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Abstract
Cryptography is one of the most 
prominent application areas of 
the finite field arithmetic. Almost 
all public-key cryptographic algo-
rithms including the recent algo-
rithms such as elliptic curve and 
pairing-based cryptography rely 
heavily on finite field arithmetic, 
which needs to be performed ef-
ficiently to meet the execution 
speed and design space con-
straints. These objectives con-
stitute massive challenges that 
necessitate interdisciplinary re-
search efforts that will render the 
best algorithms, architectures, 
implementations, and design prac-
tices. This paper aims to provide 
a concise perspective on design-
ing architectures for efficient fi-
nite field arithmetic for usage in 
cryptography. We present differ-
ent architectures, methods and 
techniques for fast execution of 
cryptographic operations as well 
as high utilization of resources in 
the realization of cryptographic 
algorithms. While it is difficult to 
have a complete coverage of all 
related work, this paper aims to 
reflect the current trends and im-
portant implementation issues of 
finite field arithmetic in the con-
text of cryptography. 

1. Introduction

E
fficient implementation of cryptographic algo-

rithms has been in the focal point of major research 

efforts for the last two decades. Different metrics 

such as execution time (speed), implementation space 

(silicon area, code size, memory usage, etc.) and power 

usage/energy consumption are used to quantitatively 

measure the performance of a design/implementation. 

Efficiency can be defined as one of these metrics depend-

ing on the application requirements. While execution time 

is important for applications where latency and through-

put is of utmost importance, implementation space is 

crucial for constrained platforms. Energy and power are 

also important for the latter case. Since there is almost 

always a trade-off in execution time and implementation 

space, faster designs generally require more area.

Efficiency of the design can also be thought as a 

combined performance metric and is usually measured 
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 using area-time product that shows how effectively the 

design space is utilized. Related with this, compactness of 

the implementation of a cryptographic algorithm is also 

an issue attracting increasing attention. A design is com-

pact if its implementation space is small compared to its 

execution speed. Another criteria is the design’s versa-

tility. A design is versatile if it can be used in diverse set 

cryptographic operations. Versatility and compactness 

of a design assist improve the {area 3 time} metric.

Majority of cryptographic algorithms utilize arithmetic 

in finite mathematical structures such as finite multiplica-

tive groups, rings, and finite fields. Having a complete set 

of arithmetic operations, finite fields feature a superset 

of operations of rings and multiplicative groups. While 

multiplicative groups have only one defined operation 

and rings do not have multiplicative inversion defined for 

its every element, finite fields feature addition/subtrac-

tion, multiplication/division, and both multiplicative and 

additive inversion operations. Since  overwhelming per-

centage of execution time of cryptographic  algorithms 

is spent on these arithmetic operations, efficient imple-

mentation of these operations determines the efficiency 

of the overall cryptographic system.

The basic arithmetic operations (i.e. addition, mul-

tiplication, and inversion) in finite fields, GF 1q 2 , where 

q 5 pk and p is a prime integer, are heavily used in many 

cryptographic algorithms such as RSA algorithm, Diffie-

Hellman key exchange algorithm [13], the US federal 

Digital Signature Standard [36], elliptic curve cryptogra-

phy [27, 33], and also recently pairing-based cryptogra-

phy [3, 48]. Most popular finite fields that are commonly 

used in cryptographic applications due to elliptic curve 

based schemes are prime fields GF 1p 2  and binary exten-

sion fields GF 12n 2 . Recently, pairing-based cryptogra-

phy based on bilinear pairings over elliptic curve points 

stimulated a significant level of interest in the arithmetic 

of ternary extension fields, GF 13n 2 .

The aforementioned three popular finite fields feature 

dissimilar mathematical structures. Therefore, it is impor-

tant to design algorithms and architectures that will ex-

ploit the specific properties of the underlying field to give 

the best performance for the chosen efficiency metric. On 

the other hand, elements of different finite fields are rep-

resented using similar data structures inside the digital 

circuits and computers. Furthermore, similarity of algo-

rithms for basic arithmetic operations in these fields allow 

diverse utilization of the functional units in the design.

A paramount example of diverse utilization of the func-

tional units is the unified module design [47]. For exam-

ple, the steps of the original Montgomery multiplication 

algorithm [35], which is one of the most efficient methods 

for multiplication in finite fields and rings, GF 1p 2  and Zn, 

slightly differ from those of the Montgomery multiplica-

tion algorithm for binary extension fields, GF 12n 2 , given in 

[28]. In addition, it is almost straightforward to extend the 

Montgomery multiplication algorithm for ternary exten-

sion fields, GF 13n 2 , by essentially keeping the steps of the 

algorithm intact. Similarly, addition or inversion opera-

tions can be performed using similar algorithms that can 

be realized together in the same digital circuit. To summa-

rize, an arithmetic module which is versatile in the sense 

that it can be adjusted to operate in more than one of the 

three fields is feasible, provided that this extra functional-

ity does not lead to an excessive increase in area and dra-

matic decrease in speed. One important result from the 

recent research is that a unified module that is capable of 

performing arithmetic in more than one field in the same, 

unified datapath brings about many advantages, one of 

which is the improved {area 3 time} product.

Exploiting the same set of functional units in the com-

putations of a variety of cryptographic operations is es-

sential in designing efficient and compact architectures 

and implementations. For instance, any field operation can 

be performed using only adder circuits. Subtraction can 

easily transformed into addition (the two are identical in 

finite fields of characteristic two), multiplication can be 

seen as repeated addition, efficient multiplicative inver-

sion  algorithms feature only addition, subtraction and shift 

operations. Therefore, an architecture for finite field opera-

tions can be designed around a set of fast adder circuits1. 

In this paper, we provide a survey of algorithms, ar-

chitectures, and design practices that allow fast, efficient 

and compact implementations of finite field arithmetic. 

We target three categories of cryptographic algorithms: 

Cryptographic algorithms that use fi nite multipli- ■

cative groups and rings such as RSA, 

Elliptic curve cryptography,  ■

Pairing-based cryptography. ■

Cryptographic algorithms utilize arithmetic in finite mathematical structures 
such as finite multiplicative groups, rings, and finite fields.
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We present algorithms for arithmetic operations 

that can be generically applied. For example, we focus 

on the usage of the polynomial base for binary, ternary 

and general extension fields. Special polynomials (e.g. 

trinomials, pentanomials) that can be beneficial in field 

multiplication are not emphasized here since they may 

not be generic; except for the general extension fields 

where computations can be made considerably faster 

when specific irreducible polynomials are used.

2. Fundamentals of Finite Fields 

and Their Arithmetic

The elements of the prime finite field GF 1p 2  are the in-

tegers in the set 50, 1, 2, c, p 2 16 where p is an odd 

prime. The addition and multiplication operations in 

GF 1p 2  are modular operations performed in two steps:

regular integer addition or multiplication, and 1) 

reduction by the prime modulus 2) p if the result of the 

fi rst step is greater than or equal to the modulus.

The elements of the binary extension field GF 12n 2  can 

be represented as binary polynomials of degree less than 

n if polynomial basis representation is used. Analogous 

to the odd prime used in GF 1p 2 , a binary irreducible 

polynomial of degree n is used to construct GF 12n 2 . The 

addition in GF 12n 2  is modulo-2 addition of correspond-

ing coefficients of two polynomials. Since it is basically 

a polynomial addition there is no carry propagation and 

the degree of the resulting polynomial cannot exceed 

n 2 1. On the other hand, multiplication in GF 12n 2  is more 

complicated and sometimes it is beneficial to use other 

types of representation techniques than standard poly-

nomial basis such as Gaussian normal basis [18]. Here, 

we always use polynomial basis for GF 12n 2  because of its 

suitability to the proposed design principles. 

Polynomial basis representation of GF 12n 2  is deter-

mined by an irreducible binary polynomial p 1x 2  of degree 

n. Given p 1x 2 , all the binary polynomials of degree less than 

n, which has the form A 1x 2 5 an21x
n21 1 c1 a1x 1 a0, 

are the elements of GF 12n 2 . Multiplication in GF 12n 2 , simi-

lar to multiplication in GF 1p 2 , is performed in two steps: 

polynomial multiplication followed by 1) 

a polynomial division of the result from Step 1 by 2) 

the irreducible polynomial p 1x 2 .

Similar to binary extension fields, the elements of 

 ternary extension fields GF 13n 2  can be represented as 

(ternary) polynomials of degree at most n 2 1, whose co-

efficients are from the base field GF 13 2 . In order to utilize 

polynomial basis for ternary arithmetic, an irreducible 

ternary polynomial p 1x 2  of degree n is needed. The ad-

dition operation in GF 13n 2  is polynomial addition where 

the corresponding coefficients of two ternary polyno-

mials are added modulo-3 and there is no carry propa-

gation. The multiplication is also done in two steps: a 

polynomial multiplication followed by reduction by the 

irreducible ternary polynomial p 1x 2  of the field. 

3. Compact Architectures for 

Addition and Subtraction

The most fundamental arithmetic operation in finite 

fields and rings, on which all other arithmetic opera-

tions are based, is the addition operation. The key point 

to an efficient finite field arithmetic is to design fast and 

light-weight adder circuits. In many cryptographic appli-

cations in order to balance the speed and area efficiency, 

adders utilizing redundant representation are preferred. 

The most basic form of redundant representation is the 

carry-save form in which an integer is represented as 

the sum of two other integers, namely x 5 xC 1 xS where 

xC and xS are known as carry and sum parts of the in-

teger, respectively. The addition operation with carry-

save form can be performed using full-adders which 

have three binary inputs and two binary outputs. Full-

adders connected to each other can perform addition 

where one of the operands are in redundant form while 

the other in non-redundant form. For n-bit operands, the 

carry-save adder will need n full adders.

It is possible to perform both GF 1p 2  and GF 12n 2  addi-

tion operation using so-called dual-field adder (DFA) [47], 

which is illustrated in Figure 1. DFA shown in Figure 1 

is basically a full-adder equipped with the capability of 

performing bit addition both with and without carry. It 

has an input denoted as fsel that provides this function-

ality. When fsel 5 1, the dual-adder circuit performs bit-

wise addition with carry which enables the circuit to op-

erate in GF 1p 2 -mode. When fsel 5 0, on the other hand, 

the output C out is forced to 0 regardless of the values of 

the inputs. Consequently, the output S produces the re-

sult of modulo-2 addition of three binary input values. 

At most only two of the three binary input values of DFA 

can have nonzero values in GF 12n 2 -mode. 

An important aspect of designing a DFA is not to in-

crease the critical path delay (CPD) of the circuit, which 

otherwise would have a negative effect in the maximum 

applicable clock frequency. However, a small amount of 

overhead in area can be accommodated. Gate level re-

alization of DFA shown in Figure 1 clearly  demonstrates 

The key point to an efficient finite field arithmetic is to design 
fast and light-weight adder circuits.
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that there is no increase in the CPD since the two XOR 

gates dominate the CPD as in the case of a regular full 

adder. Area differs slightly due to one extra input, i.e. fsel 

and additional gates that are used to suppress the carry 

out, C out, in GF 12n 2 -mode. However, this increase in area 

is very small, therefore tolerable, compared to the case 

where we have two separate adders for GF 1p 2  and GF 12n 2  

which would incur much more overhead in area. 

As described above, 3 3 2 adder arrays in carry-save 

adders are in many cases sufficient since addition op-

eration is mostly needed in multiplications where one of 

the operands is always in non-redundant form as in [51]. 

In this case, the carry-save form is only used for par-

tial product during the multiplication and the result of 

the multiplication has to be converted to non-redundant 

form using a carry-propagation adder after the multipli-

cation is completed. However, when the two operands 

are both in carry-save redundant form, then 3 3 2 adder 

arrays cannot be used. Instead, 4 3 2 adder arrays are 

needed to operate on operands that are in redundant 

form. Using 4 3 2 adder arrays eliminate the need for 

an immediate conversion after multiplication, which is 

especially useful in elliptic curve cryptography where 

there are many addition and subtraction operations in 

between multiplication operations.

Classical carry-save redundant representation meth-

od has one major drawback due to the difficulty of per-

forming subtraction operation. When two’s complement 

representation is used to facilitate the representation of 

negative numbers as well as subtraction operation, the 

carry-save representation poses certain difficulties. For 

example, during the subtraction of two’s complement 

operands, a carry overflow indicate whether the result 

is negative or positive. Since there can be a hidden car-

ry overflow in carry-save representation, computation-

ally intensive operations may be needed to determine 

the sign of the result, which in turn incurs significant 

increase in CPD and area. 

Avizienis [1] proposed the redundant signed digit 

(RSD) representation to overcome this difficulty. Arith-

metic in the RSD representation 

is almost identical to carry-save 

arithmetic. An integer is still rep-

resented by two positive integers; 

however, this time the integer is 

now represented as the differ-

ence (as opposed to the sum in 

carry-save representation) of two 

other integers. An integer x, there-

fore, is represented by x1 and x2, 

where x 5 x1 2 x2. As can easily 

be  deduced from the definition 

of RSD, there is no need for two’s 

complement representation to handle negative numbers 

and subtraction operation. The RSD is, thus, a more natu-

ral representation when both addition and subtraction 

operations need to be supported. This is indeed the case 

in elliptic curve cryptography and Montgomery multipli-

cation and inversion algorithms. An additional benefit 

of RSD representation is the fact that the comparison 

operation in GF 1p 2 -mode is now possible and efficient. 

Integer comparison in GF 1p 2 -mode can be performed uti-

lizing a subtraction operation. After subtracting one inte-

ger from the other, a sign test can be performed directly 

by checking the first nonzero bit in significant positions 

of the result. This is in general an easy method that can 

be implemented by masking the most significant bits to 

determine which number is greater. 

Realization of RSD arithmetic is very similar to car-

ry-save arithmetic. RSD arithmetic needs generalized 

full adders which are shown in Figure 2. As observable 

from Figure 2, GFA-0 is a conventional full adder. From 

the realization perspective, GFA-1, GFA-2 and GFA-3 are 

equivalent to GFA-0 realization in ASIC and thus there is 

no associated overhead in either CPD or area. 

The addition of two n-bit RSD integers, x and y, 

z 5 x 1 y, can be done by connecting two layers of GFAs 

of types 1 and 2 as shown in Figure 3. An additional cir-

cuitry is needed to force the digit instances of (1, 1) to 

(0, 0) since 1 2 1 5 0. Subtraction of two n-bit integers, 

Figure 1. The dual-field adder circuit.

S

Cout

C in

xi
yi

fsel

+

Figure 2. Generalized full adders.

Logic Symbol

Type

Function

GF-0 GF-1 GF-2 GF-3

x x x x
y y y y

z z z z

C C C C
S S S S

x + y + z = 2C + S

x – y + z = 2C – S

–x + y – z = –2C + S

–x – y – z = –2C – S
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t 5 x 2 y can be realized using the same addition circuit 

in Figure 3 by swapping y1 and y2. The adder (or sub-

tracter) circuit which is originally designed for GF 1p 2  

arithmetic can easily be converted into a dual-field ad-

der (or subtracter) by forcing the carry output of each 

GFA into 0 in GF 12n 2 -mode.

Another side benefit of RSD representation and as-

sociated adder structures is their suitability to a fully 

unified arithmetic that incorporates addition/subtrac-

tion in three major finite fields, namely GF 1p 2 , GF 12n 2  

and GF 13n 2 . Below is the RSD representation of elements 

of these three fields: 

Prime fi eld ■  GF 1p 2 : Elements of prime fi elds can be 

represented as integers in binary form. Assuming 

that the digits are signed, the values that digits 

have and their corresponding representations are 

50, 1, 2 16 and 5 10, 0 2 , 11, 0 2 , 10, 1 2 6.

Binary extension fi eld ■  GF 12n 2 : A common practice 

is to consider elements of binary extension fi eld 

as polynomials with coeffi cients from GF 12 2 . This 

allows to represent GF 12n 2  elements by simply ar-

ranging the coeffi cients of the polynomial into a 

binary string. A digit in GF 12n 2 -mode can take the 

values of 1 and 0, which can be represented as 

5 10, 0 2 , 11, 0 2 6.

Ternary extension fi eld ■  GF 13n 2 : Elements of terna-

ry extension fi elds can be considered as polynomi-

als whose coeffi cients are from GF 13 2 . Thus, each 

coeffi cient can take the values 22, 21, 2, 1, 2. 

The digit values 2 2 and 2 are congruent to 1 and 

21 modulo 3, respectively. Therefore, the RSD 

representations for possible coeffi cient values of 

0, 1, and 21 are 5 10, 0 2 , 11, 0 2 , 10, 1 2 6.

A unified adder that operates in three fields can be 

derived from the addition circuit in Figure 3. When com-

pared to GF 1p 2 -only adder, the unified adder circuit has 

only marginally higher CPD while the overhead in area 

can be higher. However, the area cost of three non-uni-

fied adders implemented in three separate circuits far 

outweighs this overhead in the 

unified design as shown in [39]. 

4. Multiplication

In this section, we firstly provide 

efficient architectures for Mont-

gomery multiplication algorithm. 

These architectures are suitable for 

ASIC as well as FPGA implementa-

tions. We then introduce the unified 

Montgomery multiplication algo-

rithm in [47], which operates only 

in GF 1p 2  and GF 12n 2 . We then pres-

ent a dual-radix unified multiplier 

in [46] where the multiplier calculates faster in GF 12n 2

-mode than in GF 1p 2 -mode. We finally discuss the support 

in the unified multiplier for multiplication in GF 13n 2 .

4.1. Montgomery Multiplication Algorithm

In [35], Montgomery described a modular multiplication 

method which proved to be very efficient in both hard-

ware and software implementations. An obvious advan-

tage of the method is that it replaces division operations 

with simple shift operations. The method adds multiples 

of the modulus rather than subtracting it from the partial 

result. And unlike the subtraction of modulus in the regu-

lar modular multiplication which can be performed after 

all the digits of the multiplicand are processed for a given 

multiplier digit, the addition operation can start immedi-

ately after the least significant digit of the multiplicand is 

processed. Especially the second feature accounts for the 

inherent concurrency in the algorithm. Refer to [35, 14, 

29] for detailed explanation of the algorithm. 

Given two integers a and b, and a prime modulus 

p, the Montgomery multiplication algorithm computes 

c 5 MonMult 1a, b 2 5 a # b # R21  1mod p2  where R 5 2n 

usually and a, b , p , R and p is an n-bit prime number. 

The Montgomery multiplication does not directly com-

pute c 5 a # b 1mod p2, therefore certain transformation 

operations must be applied to the operands a and b be-

fore the multiplication and to the intermediate result c in 

order to obtain the final result c. These transformations 

are applied as in the following example:

a 5 MonMult 1a, R2 25 a # R2 # R21  1mod p25 a # R  1mod p2, 

b 5 MonMult 1b, R2 25 b # R2 # R21  1mod p25 b # R 1modp2, 

 c 5 MonMult 1c, 1 25 c # R # R21  1modp 2 5 c  1modp2.

Provided that R2 1modp2  is precomputed and saved, we 

need only a single MonMult operation to carry out each 

of these transformations. However, because of these 

transformation operations, performing a single  modular 

multiplication using MonMult might not be advantageous 

Figure 3. Addition circuit with GFAs for two n-bit operands in RSD form.
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even though there is an attempt to make it efficient for a 

few modular multiplications by eliminating the need for 

these transformations [37]. Its advantage, on the other 

hand, becomes obvious in applications requiring multi-

plication-intensive calculations such as modular expo-

nentiation, elliptic curve point operations, and pairing 

calculations over elliptic curve points.

The Montgomery multiplication algorithm with radix- 

2k for GF 1p 2  can be given as in the following: 

Algorithm A

Input:  a, b [ 31, p 2 1 4, p, and m

Output:  c [ 31, p 2 1 4

Step 1:  c J 0

Step 2:  for i 5 0 to m 2 1

Step 3:  q J 1c0 1 ai
# b0 2 # 1p r0 2    1mod 2k 2

Step 4:  c J 1c 1 ai
# b 1 q # p 2 /2k

where p r0 5 2k 2 p0
21mod 2k. In the algorithm, the multipli-

er a is written with base (radix)- 2k as an array of digits ai 

so that a 5 a
m21

i50
ai
# 2k # i, where m is the number of digits 

in a and m 5 <n/k=. In Step 4, the multiplicand b, the mod-

ulus p, and the partial result c enter the computations as 

full-precision integers. However, in the real implementa-

tions b, p, and c can be treated as multi-word integers in 

order to design a scalable multiplier and in each clock 

cycle one word of these values will be processed. One 

may also consider this representation as writing the 

multiplicand, the modulus and the partial result with 

digits b1 j 2, p1 j2, and c1j2 of w bits, so that b 5 a
e21

j50
b1 j 2 # 2w # j, 

p 5a
e21

j50
p1 j 2 # 2w # j, and c 5a

e21

j50
c1 j 2 # 2w # j where e 5 <n/w=. 

Note that the base-2w used to represent b, p, and c in 

Step 4 is different from the radix-2k used to represent the 

multiplier digit ai in Step 3 and 4. Note also that q, c0, b0, 

and p r0 are all k-bit integers. 

In order to avoid a possible confusion due to the us-

age of two different bases, we use the term word refer the 

digits of b, p and c when implementing Step 4, and use 

the term digit exclusively for the multiplier a, and for b0, 

p r0, and c0 in Step 3 when they are in the same equation 

with the digits of a. Digits can be easily distinguished 

by the subscript notation (e.g. ai or b0) from superscript 

notation of word (e.g. b1 j 2 ). We will also use the notation 

xi, j to denote the jth bit in the ith digit of x. The notation 

c 0ck

1 j 2
 represents k least significant bits of the word c1j2. In 

addition, the radix of the multiplier architecture is deter-

mined by the base used to represent the multiplier a.

The Montgomery multiplication algorithm for GF 12n 2  

is given below: 

Algorithm B

Input:  a 1x 2 , b 1x 2 , p 1x 2 , and m

Output:  c 1x 2

Step 1:  c 1x 2 J 0

Step 2:  for i 5 0 to m 2 1

Step 3:  q 1x 2  J 1c01x 21 ai 1x2 # b0 1x22 # p0r 1x2  1mod xk 2

Step 4:  c 1x 2  J 1c 1x 2 1 ai 1x 2 # c 1x 2 1 q 1x 2 # p 1x 2 2 /xk

where p0r 1x 2 5 p0
21 1x 2   1mod xk 2 . As one easily observes, 

the two algorithms are almost identical except that the 

addition operation in GF 1p 2  becomes a bitwise modulo-2 

addition in GF 12n 2 . Although the operands are integers 

in the former algorithm and binary polynomials in the 

latter, the representations of both are identical in digital 

systems. Note that in Algorithm A, there must be an extra 

reduction step at the end to reduce the result into the de-

sired range if it is greater than the modulus. On the other 

hand, this step is not an essential part of the algorithm 

and there are simple conditions that can be added to the 

algorithm in order to eliminate it [55, 17], hence we inten-

tionally exclude it from the algorithm definitions. 

One can also observe that the computations per-

formed in Step 3 are of different nature in two algorithms 

and depending on the magnitude of the radix used, the 

part of the circuit in charge of implementing them might 

become very complicated. However, one can easily dem-

onstrate that these computations can be performed in a 

unified circuitry for small radices. 

From this point on, we will only use the notation in-

troduced in Algorithm A for both GF 1p 2  and GF 12n 2  and 

polynomial notation is only used when it is necessary. 

Operations will be deduced from the mode (GF 1p 2  or 

GF 12n 2) in which the module is operated. 

4.1.1. Processing Unit

In this section, we explain the design details of the pro-

cessing unit (PU) with radix-2k, which is basically respon-

sible for performing Step 3 and Step 4 of Algorithm A: 

Step 3:  q J 1c0 1 ai
# b0 2 # 1p r0 2   1mod 2k 2

Step 4:  c J 1c 1 ai
# b 1 q # p 2 /2k.

In Figure 4 the execution graph of the Montgomery 

multiplication algorithm and dependencies  between 

Advantage of Montgomery arithmetic is in applications requiring 
multiplication-intensive calculations such as modular exponentiation 

and elliptic curve point operations.
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the operations are illustrat-

ed. Type I circle in the graph 

 represents the operations in 

Step 3 and Step 4 for the least sig-

nificant words of b and p without 

the right shift operation. Type II 

circle represents Step 4 for the 

current words of b and p without 

the right shift operation and the 

shift operation for the previous 

words of b and p. 

Each column in the dependen-

cy graph represents the computa-

tion which can be undertaken by a 

module which we call processing 

unit (PU) for one digit of the mul-

tiplicand a. Each PU scans every 

word of the modulus p and the 

multiplicand b. Each circle repre-

sents the operations for one word 

of p, b and c. The time advances 

from top to bottom. 

Figure 5 illustrates the archi-

tecture of a processing unit (PU). 

Two k 3 w multipliers compute 

ai
# b and q # p, respectively, where 

ai and q are k-bit digits. Note that a 

PU processes c, b, and a one word 

at a time. The shift and alignment 

module shifts the previous word of 

the partial result c by k-bit to the 

right and fills the leftmost k-bits 

of the result with the least signifi-

cant k-bit of the current word of 

the partial result c. The circuit for Step 3 is not shown in 

Figure 5. 

In FPGA implementations, the digits of the multiplier and 

the words of the multiplicand can be of the same length to 

take advantage of the fast hardwired multipliers [38]. On 

the other hand, in ASIC implementations where the high 

radix multipliers are expensive, the radix for the multiplier 

is usually chosen as a small number. When radix is rela-

tively a small number, the multipliers in Figure 5 becomes 

simple circuits [53, 52, 47]. For unified implementations, 

both the multipliers and adders are designed to operate in 

both prime and binary extension fields. For this, the partial 

result is kept in carry-save form in GF 1p 2  mode. 

The multiplier architecture consists of one or (gen-

erally) more processing units (PU), identical to the one 

shown in Figure 5, organized in a pipeline. An example 

of pipeline organization with t PUs is shown in Figure 6. 

Each PU takes a digit (k-bits) from the multiplier a, the 

size of which depends on the radix, and operates on the 

Figure 4. Execution graph of Montgomery multiplication algorithm [51].
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words of b, c and p successively starting from the least 

 significant words. Starting from the second cycle it gen-

erates one word of partial result each cycle which is com-

municated to the next PU. After e 1 1 clock cycles, where 

e is the number of words in the modulus (i.e. e 5 <n/w=  ), 

a PU finishes its portion of work and becomes free for 

further computation. When the last PU in the pipeline 

starts generating the partial results, the control circuitry 

checks if the first PU is available. If the first PU is still 

working on an earlier computation, the results from the 

last PU should be stored in a buffer until the first PU 

 becomes available again. Refer to [51] for more informa-

tion about the length of the buffer to store the partial re-

sults when there is no available PU in the pipeline. 

A redundant representation (e.g. carry-save) is used 

for the partial result in the architecture to speedup the 

addition operations. Thus, for the partial result we can 

write c 5 cc 1 cs, where cc and cs stand for the carry and 

sum part of the partial result, respectively. In addition, 

one must note that the length of the register for partial re-

sult, c in Figure 6 is twice wider than the other registers. 

The proposed architecture allows designs with differ-

ent word lengths and pipeline organizations for different 

values of operand precision. In addition, the area can be 

treated as a design constraint. Thus, one can adjust the 

design to the given area, and choose appropriate values 

for the word length and the number of pipeline stages, 

in accordance. For efficient multiplication architectures 

and high utilization of hardware resources for FPGA 

implementations, one can refer to [38]. 

The propagation delay of PU is independent of word 

size w when w is relatively small (increases only slightly 

for larger values of w due to carry-free arithmetic), and 

thus we assume that the clock cycle is the same for all 

word sizes of practical interest. The area used by reg-

isters for partial sum, operands and modulus does not 

change with the word or digit sizes. 

The proposed scheme yields the worst performance 

for the case w 5 m, since some extra cycles are intro-

duced by PU in order to allow word-serial computation, 

when compared to other full-precision conventional 

designs. On the other hand, using many pipeline stages 

with small word size values brings about no advantage 

after certain point resulting in poor utilization. There-

fore, the performance evaluation reduces into finding an 

optimum configuration for given constraints. 

ASIC standard cell realizations of both unified and 

non-unified (GF 1p 2 -only) multipliers demonstrate that 

area overhead of the unified multiplier is only 2.75% 

and that there is no overhead in critical path delay [47]. 

Therefore, the saving in the area is significant when the 

unified design is compared to a hypothetical architec-

ture that has two separate datapath for GF 1p 2  and GF 12n 2  

multipliers. Furthermore, this saving in area does not 

bring about a penalty in time performance, therefore 

improvement in area is identical to the improvement in 

metric of 5area 3  time6. 

4.2. Dual-Radix Multiplier

The original unified multiplier in [47] uses radix-2 design 

and offers an equal performance for both GF 1p 2  and GF 12n 2  

of the same precision in terms of clock count. For this very 

reason, however, the original design is not optimized since 

it does not take advantage of using GF 12n 2 , which is, in 

general, more efficient than GF 1p 2  in hardware implemen-

tations. Our first observation is that this situation can be 

remedied by putting to use the part of the circuitry which 

is underutilized in GF 12n 2  mode. This allows us to run the 

multiplier module in higher radix values for GF 12n 2  than 

those for GF 1p 2  at the expense of extra gates without sig-

nificantly increasing the signal propagation time. 

In this section, we present the radix-(2, 4) multiplier 

architecture introduced in [46], where the multiplier 

uses radix-2 in GF 1p 2 -mode while it uses radix-4 in GF 12n 2

-mode. The radix-(2, 4) multiplier is in fact the first mem-

ber of the dual-radix multiplier family, which also in-

cludes radix-(4, 8) and radix-(8, 16) [46]. We only include 

the radix-(2, 4) multiplier to keep the discussion simple. 

4.2.1. Precomputation in Montgomery 

Multiplication Algorithm

The dual-radix unified multiplier architecture utilizes a 

precomputation technique in order to decrease the criti-

cal path delay of the original unified multiplier in [47]. 

Note that Step 4 of the Algorithm A computes 

c J 1c 1 ai
# b 1 q # p 2 /2k, 

where division by 2k is simply a right shift by k bits and 

q is calculated in the previous step. Depending on the 

Figure 6. Pipeline organization with t processing units.
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 radix value chosen for the multiplier, the k-bit digit q 

can be determined by the least significant digits (LSD) 

of b, p and c, and the current digit of a. Similarly, the 

multiple of b that participates in the addition is deter-

mined solely by ai. As a result, the LSDs of the operands, 

ai, b0, and c0 will determine which one of the values in 

50, b, p, b 1 p, 2p, 2b, 2b 1 2p, c6 is added to the partial 

result c. If one precomputes and stores the value of b 1 p, 

the calculations in Step 4 can be significantly simplified. 

There are two implications of the precomputation 

technique. Firstly, the precomputed value must be 

stored, implying an increase in the register space. And 

secondly, there must be a so-called selection logic to se-

lect which multiples of b and p must participate in the 

addition in Step 4. The selection logic can be designed 

in such a way that it is parallel to PU and thus it results 

in no overhead in the critical path delay. On the other 

hand, the precomputation technique also simplifies the 

design since Step 4 can be performed with only one ad-

dition, once the selection logic generates its output. 

4.2.2. Processing Unit for Dual-Radix Multiplier

As pointed out earlier, a processing unit (PU) is ba-

sically responsible for performing Step 3 and Step 4 

of Algorithm A. Since the multiplier uses radix-2 for 

GF 1p 2 , the least-significant bits (LSB) of the oper-

and digits, ai, b0, and c0 determine which one of the 

values in 50, b, p, b 1 p6 will be added to the partial 

result c. Multiplication is performed in radix-4 in 

GF 12n 2 . Therefore, the LSDs (least significant digits) 

of b, p, and c and of the current digit of a are required 

to determine q. The LSB of p is always 1, then only 

p0, 1, the second least significant bit of the  modulus, 

is included in the  computations. Consequently, 

ai, 1, ai, 0, b0, 1, b0, 0, c0, 1, c0, 0 and p0, 1 determine one of the 

following values to be added to the partial result: 

50, b, p, b 1 p, x # b, x # p, x # 1b 1 p 2 6 (Note that ai, j is the 

jth least significant bit of ith digit of a). Multiplication 

by x results in shifting one bit to the left, hence it is 

identical to multiplication by 2.  Division by xk and 2k 

are identical operations and the latter is used to de-

note the right shift operation by k bits. 

In Figure 7, the architecture of the processing unit 

(PU) used in the dual-radix multiplier is illustrated. The 

local control circuit in Figure 7 contains the selection 

logic which generates the signals, to determine which 

multiples of b and p will be in the calculations. For 

 example, the selection signal ( 110 2 , 111 2) indicates that 

Step 4 will be c J 1c 1 3b 1 2p 2 /2k. 

4.3. Support for Ternary Extension Fields, GF(3n) 

The Montgomery multiplication algorithm for GF 13n 2 , 

which is very similar to Algorithm B, is given below [39]: 

Algorithm C

Input:  a 1x 2 , b 1x 2 , p 1x 2 , and m

Output:  c 1x 2

Step 1:  c 1x 2 J 0

Step 2:  for i 5 0 to m 2 1

Step 3:  q 1x 2  J 1c0 1x21 ai 1x2 # b0 1x22 # p0r 1x2   1mod xk2

Step 4:  c 1x 2  J 1c 1x21 ai 1x2 # c 1x21 q 1x2 # p 1x22 /xk

Only difference is due to the computation of p0r 1x 2 , which 

is p0r 1x 2 5 2 # p0
21 1x 2mod xk (instead of p0r 1x 2 5 p0

21 1x 2

mod xk in Algorithm B). 

Original unified multiplier architecture [47] utilizes two 

layers of (3 3 2) dual-field adder 

arrays to perform addition op-

erations in Steps 3 and 4 of Mont-

gomery multiplication algorithm. 

This is due to the fact that multi-

plicand (b or b 1x 2) and modulus 

(p or p 1x 2) are assumed to be al-

ways in non-redundant form. If the 

result of a multiplication, which 

is produced in redundant form 

(e.g. carry-save representation), is 

needed for subsequent multiplica-

tions, it is immediately converted 

to non-redundant representation. 

In order to eliminate the need 

for conversion from redundant 

to non-redundant representation 

and associated circuitry, all op-

erands can be kept in redundant 

form throughout the entire  elliptic 

Figure 7. Processing unit of dual-radix architecture with radix-2 for GF 1p2  and ra-
dix-4 for GF 12n 2 .
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curve computations (e.g. elliptic curve scalar point mul-

tiplication). This, however, requires using (4 3 2) ad-

der arrays to perform addition (or subtraction) of two 

redundant form integers. Although it is laden with area 

and CPD overhead, one slice of (4 3 2) adder can easily 

be modified to perform one-digit addition in three fields 

GF 1p 2 , GF 12n 2 , and GF 13n 2  as explained in [39]. A multipli-

er that can operate in three fields can be designed in the 

same way the original unified multiplier [47] is designed. 

Two important differences of the new unified multiplier 

from the original unified multiplier is that it has two con-

trol bits (as opposed to one in the original multiplier) to 

select the field mode (GF 1p 2 , GF 12n 2 , or GF 13n 2), and that 

the processing unit (PU) has now two layers of (4 3 2) 

modified-adder arrays. In addition, RSD arithmetic is em-

ployed instead of carry-save arithmetic. 

In order to asses the merits of unified multiplier that 

performs multiplications of three fields in the same data-

path, one needs to compare the unified multiplier against 

a hypothetical architecture which has three separate 

multipliers for these three fields. The {area 3  CPD} met-

ric can be used in order to figure out the balance between 

saving in the area and overhead in the critical path delay 

that the unified multiplier will have when compared to 

the hypothetical design. Implementations of both new 

unified multiplier and hypothetical design in ASIC stan-

dard cell library demonstrate that the new unified multi-

plier considerably improves {area 3  time} metric when 

compared to the hypothetical design in [39] and the clas-

sical unified design in [47]. 

5. Inversion

In this section, we give multiplicative inversion algo-

rithms, which allow very fast and area-efficient unified 

hardware implementations. The presented algorithms 

are based on the Montgomery inversion algorithms 

given in [23]. While there are several unified inversion 

units reported in the literature [16, 43, 45] that compute 

in two fields GF 1p 2  and GF 12n 2  there has been no uni-

fied inversion unit proposed to operate in three fields. 

Therefore, we limit our discussion, which is based on 

the techniques and algorithms in [45], only to GF 1p 2  

and GF 12n 2 . 

5.1. The Montgomery Inversion 

Algorithms for GF(p) and GF(2n) 

The Montgomery inversion algorithm as defined in 

[23] computes 

 b 5 a212n    1mod p 2 ,  (1)

given a , p, where p is a prime number and n 5 <log2 p=. 

The algorithm consists of two phases: Phase I (Al-

gorithm D) whose output is the integer r such that 

r 5 a212k   1mod p 2 , where n # k # 2n and Phase II is a 

correction step and can be modified as shown in [44] 

in order to calculate a slightly different inverse that can 

more precisely be called Montgomery inverse: 

 b 5 MonInv 1a2n 2 5 a212n   1mod p 2 ,  (2)

Algorithm D

Phase I

Input:  a2n [ 31, p 2 1 4 and p

Output:  r [ 31, p 2 1 4 and k,

  where r 5 a212k2n   1mod p2  and n # k # 2n

Step 1:  u J p, v J a2n, r J 0, and s J 1

Step 2:  k J 0

Step 3:  while (v . 0)

Step 4:  if u is even then u J u/2, s J 2s

Step 5:  else if v is even then v J v/2, r J 2r

Step 6:  else if u . v then

  u J 1u 2 v 2 /2, r J r 1 s, s J 2s

Step 7:  else v J 1v 2 u 2 /2, s J s 1 r, r J 2r

Step 8:  k J k 1 1

Step 9:  if r $ p then r J r 2 p

Step 10:  return r J p 2 r and k

The second phase of the Montgomery inversion al-

gorithm simply performs 2n 2 k left (modular) shifts 

as a correction step to obtain a212n   1modp 2  from 

a212k2n   1mod p2 . The left shift operations are modular in 

the sense that a modular reduction operation is performed 

whenever the shifted value exceeds the modulus. 

In cases where word multiplications can be efficiently 

computed, another method based on Montgomery mul-

tiplication is proposed for Phase II computation in [44]. 

Considering R2 ; 22n 1mod p 2  is already a precomputed 

value in Montgomery arithmetic, two Montgomery mul-

tiplications are required to implement Phase II of the 

Montgomery inverse: 

 MonMult 1r, R22 ; 1a # 2n 221 # 2k # 22n # 22n

 1mod p 2 ; a21 # 2k  1mod p2

 MonMult 1a21 # 2k, 22n2k 2 ; a21 # 2k # 22n2k # 22n

 1mod p 2 ; a21 # 2n  1mod p2 .

Implementations of unified multiplier in ASIC standard cell library demonstrate 
that unified multiplier significantly improves area x time metric.
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The cost of the Phase II in the latter method is two 

Montgomery multiplication operation while the former 

method requires 2n 2 k multi-word shifts and expect-

edly 12n 2 k 2 /2 multi-word additions. The experiments 

in [44] show that the latter method gives a considerable 

speedup in software implementations whereby word 

size multiplier units facilitate fast Montgomery mul-

tiplication operation. However, the former method is 

more suitable for hardware implementations since shift 

 operations are usually inexpensive in hardware. With 

increasing number of hardwired multipliers in FPGA tar-

get devices, the latter method [44] may offer advantages 

for FPGA implementations. 

We aptly call this new inversion Montgomery in-

version since it takes a field element in the form of 

a2n   1mod p2  and returns a212n   1mod p2 . This is known 

as the residue form of a field element. In cryptographic 

calculations (RSA, elliptic curve or pairing-based) all in-

puts are first transformed to the residue form, interme-

diate and final results are all obtained in residue form. 

The final results are transformed back to normal form 

after the cryptographic calculations are finished. 

Montgomery multiplication and Montgomery inver-

sion as defined here together form what we call Mont-

gomery arithmetic for finite fields, whereby all values 

are in residue form. Note that Montgomery addition/

subtraction operations are identical normal modular ad-

dition/subtraction operations. Having a full set of Mont-

gomery arithmetic is especially useful in elliptic curve 

and pairing-based cryptography. 

The Montgomery inversion algorithm for GF 12n 2  is ob-

tained as follows. We first replace all additions and sub-

tractions in Algorithm D with addition in GF 12n 2 . Since it 

is possible to perform addition (and subtraction) with 

carry and addition without carry in a single arithmetic 

unit, this difference does not cause a change in the con-

trol unit of a unified inversion unit. However, Step 3 and 

Step 6 of Algorithm D need to be modified as follows: 

Step 3: while (u 1x 2 2 0)

 c

Step 6: else if deg 1u 1x 2 2 $ deg 1v 1x 2 2  then

 u 1x 2 J 1u 1x 2 1 v 1x 22 /x,

 r 1x 2 J r 1x 2 1 s 1x 2 , s 1x 2 J xs 1x 2 .

In addition, Step 8 through 9 must also be modified: 

Step 9: if sn11 5 1 then s 1x 2 J s 1x 2 1 xp 1x 2

Step 10: if sn 5 1 then s 1x 2 J s 1x 2 1 p 1x 2

Step 11: return s 1x 2  and k.

While these changes are small, they may necessitate 

a significant change to the control circuitry. The most 

important challenge is to design a unified version of 

Step 6 since other steps can easily be performed in uni-

fied fashion. In literature, several solutions are proposed 

to circumvent this problem. In [45], the unified archi-

tecture implements Step 6 as comparison of bit lengths 

of variables u and v. The method adopted in [16] is to 

implement Step 6 as an integer comparison, where the 

integer values of u 1x 2  and v 1x 2  are used. Since binary 

polynomials are just bit strings, all needs to be done is 

to treat these binary strings as integers. 

An efficient way to accelerate inversion operation is 

to apply a technique known as multibit shifting as de-

scribed in both  [16] and [45]. Algorithm D terminates 

when v 5 0 and u 5 1. Right shifting operations by one 

bit applied to u and v in Steps 4 through 7, play a domi-

nant role to diminish them to their final values. If we 

can shift them more than one bit to the right in every 

iteration of the while loop, we accelerate the execution 

of the algorithm. Indeed, u and v may happen to have 

more than one 0 bit in the least significant positions of 

their binary representations (e.g. 00, and 000). To detect 

two or three consecutive 0 bits in the least significant 

bit positions is not expensive in hardware. However, in-

creasing the number of least significant bits to check 

has two important drawbacks. Firstly, detection circuit 

will be very complicated. And secondly, the probability 

that a variable having more than three 0 bits in its least 

significant positions will quickly diminish. The experi-

ments in  [16] and [45] show that 3-bit shifting provides 

considerable advantage, which disappear for larger 

shift amounts. 

6. Other Techniques for Accelerating 

Finite Field Operations

In this section, we briefly outline several other tech-

niques to accelerate finite field operations proposed in 

the literature. 

6.1. Incomplete Modular Arithmetic for GF(p)

The finite field arithmetic for GF 1p 2  produces com-

pletely reduced integers. In other words, the result of 

an arithmetic operation is integer r , p. However, in 

platforms where word-based arithmetic is adopted (e.g. 

An efficient way to accelerate inversion operation is to apply a 
technique known as multibit shifting.
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 microprocessor-based systems), allowing a number to 

grow to the word boundary can be advantageous. Assum-

ing that n 5 <log2 p= and m 5 ew $ n where w is the word 

size and that e is the number of words needed to repre-

sent p, for an element r [ GF 1p 2  we may have r . p and 

r # 2m 2 1. Note that 2m 2 1 $ p. The number is reduced 

whenever we have r . 2m 2 1, which can be detected by 

checking whether the s 1 1st word of r is 1. This check is 

much easier than checking r . p since the latter requires 

bit manipulation in a word-based computer. 

Incomplete modular arithmetic avoids bit-level oper-

ations which are slow on microprocessors and performs 

word-level operations which are significantly faster. 

 Yanik et al. [57] propose algorithms for incomplete mod-

ular arithmetic, namely modular addition, subtraction 

and multiplication using Montgomery arithmetic for 

GF 1p 2 . They report a speedup of around 10% in elliptic 

curve cryptography through incomplete modular arith-

metic. Algorithms for incomplete modular inversion can 

be found in [44]. 

6.2. Scaled Modulus for effi cient GF(p) arithmetic

The modulus scaling was introduced by Walter [54]. 

The method is based on multiplying the prime mod-

ulus p by a small integer s to obtain a new modulus, 

m 5 p # s. Here, p is a prime of random form for which 

the modular reduction can be difficult while the new 

modulus m has special form (e.g. 2k 2 c) that facilitates 

reducing the modular reduction into simple addition/

subtraction operations. 

Working with new modulus m will produce a result 

a that is congruent to the residue obtained by reducing 

a modulo p. This follows from the fact that reduction 

is a repetitive subtraction of the modulus. Subtract-

ing m is equivalent to subtracting p, s times and thus 

1a mod m2  mod p ; a mod p. When a scaled modulus is 

used, residues will be in the range 30, m 2 1 45 30, sp 2 1 4. 

The number is partially reduced and essentially rep-

resented using <log2 s= more bits than necessary. Con-

sequently, it will be necessary that the final result is 

reduced by p to obtain a fully reduced representation. 

Naturally, this final reduction can be postponed to the 

end of cryptographic operation. 

Öztürk et al. [40] proposed a new method for finding 

appropriate scaled moduli and reported a low-power im-

plementation of elliptic curve cryptography based on the 

technique. The implementation uses the scaled moduli 

2167 1 1 5 3 # 0x2AAAAAAAAAAAAAAAAAAAAAAAAAAA 

AAAAAAAAAAAAAB, where the prime is a 166-bit integer. 

Taking advantage of a simple modular reduction due to 

low-weight special modulus 2167 1 1, the implementation 

in [40] is one of the most compact realizations of elliptic 

curve cryptography in literature. 

6.3. Arithmetic for General Extension Fields

With the increasing importance of pairing-based cryp-

tography, developing efficient algorithms for general 

extension field arithmetic becomes a popular research 

area. Pairing operations uses arithmetic in extension 

GF 1qk 2  of the finite field GF 1q 2  where the elliptic curve 

group is originally defined over the base field GF 1q 2 . 

The elements of an extension field are represented as 

polynomials of degree of at most k 2 1, where the co-

efficients of the polynomial are in the base field GF 1q 2 . 

The arithmetic of extension field GF 1qk 2  is usually per-

formed as regular polynomial arithmetic. The most 

important operation of GF 1qk 2  is again multiplication, 

which comprises polynomial multiplication and re-

duction by the irreducible polynomial of degree k 

used to define the extension field. Using irreducible 

polynomials of low-weight is a preferred method to 

decrease the complexity of the reduction phase of the 

multiplication in GF 1qk 2 . For prime extension fields, 

the polynomial xk 2 b is an irreducible polynomial for 

specifically chosen values of b [12]. xk 2 b, where b is 

a small number, will transform the polynomial reduc-

tion into simple polynomial addition operations. 

The polynomial multiplication, which is the first 

part of GF 1qk 2  multiplication is generally harder to 

implement. For efficient computation of pairing opera-

tion, k is usually chosen as a relatively small integer 

in the range of [2, 12]. Some of the typical extension 

fields used in pairing operations are GF 1p2 2 , GF 1p12 2 , 

GF 1 12m 22 2 , and GF 1 13m 26 2 . For small extension degrees 

such as GF 1p2 2  and GF 1 12m 22 2 , Karatsuba-based meth-

ods [12] usually provides the best performance. For 

larger extension degrees, tower field constructions re-

sult in better  implementations. 

In tower field constructions, there may be several al-

ternatives for the representation of the field elements. 

For instance, the ternary extension field GF 1 13m 26 2  can 

be constructed as GF 1 1 13m 22 23 2 . This means that we need 

an irreducible polynomial of degree two over GF 13m 2  

first to construct GF 132m 2 . Then an irreducible poly-

nomial of degree three over GF 132m 2  is needed to con-

struct GF 1 132m 23 2 . The choice of irreducible  polynomials 

Pairing-based cryptography necessitates efficient algorithms for 
general extension field arithmetic.
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will greatly influence the efficiency of the implementa-

tion. Similarly, the fact that multiplication in the tower 

field consists of many independent GF 13m 2  arithmetic 

operations facilitates different arrangements to take 

advantage of the parallelism due to the independent 

operations. This is especially useful in hardware imple-

mentations where a functional unit for an arithmetic 

operation can be replicated as many times as needed to 

render faster implementations [32]. There is a need for 

further research in the area of tower field arithmetic to 

accelerate pairing-based cryptography. 

7. Finite Field Arithmetic as a Building Block 

of Cryptographic Algorithms

7.1. RSA

Rivest, Shamir and Adleman proposed a novel crypto-

graphic algorithm in 1978 [41] that can be used for key 

exchange and electronic signature as well as encryp-

tion. Its security relies on the Integer Factorization Prob-

lem which is, generally believed to be a hard problem if 

the related numbers are sufficiently large. 

7.1.1. RSA Setup

Let us assume that Bob wants to send a secret message 

to Alice who should have a public-private key pair. Her 

public key is a pair of two large integers (n, e) and her 

private key is d, which is another large integer. The in-

teger n, called the modulus, is the multiplication of two 

large prime numbers, p and q. It is computationally in-

feasible to factor n into p and q when they are sufficient-

ly large. Euler’s Totient function, F 1n 2 5 1p 2 1 2 1q 2 1 2 , 

is used to determine the public exponent e and private 

exponent d. The public exponent e can be chosen ran-

domly provided that GCD 1e, F 1n 2 2 5 1; however it is 

usually chosen as a small number for fast encryption. 

The private exponent d is the multiplicative inverse of e 

with respect to modulus F 1n 2 . 

7.1.2. RSA Encryption/Decryption

To send a message m securely to Alice, Bob performs 

the modular exponentiation operation c ; me 1mod n 2 . 

Upon receiving the ciphertext message c, Alice per-

forms the modular exponentiation cd 1mod n 2 5 m. 

Since Alice is the only one who knows her private key 

d, only she can perform this computation and obtains 

the plaintext message m. As one can easily observe, 

both RSA encryption and decryption operations are 

nothing but modular exponentiations over very large 

numbers. A modular exponentiation is comprised of 

many modular multiplications, which are usually dif-

ficult to perform efficiently since the operands are 

large integers. 

7.1.3. RSA Implementation

Since RSA modulus n is a composite number, RSA arith-

metic is performed in the ring Zn. In our context, the 

basic difference between a ring of this type and prime 

finite field is that inversion in Zn is not defined for 

every element of Zn. However, RSA does not require 

inversion but only multiplication in Zn. Moreover, RSA 

modulus is an odd integer. Therefore, the Montgom-

ery multiplication architectures for prime finite field 

multiplication can be used for RSA operations without 

any modification. 

For RSA encryption and decryption, we perform 

modular exponentiation, which are nothing but re-

peated modular multiplications with an odd modulus. 

Algorithm A is a generic description of the Montgomery 

modular multiplication where radix can be anything 

from 2 to the wordsize of a computer. A pipelined orga-

nization of the multiplier as shown in Figure 6 is usually 

the best way for the hardware implementation of Algo-

rithm A both in terms of area and time complexities. 

These types of architectures are both parametric and 

scalable. Optimum number of pipeline stages can be de-

termined for a given precision and available resources. 

Similarly, the radix selection is also determined by 

the available resources. In ASIC realizations, small radix 

values (e.g. 2, 4, 8) are preferred [53, 52] since higher 

radix values necessitates the design of fast high-radix 

multipliers, which may not yield the desired efficiency. 

On the other hand, in software and FPGA realizations 

[28, 49, 38] higher radices are preferred since those 

platforms feature highly-efficient and fast (hardwired in 

FPGA) word-based multipliers. For example, Spartan 3E 

FPGA devices [56] contain very-fast hardwired 18 3 18 

bit multipliers. The design in [38] makes use of these 

multipliers and pipeline organization to obtain the most 

compact and fast  Montgomery multipliers. The required 

speed, available resources and utilization determine the 

number of pipeline stages for a given precision. Utiliza-

tion is an important metric that needs to be inspected to 

see whether the used resources are put into good use. 

If utilization is low, this may mean that it is possible to 

obtain similar efficiency using less resources. However, 

Montgomery multiplication architectures for prime finite field multiplication 
can be used for RSA operations without any modification.
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this is, most of the time, not immediate and the optimum 

designs require careful time and dependency analyses of 

the used algorithm. 

Building a modular exponentiation circuit over an ef-

ficient modular multiplier is usually straightforward. De-

pending on the modular exponentiation algorithm used, 

there exists some parallelism to accelerate the compu-

tation [38, 50]. Attacks on specific implementations of 

the modular exponentiation such as  [30, 31] and fault-

attacks [2] can compromise or weaken RSA algorithm. 

Several exponentiation algorithms [22, 20, 21] and some 

randomization techniques [15] can help protect the RSA 

implementation against these attacks. In most applica-

tions, certain degree of protection against these attacks 

is necessary. 

7.2. Elliptic Curve Cryptography

Elliptic curve cryptography was proposed by Neal Ko-

blitz [27] and Victor Miller [34], independently. The so-

lutions to the equation y2 ; x3 1 ax 1 b in GF 1p 2  along 

with an abstract point at infinity O forms an additive 

group G, which is suitable for cryptographic usage2. 

Discrete logarithm defined over the elliptic curve group 

is believed to be harder than discrete logarithm in the 

multiplicative group Zp
*. 

The solutions are also known as points, represented 

by two coordinates P 5 1x, y 2 [ GF 1p 2 , which are referred 

as affine coordinates. The group addition (i.e. point ad-

dition or doubling) requires a couple of  multiplications, 

several additions and one inversion operation in GF 1p 2 . 

If affine coordinates are used, multiplicative inversion 

is generally the most time consuming operation. Pro-

jective coordinates that represent elliptic curve points 

using three coordinates in GF 1p 2  eliminate most of the 

inversions operation at the expense of more multiplica-

tion operations. Nevertheless, projective coordinates 

require much more temporary storage space during the 

computations. For point arithmetic with projective coor-

dinates, refer to [11]. 

Elliptic curve cryptography is the main motivation 

for unified arithmetic since it is possible and sometimes 

more efficient to use elliptic curves over different finite 

fields. Therefore, it is definitely useful to have an archi-

tecture that can efficiently perform arithmetic in diverse 

set of finite fields in the same datapath. This will decrease 

the cost of the design and increase the compactness. 

7.2.1. Coordinate Selection: Projective or Affine?

An important design issue is whether to use projective 

or affine coordinates. If the inversion is roughly more 

than 10 times slower than multiplication, then using 

projective coordinates results in a faster computation of 

elliptic curve arithmetic. In software implementations, 

inversion is usually very slow compared to multiplica-

tion; therefore it is almost always better to use projec-

tive coordinates. Moreover, a large main memory elimi-

nates the concerns about higher storage requirements 

of projective coordinates. 

However, hardware implementations offer a different 

perspective. The inversion operation can be computed 

considerably faster through a specifically designed hard-

ware module than in software. If we have a fast inversion 

module, affine coordinates can provide better or compa-

rable timings. The question here is whether the hardware 

cost of an inversion unit outweighs its advantage. On the 

other hand, using projective coordinates has also an area 

overhead due to its higher demands on temporary regis-

ters. In ASIC, registers are expensive to realize compared 

to combinational circuits. Consequently, area used to 

implement inversion unit can become comparable to the 

area used for additional temporary registers used in pro-

jective coordinates. This fact was first pointed out in [43]. 

Recently, an extensive study in elliptic curve realizations 

in ASIC [25] finds out that an affine coordinate implemen-

tation performs much better than a projective coordinate 

implementation in terms of both timing and area. 

FPGA implementations of elliptic curve cryptography 

may have a similar perspective to software implementa-

tion whereby using projective coordinates is likely to 

be a better choice. Two factors affect this conclusion: 

i) registers are not very expensive compared to combi-

national logic where both are implemented similar ways 

and ii) fast, hardwired digit multipliers FPGAs facilitate 

much faster field multiplication compared to the inver-

sion operation in prime fields. However, for a decisive 

conclusion, further research is necessary. 

7.2.2. Recycling of Hardware Modules

Unlike RSA that mainly requires modular multiplication, 

elliptic curve cryptography needs different field op-

erations, namely addition/subtraction, multiplication/

squaring, and inversion/division. A compact (area-effi-

cient) architecture, is only possible through  maximizing 

2Elliptic curves over binary extension or general extension fields are defined similarly. See [33] for more details.

In software implementations, inversion is usually very slow 
compared to multiplication.
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 hardware-sharing among these various  operations. 

 Successful designs such as [39, 25] focus on recycling 

the same set of registers and functional units for dif-

ferent field operations. Both designs in [39, 25] utilize 

 carry-free adders (RSD or carry-save adders) as the fun-

damental arithmetic unit in all field operations. Carry-

free adders that can be used to implement all field opera-

tions are very fast since carries do 

not propagate. A finite field arith-

metic unit based on carry-free ad-

ders that can be utilized in differ-

ent cryptographic applications is 

illustrated in Figure 8.

7.3. Pairing-Based 

Cryptography

Bilinear pairing operation defined 

over elliptic curves emerges as an 

important cryptographic primi-

tive after a plethora of recent cryp-

tographic protocols employs them, 

such as non-interactive key agree-

ment scheme by [42], three par-

ty Diffie-Hellman key exchange 

scheme by [19], identity based 

encryption scheme proposed by 

Boneh and Franklin [5], short group signatures [4], iden-

tity based ring signature schemes [10] and finally direct 

anonymous attestation schemes [6, 7, 9, 8]. 

Let G1, G2 and GM be cyclic groups of some large prime 

order q. Then, ê:G1 3 G2 S GM is a bilinear map, which 

is efficiently computable and has the following proper-

ty: 4P [ G1, and 4Q [ G2, and 4a, b [ Zq, ê 1aP, bQ 2  5 

ê 1P, Q 2ab (Bilinearity).

Efficient constructions use ad-

ditive groups of elliptic curves 

for G1 and G2, and multiplicative 

group GM in an extension of a fi-

nite field GF 1qk 2 . GF 1q 2  here is the 

finite field over which G1 is defined 

and k is known as the embedding 

degree of G1. Embedding degree 

serves as a security parameter. 

For efficiency reasons the finite 

fields GF 1p 2 , GF 12n 2 , and GF 13m 2  

are three popular fields used to 

construct additive elliptic curve 

groups, G1 and G2. Therefore, for 

fast pairing computations, arithme-

tic in these three fields and in their 

extensions (i.e. prime extension 

GF 1pk 2 , and tower fields GF 1 12n 2k 2  

and GF 1 13m 2k 2) needs to be per-

formed efficiently. The embedding 

degree k cannot be too large for the 

pairing operation to be efficiently 

computable. The practical range of 

k is usually [2, 12].

Pairing operation requires both 

finite field (extension and base) 
Figure 9. Block diagram of a multipurpose cryptographic unit.
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and elliptic curve point arithmetic (point addition and 

doubling). A block diagram of a multi-purpose crypto-

graphic unit that can perform diverse set of arithmetic 

operations is shown in Figure 9. The hierarchical design 

of control units allows using the same units in different 

cryptographic operations. This design approach also fa-

cilitates replication of finite field arithmetic units to ex-

ploit the concurrency in the computations. 

Importance of pairing operation is that it forms a mo-

tivation for designing efficient arithmetic architectures 

for extension and tower fields, elliptic curves defined 

over larger finite fields (e.g. prime field with a 512-bit 

prime), and elliptic curves over ternary fields. Since effi-

ciency and security requirements of pairing-based cryp-

tography still pose design challenges, there is a room 

for further research on the design and implementation 

of novel architectures for the arithmetic operations in-

volved in pairing computations. 

8. Conclusions

This paper covers algorithms and architectures for 

multiplicative groups, rings, finite fields for imple-

menting the RSA and Diffie-Hellman, elliptic curve 

and pairing-based cryptography. The algorithms we 

present can be generically applied; particularly, we 

focused on polynomial bases for binary, ternary and 

general extension fields. We gave a comprehensive 

summary of finite field arithmetic in cryptography, 

covering all basic algorithms, architectures, and 

building blocks in order to create time-, power-, and 

space-efficient implementations of finite field opera-

tions. The basic arithmetic operations, i.e., addition, 

multiplication, and inversion in finite fields GF 1q 2  

where q 5 pk, particularly, p is 2 or 3 or an arbitrary 

large prime. While these choices seem to imply a di-

verse set of design possibilities, it is also possible to 

create unified and versatile implementations where a 

single hardware architecture supports several differ-

ent fields with a little extra cost. 
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