
 40 IEEE CIRCUITS AND SYSTEMS MAGAZINE 1531-636X/10/$26.00©2010 IEEE SECOND QUARTER 2010

Digital Object Identifier 10.1109/MCAS.2010.936785

Erkay Savaş and
Çetin Kaya Koç

Abstract
Cryptography is one of the most
prominent application areas of
the finite field arithmetic. Almost
all public-key cryptographic algo-
rithms including the recent algo-
rithms such as elliptic curve and
pairing-based cryptography rely
heavily on finite field arithmetic,
which needs to be performed ef-
ficiently to meet the execution
speed and design space con-
straints. These objectives con-
stitute massive challenges that
necessitate interdisciplinary re-
search efforts that will render the
best algorithms, architectures,
implementations, and design prac-
tices. This paper aims to provide
a concise perspective on design-
ing architectures for efficient fi-
nite field arithmetic for usage in
cryptography. We present differ-
ent architectures, methods and
techniques for fast execution of
cryptographic operations as well
as high utilization of resources in
the realization of cryptographic
algorithms. While it is difficult to
have a complete coverage of all
related work, this paper aims to
reflect the current trends and im-
portant implementation issues of
finite field arithmetic in the con-
text of cryptography.

1. Introduction

E
fficient implementation of cryptographic algo-

rithms has been in the focal point of major research

efforts for the last two decades. Different metrics

such as execution time (speed), implementation space

(silicon area, code size, memory usage, etc.) and power

usage/energy consumption are used to quantitatively

measure the performance of a design/implementation.

Efficiency can be defined as one of these metrics depend-

ing on the application requirements. While execution time

is important for applications where latency and through-

put is of utmost importance, implementation space is

crucial for constrained platforms. Energy and power are

also important for the latter case. Since there is almost

always a trade-off in execution time and implementation

space, faster designs generally require more area.

Efficiency of the design can also be thought as a

combined performance metric and is usually measured

Finite Field Arithmetic
for Cryptography Erkay Savaş and

Çetin Kaya Koç

Feature

© BRAND X PICTURES

Authorized licensed use limited to: CityU. Downloaded on May 30,2010 at 02:22:54 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2010 IEEE CIRCUITS AND SYSTEMS MAGAZINE 41

Erkay Savaş (erkays@sabanciuniv.edu) is with Sabanci University and Çetin Kaya Koç (koc@cs.ucsb.edu) is with Istanbul Ş ehir University and the

University of California, Santa Barbara.
1Carry-Free adders that eliminate the carry-propagation are the most popular adders in cryptographic applications.

 using area-time product that shows how effectively the

design space is utilized. Related with this, compactness of

the implementation of a cryptographic algorithm is also

an issue attracting increasing attention. A design is com-

pact if its implementation space is small compared to its

execution speed. Another criteria is the design’s versa-

tility. A design is versatile if it can be used in diverse set

cryptographic operations. Versatility and compactness

of a design assist improve the {area 3 time} metric.

Majority of cryptographic algorithms utilize arithmetic

in finite mathematical structures such as finite multiplica-

tive groups, rings, and finite fields. Having a complete set

of arithmetic operations, finite fields feature a superset

of operations of rings and multiplicative groups. While

multiplicative groups have only one defined operation

and rings do not have multiplicative inversion defined for

its every element, finite fields feature addition/subtrac-

tion, multiplication/division, and both multiplicative and

additive inversion operations. Since overwhelming per-

centage of execution time of cryptographic algorithms

is spent on these arithmetic operations, efficient imple-

mentation of these operations determines the efficiency

of the overall cryptographic system.

The basic arithmetic operations (i.e. addition, mul-

tiplication, and inversion) in finite fields, GF 1q 2 , where

q 5 pk and p is a prime integer, are heavily used in many

cryptographic algorithms such as RSA algorithm, Diffie-

Hellman key exchange algorithm [13], the US federal

Digital Signature Standard [36], elliptic curve cryptogra-

phy [27, 33], and also recently pairing-based cryptogra-

phy [3, 48]. Most popular finite fields that are commonly

used in cryptographic applications due to elliptic curve

based schemes are prime fields GF 1p 2 and binary exten-

sion fields GF 12n 2 . Recently, pairing-based cryptogra-

phy based on bilinear pairings over elliptic curve points

stimulated a significant level of interest in the arithmetic

of ternary extension fields, GF 13n 2 .

The aforementioned three popular finite fields feature

dissimilar mathematical structures. Therefore, it is impor-

tant to design algorithms and architectures that will ex-

ploit the specific properties of the underlying field to give

the best performance for the chosen efficiency metric. On

the other hand, elements of different finite fields are rep-

resented using similar data structures inside the digital

circuits and computers. Furthermore, similarity of algo-

rithms for basic arithmetic operations in these fields allow

diverse utilization of the functional units in the design.

A paramount example of diverse utilization of the func-

tional units is the unified module design [47]. For exam-

ple, the steps of the original Montgomery multiplication

algorithm [35], which is one of the most efficient methods

for multiplication in finite fields and rings, GF 1p 2 and Zn,

slightly differ from those of the Montgomery multiplica-

tion algorithm for binary extension fields, GF 12n 2 , given in

[28]. In addition, it is almost straightforward to extend the

Montgomery multiplication algorithm for ternary exten-

sion fields, GF 13n 2 , by essentially keeping the steps of the

algorithm intact. Similarly, addition or inversion opera-

tions can be performed using similar algorithms that can

be realized together in the same digital circuit. To summa-

rize, an arithmetic module which is versatile in the sense

that it can be adjusted to operate in more than one of the

three fields is feasible, provided that this extra functional-

ity does not lead to an excessive increase in area and dra-

matic decrease in speed. One important result from the

recent research is that a unified module that is capable of

performing arithmetic in more than one field in the same,

unified datapath brings about many advantages, one of

which is the improved {area 3 time} product.

Exploiting the same set of functional units in the com-

putations of a variety of cryptographic operations is es-

sential in designing efficient and compact architectures

and implementations. For instance, any field operation can

be performed using only adder circuits. Subtraction can

easily transformed into addition (the two are identical in

finite fields of characteristic two), multiplication can be

seen as repeated addition, efficient multiplicative inver-

sion algorithms feature only addition, subtraction and shift

operations. Therefore, an architecture for finite field opera-

tions can be designed around a set of fast adder circuits1.

In this paper, we provide a survey of algorithms, ar-

chitectures, and design practices that allow fast, efficient

and compact implementations of finite field arithmetic.

We target three categories of cryptographic algorithms:

Cryptographic algorithms that use fi nite multipli- ■

cative groups and rings such as RSA,

Elliptic curve cryptography, ■

Pairing-based cryptography. ■

Cryptographic algorithms utilize arithmetic in finite mathematical structures
such as finite multiplicative groups, rings, and finite fields.

Authorized licensed use limited to: CityU. Downloaded on May 30,2010 at 02:22:54 UTC from IEEE Xplore. Restrictions apply.

 42 IEEE CIRCUITS AND SYSTEMS MAGAZINE SECOND QUARTER 2010

We present algorithms for arithmetic operations

that can be generically applied. For example, we focus

on the usage of the polynomial base for binary, ternary

and general extension fields. Special polynomials (e.g.

trinomials, pentanomials) that can be beneficial in field

multiplication are not emphasized here since they may

not be generic; except for the general extension fields

where computations can be made considerably faster

when specific irreducible polynomials are used.

2. Fundamentals of Finite Fields

and Their Arithmetic

The elements of the prime finite field GF 1p 2 are the in-

tegers in the set 50, 1, 2, c, p 2 16 where p is an odd

prime. The addition and multiplication operations in

GF 1p 2 are modular operations performed in two steps:

regular integer addition or multiplication, and 1)

reduction by the prime modulus 2) p if the result of the

fi rst step is greater than or equal to the modulus.

The elements of the binary extension field GF 12n 2 can

be represented as binary polynomials of degree less than

n if polynomial basis representation is used. Analogous

to the odd prime used in GF 1p 2 , a binary irreducible

polynomial of degree n is used to construct GF 12n 2 . The

addition in GF 12n 2 is modulo-2 addition of correspond-

ing coefficients of two polynomials. Since it is basically

a polynomial addition there is no carry propagation and

the degree of the resulting polynomial cannot exceed

n 2 1. On the other hand, multiplication in GF 12n 2 is more

complicated and sometimes it is beneficial to use other

types of representation techniques than standard poly-

nomial basis such as Gaussian normal basis [18]. Here,

we always use polynomial basis for GF 12n 2 because of its

suitability to the proposed design principles.

Polynomial basis representation of GF 12n 2 is deter-

mined by an irreducible binary polynomial p 1x 2 of degree

n. Given p 1x 2 , all the binary polynomials of degree less than

n, which has the form A 1x 2 5 an21x
n21 1 c1 a1x 1 a0,

are the elements of GF 12n 2 . Multiplication in GF 12n 2 , simi-

lar to multiplication in GF 1p 2 , is performed in two steps:

polynomial multiplication followed by 1)

a polynomial division of the result from Step 1 by 2)

the irreducible polynomial p 1x 2 .

Similar to binary extension fields, the elements of

 ternary extension fields GF 13n 2 can be represented as

(ternary) polynomials of degree at most n 2 1, whose co-

efficients are from the base field GF 13 2 . In order to utilize

polynomial basis for ternary arithmetic, an irreducible

ternary polynomial p 1x 2 of degree n is needed. The ad-

dition operation in GF 13n 2 is polynomial addition where

the corresponding coefficients of two ternary polyno-

mials are added modulo-3 and there is no carry propa-

gation. The multiplication is also done in two steps: a

polynomial multiplication followed by reduction by the

irreducible ternary polynomial p 1x 2 of the field.

3. Compact Architectures for

Addition and Subtraction

The most fundamental arithmetic operation in finite

fields and rings, on which all other arithmetic opera-

tions are based, is the addition operation. The key point

to an efficient finite field arithmetic is to design fast and

light-weight adder circuits. In many cryptographic appli-

cations in order to balance the speed and area efficiency,

adders utilizing redundant representation are preferred.

The most basic form of redundant representation is the

carry-save form in which an integer is represented as

the sum of two other integers, namely x 5 xC 1 xS where

xC and xS are known as carry and sum parts of the in-

teger, respectively. The addition operation with carry-

save form can be performed using full-adders which

have three binary inputs and two binary outputs. Full-

adders connected to each other can perform addition

where one of the operands are in redundant form while

the other in non-redundant form. For n-bit operands, the

carry-save adder will need n full adders.

It is possible to perform both GF 1p 2 and GF 12n 2 addi-

tion operation using so-called dual-field adder (DFA) [47],

which is illustrated in Figure 1. DFA shown in Figure 1

is basically a full-adder equipped with the capability of

performing bit addition both with and without carry. It

has an input denoted as fsel that provides this function-

ality. When fsel 5 1, the dual-adder circuit performs bit-

wise addition with carry which enables the circuit to op-

erate in GF 1p 2 -mode. When fsel 5 0, on the other hand,

the output C out is forced to 0 regardless of the values of

the inputs. Consequently, the output S produces the re-

sult of modulo-2 addition of three binary input values.

At most only two of the three binary input values of DFA

can have nonzero values in GF 12n 2 -mode.

An important aspect of designing a DFA is not to in-

crease the critical path delay (CPD) of the circuit, which

otherwise would have a negative effect in the maximum

applicable clock frequency. However, a small amount of

overhead in area can be accommodated. Gate level re-

alization of DFA shown in Figure 1 clearly demonstrates

The key point to an efficient finite field arithmetic is to design
fast and light-weight adder circuits.

Authorized licensed use limited to: CityU. Downloaded on May 30,2010 at 02:22:54 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2010 IEEE CIRCUITS AND SYSTEMS MAGAZINE 43

that there is no increase in the CPD since the two XOR

gates dominate the CPD as in the case of a regular full

adder. Area differs slightly due to one extra input, i.e. fsel

and additional gates that are used to suppress the carry

out, C out, in GF 12n 2 -mode. However, this increase in area

is very small, therefore tolerable, compared to the case

where we have two separate adders for GF 1p 2 and GF 12n 2

which would incur much more overhead in area.

As described above, 3 3 2 adder arrays in carry-save

adders are in many cases sufficient since addition op-

eration is mostly needed in multiplications where one of

the operands is always in non-redundant form as in [51].

In this case, the carry-save form is only used for par-

tial product during the multiplication and the result of

the multiplication has to be converted to non-redundant

form using a carry-propagation adder after the multipli-

cation is completed. However, when the two operands

are both in carry-save redundant form, then 3 3 2 adder

arrays cannot be used. Instead, 4 3 2 adder arrays are

needed to operate on operands that are in redundant

form. Using 4 3 2 adder arrays eliminate the need for

an immediate conversion after multiplication, which is

especially useful in elliptic curve cryptography where

there are many addition and subtraction operations in

between multiplication operations.

Classical carry-save redundant representation meth-

od has one major drawback due to the difficulty of per-

forming subtraction operation. When two’s complement

representation is used to facilitate the representation of

negative numbers as well as subtraction operation, the

carry-save representation poses certain difficulties. For

example, during the subtraction of two’s complement

operands, a carry overflow indicate whether the result

is negative or positive. Since there can be a hidden car-

ry overflow in carry-save representation, computation-

ally intensive operations may be needed to determine

the sign of the result, which in turn incurs significant

increase in CPD and area.

Avizienis [1] proposed the redundant signed digit

(RSD) representation to overcome this difficulty. Arith-

metic in the RSD representation

is almost identical to carry-save

arithmetic. An integer is still rep-

resented by two positive integers;

however, this time the integer is

now represented as the differ-

ence (as opposed to the sum in

carry-save representation) of two

other integers. An integer x, there-

fore, is represented by x1 and x2,

where x 5 x1 2 x2. As can easily

be deduced from the definition

of RSD, there is no need for two’s

complement representation to handle negative numbers

and subtraction operation. The RSD is, thus, a more natu-

ral representation when both addition and subtraction

operations need to be supported. This is indeed the case

in elliptic curve cryptography and Montgomery multipli-

cation and inversion algorithms. An additional benefit

of RSD representation is the fact that the comparison

operation in GF 1p 2 -mode is now possible and efficient.

Integer comparison in GF 1p 2 -mode can be performed uti-

lizing a subtraction operation. After subtracting one inte-

ger from the other, a sign test can be performed directly

by checking the first nonzero bit in significant positions

of the result. This is in general an easy method that can

be implemented by masking the most significant bits to

determine which number is greater.

Realization of RSD arithmetic is very similar to car-

ry-save arithmetic. RSD arithmetic needs generalized

full adders which are shown in Figure 2. As observable

from Figure 2, GFA-0 is a conventional full adder. From

the realization perspective, GFA-1, GFA-2 and GFA-3 are

equivalent to GFA-0 realization in ASIC and thus there is

no associated overhead in either CPD or area.

The addition of two n-bit RSD integers, x and y,

z 5 x 1 y, can be done by connecting two layers of GFAs

of types 1 and 2 as shown in Figure 3. An additional cir-

cuitry is needed to force the digit instances of (1, 1) to

(0, 0) since 1 2 1 5 0. Subtraction of two n-bit integers,

Figure 1. The dual-field adder circuit.

S

Cout

C in

xi
yi

fsel

+

Figure 2. Generalized full adders.

Logic Symbol

Type

Function

GF-0 GF-1 GF-2 GF-3

x x x x
y y y y

z z z z

C C C C
S S S S

x + y + z = 2C + S

x – y + z = 2C – S

–x + y – z = –2C + S

–x – y – z = –2C – S

Authorized licensed use limited to: CityU. Downloaded on May 30,2010 at 02:22:54 UTC from IEEE Xplore. Restrictions apply.

 44 IEEE CIRCUITS AND SYSTEMS MAGAZINE SECOND QUARTER 2010

t 5 x 2 y can be realized using the same addition circuit

in Figure 3 by swapping y1 and y2. The adder (or sub-

tracter) circuit which is originally designed for GF 1p 2

arithmetic can easily be converted into a dual-field ad-

der (or subtracter) by forcing the carry output of each

GFA into 0 in GF 12n 2 -mode.

Another side benefit of RSD representation and as-

sociated adder structures is their suitability to a fully

unified arithmetic that incorporates addition/subtrac-

tion in three major finite fields, namely GF 1p 2 , GF 12n 2

and GF 13n 2 . Below is the RSD representation of elements

of these three fields:

Prime fi eld ■ GF 1p 2 : Elements of prime fi elds can be

represented as integers in binary form. Assuming

that the digits are signed, the values that digits

have and their corresponding representations are

50, 1, 2 16 and 5 10, 0 2 , 11, 0 2 , 10, 1 2 6.

Binary extension fi eld ■ GF 12n 2 : A common practice

is to consider elements of binary extension fi eld

as polynomials with coeffi cients from GF 12 2 . This

allows to represent GF 12n 2 elements by simply ar-

ranging the coeffi cients of the polynomial into a

binary string. A digit in GF 12n 2 -mode can take the

values of 1 and 0, which can be represented as

5 10, 0 2 , 11, 0 2 6.

Ternary extension fi eld ■ GF 13n 2 : Elements of terna-

ry extension fi elds can be considered as polynomi-

als whose coeffi cients are from GF 13 2 . Thus, each

coeffi cient can take the values 22, 21, 2, 1, 2.

The digit values 2 2 and 2 are congruent to 1 and

21 modulo 3, respectively. Therefore, the RSD

representations for possible coeffi cient values of

0, 1, and 21 are 5 10, 0 2 , 11, 0 2 , 10, 1 2 6.

A unified adder that operates in three fields can be

derived from the addition circuit in Figure 3. When com-

pared to GF 1p 2 -only adder, the unified adder circuit has

only marginally higher CPD while the overhead in area

can be higher. However, the area cost of three non-uni-

fied adders implemented in three separate circuits far

outweighs this overhead in the

unified design as shown in [39].

4. Multiplication

In this section, we firstly provide

efficient architectures for Mont-

gomery multiplication algorithm.

These architectures are suitable for

ASIC as well as FPGA implementa-

tions. We then introduce the unified

Montgomery multiplication algo-

rithm in [47], which operates only

in GF 1p 2 and GF 12n 2 . We then pres-

ent a dual-radix unified multiplier

in [46] where the multiplier calculates faster in GF 12n 2

-mode than in GF 1p 2 -mode. We finally discuss the support

in the unified multiplier for multiplication in GF 13n 2 .

4.1. Montgomery Multiplication Algorithm

In [35], Montgomery described a modular multiplication

method which proved to be very efficient in both hard-

ware and software implementations. An obvious advan-

tage of the method is that it replaces division operations

with simple shift operations. The method adds multiples

of the modulus rather than subtracting it from the partial

result. And unlike the subtraction of modulus in the regu-

lar modular multiplication which can be performed after

all the digits of the multiplicand are processed for a given

multiplier digit, the addition operation can start immedi-

ately after the least significant digit of the multiplicand is

processed. Especially the second feature accounts for the

inherent concurrency in the algorithm. Refer to [35, 14,

29] for detailed explanation of the algorithm.

Given two integers a and b, and a prime modulus

p, the Montgomery multiplication algorithm computes

c 5 MonMult 1a, b 2 5 a # b # R21 1mod p2 where R 5 2n

usually and a, b , p , R and p is an n-bit prime number.

The Montgomery multiplication does not directly com-

pute c 5 a # b 1mod p2, therefore certain transformation

operations must be applied to the operands a and b be-

fore the multiplication and to the intermediate result c in

order to obtain the final result c. These transformations

are applied as in the following example:

a 5 MonMult 1a, R2 25 a # R2 # R21 1mod p25 a # R 1mod p2,

b 5 MonMult 1b, R2 25 b # R2 # R21 1mod p25 b # R 1modp2,

 c 5 MonMult 1c, 1 25 c # R # R21 1modp 2 5 c 1modp2.

Provided that R2 1modp2 is precomputed and saved, we

need only a single MonMult operation to carry out each

of these transformations. However, because of these

transformation operations, performing a single modular

multiplication using MonMult might not be advantageous

Figure 3. Addition circuit with GFAs for two n-bit operands in RSD form.

0

0

0

00

xn – 1
–

zn – 1
– zn – 1

+ zn – 2
–zn + 1

+zn + 1
– zn

– zn
+

xn – 2
–

x0
+

y0
–

z0
+

z0
–z1

+ z0
+

y0
+

x0
–

yn – 1
–

yn – 1
+ yn – 2

+

yn – 2
–

xn – 1
+ xn – 2

+

Authorized licensed use limited to: CityU. Downloaded on May 30,2010 at 02:22:54 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2010 IEEE CIRCUITS AND SYSTEMS MAGAZINE 45

even though there is an attempt to make it efficient for a

few modular multiplications by eliminating the need for

these transformations [37]. Its advantage, on the other

hand, becomes obvious in applications requiring multi-

plication-intensive calculations such as modular expo-

nentiation, elliptic curve point operations, and pairing

calculations over elliptic curve points.

The Montgomery multiplication algorithm with radix-

2k for GF 1p 2 can be given as in the following:

Algorithm A

Input: a, b [31, p 2 1 4, p, and m

Output: c [31, p 2 1 4

Step 1: c J 0

Step 2: for i 5 0 to m 2 1

Step 3: q J 1c0 1 ai
b0 2 # 1p r0 2 1mod 2k 2

Step 4: c J 1c 1 ai
b 1 q # p 2 /2k

where p r0 5 2k 2 p0
21mod 2k. In the algorithm, the multipli-

er a is written with base (radix)- 2k as an array of digits ai

so that a 5 a
m21

i50
ai
2k # i, where m is the number of digits

in a and m 5 <n/k=. In Step 4, the multiplicand b, the mod-

ulus p, and the partial result c enter the computations as

full-precision integers. However, in the real implementa-

tions b, p, and c can be treated as multi-word integers in

order to design a scalable multiplier and in each clock

cycle one word of these values will be processed. One

may also consider this representation as writing the

multiplicand, the modulus and the partial result with

digits b1 j 2, p1 j2, and c1j2 of w bits, so that b 5 a
e21

j50
b1 j 2 # 2w # j,

p 5a
e21

j50
p1 j 2 # 2w # j, and c 5a

e21

j50
c1 j 2 # 2w # j where e 5 <n/w=.

Note that the base-2w used to represent b, p, and c in

Step 4 is different from the radix-2k used to represent the

multiplier digit ai in Step 3 and 4. Note also that q, c0, b0,

and p r0 are all k-bit integers.

In order to avoid a possible confusion due to the us-

age of two different bases, we use the term word refer the

digits of b, p and c when implementing Step 4, and use

the term digit exclusively for the multiplier a, and for b0,

p r0, and c0 in Step 3 when they are in the same equation

with the digits of a. Digits can be easily distinguished

by the subscript notation (e.g. ai or b0) from superscript

notation of word (e.g. b1 j 2). We will also use the notation

xi, j to denote the jth bit in the ith digit of x. The notation

c 0ck

1 j 2
 represents k least significant bits of the word c1j2. In

addition, the radix of the multiplier architecture is deter-

mined by the base used to represent the multiplier a.

The Montgomery multiplication algorithm for GF 12n 2

is given below:

Algorithm B

Input: a 1x 2 , b 1x 2 , p 1x 2 , and m

Output: c 1x 2

Step 1: c 1x 2 J 0

Step 2: for i 5 0 to m 2 1

Step 3: q 1x 2 J 1c01x 21 ai 1x2 # b0 1x22 # p0r 1x2 1mod xk 2

Step 4: c 1x 2 J 1c 1x 2 1 ai 1x 2 # c 1x 2 1 q 1x 2 # p 1x 2 2 /xk

where p0r 1x 2 5 p0
21 1x 2 1mod xk 2 . As one easily observes,

the two algorithms are almost identical except that the

addition operation in GF 1p 2 becomes a bitwise modulo-2

addition in GF 12n 2 . Although the operands are integers

in the former algorithm and binary polynomials in the

latter, the representations of both are identical in digital

systems. Note that in Algorithm A, there must be an extra

reduction step at the end to reduce the result into the de-

sired range if it is greater than the modulus. On the other

hand, this step is not an essential part of the algorithm

and there are simple conditions that can be added to the

algorithm in order to eliminate it [55, 17], hence we inten-

tionally exclude it from the algorithm definitions.

One can also observe that the computations per-

formed in Step 3 are of different nature in two algorithms

and depending on the magnitude of the radix used, the

part of the circuit in charge of implementing them might

become very complicated. However, one can easily dem-

onstrate that these computations can be performed in a

unified circuitry for small radices.

From this point on, we will only use the notation in-

troduced in Algorithm A for both GF 1p 2 and GF 12n 2 and

polynomial notation is only used when it is necessary.

Operations will be deduced from the mode (GF 1p 2 or

GF 12n 2) in which the module is operated.

4.1.1. Processing Unit

In this section, we explain the design details of the pro-

cessing unit (PU) with radix-2k, which is basically respon-

sible for performing Step 3 and Step 4 of Algorithm A:

Step 3: q J 1c0 1 ai
b0 2 # 1p r0 2 1mod 2k 2

Step 4: c J 1c 1 ai
b 1 q # p 2 /2k.

In Figure 4 the execution graph of the Montgomery

multiplication algorithm and dependencies between

Advantage of Montgomery arithmetic is in applications requiring
multiplication-intensive calculations such as modular exponentiation

and elliptic curve point operations.

Authorized licensed use limited to: CityU. Downloaded on May 30,2010 at 02:22:54 UTC from IEEE Xplore. Restrictions apply.

 46 IEEE CIRCUITS AND SYSTEMS MAGAZINE SECOND QUARTER 2010

the operations are illustrat-

ed. Type I circle in the graph

 represents the operations in

Step 3 and Step 4 for the least sig-

nificant words of b and p without

the right shift operation. Type II

circle represents Step 4 for the

current words of b and p without

the right shift operation and the

shift operation for the previous

words of b and p.

Each column in the dependen-

cy graph represents the computa-

tion which can be undertaken by a

module which we call processing

unit (PU) for one digit of the mul-

tiplicand a. Each PU scans every

word of the modulus p and the

multiplicand b. Each circle repre-

sents the operations for one word

of p, b and c. The time advances

from top to bottom.

Figure 5 illustrates the archi-

tecture of a processing unit (PU).

Two k 3 w multipliers compute

ai
b and q # p, respectively, where

ai and q are k-bit digits. Note that a

PU processes c, b, and a one word

at a time. The shift and alignment

module shifts the previous word of

the partial result c by k-bit to the

right and fills the leftmost k-bits

of the result with the least signifi-

cant k-bit of the current word of

the partial result c. The circuit for Step 3 is not shown in

Figure 5.

In FPGA implementations, the digits of the multiplier and

the words of the multiplicand can be of the same length to

take advantage of the fast hardwired multipliers [38]. On

the other hand, in ASIC implementations where the high

radix multipliers are expensive, the radix for the multiplier

is usually chosen as a small number. When radix is rela-

tively a small number, the multipliers in Figure 5 becomes

simple circuits [53, 52, 47]. For unified implementations,

both the multipliers and adders are designed to operate in

both prime and binary extension fields. For this, the partial

result is kept in carry-save form in GF 1p 2 mode.

The multiplier architecture consists of one or (gen-

erally) more processing units (PU), identical to the one

shown in Figure 5, organized in a pipeline. An example

of pipeline organization with t PUs is shown in Figure 6.

Each PU takes a digit (k-bits) from the multiplier a, the

size of which depends on the radix, and operates on the

Figure 4. Execution graph of Montgomery multiplication algorithm [51].

a0

a1

a2

0

0

0

0

0

b(1), p(1)

b(1), p(1)

b(0), p(0)

b(0), p(0)

b(0), p(0)

b(2), p(2)

b(2), p(2)

b(e – 2),

p(e – 2)

b(e – 4),

p(e – 4)

b(e – 3),

p(e – 3)

b(e – 2),

p(e – 2)

b(e – 1),

p(e – 1)

c (0)

c (0)

c (1)

c (2)

c (e – 1)

c (e)

b(3), p(3)

b(4), p(4)

0, 0

Time

I

I

I

II

II

II

II

II

II

II

II

II

II

II

II

II

0, 0

Figure 5. Processing unit with radix-2k and word size of w.

k × w-bit

Multiplier

k × w-bit

Multiplier

ai

q

b(j)

p(j)

c(j)

Adder

w

Adder

k w

w
Next PU

w

wk

k

Shift and Alignment

Module

Authorized licensed use limited to: CityU. Downloaded on May 30,2010 at 02:22:54 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2010 IEEE CIRCUITS AND SYSTEMS MAGAZINE 47

words of b, c and p successively starting from the least

 significant words. Starting from the second cycle it gen-

erates one word of partial result each cycle which is com-

municated to the next PU. After e 1 1 clock cycles, where

e is the number of words in the modulus (i.e. e 5 <n/w=),

a PU finishes its portion of work and becomes free for

further computation. When the last PU in the pipeline

starts generating the partial results, the control circuitry

checks if the first PU is available. If the first PU is still

working on an earlier computation, the results from the

last PU should be stored in a buffer until the first PU

 becomes available again. Refer to [51] for more informa-

tion about the length of the buffer to store the partial re-

sults when there is no available PU in the pipeline.

A redundant representation (e.g. carry-save) is used

for the partial result in the architecture to speedup the

addition operations. Thus, for the partial result we can

write c 5 cc 1 cs, where cc and cs stand for the carry and

sum part of the partial result, respectively. In addition,

one must note that the length of the register for partial re-

sult, c in Figure 6 is twice wider than the other registers.

The proposed architecture allows designs with differ-

ent word lengths and pipeline organizations for different

values of operand precision. In addition, the area can be

treated as a design constraint. Thus, one can adjust the

design to the given area, and choose appropriate values

for the word length and the number of pipeline stages,

in accordance. For efficient multiplication architectures

and high utilization of hardware resources for FPGA

implementations, one can refer to [38].

The propagation delay of PU is independent of word

size w when w is relatively small (increases only slightly

for larger values of w due to carry-free arithmetic), and

thus we assume that the clock cycle is the same for all

word sizes of practical interest. The area used by reg-

isters for partial sum, operands and modulus does not

change with the word or digit sizes.

The proposed scheme yields the worst performance

for the case w 5 m, since some extra cycles are intro-

duced by PU in order to allow word-serial computation,

when compared to other full-precision conventional

designs. On the other hand, using many pipeline stages

with small word size values brings about no advantage

after certain point resulting in poor utilization. There-

fore, the performance evaluation reduces into finding an

optimum configuration for given constraints.

ASIC standard cell realizations of both unified and

non-unified (GF 1p 2 -only) multipliers demonstrate that

area overhead of the unified multiplier is only 2.75%

and that there is no overhead in critical path delay [47].

Therefore, the saving in the area is significant when the

unified design is compared to a hypothetical architec-

ture that has two separate datapath for GF 1p 2 and GF 12n 2

multipliers. Furthermore, this saving in area does not

bring about a penalty in time performance, therefore

improvement in area is identical to the improvement in

metric of 5area 3 time6.

4.2. Dual-Radix Multiplier

The original unified multiplier in [47] uses radix-2 design

and offers an equal performance for both GF 1p 2 and GF 12n 2

of the same precision in terms of clock count. For this very

reason, however, the original design is not optimized since

it does not take advantage of using GF 12n 2 , which is, in

general, more efficient than GF 1p 2 in hardware implemen-

tations. Our first observation is that this situation can be

remedied by putting to use the part of the circuitry which

is underutilized in GF 12n 2 mode. This allows us to run the

multiplier module in higher radix values for GF 12n 2 than

those for GF 1p 2 at the expense of extra gates without sig-

nificantly increasing the signal propagation time.

In this section, we present the radix-(2, 4) multiplier

architecture introduced in [46], where the multiplier

uses radix-2 in GF 1p 2 -mode while it uses radix-4 in GF 12n 2

-mode. The radix-(2, 4) multiplier is in fact the first mem-

ber of the dual-radix multiplier family, which also in-

cludes radix-(4, 8) and radix-(8, 16) [46]. We only include

the radix-(2, 4) multiplier to keep the discussion simple.

4.2.1. Precomputation in Montgomery

Multiplication Algorithm

The dual-radix unified multiplier architecture utilizes a

precomputation technique in order to decrease the criti-

cal path delay of the original unified multiplier in [47].

Note that Step 4 of the Algorithm A computes

c J 1c 1 ai
b 1 q # p 2 /2k,

where division by 2k is simply a right shift by k bits and

q is calculated in the previous step. Depending on the

Figure 6. Pipeline organization with t processing units.

PU1 PU2 PUt

Register A

DEMUX

kInput

k
k

k

w

w

0

Input

Input
Output

R
e
g.

R
e
g.

R
e
g.

Register C

Register B

Register P

Authorized licensed use limited to: CityU. Downloaded on May 30,2010 at 02:22:54 UTC from IEEE Xplore. Restrictions apply.

 48 IEEE CIRCUITS AND SYSTEMS MAGAZINE SECOND QUARTER 2010

 radix value chosen for the multiplier, the k-bit digit q

can be determined by the least significant digits (LSD)

of b, p and c, and the current digit of a. Similarly, the

multiple of b that participates in the addition is deter-

mined solely by ai. As a result, the LSDs of the operands,

ai, b0, and c0 will determine which one of the values in

50, b, p, b 1 p, 2p, 2b, 2b 1 2p, c6 is added to the partial

result c. If one precomputes and stores the value of b 1 p,

the calculations in Step 4 can be significantly simplified.

There are two implications of the precomputation

technique. Firstly, the precomputed value must be

stored, implying an increase in the register space. And

secondly, there must be a so-called selection logic to se-

lect which multiples of b and p must participate in the

addition in Step 4. The selection logic can be designed

in such a way that it is parallel to PU and thus it results

in no overhead in the critical path delay. On the other

hand, the precomputation technique also simplifies the

design since Step 4 can be performed with only one ad-

dition, once the selection logic generates its output.

4.2.2. Processing Unit for Dual-Radix Multiplier

As pointed out earlier, a processing unit (PU) is ba-

sically responsible for performing Step 3 and Step 4

of Algorithm A. Since the multiplier uses radix-2 for

GF 1p 2 , the least-significant bits (LSB) of the oper-

and digits, ai, b0, and c0 determine which one of the

values in 50, b, p, b 1 p6 will be added to the partial

result c. Multiplication is performed in radix-4 in

GF 12n 2 . Therefore, the LSDs (least significant digits)

of b, p, and c and of the current digit of a are required

to determine q. The LSB of p is always 1, then only

p0, 1, the second least significant bit of the modulus,

is included in the computations. Consequently,

ai, 1, ai, 0, b0, 1, b0, 0, c0, 1, c0, 0 and p0, 1 determine one of the

following values to be added to the partial result:

50, b, p, b 1 p, x # b, x # p, x # 1b 1 p 2 6 (Note that ai, j is the

jth least significant bit of ith digit of a). Multiplication

by x results in shifting one bit to the left, hence it is

identical to multiplication by 2. Division by xk and 2k

are identical operations and the latter is used to de-

note the right shift operation by k bits.

In Figure 7, the architecture of the processing unit

(PU) used in the dual-radix multiplier is illustrated. The

local control circuit in Figure 7 contains the selection

logic which generates the signals, to determine which

multiples of b and p will be in the calculations. For

 example, the selection signal (110 2 , 111 2) indicates that

Step 4 will be c J 1c 1 3b 1 2p 2 /2k.

4.3. Support for Ternary Extension Fields, GF(3n)

The Montgomery multiplication algorithm for GF 13n 2 ,

which is very similar to Algorithm B, is given below [39]:

Algorithm C

Input: a 1x 2 , b 1x 2 , p 1x 2 , and m

Output: c 1x 2

Step 1: c 1x 2 J 0

Step 2: for i 5 0 to m 2 1

Step 3: q 1x 2 J 1c0 1x21 ai 1x2 # b0 1x22 # p0r 1x2 1mod xk2

Step 4: c 1x 2 J 1c 1x21 ai 1x2 # c 1x21 q 1x2 # p 1x22 /xk

Only difference is due to the computation of p0r 1x 2 , which

is p0r 1x 2 5 2 # p0
21 1x 2mod xk (instead of p0r 1x 2 5 p0

21 1x 2

mod xk in Algorithm B).

Original unified multiplier architecture [47] utilizes two

layers of (3 3 2) dual-field adder

arrays to perform addition op-

erations in Steps 3 and 4 of Mont-

gomery multiplication algorithm.

This is due to the fact that multi-

plicand (b or b 1x 2) and modulus

(p or p 1x 2) are assumed to be al-

ways in non-redundant form. If the

result of a multiplication, which

is produced in redundant form

(e.g. carry-save representation), is

needed for subsequent multiplica-

tions, it is immediately converted

to non-redundant representation.

In order to eliminate the need

for conversion from redundant

to non-redundant representation

and associated circuitry, all op-

erands can be kept in redundant

form throughout the entire elliptic

Figure 7. Processing unit of dual-radix architecture with radix-2 for GF 1p2 and ra-
dix-4 for GF 12n 2 .

Multiplexer

Selection

Logic
Dual-Field

Adder Shift and

Alignment

Layer

Multiplexer

<< 1 << 1 << 1

00

b (j) + p (j)

Next PU

Next PU

ai
b0

p0
c0

fsel

b (j)

c (j)

p (j)

R

e

g.

Authorized licensed use limited to: CityU. Downloaded on May 30,2010 at 02:22:54 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2010 IEEE CIRCUITS AND SYSTEMS MAGAZINE 49

curve computations (e.g. elliptic curve scalar point mul-

tiplication). This, however, requires using (4 3 2) ad-

der arrays to perform addition (or subtraction) of two

redundant form integers. Although it is laden with area

and CPD overhead, one slice of (4 3 2) adder can easily

be modified to perform one-digit addition in three fields

GF 1p 2 , GF 12n 2 , and GF 13n 2 as explained in [39]. A multipli-

er that can operate in three fields can be designed in the

same way the original unified multiplier [47] is designed.

Two important differences of the new unified multiplier

from the original unified multiplier is that it has two con-

trol bits (as opposed to one in the original multiplier) to

select the field mode (GF 1p 2 , GF 12n 2 , or GF 13n 2), and that

the processing unit (PU) has now two layers of (4 3 2)

modified-adder arrays. In addition, RSD arithmetic is em-

ployed instead of carry-save arithmetic.

In order to asses the merits of unified multiplier that

performs multiplications of three fields in the same data-

path, one needs to compare the unified multiplier against

a hypothetical architecture which has three separate

multipliers for these three fields. The {area 3 CPD} met-

ric can be used in order to figure out the balance between

saving in the area and overhead in the critical path delay

that the unified multiplier will have when compared to

the hypothetical design. Implementations of both new

unified multiplier and hypothetical design in ASIC stan-

dard cell library demonstrate that the new unified multi-

plier considerably improves {area 3 time} metric when

compared to the hypothetical design in [39] and the clas-

sical unified design in [47].

5. Inversion

In this section, we give multiplicative inversion algo-

rithms, which allow very fast and area-efficient unified

hardware implementations. The presented algorithms

are based on the Montgomery inversion algorithms

given in [23]. While there are several unified inversion

units reported in the literature [16, 43, 45] that compute

in two fields GF 1p 2 and GF 12n 2 there has been no uni-

fied inversion unit proposed to operate in three fields.

Therefore, we limit our discussion, which is based on

the techniques and algorithms in [45], only to GF 1p 2

and GF 12n 2 .

5.1. The Montgomery Inversion

Algorithms for GF(p) and GF(2n)

The Montgomery inversion algorithm as defined in

[23] computes

 b 5 a212n 1mod p 2 , (1)

given a , p, where p is a prime number and n 5 <log2 p=.

The algorithm consists of two phases: Phase I (Al-

gorithm D) whose output is the integer r such that

r 5 a212k 1mod p 2 , where n # k # 2n and Phase II is a

correction step and can be modified as shown in [44]

in order to calculate a slightly different inverse that can

more precisely be called Montgomery inverse:

 b 5 MonInv 1a2n 2 5 a212n 1mod p 2 , (2)

Algorithm D

Phase I

Input: a2n [31, p 2 1 4 and p

Output: r [31, p 2 1 4 and k,

 where r 5 a212k2n 1mod p2 and n # k # 2n

Step 1: u J p, v J a2n, r J 0, and s J 1

Step 2: k J 0

Step 3: while (v . 0)

Step 4: if u is even then u J u/2, s J 2s

Step 5: else if v is even then v J v/2, r J 2r

Step 6: else if u . v then

 u J 1u 2 v 2 /2, r J r 1 s, s J 2s

Step 7: else v J 1v 2 u 2 /2, s J s 1 r, r J 2r

Step 8: k J k 1 1

Step 9: if r $ p then r J r 2 p

Step 10: return r J p 2 r and k

The second phase of the Montgomery inversion al-

gorithm simply performs 2n 2 k left (modular) shifts

as a correction step to obtain a212n 1modp 2 from

a212k2n 1mod p2 . The left shift operations are modular in

the sense that a modular reduction operation is performed

whenever the shifted value exceeds the modulus.

In cases where word multiplications can be efficiently

computed, another method based on Montgomery mul-

tiplication is proposed for Phase II computation in [44].

Considering R2 ; 22n 1mod p 2 is already a precomputed

value in Montgomery arithmetic, two Montgomery mul-

tiplications are required to implement Phase II of the

Montgomery inverse:

 MonMult 1r, R22 ; 1a # 2n 221 # 2k # 22n # 22n

 1mod p 2 ; a21 # 2k 1mod p2

 MonMult 1a21 # 2k, 22n2k 2 ; a21 # 2k # 22n2k # 22n

 1mod p 2 ; a21 # 2n 1mod p2 .

Implementations of unified multiplier in ASIC standard cell library demonstrate
that unified multiplier significantly improves area x time metric.

Authorized licensed use limited to: CityU. Downloaded on May 30,2010 at 02:22:54 UTC from IEEE Xplore. Restrictions apply.

 50 IEEE CIRCUITS AND SYSTEMS MAGAZINE SECOND QUARTER 2010

The cost of the Phase II in the latter method is two

Montgomery multiplication operation while the former

method requires 2n 2 k multi-word shifts and expect-

edly 12n 2 k 2 /2 multi-word additions. The experiments

in [44] show that the latter method gives a considerable

speedup in software implementations whereby word

size multiplier units facilitate fast Montgomery mul-

tiplication operation. However, the former method is

more suitable for hardware implementations since shift

 operations are usually inexpensive in hardware. With

increasing number of hardwired multipliers in FPGA tar-

get devices, the latter method [44] may offer advantages

for FPGA implementations.

We aptly call this new inversion Montgomery in-

version since it takes a field element in the form of

a2n 1mod p2 and returns a212n 1mod p2 . This is known

as the residue form of a field element. In cryptographic

calculations (RSA, elliptic curve or pairing-based) all in-

puts are first transformed to the residue form, interme-

diate and final results are all obtained in residue form.

The final results are transformed back to normal form

after the cryptographic calculations are finished.

Montgomery multiplication and Montgomery inver-

sion as defined here together form what we call Mont-

gomery arithmetic for finite fields, whereby all values

are in residue form. Note that Montgomery addition/

subtraction operations are identical normal modular ad-

dition/subtraction operations. Having a full set of Mont-

gomery arithmetic is especially useful in elliptic curve

and pairing-based cryptography.

The Montgomery inversion algorithm for GF 12n 2 is ob-

tained as follows. We first replace all additions and sub-

tractions in Algorithm D with addition in GF 12n 2 . Since it

is possible to perform addition (and subtraction) with

carry and addition without carry in a single arithmetic

unit, this difference does not cause a change in the con-

trol unit of a unified inversion unit. However, Step 3 and

Step 6 of Algorithm D need to be modified as follows:

Step 3: while (u 1x 2 2 0)

 c

Step 6: else if deg 1u 1x 2 2 $ deg 1v 1x 2 2 then

 u 1x 2 J 1u 1x 2 1 v 1x 22 /x,

 r 1x 2 J r 1x 2 1 s 1x 2 , s 1x 2 J xs 1x 2 .

In addition, Step 8 through 9 must also be modified:

Step 9: if sn11 5 1 then s 1x 2 J s 1x 2 1 xp 1x 2

Step 10: if sn 5 1 then s 1x 2 J s 1x 2 1 p 1x 2

Step 11: return s 1x 2 and k.

While these changes are small, they may necessitate

a significant change to the control circuitry. The most

important challenge is to design a unified version of

Step 6 since other steps can easily be performed in uni-

fied fashion. In literature, several solutions are proposed

to circumvent this problem. In [45], the unified archi-

tecture implements Step 6 as comparison of bit lengths

of variables u and v. The method adopted in [16] is to

implement Step 6 as an integer comparison, where the

integer values of u 1x 2 and v 1x 2 are used. Since binary

polynomials are just bit strings, all needs to be done is

to treat these binary strings as integers.

An efficient way to accelerate inversion operation is

to apply a technique known as multibit shifting as de-

scribed in both [16] and [45]. Algorithm D terminates

when v 5 0 and u 5 1. Right shifting operations by one

bit applied to u and v in Steps 4 through 7, play a domi-

nant role to diminish them to their final values. If we

can shift them more than one bit to the right in every

iteration of the while loop, we accelerate the execution

of the algorithm. Indeed, u and v may happen to have

more than one 0 bit in the least significant positions of

their binary representations (e.g. 00, and 000). To detect

two or three consecutive 0 bits in the least significant

bit positions is not expensive in hardware. However, in-

creasing the number of least significant bits to check

has two important drawbacks. Firstly, detection circuit

will be very complicated. And secondly, the probability

that a variable having more than three 0 bits in its least

significant positions will quickly diminish. The experi-

ments in [16] and [45] show that 3-bit shifting provides

considerable advantage, which disappear for larger

shift amounts.

6. Other Techniques for Accelerating

Finite Field Operations

In this section, we briefly outline several other tech-

niques to accelerate finite field operations proposed in

the literature.

6.1. Incomplete Modular Arithmetic for GF(p)

The finite field arithmetic for GF 1p 2 produces com-

pletely reduced integers. In other words, the result of

an arithmetic operation is integer r , p. However, in

platforms where word-based arithmetic is adopted (e.g.

An efficient way to accelerate inversion operation is to apply a
technique known as multibit shifting.

Authorized licensed use limited to: CityU. Downloaded on May 30,2010 at 02:22:54 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2010 IEEE CIRCUITS AND SYSTEMS MAGAZINE 51

 microprocessor-based systems), allowing a number to

grow to the word boundary can be advantageous. Assum-

ing that n 5 <log2 p= and m 5 ew $ n where w is the word

size and that e is the number of words needed to repre-

sent p, for an element r [GF 1p 2 we may have r . p and

r # 2m 2 1. Note that 2m 2 1 $ p. The number is reduced

whenever we have r . 2m 2 1, which can be detected by

checking whether the s 1 1st word of r is 1. This check is

much easier than checking r . p since the latter requires

bit manipulation in a word-based computer.

Incomplete modular arithmetic avoids bit-level oper-

ations which are slow on microprocessors and performs

word-level operations which are significantly faster.

 Yanik et al. [57] propose algorithms for incomplete mod-

ular arithmetic, namely modular addition, subtraction

and multiplication using Montgomery arithmetic for

GF 1p 2 . They report a speedup of around 10% in elliptic

curve cryptography through incomplete modular arith-

metic. Algorithms for incomplete modular inversion can

be found in [44].

6.2. Scaled Modulus for effi cient GF(p) arithmetic

The modulus scaling was introduced by Walter [54].

The method is based on multiplying the prime mod-

ulus p by a small integer s to obtain a new modulus,

m 5 p # s. Here, p is a prime of random form for which

the modular reduction can be difficult while the new

modulus m has special form (e.g. 2k 2 c) that facilitates

reducing the modular reduction into simple addition/

subtraction operations.

Working with new modulus m will produce a result

a that is congruent to the residue obtained by reducing

a modulo p. This follows from the fact that reduction

is a repetitive subtraction of the modulus. Subtract-

ing m is equivalent to subtracting p, s times and thus

1a mod m2 mod p ; a mod p. When a scaled modulus is

used, residues will be in the range 30, m 2 1 45 30, sp 2 1 4.

The number is partially reduced and essentially rep-

resented using <log2 s= more bits than necessary. Con-

sequently, it will be necessary that the final result is

reduced by p to obtain a fully reduced representation.

Naturally, this final reduction can be postponed to the

end of cryptographic operation.

Öztürk et al. [40] proposed a new method for finding

appropriate scaled moduli and reported a low-power im-

plementation of elliptic curve cryptography based on the

technique. The implementation uses the scaled moduli

2167 1 1 5 3 # 0x2AAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAB, where the prime is a 166-bit integer.

Taking advantage of a simple modular reduction due to

low-weight special modulus 2167 1 1, the implementation

in [40] is one of the most compact realizations of elliptic

curve cryptography in literature.

6.3. Arithmetic for General Extension Fields

With the increasing importance of pairing-based cryp-

tography, developing efficient algorithms for general

extension field arithmetic becomes a popular research

area. Pairing operations uses arithmetic in extension

GF 1qk 2 of the finite field GF 1q 2 where the elliptic curve

group is originally defined over the base field GF 1q 2 .

The elements of an extension field are represented as

polynomials of degree of at most k 2 1, where the co-

efficients of the polynomial are in the base field GF 1q 2 .

The arithmetic of extension field GF 1qk 2 is usually per-

formed as regular polynomial arithmetic. The most

important operation of GF 1qk 2 is again multiplication,

which comprises polynomial multiplication and re-

duction by the irreducible polynomial of degree k

used to define the extension field. Using irreducible

polynomials of low-weight is a preferred method to

decrease the complexity of the reduction phase of the

multiplication in GF 1qk 2 . For prime extension fields,

the polynomial xk 2 b is an irreducible polynomial for

specifically chosen values of b [12]. xk 2 b, where b is

a small number, will transform the polynomial reduc-

tion into simple polynomial addition operations.

The polynomial multiplication, which is the first

part of GF 1qk 2 multiplication is generally harder to

implement. For efficient computation of pairing opera-

tion, k is usually chosen as a relatively small integer

in the range of [2, 12]. Some of the typical extension

fields used in pairing operations are GF 1p2 2 , GF 1p12 2 ,

GF 1 12m 22 2 , and GF 1 13m 26 2 . For small extension degrees

such as GF 1p2 2 and GF 1 12m 22 2 , Karatsuba-based meth-

ods [12] usually provides the best performance. For

larger extension degrees, tower field constructions re-

sult in better implementations.

In tower field constructions, there may be several al-

ternatives for the representation of the field elements.

For instance, the ternary extension field GF 1 13m 26 2 can

be constructed as GF 1 1 13m 22 23 2 . This means that we need

an irreducible polynomial of degree two over GF 13m 2

first to construct GF 132m 2 . Then an irreducible poly-

nomial of degree three over GF 132m 2 is needed to con-

struct GF 1 132m 23 2 . The choice of irreducible polynomials

Pairing-based cryptography necessitates efficient algorithms for
general extension field arithmetic.

Authorized licensed use limited to: CityU. Downloaded on May 30,2010 at 02:22:54 UTC from IEEE Xplore. Restrictions apply.

 52 IEEE CIRCUITS AND SYSTEMS MAGAZINE SECOND QUARTER 2010

will greatly influence the efficiency of the implementa-

tion. Similarly, the fact that multiplication in the tower

field consists of many independent GF 13m 2 arithmetic

operations facilitates different arrangements to take

advantage of the parallelism due to the independent

operations. This is especially useful in hardware imple-

mentations where a functional unit for an arithmetic

operation can be replicated as many times as needed to

render faster implementations [32]. There is a need for

further research in the area of tower field arithmetic to

accelerate pairing-based cryptography.

7. Finite Field Arithmetic as a Building Block

of Cryptographic Algorithms

7.1. RSA

Rivest, Shamir and Adleman proposed a novel crypto-

graphic algorithm in 1978 [41] that can be used for key

exchange and electronic signature as well as encryp-

tion. Its security relies on the Integer Factorization Prob-

lem which is, generally believed to be a hard problem if

the related numbers are sufficiently large.

7.1.1. RSA Setup

Let us assume that Bob wants to send a secret message

to Alice who should have a public-private key pair. Her

public key is a pair of two large integers (n, e) and her

private key is d, which is another large integer. The in-

teger n, called the modulus, is the multiplication of two

large prime numbers, p and q. It is computationally in-

feasible to factor n into p and q when they are sufficient-

ly large. Euler’s Totient function, F 1n 2 5 1p 2 1 2 1q 2 1 2 ,

is used to determine the public exponent e and private

exponent d. The public exponent e can be chosen ran-

domly provided that GCD 1e, F 1n 2 2 5 1; however it is

usually chosen as a small number for fast encryption.

The private exponent d is the multiplicative inverse of e

with respect to modulus F 1n 2 .

7.1.2. RSA Encryption/Decryption

To send a message m securely to Alice, Bob performs

the modular exponentiation operation c ; me 1mod n 2 .

Upon receiving the ciphertext message c, Alice per-

forms the modular exponentiation cd 1mod n 2 5 m.

Since Alice is the only one who knows her private key

d, only she can perform this computation and obtains

the plaintext message m. As one can easily observe,

both RSA encryption and decryption operations are

nothing but modular exponentiations over very large

numbers. A modular exponentiation is comprised of

many modular multiplications, which are usually dif-

ficult to perform efficiently since the operands are

large integers.

7.1.3. RSA Implementation

Since RSA modulus n is a composite number, RSA arith-

metic is performed in the ring Zn. In our context, the

basic difference between a ring of this type and prime

finite field is that inversion in Zn is not defined for

every element of Zn. However, RSA does not require

inversion but only multiplication in Zn. Moreover, RSA

modulus is an odd integer. Therefore, the Montgom-

ery multiplication architectures for prime finite field

multiplication can be used for RSA operations without

any modification.

For RSA encryption and decryption, we perform

modular exponentiation, which are nothing but re-

peated modular multiplications with an odd modulus.

Algorithm A is a generic description of the Montgomery

modular multiplication where radix can be anything

from 2 to the wordsize of a computer. A pipelined orga-

nization of the multiplier as shown in Figure 6 is usually

the best way for the hardware implementation of Algo-

rithm A both in terms of area and time complexities.

These types of architectures are both parametric and

scalable. Optimum number of pipeline stages can be de-

termined for a given precision and available resources.

Similarly, the radix selection is also determined by

the available resources. In ASIC realizations, small radix

values (e.g. 2, 4, 8) are preferred [53, 52] since higher

radix values necessitates the design of fast high-radix

multipliers, which may not yield the desired efficiency.

On the other hand, in software and FPGA realizations

[28, 49, 38] higher radices are preferred since those

platforms feature highly-efficient and fast (hardwired in

FPGA) word-based multipliers. For example, Spartan 3E

FPGA devices [56] contain very-fast hardwired 18 3 18

bit multipliers. The design in [38] makes use of these

multipliers and pipeline organization to obtain the most

compact and fast Montgomery multipliers. The required

speed, available resources and utilization determine the

number of pipeline stages for a given precision. Utiliza-

tion is an important metric that needs to be inspected to

see whether the used resources are put into good use.

If utilization is low, this may mean that it is possible to

obtain similar efficiency using less resources. However,

Montgomery multiplication architectures for prime finite field multiplication
can be used for RSA operations without any modification.

Authorized licensed use limited to: CityU. Downloaded on May 30,2010 at 02:22:54 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2010 IEEE CIRCUITS AND SYSTEMS MAGAZINE 53

this is, most of the time, not immediate and the optimum

designs require careful time and dependency analyses of

the used algorithm.

Building a modular exponentiation circuit over an ef-

ficient modular multiplier is usually straightforward. De-

pending on the modular exponentiation algorithm used,

there exists some parallelism to accelerate the compu-

tation [38, 50]. Attacks on specific implementations of

the modular exponentiation such as [30, 31] and fault-

attacks [2] can compromise or weaken RSA algorithm.

Several exponentiation algorithms [22, 20, 21] and some

randomization techniques [15] can help protect the RSA

implementation against these attacks. In most applica-

tions, certain degree of protection against these attacks

is necessary.

7.2. Elliptic Curve Cryptography

Elliptic curve cryptography was proposed by Neal Ko-

blitz [27] and Victor Miller [34], independently. The so-

lutions to the equation y2 ; x3 1 ax 1 b in GF 1p 2 along

with an abstract point at infinity O forms an additive

group G, which is suitable for cryptographic usage2.

Discrete logarithm defined over the elliptic curve group

is believed to be harder than discrete logarithm in the

multiplicative group Zp
*.

The solutions are also known as points, represented

by two coordinates P 5 1x, y 2 [GF 1p 2 , which are referred

as affine coordinates. The group addition (i.e. point ad-

dition or doubling) requires a couple of multiplications,

several additions and one inversion operation in GF 1p 2 .

If affine coordinates are used, multiplicative inversion

is generally the most time consuming operation. Pro-

jective coordinates that represent elliptic curve points

using three coordinates in GF 1p 2 eliminate most of the

inversions operation at the expense of more multiplica-

tion operations. Nevertheless, projective coordinates

require much more temporary storage space during the

computations. For point arithmetic with projective coor-

dinates, refer to [11].

Elliptic curve cryptography is the main motivation

for unified arithmetic since it is possible and sometimes

more efficient to use elliptic curves over different finite

fields. Therefore, it is definitely useful to have an archi-

tecture that can efficiently perform arithmetic in diverse

set of finite fields in the same datapath. This will decrease

the cost of the design and increase the compactness.

7.2.1. Coordinate Selection: Projective or Affine?

An important design issue is whether to use projective

or affine coordinates. If the inversion is roughly more

than 10 times slower than multiplication, then using

projective coordinates results in a faster computation of

elliptic curve arithmetic. In software implementations,

inversion is usually very slow compared to multiplica-

tion; therefore it is almost always better to use projec-

tive coordinates. Moreover, a large main memory elimi-

nates the concerns about higher storage requirements

of projective coordinates.

However, hardware implementations offer a different

perspective. The inversion operation can be computed

considerably faster through a specifically designed hard-

ware module than in software. If we have a fast inversion

module, affine coordinates can provide better or compa-

rable timings. The question here is whether the hardware

cost of an inversion unit outweighs its advantage. On the

other hand, using projective coordinates has also an area

overhead due to its higher demands on temporary regis-

ters. In ASIC, registers are expensive to realize compared

to combinational circuits. Consequently, area used to

implement inversion unit can become comparable to the

area used for additional temporary registers used in pro-

jective coordinates. This fact was first pointed out in [43].

Recently, an extensive study in elliptic curve realizations

in ASIC [25] finds out that an affine coordinate implemen-

tation performs much better than a projective coordinate

implementation in terms of both timing and area.

FPGA implementations of elliptic curve cryptography

may have a similar perspective to software implementa-

tion whereby using projective coordinates is likely to

be a better choice. Two factors affect this conclusion:

i) registers are not very expensive compared to combi-

national logic where both are implemented similar ways

and ii) fast, hardwired digit multipliers FPGAs facilitate

much faster field multiplication compared to the inver-

sion operation in prime fields. However, for a decisive

conclusion, further research is necessary.

7.2.2. Recycling of Hardware Modules

Unlike RSA that mainly requires modular multiplication,

elliptic curve cryptography needs different field op-

erations, namely addition/subtraction, multiplication/

squaring, and inversion/division. A compact (area-effi-

cient) architecture, is only possible through maximizing

2Elliptic curves over binary extension or general extension fields are defined similarly. See [33] for more details.

In software implementations, inversion is usually very slow
compared to multiplication.

Authorized licensed use limited to: CityU. Downloaded on May 30,2010 at 02:22:54 UTC from IEEE Xplore. Restrictions apply.

 54 IEEE CIRCUITS AND SYSTEMS MAGAZINE SECOND QUARTER 2010

 hardware-sharing among these various operations.

 Successful designs such as [39, 25] focus on recycling

the same set of registers and functional units for dif-

ferent field operations. Both designs in [39, 25] utilize

 carry-free adders (RSD or carry-save adders) as the fun-

damental arithmetic unit in all field operations. Carry-

free adders that can be used to implement all field opera-

tions are very fast since carries do

not propagate. A finite field arith-

metic unit based on carry-free ad-

ders that can be utilized in differ-

ent cryptographic applications is

illustrated in Figure 8.

7.3. Pairing-Based

Cryptography

Bilinear pairing operation defined

over elliptic curves emerges as an

important cryptographic primi-

tive after a plethora of recent cryp-

tographic protocols employs them,

such as non-interactive key agree-

ment scheme by [42], three par-

ty Diffie-Hellman key exchange

scheme by [19], identity based

encryption scheme proposed by

Boneh and Franklin [5], short group signatures [4], iden-

tity based ring signature schemes [10] and finally direct

anonymous attestation schemes [6, 7, 9, 8].

Let G1, G2 and GM be cyclic groups of some large prime

order q. Then, ê:G1 3 G2 S GM is a bilinear map, which

is efficiently computable and has the following proper-

ty: 4P [G1, and 4Q [G2, and 4a, b [Zq, ê 1aP, bQ 2 5

ê 1P, Q 2ab (Bilinearity).

Efficient constructions use ad-

ditive groups of elliptic curves

for G1 and G2, and multiplicative

group GM in an extension of a fi-

nite field GF 1qk 2 . GF 1q 2 here is the

finite field over which G1 is defined

and k is known as the embedding

degree of G1. Embedding degree

serves as a security parameter.

For efficiency reasons the finite

fields GF 1p 2 , GF 12n 2 , and GF 13m 2

are three popular fields used to

construct additive elliptic curve

groups, G1 and G2. Therefore, for

fast pairing computations, arithme-

tic in these three fields and in their

extensions (i.e. prime extension

GF 1pk 2 , and tower fields GF 1 12n 2k 2

and GF 1 13m 2k 2) needs to be per-

formed efficiently. The embedding

degree k cannot be too large for the

pairing operation to be efficiently

computable. The practical range of

k is usually [2, 12].

Pairing operation requires both

finite field (extension and base)
Figure 9. Block diagram of a multipurpose cryptographic unit.

FAU

Registers

Multiplexers

Control Unit for

Point Multiplication

MUXDEMUX

Registers

MUX

Inputs

Control Unit for

Pairing Operation

Control Unit for

Cryptographic Operation

Control Unit for

Point Addition

and Doubling

Point Addition and

Doubling Unit (PADU)

Figure 8. finite field arithmetic unit for multipurpose cryptographic usage.

Carry-Free Adder

Units

Registers

Multiplexers

Inputs

Finite Field Arithmetic Unit (FAU)

Outputs

Control

Input and

Output

Control Unit for

Finite and Extension

Field Arithmetic

Authorized licensed use limited to: CityU. Downloaded on May 30,2010 at 02:22:54 UTC from IEEE Xplore. Restrictions apply.

SECOND QUARTER 2010 IEEE CIRCUITS AND SYSTEMS MAGAZINE 55

and elliptic curve point arithmetic (point addition and

doubling). A block diagram of a multi-purpose crypto-

graphic unit that can perform diverse set of arithmetic

operations is shown in Figure 9. The hierarchical design

of control units allows using the same units in different

cryptographic operations. This design approach also fa-

cilitates replication of finite field arithmetic units to ex-

ploit the concurrency in the computations.

Importance of pairing operation is that it forms a mo-

tivation for designing efficient arithmetic architectures

for extension and tower fields, elliptic curves defined

over larger finite fields (e.g. prime field with a 512-bit

prime), and elliptic curves over ternary fields. Since effi-

ciency and security requirements of pairing-based cryp-

tography still pose design challenges, there is a room

for further research on the design and implementation

of novel architectures for the arithmetic operations in-

volved in pairing computations.

8. Conclusions

This paper covers algorithms and architectures for

multiplicative groups, rings, finite fields for imple-

menting the RSA and Diffie-Hellman, elliptic curve

and pairing-based cryptography. The algorithms we

present can be generically applied; particularly, we

focused on polynomial bases for binary, ternary and

general extension fields. We gave a comprehensive

summary of finite field arithmetic in cryptography,

covering all basic algorithms, architectures, and

building blocks in order to create time-, power-, and

space-efficient implementations of finite field opera-

tions. The basic arithmetic operations, i.e., addition,

multiplication, and inversion in finite fields GF 1q 2

where q 5 pk, particularly, p is 2 or 3 or an arbitrary

large prime. While these choices seem to imply a di-

verse set of design possibilities, it is also possible to

create unified and versatile implementations where a

single hardware architecture supports several differ-

ent fields with a little extra cost.

Erkay Savaş received the BS (1990)

and MS (1994) degrees in electrical

engineering from the Electronics and

Communications Engineering Depart-

ment at Istanbul Technical University.

He completed the Ph.D. degree in the

Department of Electrical and Computer

Engineering at Oregon State University in June 2000.

He had worked for various companies and research

 institutions before he joined Sabanci University as an

assistant professor in 2002. He is the director of the

Cryptography and Information Security Group (CISec)

of Sabanci University. His research interests include

cryptography, data and communication security, priva-

cy in biometrics, trusted computing, security and pri-

vacy in data mining applications, embedded systems

security, and distributed systems. He is a member of

IEEE, ACM, the IEEE Computer Society, and the Interna-

tional Association of Cryptologic Research (IACR).

Çetin Kaya Koç received his Ph.D. in

Electrical & Computer Engineering from

University of California Santa Barbara in

1988. He was an Assistant Professor at

University of Houston (1988–1992), As-

sistant, Associate and Full Professor at

Oregon State University (1992–2007). He

established Information Security Laboratory at Oregon

State University, and received Award for Outstanding

and Sustained Research Leadership in September 2001.

His research interests are in cryptographic hardware

and embedded systems, secure hardware design, side-

channel attacks and countermeasures, algorithms and

architectures for computer arithmetic and finite fields.

Koç has also been in the editorial boards of IEEE Trans-

actions on Computers (2003–2008) and IEEE Transactions

on Mobile Computing (2003–2007). Furthermore, he was

a guest co-editor of two issues (April 2003 & November

2008) of IEEE Transactions on Computers on cryptograph-

ic and cryptanalytic hardware and embedded systems.

Koç was elected as IEEE Fellow in 2007 for his contri-

butions to cryptographic engineering.

Currently, Koç is a professor of Computer Science at

Istanbul Şehir University and an adjunct professor in the

Department of Computer Science and the College of Cre-

ative Studies at University of California Santa Barbara.

References
[1] A. Avizienis, “Signed-digit number representations for fast parallel

arithmetic,” IRE Trans. Electron. Comput., vol. EC, no. 10, pp. 389–400,

Sept. 1961.

[2] D. Boneh, R. A. Demillo, and R. J. Lipton, “On the importance of

eliminating errors in cryptographic computations,” J. Cryptology, vol.

14, pp. 101–119, 2001.

[3] D. Boneh and M. K. Franklin, “Identity-based encryption from the

Weil pairing,” in CRYPTO (LNCS, vol. 2139), J. Kilian, Ed. New York:

Springer-Verlag, 2001, pp. 213–229.

[4] D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,” in

CRYPTO (LNCS, vol. 3152), M. K. Franklin, Ed. New York: Springer-Ver-

lag, 2004, pp. 41–55.

[5] D. Boneh and M. K. Franklin, “Identity-based encryption from the

Weil pairing,” in CRYPTO (LNCS, vol. 2139), J. Kilian, Ed. New York:

Springer-Verlag, 2001, pp. 213–229.

[6] E. F. Brickell, J. Camenisch, and L. Chen, “Direct anonymous attesta-

tion,” in Proc. ACM Conf. Computer and Communications Security, V. Atluri,

B. Pfi tzmann, and P. D. McDaniel, Eds. ACM, 2004, pp. 132–145.

[7] E. Brickell, L. Chen, and J. Li, “A new direct anonymous attestation

scheme from bilinear maps,” in TRUST (LNCS, vol. 4968), P. Lipp, A.-R. Sa-

deghi, and K.-M. Koch, Eds. New York: Springer-Verlag, 2008, pp. 166–178.

[8] L. Chen, P. Morrissey, and N. Smart. (2009). DAA: Fixing the pair-

ing based protocols. Cryptology ePrint Archive, Rep. 2009/198 [Online].

Available: http://eprint.iacr.org/

Authorized licensed use limited to: CityU. Downloaded on May 30,2010 at 02:22:54 UTC from IEEE Xplore. Restrictions apply.

 56 IEEE CIRCUITS AND SYSTEMS MAGAZINE SECOND QUARTER 2010

[9] L. Chen, P. Morrissey, and N. P. Smart, “Pairings in trusted comput-

ing,” in Pairing (LNCS, vol. 5209), S. D. Galbraith and K. G. Paterson, Eds.

New York: Springer-Verlag, 2008, pp. 1–17.

[10] S. S. M. Chow, L. C. K. Hui, and S.-M. Yiu, “Identity based threshold

ring signature,” in ICISC (LNCS, vol. 3506), C. Park and S. Chee, Eds. New

York: Springer-Verlag, 2004, pp. 218–232.

[11] H. Cohen, A. Miyaji, and T. Ono, “Effi cient elliptic curve exponentia-

tion using mixed coordinates,” in ASIACRYPT (LNCS, vol. 1514), K. Ohta

and D. Pei, Eds. New York: Springer-Verlag, 1998, pp. 51–65.

[12] A. J. Devegili, C. Higeartaigh, and M. Scott. (2006). Multiplication

and squaring on pairing-friendly fields. Cryptology ePrint Archive, Rep.

2006/471 [Online]. Available: http://eprint.iacr.org/

[13] W. Diffi e and M. E. Hellman, “New directions in cryptography,” IEEE

Trans. Inform. Theory, vol. 22, pp. 644–654, Nov. 1976.

[14] S. E. Eldridge, “An faster modular multiplication algorithm,” Int. J.

Comput. Math., vol. 40, no. 1, pp. 63–68, 1991.

[15] C. Giraud, “An RSA implementation resistant to fault attacks and

to simple power analysis,” IEEE Trans. Comput., vol. 55, no. 9, pp. 1116–

1120, 2006.

[16] A. A.-A. Gutub, A. F. Tenca, E. Savaş, and Ç. K. Koç, “Scalable and

unifi ed hardware to compute Montgomery inverse in GF 1p 2 and GF 12k 2 ,”

in CHES (LNCS, vol. 2523), B. S. Kaliski, Jr., Ç. K. Koç, and C. Paar, Eds.

New York: Springer-Verlag, 2002, pp. 484–499.

[17] G. Hachez and J.-J. Quisquater, “Montgomery exponentiation with

no fi nal subtractions: Improved results,” in CHES (LNCS, vol. 1965), Ç. K.

Koç and C. Paar, Eds. New York: Springer-Verlag, 2000, pp. 293–301.

[18] Standard Specifications for Public-Key Cryptography, IEEE P1363,

2000.

[19] A. Joux, “A one round protocol for tripartite Diffi e-Hellman,” in

ANTS (LNCS, vol. 1838), W. Bosma, Ed. New York: Springer-Verlag, 2000,

pp. 385–394.

[20] M. Joye, “Highly regular right-to-left algorithms for scalar multi-

plication,” in CHES (LNCS, vol. 4727). New York: Springer-Verlag, 2007,

pp. 135–147. [21] M. Joye, “Highly regular m-ary powering ladders,” in

Selected Areas in Cryptography (LNCS, vol. 5867), M. J. J. Jr., V. Rijmen,

and R. Safavi-Naini, Eds. New York: Springer-Verlag, 2009, pp. 350–363.

[22] M. Joye and S.-M. Yen, “The Montgomery powering ladder,” in CHES

(LNCS, vol. 2523), B. S. Kaliski, Jr., Ç. K. Koç, and C. Paar, Eds. New York:

Springer-Verlag, 2002, pp. 291–302.

[23] B. S. Kaliski, Jr., “The Montgomery inverse and its applications,”

IEEE Trans. Comput., vol. 44, no. 8, pp. 1064–1065, Aug. 1995.

[24] B. S. Kaliski, Jr., Ç. K. Koç, and C. Paar, Eds., “Cryptographic

hardware and embedded systems—CHES 2002,” in Proc. 4th Int.

Workshop (LNCS, vol. 2523), Redwood Shores, CA, Aug. 13–15, 2002.

New York: Springer-Verlag, 2003.

[25] D. Karakoyunlu, F. K. Gurkaynak, B. Sunar, and Y. Leblebici, “Effi cient

and side-channel-aware implementations of elliptic curve cryptosystems

over prime fi elds,” IET Inform. Security, vol. 4, no. 1, pp. 30–43, 2010.

[26] J. Kilian, Ed., Advances in Cryptology—CRYPTO 2001 (LNCS, vol.

2139). New York: Springer-Verlag, 2001.

[27] N. Koblitz, “Elliptic curve cryptosystems,” Math. Comput., vol. 48,

no. 177, pp. 203–209, Jan. 1987.

[28] Ç. K. Koç and T. Acar, “Montgomery multiplication in GF 12k 2 ,” Des.,

Codes Cryptogr., vol. 14, no. 1, pp. 57–69, Apr. 1998.

[29] Ç. K. Koç, T. Acar, and B. S. Kaliski, Jr., “Analyzing and comparing

Montgomery multiplication algorithms,” IEEE Micro, vol. 16, no. 3, pp.

26–33, June 1996.

[30] P. C. Kocher, “Timing attacks on implementations of Diffi e-Hellman,

RSA, DSS, and other systems,” in CRYPTO (LNCS, vol. 1109), N. Koblitz,

Ed. New York: Springer-Verlag, 1996, pp. 104–113.

[31] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in

CRYPTO (LNCS, vol. 1666), M. J. Wiener, Ed. New York: Springer-Verlag,

1999, pp. 388–397.

[32] G. Kömürcü and E. Savaş, “An effi cient hardware implementation

of the Tate pairing in characteristic three,” in ICONS. IEEE Computer

Society, 2008, pp. 23–28. [33] A. J. Menezes, Elliptic Curve Public Key

Cryptosystems. Norwell, MA: Kluwer, 1993.

[34] V. S. Miller, “Use of elliptic curves in cryptography,” in CRYPTO

(LNCS, vol. 218), H. C. Williams, Ed. New York: Springer-Verlag, 1985,

pp. 417–426.

[35] P. L. Montgomery, “Modular multiplication without trial division,”

Math. Comput., vol. 44, no. 170, pp. 519–521, Apr. 1985.

[36] National Institute for Standards and Technology, “Digital signature

standard (DSS),” Fed. Reg., vol. 56, p. 169, Aug. 1991.

[37] J.-H. Oh and S.-J. Moon, “Modular multiplication method,” IEE Proc.

Comput. Digital Tech., vol. 145, no. 4, pp. 317–318, July 1998.

[38] E. Öksüzoglu and E. Savaş, “Parametric, secure and compact im-

plementation of RSA on FPGA,” in RECONFIG ’08: Proc. 2008 Int. Conf.

Reconfigurable Computing and FPGAs. Washington, DC: IEEE Computer

Society, 2008, pp. 391–396.

[39] E. Öztürk, B. Sunar, and E. Savaş, “A versatile Montgomery mul-

tiplier architecture with characteristic three support,” Comput. Electr.

Eng., vol. 35, no. 1, pp. 71–85, 2009.

[40] E. Öztürk, B. Sunar, and E. Savaş, “Low-power elliptic curve cryp-

tography using scaled modular arithmetic,” in CHES (LNCS, vol. 3156),

M. Joye and J.-J. Quisquater, Eds. New York: Springer-Verlag, 2004, pp.

92–106.

[41] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for obtaining

digital signatures and public-key cryptosystems,” Commun. ACM, vol.

21, no. 2, pp. 120–126, 1978.

[42] R. Sakai, K. Ohgishi, and M. Kasahara, “Cryptosystems based on

pairing,” in Proc. Symp. Cryptography and Information Security, Okinawa,

Japan, Jan. 2000, pp. 26–28.

[43] E. Savaş and Ç. K. Koç, “Architectures for unifi ed fi eld inversion

with applications in proc. vol. 3,” in Proc. 9th IEEE Int. Conf. Electronics,

Circuits and Systems—ICECS 2002, Sept. 2002, pp. 1155–1158.

[44] E. Savaş and Ç. K. Koç, “The Montgomery modular inverse—revis-

ited,” IEEE Trans. Comput., vol. 49, no. 7, pp. 763–766, July 2000.

[45] E. Savaş, M. Naseer, A. A.-A. Gutub, and Ç. K. Koç, “Effi cient unifi ed

Montgomery inversion with multibit shifting,” IEE Proc. Comput. Digital

Tech., vol. 152, no. 4, pp. 489–498, July 2005.

[46] E. Savaş, A. F. Tenca, M. E. Çiftçibasi, and Ç. K. Koç, “Multiplier ar-

chitectures for GF (p) and GF (2k),” IEE Proc. Comput. Digital Tech., vol.

151, no. 2, pp. 147–160, Mar. 2004.

[47] E. Savaş, A. F. Tenca, and Ç. K. Koç, “A scalable and unifi ed

multiplier architecture for fi nite fi elds GF 1p 2 and GF 12m 2 ,” in Cryp-

tographic Hardware and Embedded Systems—CHES 2000 (LNCS, vol.

1965), Ç. K. Koç and C. Paar, Eds. New York: Springer-Verlag, 2000,

pp. 281–296.

[48] A. Shamir, “Identity-based cryptosystems and signature schemes,”

in Proc. CRYPTO, 1984, pp. 47–53.

[49] D. Suzuki, “How to maximize the potential of FPGA resources for

modular exponentiation,” in CHES (LNCS, vol. 4727). New York: Spring-

er-Verlag, 2007, pp. 272–288.

[50] S. H. Tang, K. S. Tsui, and P. H. W. Leong, “Modular exponentiation

using parallel multipliers,” in Proc. 2003 IEEE Int. Conf. Field Program-

mable Technology (FPT), 2003, pp. 52–59.

[51] A. F. Tenca and Ç. K. Koç, “A scalable architecture for Montgom-

ery multiplication,” in Cryptographic Hardware and Embedded Systems

(LNCS, vol. 1717), Ç. K. Koç and C. Paar, Eds. New York: Springer-Verlag,

1999, pp. 94–108.

[52] A. F. Tenca and L. A. Tawalbeh, “An effi cient and scalable radix-4

modular multiplier design using recoding techniques,” in Proc. 37th

Asilomar Conf. Signals, Systems, and Computers. Pacific Grove, CA: IEEE

Press, Nov. 9–12, 2003, no. 2, pp. 1445–1450.

[53] A. F. Tenca, G. Todorov, and Ç. K. Koç, “High-radix design of a

scalable modular multiplier,” in CHES, (LNCS, vol. 2162), Ç. K. Koç,

D. Naccache, and C. Paar, Eds. New York: Springer-Verlag, 2001, pp.

185–201.

[54] C. D. Walter, “Faster modular multiplication by operand scaling,”

in Advances in Cryptology—CRYPTO’91 (LNCS, No. 576), J. Feigenbaum,

Ed. New York: Springer-Verlag, 1992, pp. 313–323.

[55] C. D. Walter, “Montgomery exponentiation needs no fi nal subtrac-

tions,” Electron. Lett., vol. 35, no. 21, pp. 1831–1832, Oct. 1999.

[56] Xilinx Inc. TrustZone technology overview [Online]. Available: http://

www.xilinx.com/support/documentation/data_sheets/ds312.pdf.

[57] T. Yanık, E. Savaş, and Ç. K. Koç, “Incomplete reduction in modular

arithmetic,” IEE Proc. Comput. Digital Tech., vol. 149, no. 2, pp. 46–52,

Mar. 2002.

Authorized licensed use limited to: CityU. Downloaded on May 30,2010 at 02:22:54 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

