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ABSTRACT

Random projection for dimensionality reduction of 
hyperspectral imagery with a goal of target detection is 
investigated. Random projection is attractive in this task 
because it is data independent and computationally more 
efficient than other widely-used dimensionality-reduction 
methods, such as principal component analysis or the 
maximum-noise-fraction transform. Experimental results 
reveal that dimensionality reduction based on random 
projections yields improved target detection after decision 
fusion across multiple instances of the projections. Parallel 
implementation using a graphics processing unit is also 
investigated. 

Index Terms — dimensionality reduction, random 
projection, target detection, hyperspectral imagery, parallel 
computing.

1. INTRODUCTION 

Dimensionality reduction is a frequent preprocessing 
step in hyperspectral image analysis. Traditional 
dimensionality-reduction methods, such as principal 
component analysis (PCA) and the maximum-noise-fraction 
(MNF) transform are data dependent and entail a heavy 
computational load. For example, for a hyperspectral image 
with N pixels and L bands, PCA needs L2N multiplications 
for covariance matrix calculation, O(L3) multiplications for 
eigen-decomposition, and KLN multiplications for the 
transform (with K principal components (PCs)); on the other 
hand, MNF requires estimation of the covariance matrix of 
the noise, as well as whitening, in addition to the PCA 
computations.  

Random projection (RP) is a computationally efficient, 
data-independent method for dimensionality reduction [1]. 
We focus on the case in which the transformation matrix of 
RP consists of Gaussian random vectors which have been 
orthogonalized and normalized to unit norm. Theoretical 
results indicate that such a RP can preserve distances among 

data points as well as the structure of data cloud [2-4]. RP is 
of recent interest due to the mathematical theory of 
compressed sensing provides that sparsely representable 
signals can be recovered exactly from RP [5]. 

RP can result in significant computational savings over 
techniques such as PCA and MNF. For example, if the 
original data is reduced from L dimensions to K dimensions, 
the computation time involved in the random-matrix 
generation is only O(K2L), including the expensive Gram-
Schmidt orthogonalization process; it can be further reduced 
to O(KL) if using uniformly distributed random variables 
without orthogonalization. Note that, for a hyperspectral 
remote-sensing image, K<L<<N.

In this paper, we show that dimensionality reduction 
through RP can improve target-detection accuracy. In 
addition, we conduct multiple RP processes for decision 
fusion. In each run, the random matrix is different, resulting 
in a slightly different data-analysis output. For instance, 
when the randomly projected data is applied to the target-
detection task, the detection map produced for each 
different RP instance will be different in each run. In 
experimental results, we show that a detection map of 
greater accuracy can be produced by fusing all the 
individual outputs resulting from different projection 
matrices. Since the same detection process is repeated 
multiple times, the overall computing time is increased 
although the original data dimensionality is reduced. 
However, this approach is suitable to parallel computing 
which can significantly reduce the overall computation time. 

2. METHODOLOGY 

A.  Proposed Algorithm 
The entire algorithm is illustrated in Fig. 1. A series of 

random matrices of size K × L are generated as the first step; 
the reduction ratio for these random matrices is defined as P
= K/L. Subsequently, some suitable target-detection 
algorithm is applied to the data in the randomly-projected, 
K-dimensional domain. From multiple runs with different 
random matrices, a higher-quality result can be generated 
compared to the corresponding target detection applied in 
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original, L-dimensional data. This is due to the phenomenon 
that a target pixel which is salient in the original data 
domain generally remains distinctive after RP; thus, the 
target can be detected in the RP domain (see, e.g., [9, 10]). 
However, with the use of multiple-detector fusion, the false-
alarm rate may be reduced. 

Different fusion methods can be employed. The 
simplest is to claim a pixel to be a target pixel if it is 
extracted by m times out of n runs. We will show that when 
m = n, the fusion output is superior than that from the 
original data or a single-run RP. 

Here, we adopt the Target-Constrained Interference-
Minimized Filter (TCIMF) [6] as the target detector. 
TCIMF can be expressed as 

111 SRSSRW T
TCIMF (1)

where R is the data correlation matrix, and S = [s1, s2, ……, 
sp] is the target-signature matrix. To detect if a pixel r
contains a target or not, we simply apply rWy T

TCIMF ,
and then the ith element in y can be used to construct the ith

target-detection map. TCIMF is proved to have excellent 
capability of separating targets with similar spectral 
signatures [6]. 

Figure 1: The proposed approach for target detection. 

B. Parallel Implementation 
The RP-based processing of Fig. 1 is well-suited to data 

parallelism. Thus, we implement a parallel version of Fig. 1 
within a graphics processing unit (GPU) which is essentially 
a parallel computer with a shared-memory architecture. 
GPUs are of great interest to the high-performance-
computing community due to the fact that GPUs yield 
excellent speedup performance while their portability makes 
them useful for onboard, real-time processing [7].  

All processors of a GPU can share data within a global 
address space. To achieve satisfactory parallel performance, 

the data throughput is critical in the design of GPU-based 
parallel algorithms, meaning that enough data should be fed 
into the GPU to take advantage of the available compute 
power. Due to the shared-memory architecture, the major 
bottleneck is memory communication between the host and 
the device; unnecessary data transfer between host and 
device should be avoided. In other words, most data 
computation should take place in the GPU without 
interruption. While data sharing between GPU cores is 
much easier than in compute clusters, the data-throughput 
requirement renders current GPUs inappropriate for solving 
numerous small matrix-operation problems. Therefore, two 
key rules of GPU parallelization are: 1) to parallelize a large 
number of scalar/vector additions/multiplications if 
possible, and 2) to reduce communication between host and 
device as much as possible. For a hyperspectral image, the 
spatial size is typically much larger than the spectral size, 
suggesting that fulfilling computation tasks in spatial order 
on a GPU while leaving other tasks (such as small matrix 
manipulations) to the CPU is the proper approach to balance 
workload between the GPU and the CPU. 

The proposed algorithms use matrix operations 
extensively. Fortunately, the CUDA CUBLAS library 
provides a high-performance-computing implementation of 
the Basic Linear Algebra Subprograms (BLAS) level-1 to 
level-3 operations [8]. Thus, the parallel implementation is 
designed to utilize this existing parallel linear-algebra 
library, which, in turn, requires keeping data continuity in 
the memory as much as possible. 

3. EXPERIMENT 

A.  Data Used in the Experiment 

The subimage of HYDICE Forest scene of size 64 64
shown in Fig. 2(a) was collected in Maryland in 1995 from 
a flight altitude of 10,000 ft with about 1.5-m spatial 
resolution. The spectral coverage is 0.4–2.5 m. The water 
absorption and low SNR bands were removed, reducing the 
spectral dimensionality from 210 to 169. This scene 
includes 15 panels arranged in a 5 3 matrix. The three 
panels in the same row were made from the same material, 
and can be considered to be one class, Pi for 1 i  5. The 
pixel-level ground-truth map is shown in Fig. 2(b).  

    (a) An image scene         (b) panel locations 

Figure 2: The image scene used in the experiment. 
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(b) MNF 
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(c) a single run RP (P=0.5)
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(d) another single run RP (P=0.5)

Figure 3: Target-detection performance using 
dimensionality reduction. 
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(a) P=0.4 (m=10/n=20)
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(b) P=0.5 (m=10/n=20)

Figure 4: Target-detection performance using RP-based 
decision fusion. 

0 1 2

x 10
-4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pf

pd

TCIMF
RP+TCIMF (5/20)
RP+TCIMF (10/20)
RP+TCIMF (20/20)

Figure 5: Target-detection performance using decision 
fusion with different fusion parameters (P = 0.5). 

B. Target Detection Performance 

Based on the ground truth, a Receiver Operating 
Characteristic (ROC) curve can be estimated for 
quantitative performance assessment by gradually changing 
the threshold (i.e., such that pf  and pd are varied from 0 to 
1). Fig. 3 shows the ROC curves using PCA, MNF, and RP 
for P = K/L =0.5. Compared to the result using the original 
data, PCA does not offer any improvement as is evident in 
Fig. 3(a); on the other hand, MNF did improve the 
performance as shown in Fig. 3(b). Fig. 3(c) and Fig. 3(d) 
concern performance using RP which is seen to also 
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improve the detection performance and to even outperform 
MNF. Note that target signatures S went through the same 
dimensionality-reduction process. 

Fig. 4 shows the fusion output when RP is used for 
dimensionality reduction. Here, n = 20 runs were executed, 
and a target pixel was finally claimed if it was determined to 
be a target pixel more than m =10 times. We can see that, 
when P = 0.4 as in Fig. 4(a), the fused result is not superior 
to that that of the original data; however, when P = 0.5 as in 
Fig. 4(b), the fused result was indeed better. Fig. 5 
demonstrates that the fusion output is further enhanced if m
is increased. In practice, m can be simply chosen to be equal 
to n.

C. GPU Implementation 
The CPU machine used in the experiment is an Intel 

Core i7-860 2.80GHz processor with 4GB memory. The 
GPU is NVidia’s GeForce GTX480 which has 480 cores 
with 1.5GB memory. The GPU algorithm was implemented 
in the C++ with CUBLAS and MKL version 11.1.  

Fig. 6 shows the speedup performance when n = 20. As 
the reduction ratio P is increased, both the serial and parallel 
versions of the algorithm use more compute time. However, 
the speedup remains relatively unchanged at about 9. 
Obviously, the speedup performance will be improved as 
the number of repetitions, n, is increased. 

Figure 6: Speedup performance (n = 20). 

4. CONCLUSION 

In this paper, we investigated supervised target 
detection using RP-based dimensionality reduction. When 
the reduction ratio P is not too small (> 0.4 in our 
experiment), target detection can be robustly improved by a 
single-pass RP. Detection accuracy can be further improved 
by decision fusion of multiple runs. This approach can be 
easily implemented in parallel to significantly expedite 
computation time. 
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