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Abstract—We propose a visual event recognition framework for consumer videos by leveraging a large amount of loosely labeled web
videos (e.g., from YouTube). Observing that consumer videos generally contain large intra-class variations within the same type of
events, we first propose a new method called Aligned Space-Time Pyramid Matching (ASTPM) to measure the distances between two
video clips. Second, we propose a new cross-domain learning method, referred to as Adaptive Multiple Kernel Learning (A-MKL), in
order to 1) fuse the information from multiple pyramid levels and features (i.e., space-time features and static SIFT features) and 2) cope
with the considerable variation in feature distributions between videos from two domains (i.e., web video domain and consumer video
domain). For each pyramid level and each type of local features, we first train a set of SVM classifiers based on the combined training set
from two domains by using multiple base kernels from different kernel types and parameters, which are then fused with equal weights
to obtain a prelearned average classifier. In A-MKL, for each event class we learn an adapted target classifier based on multiple
base kernels and the prelearned average classifiers from this event class or all the event classes by minimizing both the structural
risk functional and mismatch between data distributions of two domains. Extensive experiments demonstrate the effectiveness of our
proposed framework that requires only a small number of labeled consumer videos by leveraging web data. We also conduct in-depth
investigation on various aspects of the proposed method A-MKL, such as the analysis on the combination coefficients on the prelearned
classifiers, the convergence of the learning algorithm, and the performance variation by using different proportions of labeled consumer
videos. Moreover, we show that A-MKL using the prelearned classifiers from all the event classes leads to better performance when
compared with A-MKL using the prelearned classifiers only from each individual event class.

Index Terms—Visual event recognition, cross-domain learning, transfer learning, adaptive MKL, aligned space-time pyramid matching
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1 INTRODUCTION

IN recent years, digital cameras and mobile phone
cameras are becoming popular in our daily life. Con-

sequently, there is an increasingly urgent demand on
indexing and retrieving from a large amount of un-
constrained consumer videos. In particular, visual event
recognition in consumer videos has attracted growing
attention. However, this is an extremely challenging
computer vision task due to two main issues. First,
consumer videos are generally captured by amateurs
using hand-held cameras of unstaged events and thus
contain considerable camera motion, occlusion, cluttered
background and large intra-class variations within the
same type of events, making their visual cues highly
variable and thus less discriminant. Second, these user-
s are generally reluctant to annotate many consumer
videos, posing a great challenge to the traditional video
event recognition techniques that often cannot learn ro-
bust classifiers from a limited number of labeled training
videos.

While a large number of video event recognition
techniques have been proposed (see Section 2 for more
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details), few of them [5], [16], [17], [28], [30] focused on
event recognition in the highly unconstrained consumer
video domain. Loui et al. [30] developed a consumer
video data set which was manually labeled for 25 con-
cepts including activities, occasions, static concepts like
scenes and objects, as well as sounds. Based on this data
set, Chang et al. [5] developed a multi-modal consumer
video classification system by using visual features and
audio features. In the web video domain, Liu et al. [28]
employed strategies inspired by PageRank to effectively
integrate both motion features and static features for
action recognition in YouTube videos. In [16], action
models were first learned from loosely labeled web
images and then used for identifying human actions in
YouTube videos. However, the work in [16] cannot dis-
tinguish actions like “sitting down” and “standing up”
because it did not utilize temporal information in its
image-based model. Recently, Ikizler-Cinbis and Sclarof-
f [17] proposed to employ multiple instance learning
to integrate multiple features of the people, objects and
scenes for action recognition in YouTube videos.

Most event recognition methods [5], [25], [28], [32],
[41], [43], [49] followed the conventional framework.
First, a sufficiently large corpus of training data is col-
lected, in which the concept labels are generally ob-
tained through expensive human annotation. Next, ro-
bust classifiers (also called models or concept detectors)
are learned from the training data. Finally, the classifiers
are used to detect the presence of the events in any test
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YouTubeConsumer

(a) “picnic”

YouTubeConsumer

(b) “sports”
Fig. 1. Four sample frames from consumer videos and YouTube videos. Our work aims to recognize the events in
consumer videos by using a limited number of labeled consumer videos and a large number of YouTube videos.
The examples from two events (i.e., “picnic” and “sports”) illustrate the considerable appearance differences between
consumer videos and YouTube videos, which poses great challenges to conventional learning schemes but can be
effectively handled by our cross-domain learning method Adaptive Multiple Kernel Learning (A-MKL).

Fig. 2. The flowchart of the proposed visual event recognition framework. It consists of an aligned space-time
pyramid matching method ASTPM that effectively measures the distances between two video clips and a cross-
domain learning method A-MKL that effectively copes with the considerable variation in feature distributions between
the web videos and consumer videos.

data. When sufficient and strong labeled training sam-
ples are provided, these event recognition methods have
achieved promising results. However, for visual event
recognition in consumer videos, it is time-consuming
and expensive for users to annotate a large number of
consumer videos. It is also well-known that the learned
classifiers from a limited number of labeled training
samples are usually not robust and do not generalize
well.

In this paper, we propose a new event recognition
framework for consumer videos by leveraging a large
amount of loosely labeled YouTube videos. Our work
is based on the observation that a large amount of
loosely labeled YouTube videos can be readily obtained
by using keywords (also called tags) based search. How-
ever, the quality of YouTube videos is generally lower
than consumer videos because YouTube videos are often
down-sampled and compressed by the web server. In
addition, YouTube videos may have been selected and
edited to attract attention while consumer videos are in
their naturally captured state. In Fig. 1, we show four
frames from two events (i.e., “picnic” and “sports”) as
examples to illustrate the considerable appearance dif-
ferences between consumer videos and YouTube videos.
Clearly, the visual feature distributions of samples from
the two domains (i.e., web video domain and consumer
video domain) can change considerably in terms of the
statistical properties (such as mean, intra-class and inter-
class variance).

Our proposed framework is shown in Fig. 2 and
consists of two contributions. First, we extend the recent
work on pyramid matching [13], [25], [26], [48], [49] and

present a new matching method called aligned space-
time pyramid matching (ASTPM) to effectively measure
the distances between two video clips that may be from
different domains. Specifically, we divide each video clip
into space-time volumes over multiple levels. We calcu-
late the pair-wise distances between any two volumes
and further integrate the information from different vol-
umes with Integer-flow Earth Mover’s Distance (EMD)
to explicitly align the volumes. In contrast to the fixed
volume-to-volume matching used in [25], the space-
time volumes of two videos across different space-time
locations can be matched using our ASTPM method,
making it better at coping with the large intra-class
variations within the same type of events (e.g., moving
objects in consumer videos can appear at different space-
time locations, and the background within two different
videos even captured from the same scene may be
shifted due to considerable camera motions).

The second is our main contribution. In order to
cope with the considerable variation between feature
distributions of videos from the web video domain
and consumer video domain, we propose a new cross-
domain learning method, referred to as Adaptive Mul-
tiple Kernel Learning (A-MKL). Specifically, we first
obtain one prelearned classifier for each event class at
each pyramid level and with each type of local features,
in which existing kernel methods (e.g., SVM) can be
readily employed. In this work, we adopt the prelearned
average classifier by equally fusing a set of SVM classifiers
that are prelearned based on a combined training set
from two domains by using multiple base kernels from
different kernel types and parameters. For each event
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class, we then learn an adapted classifier based on multiple
base kernels and the prelearned average classifiers from
this event class or all event classes by minimizing both
the structural risk functional and mismatch between data
distributions of two domains. It is noteworthy that the
utilization of the prelearned average classifiers from all
event classes in A-MKL is based on the observation that
some events may share common motion patterns [47].
For example, the videos from some events (such as
“birthday”, “picnic” and “wedding”) usually contain a
number of people talking with each other. Therefore, it is
beneficial to learn an adapted classifier for “birthday” by
leveraging the prelearned classifiers from “picnic” and
“wedding”.

The remainder of this paper is organized as follows.
Section 2 will provide brief reviews of event recognition.
The proposed methods ASTPM and A-MKL will be
introduced in Sections 3 and 4, respectively. Extensive
experimental results will be presented in Section 5, fol-
lowed by conclusions and future work in Section 6.

2 RELATED WORK ON EVENT RECOGNITION
Event recognition methods can be roughly catego-

rized into model-based methods and appearance-based
techniques. Model-based approaches relied on various
models including HMM [35], coupled HMM [3], and
Dynamic Bayesian Network [33] to model the temporal
evolution. The relationships among different body parts
and regions are also modeled in [3], [35], in which object
tracking needs to be conducted at first before model
learning.

Appearance-based approaches employed space-time
features extracted from volumetric regions that can be
densely sampled or from salient regions with signifi-
cant local variations in both spatial and temporal di-
mensions [24], [32], [41]. In [19], Ke et al. employed
boosting to learn a cascade of filters based on space-
time features for efficient visual event detection. Laptev
and Lindeberg [24] extended the ideas of Harris in-
terest point operators and Dollar et al. [7] employed
separable linear filters to detect the salient volumetric
regions. Statistical learning methods including SVM [41]
and probabilistic Latent Semantic Analysis (pLSA) [32]
were then applied by using the aforementioned space-
time features to obtain the final classification. Recently,
Kovashka and Grauman [20] proposed a new feature
formation technique by exploiting multi-level vocabular-
ies of space-time neighborhoods. Promising results [12],
[20], [27], [32], [41] have been reported on video data sets
under controlled conditions, such as Weizman [12] and
KTH [41] data sets. Interested readers may refer to [45]
for a recent survey.

Recently, researchers proposed new methods to ad-
dress the more challenging event recognition task on
video data sets captured under much less uncontrolled
conditions, including movies [25], [43] and broadcast
news videos [49]. In [25], Laptev et al. integrated lo-
cal space-time features (i.e., Histograms of Oriented

Gradient and Histograms of Optical Flow), space-time
pyramid matching and SVM for action classification in
movies. In order to locate the actions from movies, a new
discriminative clustering algorithm [11] was developed
based on the weakly-labeled training data that can be
readily obtained from movie scripts without any cost of
manual annotation. Sun et al. [43] employed Multiple
Kernel Learning (MKL) to efficiently fuse three types of
features including a so-called SIFT average descriptor
and two trajectory-based features. To recognize events
in diverse broadcast news videos, Xu and Chang [49]
proposed a multi-level temporal matching algorithm for
measuring video similarity.

However, all these methods followed the conventional
learning framework by assuming that the training and
test samples are from the same domain and feature
distribution. When the total number of labeled training
samples is limited, the performances of these methods
would be poor. In contrast, the goal of our work is to
propose an effective event recognition framework for
consumer videos by leveraging a large amount of loosely
labeled web videos, where we must deal with the dis-
tribution mismatch between videos from two domains
(i.e., web video domain and consumer video domain).
As a result, our algorithm can learn a robust classifier
for event recognition requiring only a small number of
labeled consumer videos.

3 ALIGNED SPACE-TIME PYRAMID MATCHING

Recently, pyramid matching algorithms were proposed
for different applications, such as object recognition,
scene classification, and event recognition in movies and
news videos [13], [25], [26], [48], [49]. These methods
involved pyramidal binning in different domains (e.g.,
feature, spatial, or temporal domain), and improved per-
formances were reported by fusing the information from
multiple pyramid levels. Spatial pyramid matching [26]
and its space-time extension [25] used fixed block-to-
block matching and fixed volume-to-volume matching
(we refer to it as unaligned space-time matching), respec-
tively. In contrast, our proposed Aligned Space-Time Pyra-
mid Matching (ASTPM) extends the methods of Spatially
Aligned Pyramid Matching (SAPM) [48] and Temporally
Aligned Pyramid Matching (TAPM) [49] from either the
spatial domain or the temporal domain to the joint space-
time domain, where the volumes across different space
and time locations can be matched.

Similar to [25], we divide each video clip into 8l non-
overlapped space-time volumes over multiple levels, l =
0, . . . , L − 1, where the volume size is set as 1/2l of the
original video in width, height and temporal dimension.
Fig. 3 illustrates the partitions of two videos Vi and Vj

at level-1. Following [25], we extract the local space-time
(ST) features including Histograms of Oriented Gradient
(HOG) and Histograms of Optical Flow (HOF), which
are further concatenated together to form lengthy feature
vectors. We also sample each video clip to extract image
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Fig. 3. Illustration of the proposed aligned space-time pyramid matching (ASTPM) method at level-1: (a) Each video
is divided into 8 space-time volumes along the width, height and temporal dimensions; (b) The matching results are
obtained by using our ASTPM method. Each pair of matched volumes from two videos is highlighted in the same color.
For better visualization, please see the colored PDF file.

frames and then extract static local SIFT features from
them [31].

Our method consists of two matching stages. In the
first matching stage, we calculate the pairwise distance
Drc between each two space-time volumes Vi(r) and
Vj(c), where r, c = 1, . . . , R with R being the total num-
ber of volumes in a video. The space-time features are
vector-quantized into visual words and then each space-
time volume is represented as a token-frequency feature.
As suggested in [25], we use χ2 distance to measure
the distance Drc. Noting that each space-time volume
consists of a set of image blocks, we also extract toke-
frequency features from each image block by vector-
quantizing the corresponding SIFT features into visual
words. And based on the token-frequency features, as
suggested in [49], the pairwise distance Drc between
two volumes Vi(r) and Vj(c) is calculated by using Earth
Mover’s Distance (EMD) [39] as follows:

Drc =

∑H
u=1

∑I
v=1 f̂uvduv∑H

u=1

∑I
v=1 f̂uv

,

where H, I are the numbers of image blocks in
Vi(r), Vj(c) respectively, duv is the distance between two
image block (Euclidean distance is used in this work),
and f̂uv is the optimal flow that can be obtained by
solving the linear programming problem as follows:

f̂uv = argmin
fuv≥0

H∑
u=1

I∑
v=1

fuvduv,

s.t.
H∑

u=1

I∑
v=1

fuv = 1;

I∑
v=1

fuv ≤
1

H
, ∀u;

H∑
u=1

fuv ≤
1

I
,∀v

In the second stage, we further integrate the informa-
tion from different volumes by using integer-flow EMD
to explicitly align the volumes. We try to solve a flow
matrix F̂rc containing binary elements which represent
unique matches between volumes Vi(r) and Vj(c). As
suggested in [48], [49], such binary solution can be
conveniently computed by using the standard Simplex

method for linear programming, which is presented in
the following theorem:

Theorem 1 ([18]): The linear programming problem

F̂rc = argmin
Frc∈{0,1}

R∑
r=1

R∑
c=1

FrcDrc,

s.t.
R∑

c=1

Frc = 1, ∀r;
R∑

r=1

Frc = 1, ∀c,

will always have an integer optimal solution when
solved by using the Simplex method.

Fig. 3 illustrates the matching results of two videos
after using our ASTPM method, indicating the reason-
able matching between similar scenes (i.e., the crowds,
the playground and the Jumbotron TV screens in the
two videos). It is also worth mentioning that our ASTPM
method can preserve the space-time proximity relations
between volumes from two videos at level-1 when using
the ST or SIFT features. Specifically, the ST features (resp.,
SIFT features) in one volume can only be matched to the
ST features (resp., SIFT features) within another volume
at level-1 in our ASTPM method rather than arbitrary
ST features (resp., SIFT features) within the entire video
as in the classical bag-of-words model (e.g., ASTPM at
level-0).

Finally, the distance Dl(Vi, Vj) between two video clips
Vi and Vj at level-l can be directly calculated by

Dl(Vi, Vj) =

∑R
r=1

∑R
c=1 F̂rcDrc∑R

r=1

∑R
c=1 F̂rc

.

In the next section, we will propose a new cross-
domain learning method to fuse the information from
multiple pyramid levels and different types of features.

4 ADAPTIVE MULTIPLE KERNEL LEARNING

Following the terminology from prior literature, we refer
to the web video domain as auxiliary domain DA (a.k.a.,
source domain) and consumer video domain as target
domain DT = DT

l ∪ DT
u , where DT

l and DT
u represent

the labeled and unlabeled data in the target domain,
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respectively. In this work, we denote In as the n × n
identity matrix and 0n,1n ∈ Rn as n× 1 column vectors
of all zeros and all ones, respectively. The inequality
a = [a1, . . . , an]

′ ≥ 0n means that ai ≥ 0 for i = 1, . . . , n.
Moreover, the element-wise product between vectors a
and b is defined as a ◦ b = [a1b1, . . . , anbn]

′.

4.1 Brief review of related learning work
Cross-domain learning (a.k.a., transfer learning or do-
main adaptation) methods have been proposed for many
applications [6], [8], [9], [29], [50]. To take advantage
of all labeled patterns from both auxiliary and target
domains, Daumé III [6] proposed Feature Replication
(FR) by using augmented features for SVM training. In
Adaptive SVM (A-SVM) [50], the target classifier fT (x)
is adapted from an existing classifier fA(x) (referred to
as auxiliary classifier) trained based on the samples from
the auxiliary domain. Specifically, the target decision
function is defined as follows:

fT (x) = fA(x) + ∆f(x), (1)

where ∆f(x) is called as a perturbation function that is
learned by using the labeled data from the target domain
only (i.e., DT

l ). While A-SVM can also employ multiple
auxiliary classifiers, these auxiliary classifiers are fused
with predefined weights to obtain fA(x) [50]. Moreover,
the target classifier fT (x) is learned based on only one
kernel. Recently, Duan [8] proposed Domain Transfer
SVM (DTSVM) to simultaneously reduce the mismatch
between the distributions of two domains and learn a
target decision function. The mismatch was measured
by Maximum Mean Discrepancy (MMD) [2] based on the
distance between the means of the samples respectively
from the auxiliary domain DA and the target domain DT

in a Reproducing Kernel Hilbert Space (RKHS) spanned
by a kernel function k, namely:

DISTk(DA,DT ) =

∥∥∥∥∥ 1

nA

nA∑
i=1

φ(xA
i )−

1

nT

nT∑
i=1

φ(xT
i )

∥∥∥∥∥
H

, (2)

where xA
i ’s and xT

i ’s are the samples from the auxiliary
and target domains, respectively, and the kernel func-
tion k is induced from the nonlinear feature mapping
function φ(·), i.e., k(xi,xj) = φ(xi)

′φ(xj). We define a
column vector s with N = nA +nT entries, in which the
first nA entries are set as 1/nA and the remaining entries
are set as −1/nT , respectively. With the above notions,
the square of MMD in (2) can be simplified as follows [2],
[8]:

DIST2
k(DA,DT ) = tr(KS), (3)

where tr(KS) represents the trace of KS, S = ss′ ∈
RN×N , and K =

[
KA,A KA,T

KT,A KT,T

]
∈ RN×N , and KA,A ∈

RnA×nA , KT,T ∈ RnT×nT and KA,T ∈ RnA×nT are the
kernel matrices defined for the auxiliary domain, the
target domain and the cross-domain from the auxiliary
domain to the target domain, respectively.

4.2 Formulation of A-MKL

Motivated by A-SVM [50] and DTSVM [8], we propose
a new cross-domain learning method to learn a target
classifier adapted from a set of prelearned classifiers as
well as a perturbation function that is based on multiple
base kernels km’s. The prelearned classifiers are used
as prior for learning a robust adapted target classifier.
In A-MKL, the existing machine learning methods (e.g.,
SVM, FR and so on) using different types of features
(e.g., SIFT and ST features) can be readily used to obtain
the prelearned classifiers. Moreover, in contrast to A-
SVM [50] which uses the predefined weights to combine
the prelearned auxiliary classifiers, we learn the linear
combination coefficients βp|Pp=1 of the prelearned classi-
fiers fp(x)|Pp=1 in this work, where P is the total number
of the prelearned classifiers. Specifically, we use the
average classifiers from one event class or all the event
classes as the prelearned classifiers (see Sections 5.3 and
5.6 for more details). We additionally employ multiple
predefined kernels to model the perturbation function in
this work, because the utilization of multiple base kernels
km’s instead of a single kernel can further enhance the
interpretability of the decision function and improve
performances [23]. We refer to our cross-domain learning
method based on multiple base kernels as Adaptive
Multiple Kernel Learning (A-MKL), because A-MKL can
handle the distribution mismatch between the web video
domain and the consumer video domain.

Following the traditional MKL assumption [23], the
kernel function k is represented as a linear combination
of multiple base kernels km’s as follows:

k =
M∑

m=1

dmkm, (4)

where dm’s are the linear combination coefficients, dm ≥
0 and

∑M
m=1 dm = 1; each base kernel function km is

induced from the nonlinear feature mapping function
φm(·), i.e., km(xi,xj) = φm(xi)

′φm(xj), and M is the
total number of base kernels. Inspired by semiparametric
SVM [42], we define the target decision function on any
sample x as follows:

fT (x) =
P∑

p=1

βpfp(x) +
M∑

m=1

dmw′
mφm(x) + b︸ ︷︷ ︸

∆f(x)

, (5)

where ∆f(x) =
∑M

m=1 dmw′
mφm(x) + b is the perturba-

tion function with b as the bias term. Note that multiple
base kernels are employed in ∆f(x).

As in [8], we employ the MMD criterion to reduce the
mismatch between the data distributions of two domains
in this work. Let us define the linear combination coef-
ficient vector as d = [d1, . . . , dM ]′ and the feasible set of
d as M = {d ∈ RM |1′

Md = 1,d ≥ 0M}. With (4), (3) can
be rewritten as:

DIST2
k(DA,DT ) = Ω(d) = h′d, (6)
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where h = [tr(K1S), . . . , tr(KMS)]′, Km =
[φm(x)′φm(x)] ∈ RN×N is the m-th base kernel
matrix defined on the samples from both auxiliary
and target domains. Let us denote the labeled training
samples from both the auxiliary and target domains
(i.e., DA∪DT

l ) as (xi, yi)|ni=1, where n is the total number
of labeled training samples from the two domains. The
optimization problem in A-MKL is then formulated as
follows:

min
d∈M

G(d) =
1

2
Ω2(d) + θ J(d), (7)

where

J(d) = min
wm,β,b,ξi

1

2

(
M∑

m=1

dm∥wm∥2+λ∥β∥2
)
+C

n∑
i=1

ξi, (8)

s.t. yif
T (xi) ≥ 1− ξi, ξi ≥ 0,

β = [β1, . . . , βP ]
′ is the vector of βp’s and λ,C > 0 are

the regularization parameters. Denote w̃m = [w′
m,
√
λβ′]′

and φ̃m(xi) = [φm(xi)
′, 1√

λ
f(xi)

′]′, where f(xi) =

[f1(xi), . . . , fP (xi)]
′. The optimization problem in (8) can

then be rewritten as follows:

J(d)= min
w̃m,b,ξi

1

2

M∑
m=1

dm∥w̃m∥2 + C

n∑
i=1

ξi, (9)

s.t. yi

(
M∑

m=1

dmw̃
′
mφ̃m(xi)+b

)
≥1−ξi, ξi ≥ 0.

By defining ṽm = dmw̃m, we rewrite the optimization
problem in (9) as a quadratic programming (QP) prob-
lem [37]:

J(d) = min
ṽm,b,ξi

1

2

M∑
m=1

∥ṽm∥2

dm
+ C

n∑
i=1

ξi, (10)

s.t. yi

(
M∑

m=1

ṽ′
mφ̃m(xi)+b

)
≥ 1− ξi, ξi ≥ 0.

Theorem 2 ([8], [37]): The optimization problem in (7)
is jointly convex with respect to d, ṽm, b and ξi.

Proof: Note that the first term 1
2Ω

2(d) of G(d) in (7)
is a quadratic term with respect to d. And other terms in
(10) are linear except the term 1

2

∑M
m=1

∥ṽm∥2

dm
. As shown

in [37], this term is also jointly convex with respect to
d and ṽm. Therefore, the optimization problem in (7) is
jointly convex with respect to d, ṽm, b and ξi.

With Theorem 2, the objective in (7) can reach its global
minimum. By introducing the Lagrangian multiplier α =
[α1, . . . , αn]

′, we solve the dual form of the optimization
problem in (10) as follows:

J(d) = max
α∈A

1′
nα−

1

2
(α ◦ y)′

(
M∑

m=1

dmK̃m

)
(α ◦ y), (11)

where y = [y1, . . . , yn]
′ is the label vector of the train-

ing samples, A = {α ∈ Rn|α′y = 0,0n ≤ α ≤
C1n} is the feasible set of the dual variable α, K̃m =

[φ̃m(xi)
′φ̃m(xj)] ∈ Rn×n is defined by the labeled train-

ing data from both domains, and φ̃m(xi)
′φ̃m(xj) =

φm(xi)
′φm(xj)+

1
λf(xi)

′f(xj). Recall that f(x) is a vec-
tor of the predictions on x from the prelearned classifiers
fp’s, which resembles the label information of x and can
be used to construct the idealized kernel [22]. Thus, the
new kernel matrix K̃m can be viewed as the integration
of both the visual information (i.e., from Km) and the
label information, which can lead to better discriminative
power. Surprisingly, the optimization problem in (11) is
in the same form as the dual of SVM with the kernel
matrix

∑M
m=1dmK̃m. Thus, the optimization problem can

be solved by existing SVM solvers, such as LIBSVM [4].

4.3 Learning Algorithm of A-MKL

In this work, we employ the reduced gradient descent
procedure proposed in [37] to iteratively update the
linear combination coefficient d and the dual variable
α in (7).
Updating the dual variable α: Given the linear combina-
tion coefficient d, we solve the optimization problem in
(11) to obtain the dual variable α by using LIBSVM [4].
Updating the linear combination coefficient d: Suppose
the dual variable α is fixed. With respect to d, the
objective function G(d) in (7) becomes:

G(d) =
1

2
d′hh′d+θ

(
1′
nα−

1

2
(α◦y)′

(
M∑

m=1

dmK̃m

)
(α◦y)

)
=

1

2
d′hh′d− θq′d+ const, (12)

where q = [ 12 (α ◦ y)′K1(α ◦ y), . . . , 1
2 (α ◦

y)′KM (α ◦ y)]′ and the last term is a constant
term that is irrelevant to d, namely, const =

θ
(
1′
nα− 1

2λ

∑n
i,j=1 αiαjyiyjf(xi)

′f(xj)
)

.
We adopt the second-order gradient descent method

to update the linear combination coefficient d at iteration
t+ 1 by:

dt+1 = dt − ηtgt, (13)

where ηt is the learning rate which can be obtained
by using a standard line search method [37], gt =
(∇2

tG)−1∇tG is the updating direction, and ∇tG =
hh′dt−θq and∇2

tG = hh′ are the first-order and second-
order derivatives of G in (12) with respect to d at the
t-th iteration, respectively. Note that hh′ is not of full
rank, and therefore we replace hh′ by hh′ + ϵIM to
avoid numerical instability, where ϵ is set as 10−5 in
the experiments. Then, the updating function (13) can
be rewritten as follows:

dt+1 = (1− ηt)dt + ηtd
new
t , (14)

where dnew
t = θ(hh′ + ϵIM )−1q. Note that by replacing

hh′ with hh′ + ϵIM , the solution to ∇tG = hh′dt− θq =
0M becomes dnew

t . Given dt ∈ M, we project dnew
t onto

the feasible set M to ensure dt+1 ∈M as well.
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Algorithm 1 Adaptive Multiple Kernel Learning

1: Input: labeled training samples (xi, yi)|ni=1, prelearned classifiers fp(x)|Pp=1 and predefined base kernel functions
km|Mm=1

2: Initialization: t← 1 and dt ← 1
M 1M

3: Solve for the dual variables αt in (11) by using SVM.
4: While t < Tmax Do
5: qt ← [ 12 (αt ◦ y)′K1(αt ◦ y), . . . , 1

2 (αt ◦ y)′KM (αt ◦ y)]′
6: dnew

t ← θ(hh′ + ϵIM )−1qt and project dnew
t onto the feasible set M.

7: Update the base kernel combination coefficients dt+1 by using (14) with standard line search.
8: Solve for the dual variables αt+1 in (11) by using SVM.
9: If |G(dt+1)−G(dt)| ≤ τ then break

10: t← t+ 1
11: End While
12: Output: dt and αt

The whole optimization procedure is summarized in
Algorithm 11. We terminate the iterative updating proce-
dure, once the objective in (7) converges or the number
of iterations reaches Tmax. We set the tolerance parameter
τ = 10−5 and Tmax = 15 in the experiments.

Note that by setting the derivative of the Lagrangian
obtained from (9) with respect to w̃m to zero, we obtain
w̃m =

∑n
i=1 αiyiφ̃m(xi). Recall that

√
λβ and 1√

λ
f(xi)

are the last P entries of w̃m and φ̃m(xi), respectively.
Therefore, the linear combination coefficient β of the
prelearned classifiers can be obtained as follows:

β =
1

λ

n∑
i=1

αiyif(xi).

With the optimal dual variables α and linear combi-
nation coefficients d, the target decision function (5) of
our method A-MKL can be rewritten as follows:

fT (x)=
n∑

i=1

αiyi

(
M∑

m=1

dmKm(xi,x)+
1

λ
f(xi)

′f(x)

)
+b.

4.4 Differences from related learning work
A-SVM [50] assumes that the target classifier fT (x)
is adapted from existing auxiliary classifiers fA

p (x)’s.
However, our proposed method A-MKL is different from
A-SVM in several aspects: 1) In A-SVM, the auxiliary
classifiers are learned by using only the training samples
from the auxiliary domain. In contrast, the prelearned
classifiers used in A-MKL can be learned by using the
training samples either from the auxiliary domain or
from both domains; 2) In A-SVM, the auxiliary classifiers
are fused with predefined weights γp’s in the target
classifier, i.e., fT (x) =

∑P
p=1 γpf

A
p (x)+∆f(x). In contrast,

A-MKL learns the optimal combination coefficients βp’s
in (5); 3) In A-SVM, the perturbation function ∆f(x) is
based on one single kernel, i.e., ∆f(x) = w′φ(x) + b.
However, in A-MKL, the perturbation function ∆f(x) =∑M

m=1 dmw′
mφm(x)+b in (5) is based on multiple kernels,

1. The source code can be downloaded at our project we-
b page http://vc.sce.ntu.edu.sg/index files/VisualEventRecognition/
VisualEventRecognition.html.

and the optimal kernel combination is automatically
determined during the learning process; 4) A-SVM can-
not utilize the unlabeled data in the target domain. On
the contrary, the valuable unlabeled data in the target
domain are used in the MMD criterion of A-MKL for
measuring the data distribution mismatch between two
domains.

Our work is also different from the prior work
DTSVM [8], where the target decision function fT (x) =∑M

m=1 dmw′
mφm(x)+b is only based on multiple base k-

ernels. In contrast, in A-MKL, we use a set of prelearned
classifiers fp(x)’s as the parametric functions, and model
the perturbation function ∆f(x) based on multiple base
kernels in order to better fit the target decision function.
To fuse multiple prelearned classifiers, we also learn the
optimal linear combination coefficients βp’s. As shown
in the experiments, our A-MKL is more robust in real
applications by utilizing optimally combined classifiers
as the prior.

MKL methods [23], [37] utilize the training data and
the test data drawn from the same domain. When they
come from different distributions, MKL methods may
fail to learn the optimal kernel. This would degrade the
classification performance in the target domain. On the
contrary, A-MKL can better make use of the data from
two domains to improve the classification performance.

5 EXPERIMENTS

In this section, we first evaluate the effectiveness of the
proposed method Aligned Space-Time Pyramid Match-
ing (ASTPM). We then compare our proposed method
Adaptive Multiple Kernel Learning (A-MKL) with the
baseline SVM, and three existing cross-domain learning
algorithms: Feature Replication (FR) [6], Adaptive SVM
(A-SVM) [50] and Domain Transfer SVM (DTSVM) [8],
as well as a Multiple Kernel Learning (MKL) method dis-
cussed in [8]. We also analyze the learned combination
coefficients βp’s of the prelearned classifiers, illustrate
the convergence of the learning algorithm of A-MKL
and investigate the performance variations of A-MKL
using different proportions of labeled consumer videos.
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Moreover, we show that A-MKL using the prelearned
classifiers from all event classes is better than A-MKL
using the prelearned classifiers from one event class.

For all methods, we train one-versus-all classifiers
with a fixed regularization parameter C = 1. For perfor-
mance evaluation, we use the non-interpolated Average
Precision (AP) as in [25], [49] which corresponds to the
multi-point average precision value of a precision-recall
curse and incorporates the effect of recall. Mean Average
Precision (MAP) is the mean of APs over all the event
classes.

5.1 Data set description and features

In our data set, part of the consumer videos are derived
(under a usage agreement) from the Kodak Consumer
Video Benchmark Data Set [30] which was collected by
Kodak from about 100 real users over the period of one
year. There are 1358 consumer video clips in the Kodak
data set. A second part of the Kodak data set contains
web videos from YouTube collected using keywords
based search. After removing TV commercial videos and
low-quality videos, there are 1873 YouTube video clips in
total. An ontology of 25 semantic concepts were defined
and keyframe based annotation was performed by the
students at Columbia University to assign binary labels
(presence or absence) for each visual concept for both
sets of videos (see [30] for more details).

In this work, six events “birthday”, “picnic”, “parade”,
“show”, “sports” and “wedding” are chosen for exper-
iments. We additionally collected new consumer video
clips from real users on our own. Similarly to [30], we
also downloaded new YouTube videos from the website.
Moreover, we also annotate the consumer videos to de-
termine whether a specific event occurred by asking an
annotator, who is not involved in the algorithmic design,
to watch each video clip rather than just look at the key
frames as done in [30]. For video clips in the Kodak
consumer data set [30], only the video clips receiving
positive labels in their keyframe based annotation are re-
examined. We do not additionally annotate the YouTube
videos2 collected by ourselves and Kodak because in a
real scenario we can only obtain loosely labeled YouTube
videos and cannot use any further manual annotation.
It should be clear that our consumer video set comes
from two sources – the Kodak consumer video data set
and our additional collection of personal videos, and
our web video set is a combined set of YouTube videos
as well. We confirm that the quality of YouTube videos
is much lower than that of consumer videos directly
collected from real users. Therefore, our data set is quite
challenging for cross-domain learning algorithms. The
total numbers of consumer videos and YouTube videos
are 195 and 906, respectively. Note that our data set is a
single-label data set, i.e., each video belongs to only one
event.

2. The annotator felt that at least 20% of YouTube videos are incor-
rectly labeled after checking the video clips.

TABLE 1
Means and standard deviations (%) of MAPs over six
events at different levels using SVM with the default

kernel parameter for SIFT features.
Gaussian Laplacian ISD ID

Level-0 41.4± 3.7 44.2± 3.8 45.0± 3.5 46.2± 4.0
Level-1 (Unaligned) 43.0± 2.7 47.7± 1.7 49.0± 1.6 48.2± 1.5

Level-1 (Aligned) 50.4± 3.7 53.8± 1.8 52.9± 3.6 51.0± 2.5

TABLE 2
Means and standard deviations (%) of MAPs over six
events at different levels using SVM with the default

kernel parameter for ST features.
Gaussian Laplacian ISD ID

Level-0 22.2± 1.8 36.1± 0.8 22.0± 3.8 35.6± 0.7
Level-1 (Unaligned) 20.1± 1.0 33.9± 0.6 21.8± 0.7 33.4± 0.7

Level-1 (Aligned) 20.6± 0.7 35.8± 1.7 22.3± 1.1 35.9± 1.8

In real-world applications, the labeled samples in the
target domain (i.e., consumer video domain) are usually
much fewer than those in the auxiliary domain (i.e., web
video domain). In this work, all 906 loosely labeled
YouTube videos are used as labeled training data in the
auxiliary domain. We randomly sample three consumer
videos from each event (18 videos in total) as the labeled
training videos in the target domain, and the remaining
videos in the target domain are used as the test data. We
sample the labeled target training videos for five times
and report the means and standard deviations of MAPs
or per-event APs for each method.

For all the videos in the data sets, we extract two
types of features. The first one is the local space-time (ST)
feature [25], in which 72-dimensional Histograms of Ori-
ented Gradient (HOG) and 90-dimensional Histograms
of Optical Flow (HOF) are extracted by using the online
tool3. After that, they are concatenated together to form
a 162-dimensional feature vector. We also sample each
video clip at a rate of 2 frames per second to extract
image frames from each video clip (we have 65 frames
per video on average). For each frame, we extract 128-
dimensional SIFT features from salient regions, which
are detected by Difference-of-Gaussian (DoG) interest
point detector [31]. On the average, we have 1385 ST
features and 4144 SIFT features per video. Then, we
build visual vocabularies by using k-means to group the
ST features and SIFT features into 1000 and 2500 clusters,
respectively.

5.2 Aligned Space-Time Pyramid Matching vs. Un-
aligned Space-Time Pyramid Matching

We compare our proposed Aligned Space-Time Pyramid
Matching (ASTPM) discussed in Section 3 with the fixed
volume-to-volume matching method, referred to as U-
naligned Space-Time Pyramid Matching (USTPM), used
in [25]. In [25], the space-time volumes of one video clip
are matched with the volumes of the other video at the

3. http://www.irisa.fr/vista/Equipe/People/Laptev/download.
html
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same spatial and temporal locations at each level. In oth-
er words, the second matching stage based on Integer-
flow EMD is not applied, and the distance between two
video clips is equal to the sum of diagonal elements of
the distance matrix, i.e.,

∑R
r=1 Drr. For computational

efficiency, we set the total number of levels L = 2 in
this work. Therefore, we have two ways of partitions, in
which one video clip is divided into 1×1×1 and 2×2×2
space-time volumes, respectively.

We use the baseline SVM classifier learned by us-
ing the combined training data set from two domains.
We test the performances with four types of kernel-
s: Gaussian kernel (i.e., K(i, j) = exp

(
−γD2(Vi, Vj)

)
),

Laplacian kernel (i.e., K(i, j) = exp
(
−√γD(Vi, Vj)

)
),

inverse square distance (ISD) kernel (i.e., K(i, j) =
1

γD2(Vi,Vj)+1 ) and inverse distance (ID) kernel (i.e.,
K(i, j) = 1√

γD(Vi,Vj)+1 ), where D(Vi, Vj) represents the
distance between video Vi and Vj , and γ is the kernel
parameter. We use the default kernel parameter γ = γ0 =
1
A , where A is the mean value of the square distances
between all training samples as suggested in [25].

Tables 1 and 2 show the MAPs of the baseline SVM
over six events for SIFT and ST features at different
levels according to different types of kernels with the
default kernel parameter. Based on the means of MAPs,
we have the following three observations: 1) In all cases,
the results at level-1 using aligned matching are better
than those at level-0 based on SIFT features, which
demonstrates the effectiveness of space-time partition
and it is also consistent with the findings for prior
pyramid matching methods [25], [26], [48], [49]; 2) At
level-1, our proposed ASTPM outperforms USTPM used
in [25], thanks to the additional alignment of space-
time volumes; 3) The results from space-time features
are not as good as those from static SIFT features. As
also reported in [15], a possible explanation is that the
extracted ST features may fall on cluttered backgrounds
because the consumer videos are generally captured by
amateurs with hand-held cameras.

5.3 Performance comparisons of cross-domain
learning methods
We compare our method A-MKL with other method-
s including the baseline SVM, FR, A-SVM, MKL and
DTSVM. For the baseline SVM, we report the results
of SVM AT and SVM T, in which the labeled training
samples are from two domains (i.e., the auxiliary domain
and the target domain) and only from the target domain,
respectively. Specifically, The aforementioned four types
of kernels (i.e., Gaussian kernel, Laplacian kernel, ISD
kernel and ID kernel) are adopted. Note that in our
initial conference version [10] of this paper, we have
demonstrated that A-MKL outperforms other methods
by setting the kernel parameter as γ = 2lγ0, where
l ∈ L = {−6,−4, . . . , 2}. In this work, we test A-
MKL by using another set of kernel parameters, i.e.,
L = {−3,−2, . . . , 1}. Note that the total number of base
kernels is 16|L| from two pyramid levels and two types

of local features, four types of kernels and |L| kernel
parameters, where |L| is the cardinality of L.

All methods are compared in three cases: (a) Classifiers
learned based on SIFT features; (b) Classifiers learned
based on ST features; (c) Classifiers learned based on
both SIFT and ST features. For both SVM AT and FR
(resp. SVM T), we train 4|L| independent classifiers with
the corresponding 4|L| base kernels for each pyramid
level and each type of local features using the training
samples from two domains (resp., the training samples
from target domain). And we further fuse the 4|L| in-
dependent classifiers with equal weights to obtain the
average classifier fSIFT

l or fST
l , where l = 0 and 1. For

SVM T, SVM AT and FR, the final classifier is obtained
by fusing average classifiers with equal weights (e.g.,
1
2

(
fSIFT
0 + fSIFT

1

)
for case (a), 1

2

(
fST
0 + fST

1

)
for case

(b) and 1
4

(
fSIFT
0 + fSIFT

1 + fST
0 + fST

1

)
for case (c)). For

A-SVM, we learn 4|L| independent auxiliary classifiers
for each pyramid level and each type of local features
using the training data from the auxiliary domain and
the corresponding 4|L| base kernels, and then we inde-
pendently learn four adapted target classifies from two
pyramid levels and two types of features by using the
labeled training data from the target domain based on
Gaussian kernel with the default kernel parameter [50].
Similar to SVM T, SVM AT and FR, the final A-SVM
classifier is obtained by fusing two (resp., four) adapted
target classifiers for cases (a) and (b) (resp., case (c)).
For MKL and DTSVM, we simultaneously learn the
linear combination coefficients of 8|L| base kernels (for
cases (a) or (b)) or 16|L| base kernels (for case (c)) by
using the combined training samples from both domains.
Recall that for our method A-MKL, we make use of
prelearned classifiers as well as multiple base kernels
(see (5) in Section 4.2). In the experiment, we consider
each average classifier as one prelearned classifier and
learn the target decision function of A-MKL based on
two average classifiers fSIFT

l |1l=0 or fST
l |1l=0 for cases

(a) or (b) (resp., all the four average classifiers for case
(c)) as well as 8|L| base kernels based on SIFT or ST
features for cases (a) or (b) (resp., 16|L| base kernels
based on both types of features for case (c)). For A-
MKL, we empirically fix θ = 10−5 and set λ = 20 for
all three cases. Considering that DTSVM and A-MKL
can take advantage of both labeled and unlabeled data
by using the MMD criterion to measure the mismatch in
data distributions between two domains, we use semi-
supervised setting in this work. More specifically, all the
samples (including test samples) from the target domain
and auxiliary domain are used to calculate h in (6). Note
that all test samples are used as unlabeled data during
the learning process.

Table 3 reports the means and standard deviations of
MAPs over all six events in three cases for all methods.
From Tables 3, we have the following observations based
on the means of MAPs:
1) The best result of SVM T is worse than that of
SVM AT, which demonstrates that the learned SVM
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TABLE 3
Means and standard deviations (%) of MAPs over six events for all methods in three cases.

SVM T SVM AT FR A-SVM MKL DTSVM A-MKL
MAP-(a) 42.32± 5.50 53.93± 5.58 49.98± 5.63 38.42± 7.93 47.19± 2.59 52.36± 1.88 57.14± 2.34
MAP-(b) 32.56± 2.08 24.73± 2.22 28.44± 2.61 24.95± 1.25 35.34± 1.55 31.07± 2.60 37.24± 1.58
MAP-(c) 42.00± 4.94 36.23± 3.37 44.11± 3.57 32.40± 4.99 46.92± 2.53 53.78± 2.99 58.20± 1.87

Fig. 4. Means and standard deviations of per-event APs of six events for all methods.

classifiers based on a limited number of training samples
from the target domain are not robust. We also observe
that SVM T is always better than SVM AT for cases (b)
and (c). A possible explanation is that the ST features
of video samples from the auxiliary and target domains
distribute sparsely in the ST feature space, which makes
the ST feature not robust and thus it is more likely that
the data from the auxiliary domain may degrade the
event recognition performances in the target domain for
cases (b) and (c).
2) In this application, A-SVM achieves the worst results
in cases (a) and (c) in terms of the mean of MAPs,
possibly because the limited number of labeled training
samples (e.g., three positive samples per event) in the
target domain are not sufficient for A-SVM to robustly
learn an adapted target classifier which is based on only
one kernel.
3) DTSVM is generally better than MKL in terms of the
mean of MAPs. This is consistent with [8].
4) For all methods, the MAPs based on SIFT features
are better that those based on ST features. In practice,
the simple ensemble method, SVM AT, achieves good
performances when only using the SIFT features in case
(a). It indicates that SIFT features are more effective
for event recognition in consumer videos. However, the
MAPs of SVM AT, FR and A-SVM in case (c) are much
worse compared with case (a). It suggests that the simple
late fusion methods using equal weights are not robust
for integrating strong features and weak features. In
contrast, for DTSVM and our method A-MKL, the results
in case (c) are improved by learning optimal linear
combination coefficients to effectively fuse two types of
features.
5) For each of three cases, our proposed method A-
MKL achieves the best performance by effectively fusing
average classifiers (from two pyramid levels and two
types of local features) and multiple base kernels as
well as reducing the mismatch in the data distributions
between two domains. We also believe the utilization of

multiple base kernels and prelearned average classifiers
can also well cope with YouTube videos with noisy
labels. In Table 3, compared with the best means of MAP-
s of SVM T (42.32%), SVM AT (53.93%), FR (49.98%),
A-SVM (38.42%), MKL (47.19%) and DTSVM (53.78%),
the relative improvements of our best result (58.20%)
are 37.52%, 7.92%, 16.54%, 51.48%, 23.33% and 8.22%,
respectively.

In Fig. 4, we plot the means and standard deviations
of per-event APs for all methods. Our method achieves
the best performances in 3 out of 6 events in case (c) and
some concepts enjoy large performance gains according
to the means of per-event APs, e.g., the AP of “parade”
significantly increases from 65.96% (DTSVM) to 75.21%
(A-MKL).

5.4 Analysis on the combination coefficients βp’s of
the prelearned classifiers
Recall that we learn the linear combination coefficients
βp’s of the prelearned classifiers fp’s in A-MKL. And
the absolute value of each βp reflects the importance
of the corresponding prelearned classifier. Specifically,
the larger |βp| is, the more fp contributes in the target
decision function. For better representation, let us denote
the corresponding average classifiers fSIFT

0 , fSIFT
1 , fST

0

and fST
1 as f1, f2, f3 and f4, respectively.

Taking one round of training/test data split in the
target domain for example, we draw the combination
coefficients βp’s of the four prelearned classifiers fp’s
for all events in Fig. 5. In this experiment, we again set
L = {−3,−2, . . . , 1}. We observe that the absolute values
of β1 and β2 are always much larger than those of β3

and β4, which shows that the prelearned classifiers (i.e.,
f1 and f2) based on SIFT features play dominant roles
among all the prelearned classifiers. This is not surpris-
ing, because SIFT features are much more robust than ST
features as demonstrated in Section 5.3. From Fig. 5, we
also observe that the values of β3 and β4 are generally
not close to zero, which demonstrates that A-MKL can
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Fig. 5. Illustration of the combination coefficients βp’s of
the prelearned classifiers for all events.

further improve the event recognition performance by
effectively integrating strong and weak features. Recall
that A-MKL using both types of features outperforms
A-MKL with only SIFT features (see Table 3). We have
similar observations for other rounds of experiments.

5.5 Convergence of A-MKL learning algorithm

Recall that we iteratively update the dual variable α
and the linear combination coefficient d in A-MKL (see
Section 4.3). We take one round of training/test data
split as an example to discuss the convergence of the
iterative algorithm of A-MKL, in which we also set L
as {−3,−2, . . . , 1}, and we use both types of features.
In Fig. 6, we plot the change of the objective value
of A-MKL with respect to the number of iterations.
We observe that A-MKL converges after about eight
iterations for all events. We have similar observations
for other rounds of experiments.

5.6 Utilization of additional prelearned classifiers
from other event classes

In the previous experiments, for a specific event class,
we only utilize the prelearned classifiers (i.e., average
classifiers fSIFT

l |1l=0 and fST
l |1l=0) from this event class.

As a general learning method, A-MKL can readily in-
corporate additional prelearned classifiers. In our event
recognition application, we observe that some events
may share common motion patterns [47]. For example,
the videos from some events (like “birthday”, “picnic”
and “wedding”) usually contain a number of people
talking with each other. Thus, it is beneficial to learn an
adapted classifier for “birthday” by leveraging the pre-
learned classifiers from “picnic” and “wedding”. Based
on this observation, for each event, we make use of
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Fig. 6. Illustration of the convergence of A-MKL learning
algorithm for all events.

the prelearned classifiers from all event classes for the
learning of the adapted classifier in A-MKL. Therefore,
the total number of the prelearned classifiers is 24 for
each event when using both types of features. For better
representation, we refer to A-MKL with four prelearned
average classifiers discussed in Sections 5.3, 5.4 and 5.5
(resp., A-MKL with all 24 prelearned average classifiers)
as A-MKL 4 (resp., A-MKL 24).

In Sections 5.3, 5.4 and 5.5, the same kernel parameter
set (i.e. L = {−3,−2, . . . , 1}) is used for the base kernels
and also employed to obtain the prelearned average
classifiers in A-MKL. In this experiment, we also use the
same set of kernel parameters (i.e. L = {−3,−2, . . . , 1})
for the base kernels but we additionally vary the set of k-
ernel parameters (denoted asH for better representation)
to obtain the prelearned average classifiers for A-MKL 4
and A-MKL 24. Specifically, for each pyramid level and
each type of features, we learn 4|H| independent SVM
classifiers from the parameter set H and four types
of kernels (i.e., Gaussian kernel, Laplacian kernel, ISD
kernel and ID kernel) by using the training samples
from both the auxiliary and target domains, which are
further averaged to obtain one prelearned classifier (i.e.,
fSIFT
l |1l=0 or fST

l |1l=0).
In Table 4, we compare the results of A-MKL 4 and

A-MKL 24 when using 1) H = {−3,−2, . . . , 1}; 2)
H = {−4,−3, . . . , 1}; 3) H = {−5,−4, . . . , 1} and 4)
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TABLE 4
Means and standard deviations (%) of MAPs of A-MKL (referred to as A-MKL 4) using the prelearned average

classifiers from the same event class and A-MKL (referred to as A-MKL 24) using the prelearned average classifiers
from all six event classes. Different sets of kernel parameters (i.e., H) are employed to obtain the prelearned average

classifiers.
H = {−3,−2, . . . , 1} H = {−4,−3, . . . , 1} H = {−5,−4, . . . , 1} H = {−6,−5, . . . , 1}

A-MKL 4 58.20± 1.87 58.33± 2.33 58.56± 2.53 57.16± 3.02
A-MKL 24 58.74± 3.30 59.04± 3.53 59.25± 3.73 59.28± 2.57

H = {−6,−5, . . . , 1}. From Table 4, We observe that
while the performances of A-MKL 4 and A-MKL 24
change when using different H, A-MKL 24 is consis-
tently better than A-MKL 4 in terms of the mean of
MAPs. It clearly demonstrates that A-MKL can learn
a more robust target classifier by effectively leveraging
the prelearned average classifiers from all the event
classes. The performance of A-MKL 24 is the best, when
setting H = {−6,−5, . . . , 1}. Compared with the other
methods such as SVM T, SVM AT, FR, A-SVM, MKL
and DTSVM in terms of the mean of per-event APs for
case (c), A-MKL 24 achieves the best performances in 4
out of 6 events. The relative improvements of the best
mean of MAPs from A-MKL 24 (59.28%) over those from
SVM AT (53.93%) and DTSVM (53.78%) in Table 3 are
9.92% and 10.23%, respectively.

5.7 Performance variations of A-MKL using different
proportions of labeled consumer videos
We also investigate the performance variations of A-
MKL when using different proportions of labeled train-
ing samples from the target domain. Specifically, we
randomly choose a proportion (i.e., r) of positive sam-
ples from the target domain for each event class. All
the randomly chosen samples are considered as the
labeled training data from the target domain, while the
remainder of samples in the target domain are used
as the test data. Again, we sample the labeled target
training videos for five times and report the means and
standard deviations of MAPs. Considering that the users
are reluctant to annotate a large number of consumer
videos, we set r as 5%, 10%, 20% and 30%. By using
both the SIFT and ST features (i.e., case (c)), we compare
our methods A-MKL 4 and A-MKL 24 with the baseline
method SVM T and the existing cross-domain learning
method DTSVM that achieves the second best results in
case (c) (see Tables 3). For DTSVM, A-MKL 4 and A-
MKL 24, we use the same settings as in Sections 5.6
and 5.6 by setting the kernel parameter set L for the
base kernels as {−3,−2, . . . , 1}. For A-MKL 4, we set
the kernel parameter set H for the prelearned average
classifiers as {−3,−2, . . . , 1}; and for A-MKL 24, H is
set as {−6,−5, . . . , 1}, with which A-MKL 24 achieves
the best result (see Table 4).

From Fig. 7, we have the following observations based
on the mean of MAPs. First, the results of all methods
generally increase, when using more labeled training
samples from the target domain. Second, the cross-
domain learning methods DTSVM, A-MKL 4 and A-
MKL 24 consistently outperform the baseline method

30%

40%

50%

60%

70%

5% 10% 20% 30%
r

SVM_T DTSVM A-MKL_4 A-MKL_24

Fig. 7. Means and standard deviations of MAPs over
six events for SVM T, DTSVM, A-MKL 4 and A-MKL 24
when using different proportions (i.e., r) of labeled training
consumer videos.
SVM T. Third, our methods A-MKL 4 and A-MKL 24
consistently perform better than DTSVM, which shows
the effectiveness of the utilization of prelearned aver-
age classifiers. Finally, A-MKL 24 is consistently better
than A-MKL 4, which demonstrates that the information
from other event classes is helpful for improving the
event recognition performance for an individual class.

5.8 Running time and memory usage
Finally, we report the running time and memory usage
of our proposed framework. All the experiments are
conducted on a server machine with Intel Xeon 3.33GHz
CPUs and 32GB RAM by using a single thread. The
main costs in running time and memory usage are from
feature extraction and our proposed ASTPM method.
Specifically, on the average it takes about 63.3 seconds
(resp., 246.5 seconds) to extract the SIFT features (resp.,
ST features) from a one-minute-long video. For each
video, its SIFT features (resp., ST features) occupy 41.7
megabytes (resp., 17.9 megabytes) on the average. In this
work, each type of features are vector-quantized into
visual words by using k-means. Considering the quanti-
zation process for the SIFT and ST features from training
videos can be conducted in an offline manner and the
quantization process for the SIFT and ST features from
a test video is very fast, we do not count the running
time of this process. For our ASTPM using the SIFT and
ST features, it respectively takes about 20.9 milliseconds
and 0.1 milliseconds (resp., 1213.6 milliseconds and 0.4
milliseconds) to calculate the distance between a pair of
videos at level-0 (resp., level-1) on the average. For each
event class, on the average it takes about 68.4 seconds to
learn one A-MKL classifier, which includes 7.1 seconds
for obtaining the prelearned average classifiers. The av-
erage prediction time for each test video is only about 11
milliseconds. To accelerate our framework for a median
or large scale video event recognition task, we can extract
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the SIFT and ST features by using multiple threads in a
parallel fashion and employ the fast EMD algorithm [34]
in ASTPM.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a new event recognition
framework for consumer videos by leveraging a large
amount of loosely labeled YouTube videos. Specifically,
we propose a new pyramid matching method called
Aligned Space-Time Pyramid Matching (ASTPM) and
a novel cross-domain learning method, referred to as
Adaptive Multiple Kernel Learning (A-MKL), to better
fuse the information from multiple pyramid levels and
different types of local features, and to cope with the
mismatch between the feature distributions of consumer
videos and web videos. Experiments clearly demonstrate
the effectiveness of our framework. To the best of our
knowledge, our work is the first to perform event recog-
nition in consumer videos by incorporating cost-effective
cross-domain learning.

To put it in a larger perspective, our work falls into
the recent research trend of “Internet Vision”, where the
massive web data including images and videos together
with rich and valuable contextual information (e.g., tags,
categories and captions) are employed for various com-
puter vision and computer graphics applications such as
image annotation [44], [46], image retrieval [29], scene
completion [14], and so on. By treating the “web data
as the king”, these methods [14], [44] have achieved
promising results by adopting the simplistic learning
methods such as the kNN classifier. In this work, we
have demonstrated that it is beneficial to learn from web
data by developing more advanced machine learning
methods (specifically the cross-domain learning method
A-MKL in this work) to further improve the classification
performances. A possible future research direction is to
develop effective methods to select more useful videos
from a large number of low-quality YouTube videos to
construct the auxiliary domain.

While cross-domain learning (a.k.a., transfer learning
or domain adaptation) has been studied for years in oth-
er fields (e.g., natural language processing [1], [6]), it is
still an emerging research topic in computer vision [40].
In some vision applications, there is an existing domain
(i.e., auxiliary domain) with a large number of labeled
data but we want to recognize the images or videos
in another domain of interest (i.e., target domain) with
very few labeled samples. Besides the adaption between
the web domain and consumer domain studied in this
work and [29], other examples that vision researchers
are recently working on include the adaptation of cross-
category knowledge to a new category domain [36], the
knowledge transfer by mining semantic relatedness [38],
and the adaption between two domains with different
feature representations [21], [40]. In the future, we will
extend our A-MKL for those interesting vision applica-
tions.
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