, our processor 
delivers considerably lower power consumption when 
compared to a market leading VLIW and a low-power ARM 
processor, while maintaining their throughput performance. 
Our processor resulted in a reduction in power consumption 
over the ARM7 processor of around 9.5 times when running 
the bilinear demosaicing algorithm at the same throughput. 
 

Index Terms— Asynchronous logic circuits, 
Reconfigurable architectures 
 

1. INTRODUCTION 
 
Current architectures will not be able to cope with the 
increasing demand of high-throughput mobile applications 
for better programmability and energy efficiency. Typical 
examples are mobile devices for next generation networks 
where a high amount of image and signal processing is 
required. Conventional mobile Central Processing Units 
(CPUs) cannot meet the throughput demand, forcing 
manufacturers to rely on custom hardware accelerators. This 
sacrifices programmability, leading to increased product 
lead-time and risk. Very Long Instruction Word (VLIW) 
processors can offer an increase in performance over most 
superscalar CPUs by taking advantage of instruction-level 
parallelism. However, this increase is at the expense of high 
power consumption and greater compiler complexity. 
Reconfigurable datapaths offer better solutions when power 

and area considerations are also taken into account for high 
throughput applications (streaming). The two main 
categories of reconfigurable datapaths are Fine-grain and 
Coarse-grain architectures. Most mobile application 
algorithms require datapaths one word in size. As a result, 
coarse-grained reconfigurable computers are more suited for 
such applications than fine-grained ones. There are several 
available coarse-grain architecture designs [1]. Despite 
providing good results in high computational performance 
and flexibility, they typically either do not provide enough 
power savings or are too difficult to program. 
 
1.1. First step – RICA 

 
A novel clocked reconfigurable datapath solution called 
RICA has been successfully demonstrated at the University 
of Edinburgh. The processor is programmed via 
conventional high-level software languages like C [2]. This 
allows existing code bases and skills to be leveraged, and 
satisfies the demand for programmability in mobile 
applications. RICA consists of an array of coarse-grain 
customisable cells that can be dynamically reconfigured on 
every clock cycle. RICA also controls its own 
reconfiguration. In programmable logic devices, timing 
requirements change depending on what datapath is being 
mapped and the level of pipelining required. In most 
programmable devices, the maximum operating frequency is 
limited to the largest critical-path delay of all the steps of 
the program being mapped. However, RICA improves the 
operating frequency of a loaded program by estimating the 
worst case timing of each mapped datapath in software and 
programming it as part of the array’s configuration. A 
programmable clock frequency is achieved by dividing the 
main clock by an amount specified in the configuration. The 
drawback of this approach is that it leads to complex clock 
hardware. Additionally, there is always some idle time 
whilst waiting for the last clock cycle to end. 
 
1.2. Next step – Asynchronous 
 
Asynchronous logic is a method of designing digital 
systems without clocks. Global synchrony is replaced with 
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local synchronisation amongst parts that exchange data. 
Local synchronisation is achieved through the use of local 
request (req) and acknowledge (ack) signaling called 
handshakes [3]. The handshaking protocol implements 
communication and synchronisation among the components 
of an asynchronous datapath irrespective of its length.  
     In this paper, we present and evaluate our novel 
dynamically reconfigurable asynchronous processor 
(DRAP) aimed at high-throughput mobile applications. By 
basing our architecture on RICA and using asynchronous 
design techniques, we achieve lower power consumption 
than leading processors while maintaining a high level of 
programmability. The main distinguishing features of our 
reconfigurable architecture are as follows: 
     • Fine-grain clock gating: Asynchronous logic 
implements fine-grain clock gating by automatically turning 
off unused circuits. This results in event-driven energy 
consumption. 
     • Inherent pipelining: The asynchronous cells contain 
latches/flip-flops within them. As a result, a certain degree 
of inherent pipelining is provided for repetitive executions 
of datapaths.  
     • Reduced software and hardware complexity: 
Average-case communication between the array cells is 
automatically enforced by handshaking irrespective of the 
mapped datapath length. Therefore the need for both worst-
case datapath timing estimation and logic to implement 
clock division (as in [2]) is eliminated. 
     • Reduced program size: There is no need to save clock 
information for every configuration step. Since 
asynchronous cells already contain latches within them, 
fewer pipelining dedicated registers than equivalent clocked 
designs are needed. This achieves further memory savings 
and also reduces the area of the design since fewer switches 
and their configuration bits are required. We estimated that 
our design would result in a 10-15% smaller program 
memory size than that of the reconfigurable synchronous 
architecture described in [2] (array of 500 operational cells 
and 2000 registers). 
 

2. RELATED WORK 
 

2.1. The RICA processor 
 
RICA based processors are coarse grained reconfigurable 
computing fabrics, consisting of a heterogeneous array of 
programmable cells on a programmable interconnect 
network [2]. A diagram of a simplified RICA array is shown 
in Fig. 1. The operational cells are chosen to match the data 
width and functionality of RISC instructions in a typical C 
compiler. They can be combined through the reconfigurable 
interconnect network to perform more complex instructions 
in a single configuration context - called a step. A 
configuration step persists for the time to allow the sequence 
of connected cells which form the critical path to complete, 

and then the next configuration step is loaded. The main 
features of RICA are as follows: 
     • RICA uses the concept of distributed registers—a 
significant fraction of the instruction cells are registers. 
     • The array uses a Harvard memory architecture (to 
maximise bandwidth)—the program memory and data 
memory are separate. In many application domains, the 
array can also have special-purpose stream memories (line 
buffers) which further increase the on-chip bandwidth. 
     • The structure of the core allows complex datapaths to 
be constructed between the available operational cells. 
     • The array is in control of its own reconfiguration: the 
JUMP cell (Fig. 1) provides access to the program counter 
and allows a mapped datapath to influence program control 
flow [2]. 
     • To account for the varying critical path of each 
configuration step, a reconfiguration rate controller (RRC) 
is used to control the length of time (number of master clock 
cycles) for which the configuration step persists. This value 
is stored as part of each configuration context. 
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Fig. 1: Simplified example of a RICA based architecture.  

 
2.2. Asynchronous reconfigurable processors 
 
The vast majority of proposals for reconfigurable 
asynchronous processors target asynchronous fine-grain 
FPGAs. Early designs were based on modifying existing 
synchronous FPGA architectures by adjusting the functional 
units [4], adding reconfigurable delay lines [5], or replacing 
the clock by control signals generated by an array of timing 
cells [6]. Recent attempts aim to design fully asynchronous 
reconfigurable architectures. In [7] [8], asynchronous 
dataflow-based fine-grain FPGAs using finely pipelined 
dual-rail asynchronous circuits with four-phase handshaking 
are presented. In [9], an asynchronous reconfigurable 
architecture for cryptographic applications is presented; it 
uses homogenous coarse-grain cells with 8-bit wide data. 
This design is custom built for cryptographic applications 
and uses dualrail four-phase handshaking protocol. A hybrid 
architecture called Tartan is presented in [10]. It is 
composed of a hierarchical coarse-grained asynchronous 
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Reconfigurable Fabric (RF) and a RISC CPU core. Tartan 
uses the spatial computation model where applications 
developed in C language are compiled and translated by 
separate tools into RF logic netlist. The structure of the RF 
is based on the synchronous Piperench architecture [11] 
[12]. Tartan provides a successful example of applying 
asynchronous design techniques to a synchronous 
reconfigurable architecture to reduce energy consumption. 
 

3. ASYNCHRONOUS DESIGN 
 
This section gives background on commonly used 
asynchronous signaling protocols, data encoding schemes 
and delay models. Handshaking is the signaling scheme 
implemented by asynchronous circuits. The medium upon 
which two sub-systems communicate by handshaking is 
called a channel: this includes the control channel (request 
and acknowledge signals) and the data channel. 
 
3.1. Signaling protocols 
 
There are several choices of how to encode the alternating 
events of the request and acknowledge onto specific control 
wires. The two most pervasive signaling protocols are 
described below [13][14]: 
     • Two-phase signaling: In this protocol, each transition 
has a meaning, i.e. each transition on a wire signals a 
request or acknowledge. This means that two transitions are 
needed to complete a handshaking event.  
     • Four-phase signaling: This protocol uses the logical 
level of the request and acknowledge wires to control the 
handshake; to achieve this, both wires must return to logic 
zero at the end of a handshake. This means that four 
transitions are needed to complete an event.  
     A quick comparison between the two signaling protocols 
shows that four-phase leads to simpler and smaller hardware 
than two-phase as it should be sensitive to only one edge. It 
also allows more flexibility when transferring data. On the 
other hand, two-phase signaling is potentially faster and 
more power efficient than four-phase because it uses each 
transition in a handshake. However, this is mostly not the 
case as two-phase implementations require more logic 
complexity than equivalent four-phase ones; this increased 
logic complexity may consume more power than is saved by 
the reduced control transitions [15].  
 
3.2. Data encoding 
      
There are two options for how data is encoded in the data 
channel of an asynchronous circuit: 
     • Bundled Data: Data is encoded using one wire for 
each data bit and a separate wire to indicate validity of the 
entire data. The datapath in this case is much like a 
synchronous one. This approach is conservative in number 
of required wires; however, it relies on the timing 

assumption that the data is valid before the request signal is 
raised [13] [14]. 
     • N-of-M codes: Data is encoded using M wires where 
only N of the M wires are ever active. No data valid signal 
is needed as validity is encoded within the M wires. This 
encoding scheme potentially leads to lower power 
consumption as fewer transitions on the wires occur 
compared to bundled data [13] [14] [16]. 
 
3.3. Delay models 
      
Asynchronous circuits can be regarded as computing 
dynamically through time. Therefore a delay model is 
critical in defining the dynamic behaviour of such circuits. 
Delay models categorise circuits by the propagation delay 
assumptions of the circuit components. Such models 
provide a designer with a template for construction and 
verification of the circuit. The delay models of most interest 
for this paper are the Quasi Delay Insensitive (QDI) model 
and the self-timed model using matched delays. More 
information about the different asynchronous delay models 
can be found in [13][14]. Dual-rail encoding is often used in 
QDI designs where as bundled data is used with matched 
delay circuits. 
 

4. SYSTEM ARCHITECTURE 
 
DRAP consists of a heterogeneous array of course-grained 
asynchronous operational cells. Fig. 1 shows an abstract 
view of the architecture. The operational cells are designed 
using 4-phase handshaking protocol and bundled data 
encoding. Bundled data encoding was preferred over Quasi-
delay insensitive encoding methods since it uses fewer wires 
and would result in smaller cells. The operational cells are 
interconnected through a network of programmable 
switches to allow the creation of datapaths. In a similar way 
to a CPU architecture, the configuration of the operational 
cells and interconnects are changeable to execute different 
blocks of instructions. The program memory contains the 
configuration bits that control both the ICs and the 
interconnect switches. Special cells in the core provide the 
interface to the data and program memories. 
 
4.1. Design of operational cells 
      
Each operational cell is limited to a small number of 
operations such as addition, multiplication, and logic 
operations. Synthesis of the cells was done using the 
automated decomposition tool Tide from Handshake 
Solutions [17]. A high-level concurrent programming 
language called Haste described the operational cells and 
then synthesised in two stages to a Verilog netlist based on 
cells from a standard-cell library. The first stage translates 
the Haste code into an intermediate Handshake Circuit in a 
transparent, syntax-directed process and the next stage maps 
the Handshake Circuit to a structural Verilog netlist and for 
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initial circuit-level optimisation [17]. The resulting cell 
includes two parts (Fig. 2): the datapath which contains flip-
flops, latches and combinatorial logic blocks, and the 
control which contains matched delay chains and 
asynchronous logic with feedback loops.  
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Fig. 2: Asynchronous circuit block diagram with the Control 

and Datapath. 
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Fig. 3: (a) Equivalent handshake circuit. (b) A closer look at 
control signals. 

 
     Fig. 3 shows the handshake circuit graph of a general 2-
input, 1-output operational cell. When the cell is activated, a 
request signal is sent down both input channels a and b and 
data from the channels will only be transferred to the 
variables once both channels have acknowledged their 
respective requests. The gate labelled “C” is a C-element 
commonly found in asynchronous logic; it synchronises 
signals by firing a transition on its output only after each of 
its inputs have made transitions in the same direction. More 

information on the design of the operational cells their 
handshake circuits can be found in [18]. 
     In conventional synchronous design, invalid data 
propagate through the inputs of cells and cause unnecessary 
activity. Asynchronous logic implicitly implements fine-
grain “clock gating” by automatically turning off unused 
parts of the design.  Additionally, each asynchronous cell 
will wait for the data at its input to become valid before 
letting it through. Hence unnecessary computation in used 
cells is eliminated and unused cells have no switching 
activity. 
 
4.2. Design of interconnect structure 
      
The general interconnect structure of an asynchronous 
reconfigurable architecture can be conceptually modeled 
after that of an equivalent synchronous architecture. 
However, asynchronous circuits require more wires than 
their synchronous counterparts to communicate information. 
In programmable asynchronous logic, a sender will 
communicate with any number of receivers depending on 
what is being programmed. The design of the interconnect 
must take into account the need for conditional 
acknowledge signal synchronisation. The traditional 
techniques to perform conditional acknowledge 
synchronisation, which are used in interconnect designs in 
[7] [8] [9], result in increased complexity and number of 
configuration bits compared to an equivalent interconnect 
design for synchronous communication. A novel method for 
conditional acknowledge synchronisation was developed by 
the authors in [19]. Our technique minimises control and 
configuration size compared to existing techniques.  
     Different solutions are available for the circuit design 
and for the topology of the switches, such as multiplexer-
based crossbar or the island-style mesh found in typical 
FPGAs [20].  
     Several interconnect structures have been tested and 
compared. However, this comparison is beyond the scope of 
this paper. For our sample array, we modeled the 
interconnect design on the island-style structure. The 
configurable routing switches are built around the 
operational cell and allow each cell to communicate with its 
four nearest neighbors. The routing switches were designed 
to accommodate handshaking signals and perform 
conditional acknowledge synchronisation using our 
developed technique. 
 

5. AUTOMATIC TOOL FLOW 
 
An automatic tool flow has been developed in [2] for 
hardware generation and programming of synchronous 
coarse-grain arrays. The tools were extended to include 
support for asynchronous arrays. There are two main 
components of software support available for DRAP: 
     Array hardware generation: The tool takes a definition 
of the available operational cells in the array (types, count, 

79



and positions) along with other parameters such as 
interconnect bitwidth. The output is a synthesisable RTL 
definition of the array, which can be used in a standard 
system-on-chip (SoC) tool flow for verification, synthesis, 
layout, and analysis such as power consumption and timing.  
     Programming arrays from high-level languages (Fig. 
4): The granularity and self-reconfigurability of the DRAP 
architecture make it programmable in a broadly similar way 
to standard CPUs. This allows existing developments and 
methodologies such as optimising compilers to be used. 
     Step 1: High-Level Compiler: Takes the high-level code 
and transforms it into an intermediate assembly language. 
This step is performed by the industry standard open source 
GNU Compiler Collection (GCC) [21]. The resulting 
assembly describes the program as a series of basic blocks, 
each containing a list of instructions. Each instruction maps 
directly onto a DRAP asynchronous operational cell. Since 
GCC has grown up around CPU architectures, its output is 
based on the supposition that instructions are executed in 
sequence - i.e. one instruction per cycle; the compiler has no 
knowledge about the parallelism available on DRAP.  
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SCHEDULER
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SCHEDULER

ABSTRACT 
NETLIST
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NETLIST

MAPPERMAPPER

ROUTED NETLISTROUTED NETLIST
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Fig. 4: Software flow for programming DRAP starting from 

high-level C program. 
 
     Step 2: DRAP Scheduling: In this step all the 
optimisations related to the DRAP architecture are 
performed. The DRAP scheduler takes the assembly output 
of GCC and creates a sequence of netlists representing the 
basic blocks of the program. Each netlist contains a group of 
instructions that will be executed on DRAP. Temporary 
registers allocated by GCC are replaced by simple wires. 
The partitioning is done according to dependencies between 
instructions: dependent instructions are connected in series, 
whilst independent ones are in parallel. The scheduling 
algorithm [22] takes into account the operational cell 
resources and timing constraints in the array to maximise 
cell occupancy and minimise the longest path delay. 
     Step 3: Allocate and Route: For each netlist in the 
program, the instructions are mapped to physical cells in the 
array. As there can be numerous available operational cells 
resources to which a given assembly instruction can be 
allocated, a tool is provided to minimise the distance 
between connected cells (similar to a standard place and 
route tool like VPR [23]). 

     Step 4: Configuration-Memory: From the mapped 
netlists, we can simply generate the required content of the 
configuration memory (program RAM). 
     If the required performance determined by RTL 
simulation is not met, then the high-level source code can be 
modified or the mixture of cell resources changed. 
Adjusting the hardware resources allows the architecture to 
be tailored to the specific application domain where it is to 
be used, thus saving area and power. Once array parameters 
have been decided upon, the generated files can be used for 
fabrication. If the algorithm continues to change during or 
after the fabrication process then the code is simply 
recompiled for those fixed resources.  
 

Table I: Operational cells in sample array. 
Cell Count Cell Count 

ADD/COMP 65 LOGIC 20 
MUL 20 MUX 65 
REG 134 MEM 4 

SHIFT 35 JUMP 1 
CONST 40 SBUF 16 

  
Table II: Comparing DRAP with C_RICA, and ASIC. 

Algorithm Through-
put 

DRAP C_RICA ASIC 
Power (mw) 

Bilinear 
Demosaicing 

23.6 MP/s 34.8 41 11.4 

FFT 100 Mb/s 6.5 7.2 2.3 
2D DCT 45 Mb/s 4.4 5.3 1.5 
Viterbi 236 Mb/s 26.5 28.1 6.8 

 
Table III: Comparing DRAP with ARM7, and TIC64. 

Algorithm Through-
put 

DRAP ARM7 TIC64 
Power (mw) 

Bilinear 
Demosaicing 

23.6 MP/s 34.8 326.4 408 

FFT 100 Mb/s 6.5 52.6 132 
2D DCT 45 Mb/s 4.4 31.8 57.2 
Viterbi 236 Mb/s 26.5 162.9 285.2 

 
6. EVALUATION 

   
6.1. Sample design 
 
A sample DRAP array was designed for comparison 
purposes. It contains 400 18-bit asynchronous cells as listed 
in Table I. These cells are interconnected using multiplexer-
based switches. The mixture of the operational cells was 
manually selected to be adequate for general applications; 
other combinations can be chosen to be tailored to an 
application.  
     With the selected type of interconnects and operational 
cells, the reconfigurable core requires a total of 9260 
configuration bits. The array was implemented using a 
UMC 0.13-μm technology. The sample DRAP was 
compared to an equivalent 400 cell array based on the RICA 
architecture in [2] (0.13-μm) referred to as 

80



Custom_RICA_400 (C_RICA). It was also compared to an 
equivalent ASIC design of each of the tested algorithms 
(0.13-μm), the ARM7-TDMI-S [24] (0.13-μm) and the 
TIC64x 8-way VLIW [25].  
     For our evaluation, we selected sample algorithms 
representative of the more complex systems found in mobile 
and imaging applications: Bilinear demosaicing [26], 8K 
point radix-2 FFT [27], 2D DCT [28], and Viterbi [29]. All 
the benchmarks are direct unoptimised C representations of 
the algorithms—all optimisations are left for the C 
compilers (Level-3/O3). For each benchmark, the power 
consumption of each design was calculated for the same 
throughput. 
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Fig. 5: Normalised power consumption graph of the 
benchmarks on DRAP and other architectures. Power 

normalised with respect to (a) ARM7, (b) ASIC. 
 
     For the sample DRAP, C_RICA, and ASIC designs, the 
power and area were found using post-layout simulations on 
PrimePower from Synopsys (and post clock tree synthesis 
for the synchronous designs). The ARM7 datasheet [24] 
provides power and area value of the ARM core in 0.13-μm 
technology, while [30] allows us to estimate the power 
consumption of just the datapaths in the TI C64x. All these 

power estimations were measured at 1.2-V operating 
voltage and only focus on the energy consumed in the data 
path without the memory. 
 
6.2. Results 
      
The results are listed in Tables II and III and Fig. 5. From 
the table, we can see that for all the benchmarks we achieve 
better performance on the DRAP than on the conventional 
ARM7 CPU. The sample DRAP consumes around 6–10 
times less power than the ARM7. However, it should be 
pointed out that the proposed DRAP is capable of achieving 
a much higher throughput performance than ARM7. When 
compared to the C64x VLIW, DRAP achieves a reduction 
in power consumption of 10–21 times. A big part of the 
power reductions achieved over the four DSP systems are 
savings gained by eliminating the register files and having 
distributed registers. Compared to an equivalent ASIC 
design of each algorithm, DRAP consumes only between 
2.8-3.9 times more power.   
     To evaluate the benefit of using an asynchronous 
substrate, we compared DRAP to the equivalent C_RICA 
array. Our design achieved a power consumption reduction 
of up to 18% for the bilinear demosaicing algorithm when 
running at the same throughput. This is a direct result of the 
lower level of switching power in the asynchronous design 
due to its inherent fine-grain clock gating. The reduction in 
power comes at a cost of around 8% increase in area. 
Additionally, due to the added delay introduced by the 4-
phase handshaking, it is estimated that the average 
throughput of DRAP can be up to 10% less than the 
maximum throughput which can be achieved by C_RICA. 
      

7. CONCLUSION 
 
In this paper, we presented a novel asynchronous coarse-
grain reconfigurable processor. DRAP was designed to be 
energy efficient and programmable using high-level 
languages in order to target high-throughput mobile 
applications. By basing DRAP on the RICA architecture 
described in [2], we built a processor which can be easily 
reprogrammed through high-level languages. Energy 
efficiency was achieved by applying asynchronous design 
techniques on the operational cells and interconnect 
structure, leading to implicit fine-grain clock gating. This 
results in a lower level of switching power for datapaths 
which persist for a large number of loop iterations. The 
handshaking protocol of asynchronous design implements 
communication and synchronisation among the components 
of a datapath irrespective of its length. This allows DRAP to 
map different datapath lengths without the need for complex 
clocking schemes. Consequently, the hybrid software and 
hardware solution used in clocked arrays was eliminated, 
along with its contribution to configuration size. We 
estimated that our design would result in a 10-15% smaller 
program memory size than that of the reconfigurable 
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synchronous architecture presented in [2] (for an array of 
500 operational cells and 2000 registers).  
     Our results show that DRAP offers a significant 
reduction in power consumption compared to leading 
processors. DRAP outperforms ARM7 and the TI C64x 
VLIW processors by providing 6–10 times and 10–21 times 
less power consumption for a given throughput, 
respectively. Compared to an equivalent synchronous design 
based on [2], DRAP results in up to 18% reduction in power 
consumption when running the same algorithm at the same 
throughput. This comes at a cost of 8% increase in area. It is 
also estimated that there may be up to 10% reduction in 
maximum achievable throughput. 
 

8. FURTHER WORK 
 
The initial performance results of the asynchronous array 
are encouraging. More changes can be done to improve 
performance further: we aim to explore other interconnect 
schemes, since only a small realm of possible architectures 
have been examined - the island-style one. We also plan to 
introduce pipelining at the interconnect level and also within 
some operational cells in an effort to improve throughput. 
As a further step, we plan to investigate using other data 
encoding schemes and asynchronous techniques on the 
proposed design. Finally, we have identified the need to test 
the arrays in various ways: performing simulations on the 
logic array and memory, and also quantifying the benefits of 
the arrays in terms of storage requirements to these 
programs. 
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