
Fixed-priority scheduling to
reduce both the dynamic and
leakage energy on variable
voltage processors

G. Quan*
Department of Computer Science & Engineering,
University of South Carolina, USA
E-mail: gquan@engr.sc.edu
*Corresponding author

L. Niu
Department of Computer Science & Engineering,
University of South Carolina, USA
E-mail: niul@engr.sc.edu

B. Mochocki
Department of Computer Science & Engineering,
University of Notre Dame, USA
E-mail: bmochock@cse.nd.edu

X. Hu
Department of Computer Science & Engineering,
University of Notre Dame, USA
E-mail: shu@cse.nd.edu

Abstract: With ever-scaling VLSI technology, the leakage is becoming an increasingly
serious concern when addressing the power consumption problem for next-generation
real-time embedded systems. Dynamic Voltage Scaling (DVS) is efficient in reducing
the dynamic energy consumption of a CMOS processor. However, methods that employ
DVS without considering the leakage current are quickly becoming less effective in
reducing the processor’s overall energy consumption. To be globally energy-efficient,
the processor may have to run at a higher-than-necessary speed, which will cause a
large number of idle intervals. While the processor can be shut down during these idle
intervals to save energy, this process may incur significant timing and energy overhead.
In this paper, we propose a DVS scheduling technique for fixed-priority hard real-
time systems that can judiciously merge the short, scattered idle intervals into longer
ones to reduce the shut-down overhead. The proposed technique has very low on-
line computation complexity and can be readily incorporated with a variety of DVS
scheduling techniques. Experimental results demonstrate that proposed technique can
significantly reduce the number of idle intervals and the overall energy consumption
than conventional scheduling techniques.

Keywords: real-time scheduling; power-aware computing; leakage power consump-
tion; fixed-priority; dynamic voltage scaling.

Reference to this paper should be made as follows: Quan, G., Niu, L., Mochocki, B.
and Hu, X. (2007) ‘Fixed-priority scheduling to reduce both the dynamic and leakage
energy on variable voltage processors’, Int. J. Embedded Systems, Vol. 1, Nos. 1/2/3,
pp.64–77.

Biographical notes: Gang Quan is an assistant professor at the Department of Com-
puter Science & Engineering at the University of South Carolina, USA. He completed
his PhD degree from the University of Notre Dame, USA in January 2002. Since 1997
he has been researching in the areas of real time system, electronic design automation,
and power-aware computation.

1 Introduction

Power consumption has become one of the primary design
issues of next-generation portable, scalable and pervasive
embedded systems. For CMOS circuits, power consump-
tion includes dynamic power and leakage power. Dynamic
power is due to the switching activities of the transistors,
and leakage power is consumed when the sub-threshold
current flows through the transistors. Current power sav-
ing techniques mainly focus on reducing dynamic power,
because it has traditionally been the dominant component
in the overall power consumption for most embedded sys-
tems. However, as VLSI technology continues to evolve to-
wards deep sub-micron and nanoscale circuits operating at
multi-GHz frequencies, the rapidly elevated leakage power
dissipation will soon become comparable to, if not exceed,
the dynamic power consumption (ITRS, 2001). More ad-
vanced techniques are required for the development of fu-
ture generations of low-power embedded systems.

Facing the increasing challenges presented by leakage
power consumption, design efforts on all fronts must be
pursued to form an integrated solution for this problem.
Recently, many circuit and architecture techniques (such
as Neau, 2003; Duarte, 2002a; Calhoun, 2003; Johnson,
2002) have been proposed to control the leakage power.
For a more comprehensive survey on the circuit and archi-
tecture level techniques for leakage reduction, readers can
refer to the recent publications (Roy, 2003; Clark, 2004).
It has been demonstrated (Martin, 2002; Duarte, 2002b;
Zhai, 2004) that reducing both the dynamic and leakage
power consumption simultaneously is critical for an over-
all energy-efficient design. It is our belief that real-time
scheduling plays a unique role in this integrated effort, not
only because a large percentage of future embedded sys-
tems will be real-time, but also because real-time schedul-
ing has proven to be one of the most effective ways of
reducing power consumption.

Dynamic Voltage Scaling (DVS) can effectively re-
duce dynamic power consumption in real-time systems,
and extensive DVS-based real-time scheduling techniques
(e.g.Yao, 1995; Ishihara, 1998; Aydin, 2001; Pillai, 2001)
have been proposed. DVS works by varying the proces-
sor’s supply voltage and frequency at runtime to match
workload and deadline requirements. However, the en-
ergy savings achievable via voltage reduction is becoming
severely limited due to the dramatic increase in leakage
power consumption (ITRS, 2001). Using DVS alone with
no consideration of leakage power consumption may actu-
ally increase the total energy consumption. This is because
DVS tends to make the processor speed as low as possi-
ble to minimize dynamic power. Unfortunately, as shown
by Irani et al. (Irani, 2003), to be overall energy efficient,
the processor may have to run at a higher-than-necessary
speed, since a low processor speed (supply voltage) in-
creases the active period of the processor, which in turn
increases the leakage energy consumption to a degree that

Copyright c© 200x Inderscience Enterprises Ltd.

can offset or even surpass the dynamic energy reduction.

In this paper, we present a leakage-conscious schedul-
ing approach that combines both the DVS and shut-down
strategies1 for hard real-time systems, scheduled by the
fixed priority (FP) policy (such as the rate monotonic
scheduling (RMS) policy (Liu, 1973).) Running proces-
sor at a higher-than-necessary speed can produce a large
number of scattered idle intervals. While it is desirable
to shut down the processor or put the processor in a low-
leakage mode when idle, the significant energy overhead
associated with a large number of processor shut-downs
and wake-ups will make the system less energy-efficient.
Moreover, considering the timing overhead, the processor
simply cannot be put to the low-leakage mode if the idle
interval is not long enough. In this regard, we present effi-
cient techniques to delay the execution of tasks and merge
the scattered idle intervals, thus greatly reducing the pro-
cessor shut-down overhead. The proposed technique has
a very low on-line computation cost. Using a processor
model with projected 0.07µm technology (Martin, 2002),
our experimental results show that the proposed method
can significantly reduce the shut-down overhead by merg-
ing the idle intervals, and it is particularly effective in re-
ducing overall energy when the workload of the system is
relatively low. When the system workload is relatively high
or when processor shut-down timing overhead is signifi-
cant, however, our experiments did show that traditional
DVS continues to be an effective way to reduce the total
energy consumption.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the related work. Section 3 introduces
preliminaries related to our problem. Section 4 discusses
our general leakage conscious DVS approach. Section 5
introduces in details the techniques to delay the execution
of real-time jobs such that idle intervals can be merged.
Section 6 demonstrates the effectiveness of our approach
based on simulations. Section 7 concludes the paper.

2 Related Work

Previously, there have been extensive research (e.g.Yao,
1995; Ishihara, 1998; Aydin, 2001; Pillai, 2001) on apply-
ing real-time scheduling methods to reduce power/energy
consumption. Most of these scheduling techniques are fo-
cused on reducing the dynamic power/energy consump-
tion. Recently, there have been increasing research efforts
(Yan, 2003; Lee, 2003; Jejurikar, 2004a,b) that use real-
time scheduling approach to control the leakage and re-
duce the overall power consumption for real-time embed-
ded systems. Yan et al. (Yan, 2003) proposed a schedul-
ing algorithm to reduce both dynamic and leakage power
based on a processor that has been furnished with both
DVS and adaptive body biasing (ABB) features. An ana-
lytic power model is derived that can be applied to com-

1By shut down, we mean to either literally shut down the processor
or put the processor in a low leakage mode.

pute the optimal supply voltage and body bias voltage in
terms of overall energy reduction for a given clock fre-
quency. This approach is only feasible when the supply
voltage and body biasing voltage are continuous variables.
For processors with discrete levels of supply voltage and
body biasing voltage, Andrei et al. (Andrei, 2004) proved
that it is an NP-hard problem and provided a non-linear
mathematic programming technique to solve this problem.
However, this approach cannot be applied for priority-
based preemptive scheduling schemes employed in many
real applications (Liu, 2000). Under the assumption that
the processor shut-down overhead can be infinitely small,
Irani et al. (Irani, 2003) proposed a theoretical “optimal”
voltage schedule with leakage consideration which can be
constructed from the traditional optimal DVS schedule.
Their work forms the basis of our heuristic techniques.

For a processor with no complex ABB control mecha-
nism, putting the processor into a low leakage mode when
it is idle is one of the most effective strategies to reduce the
leakage power consumption. However, care must be taken
as entering and exiting the low-leakage state can incur sig-
nificant timing and energy overhead (Duarte, 2002b). For
real-time tasks scheduled according to EDF policy, Lee
et al. (Lee, 2003) proposed a leakage reduction schedul-
ing technique called LC-EDF, which delays the execu-
tion of the arriving task instances when the processor is
idle to extend the idle intervals and reduce the number
of power mode transitions. Specifically, according to LC-
EDF, the extended idle time is treated as one part of the
tasks’ execution time. As long as the resultant total uti-
lization is less than or equal to 1, the schedulability of
the task set is guaranteed. However, they assume a non-
DVS processor model, which cannot optimize the dynamic
power consumption. So the overall energy consumed can-
not be minimized. To save both the dynamic and leak-
age energy, Jejurikar et al. (Jejurikar, 2004b) exploited a
strategy that combines both DVS and procrastination for
periodic tasks. Each task is associated with a processor
speed and a procrastination value, computed based on the
utilization-related feasibility condition. In the same way
as LC-EDF, the idle interval is extended by procrastinat-
ing the execution of tasks when the processor is idle. This
approach works very well for periodic task sets when the
tasks’ deadlines are equal to their periods. However, when
the tasks are non-periodic or have deadlines less than their
periods, this scheme becomes invalid or very pessimistic in
determining the processor speeds and delay amount, and
thus not energy-efficient.

A number of papers extend the idea of delaying the ex-
ecution of job executions for real-time systems that em-
ploy scheduling policies other than the EDF policy. Lee
et al. (Lee, 2003) proposed a leakage reduction scheduling
technique called LC-DP, by extending the Dual-Priority
(DP) scheduling scheme presented in (Davis, 1995). The
DP scheduling was initially proposed to improve the re-
sponse time for soft real-time tasks by delaying the exe-
cution of hard real-time tasks. (The detailed algorithm
and introduction of DP can be found in (Davis, 1995).) In

LC-DP, the idle time is treated as a soft real-time task
in the DP model. The hard deadline tasks are originally
put in the queue that has a lower priority than that of
the soft real-time task if the processor is idle, and are pro-
moted to the higher priority queue after certain promotion
times have passed. If the processor is active, all the hard
deadline tasks are promoted to the high priority queue im-
mediately. The idle interval is extended since the hard
real-time tasks are delayed at the lower priority queue.
However, as explained in (Jejurikar, 2004a), the LC-DP al-
gorithm cannot guarantee FP-tasks’ deadlines because of
its discrepancy with the original dual priority scheduling
algorithm (Davis, 1995).

When real-time tasks are scheduled according to the FP
scheme, Jejurikar et al.(Jejurikar, 2004a) proposed delay-
ing the execution of tasks by the minimal promotion time
over all lower and equal priority tasks. However, as shown
later in this paper(see Figure 2), this approach still can-
not guarantee the schedulability of the tasks under the FP
scheme. Lehoczky and Ramosthuel (Lehoczky, 1992) pro-
posed a technique, called slack stealer, that can delay the
FP jobs as late as possible and thus minimize the response
times for aperiodic tasks. Specifically, they adopted the
exact timing analysis strategy, which potentially can have
a very high computational cost, to compute the maximal
delay of the periodic tasks. In addition, note that it be-
comes extremely challenging if not totally impossible to
employ the exact timing analysis strategy to deal with the
scenario when different instances of the same task have dif-
ferent worst case execution times, i.e., when different jobs
need to run at different processor speeds to maximize the
energy savings as in our case. Kim et al. (Kim, 2004) pro-
posed another strategy to delay the execution of FP jobs
with the goal of reducing the preemption times in DVS
scheduling. The rationale of this technique is quite similar
to the Look-Ahead RT-DVS strategy (Pillai, 2001; Seth,
2003), that is, to delay the higher priority jobs until the
absolute last moment, i.e., when the delayed tasks can only
meet their deadlines by using the highest possible proces-
sor speed. The side effect of this technique is that it may
increase the processor speed and therefore compromise the
energy saving performance.

In this paper, we develop a novel technique to delay the
FP job executions. Our goal is to merge the idle intervals
by delaying the jobs while guaranteeing their deadlines.
We achieve this goal by judiciously computing the latest
starting time of a task without varying its speed which is
pre-determined to optimize the dynamic and leakage en-
ergy consumption.

3 Preliminaries

In this section, we first introduce the real-time system and
power model considered in this paper. We then present an
example to motivate our approach.

3.1 System model

We consider a general system model that consists of N
jobs, denoted by J = {J1, J2, · · · JN}. Each individual
job is denoted by Ji = (ri, ci, di), where ri, ci, and di are
the arrival time, worst case execution cycles, and absolute
deadline for the job, respectively. The job set is scheduled
using an FP scheme. Without loss of generality, we assume
that Ji has a higher priority than Jk if i < k. When a real-
time system is described by a set of periodic tasks, where
each task instance represents one job, we assume that all
tasks are ready for execution at t = 0 and it is sufficient
to schedule the set of jobs produced up until the Least
Common Multiple (LCM) of the periods of all tasks.

3.2 Power model

In a CMOS circuit, the power consumption includes both
dynamic and static components during its active opera-
tion (Roy, 2003). The dynamic power consumption (Pdyn)
mainly consists of the switching power for charging and dis-
charging the load capacitance, and the short circuit power
due to the non-zero rising and falling time of the input
and output signals. The dynamic power (Pdyn) can be
represented as

Pdyn = αCLV 2f, (1)

where α is the switching activity factor, CL is the load
capacitance, V is the supply voltage, and f is the system
clock frequency (The clock frequency determines how fast
the processor can run a program. In what follows, unless
explicitly stated otherwise, we use system clock frequency
(f) and processor speed (s) interchangeably.) The static
power (Pleak) can be expressed as

Pleak = IleakV, (2)

where Ileak is the leakage current, which consists of both
the sub-threshold leakage current and the reverse bias junc-
tion current in the CMOS circuit. Leakage current in-
creases rapidly with the scaling of devices and becomes
particularly significant with the reduction of the threshold
voltage (Zhai, 2004). Therefore, leakage power consump-
tion is becoming a major part of the the active power con-
sumption (Pact = Pdyn + Pleak) in future CMOS circuits
with low supply voltage and high transistor density.

The processor consumes energy not only in its active
mode but also when it is idle. When idle, the major por-
tion of power consumption comes from leakage. With dra-
matically increasing leakage current as VLSI technology
continue its evolution, it is imperative that this portion of
energy be effectively reduced for the overall system-energy
reduction. Processor shut-down, i.e., putting the proces-
sor into a “sleep mode”, can greatly reduce the energy
consumption when the processor is idle. For example, it
has been reported in (Intel PXA250, 2002) that the power
dissipation when the processor is idle can be three orders
of magnitude higher than that when the processor is shut
down.

While the processor consumes less power in the power
down state, it costs extra energy and time to shut down
and later wake up the processor in order to save/restore
the context, as well as initiate the architectural compo-
nents such as the cache, translation look aside buffers, and
branch target buffers. One has to be careful when shutting
down the processor since energy overhead may outweigh
the benefit of energy savings if the idle interval is too short.
Assume that the power consumption of a processor in its
idle state and sleeping state are Pidle and Psleep, respec-
tively, the energy overhead of shutdown/wakeup is Eo and
the timing overhead is to. The processor can be shut down
with positive energy savings only when

Pidle × t ≥ Eo + Psleep × (t − to), (3)

i.e., the length of the idle interval must be larger than
Tmin = max(

Eo−Psleep×to

Pidle−Psleep
, to). We call Tmin the minimal

length of the idle interval.

3.3 A motivational example

As an illustrative example, Figure 1(a) shows a job set with
four jobs (The upper and down arrows represent the arrival
times and deadlines of jobs, respectively.) Figure 1(b) is
the voltage schedule according to the DVS scheduling tech-
nique presented in (Quan, 2001), and Figure 1(c) shows the
actual executions of the jobs based on the voltage schedule
from Figure 1(b).

As indicated in equation (1), the dynamic energy con-
sumption is quadratically related to the supplied volt-
age. Therefore, traditional DVS scheduling techniques
(e.g. (Quan, 2001)) try to reduce the supply voltage to
as low a level as possible (see the voltage schedule shown
in Figure 1(b) and (c)). However, such a voltage schedule
may not be always feasible and/or overall energy-efficient
due to the following reasons. First, practical processors
have a minimal voltage supply limitation, which does not
allow arbitrarily low speeds. Second, commercial proces-
sors usually provide only a discrete set of voltages. This
means the processor will likely not be able to run at a
speed selected by a particular DVS algorithm. Instead,
the desired speed needs to be rounded up to the next dis-
crete speed that is available2. Furthermore, even when a
low processor speed is available, the rapidly increased leak-
age current may increase the static power consumption to
the extent of outweighing the dynamic power consump-
tion. Therefore, to achieve the best energy-efficiency, the
processor speed must be determined in a cooperative man-
ner with both dynamic and static energy consumption in
mind.

Consider a job with workload w. Let the total power of
a processor during its active mode be Pact(s). Then the

2While it is possible to use two discrete speeds immediate above
and below the desired speed value to optimally schedule a single
job (Ishihara, 1998; Kwon, 2003), this method can induce a signif-
icant transition overhead to the scheduling process, i.e., one extra
transition per job.

t=0
 5
 15
13
10

J1

J4

J3

J2
 C2=3

C3=1

C4=3

(a)

(c)

0
 1
 5
 10

(b)

S

0.5

0.22

t

22
 22

C1=1

1
 12

t=0
 5
 15
13
10

J1

J4

J3

J2

C2=3

C3=1

C4=3

22

C1=1

1
 12

(d)

t=0
 5
 15
13
10

J1

J4

J3

J2

C2=3

C3=1

C4=3

22

C1=1

1
 12
 18
 7

idle

interval

idle

interval

3

idle

interval

Figure 1: (a) A job set that consists of four jobs. (b) The voltage schedule that can reduce dynamic power consumption.
(c) The actual executions of the jobs according to the voltage schedule shown in (b). (d) Applying the threshold speed
(sth = 0.5) results in the scattered idle intervals.

total energy, i.e., Eact(s), consumed to finish this job with
speed s, can be represented as

Eact(s) = Pact(s) ×
w

s
. (4)

Hence, to minimize the Eact(s) in equation (4), let
dEact(s)

ds = 0 and thus

Pact(s) = P ′

act(s)s. (5)

Equation (5) computes the most energy-efficient speed to
finish one job. We call this speed the threshold speed3,
and denote it as sth. To increase or decrease the processor
speed from sth will increase either the dynamic or static
power, and thus the total active power consumption for
executing the job.

Note that, while it is desirable to execute a job using
the threshold speed to minimize the active power consump-
tion, it is not always feasible to do so when considering the
deadlines and the preemption effects among jobs. Given a
voltage schedule, a job that is required to run at a speed
higher than sth must be executed with that speed to guar-
antee the schedulability of the job set. For jobs having
required speeds lower than sth, they can be executed at
sth to conserve energy. Figure 1(d) shows the scheduling
results with sth = 0.5.

Using sth for jobs with speed requirements lower than
sth while maintaining the speeds of the rest certainly guar-

3The term used in (Irani, 2003; Jejurikar, 2004b) is the critical

speed. We use a different term to avoid the possible confusion with
the speed for the critical interval when computing the unconstrained
optimal DVS schedule (Yao, 1995).

antees all deadlines. The problem is that, as shown in Fig-
ure 1(d), such a voltage schedule can result in a large num-
ber of scattered idle intervals. Though using a processor
shut-down strategy is the most efficient method to reduce
the energy consumption for these intervals, too many shut-
downs will incur significant energy overhead. Moreover,
using a processor power down strategy is not always feasi-
ble or necessarily energy-efficient if the idle interval is not
long enough. Unless we can effectively deal with the idle
intervals in the schedule, we cannot achieve our ultimate
goal of maximizing the overall energy-saving performance
of the system. In what follows, we introduce our approach
to save the idle energy when scheduling a real-time task
set by effectively clustering the idle intervals.

4 The General Approach

The shut-down strategy favors longer idle intervals. To ex-
tend an idle interval, one can always increase the proces-
sor speed so that each job is executed faster. However, as
shown in equation (5), increasing the speed over sth will
increase the dynamic power consumption. A better ap-
proach, as suggested in (Lee, 2003; Irani, 2003; Jejurikar,
2004b), would be one that extends the interval lengths by
delaying the executions of the incoming jobs, i.e., a job is
executed as soon as possible when the processor is not idle,
but delayed as much as possible when the processor is idle.

Delaying job executions helps to merge scattered, short
idle intervals into longer ones. More energy can be saved
because energy overhead incurred by frequently entering

and leaving the power-down state is reduced. Moreover,
intervals that were previously shorter than Tmin can now
grow longer and the processor can therefore be shut down.
As mentioned before, the power dissipation when the pro-
cessor is idle can be 103 times higher than that when the
processor is shut down. Therefore, merging short idle in-
tervals has the potential of significantly reduce the overall
energy consumption.

To facilitate a clear explanation of our approach, we first
introduce the following definition.

Definition 1. Let each job in the job set (J) be executed
with its pre-determined, feasible execution speed. The lat-
est starting time for a job set, e.g. J , (denoted as
LST (J)) is the latest time such that, if the execution of
any job in J starts no later than LST (J), all jobs can
meet their deadlines.

Algorithm 1 Algorithm to reduce both dynamic and leak-
age power consumption for real-time systems scheduled ac-
cording to the FP scheme

1: Input: J , sth, and Tmin.
2: Compute the FP DVS schedule and sn, n = 1, 2, ..., N ;
3: // sn is the minimal feasible speed for Jn based on the

DVS schedule
4: Let sn = sth if sn ≤ sth, n = 1, 2, ..., N ;
5: if processor is not idle then
6: Run job Ji in the ready queue with si;
7: else
8: Compute the latest starting time, i.e., LST (Jn), for

future jobs;
9: if LST (Jn) − tcur > Tmin then

10: // tcur is the current time
11: Shut down the processor and set up the wake up

timer to be LST (Jn) − tcur;
12: end if
13: end if

Algorithm 1 sketches the general framework of our ap-
proach. When the processor is not idle, it will run the
jobs in the ready queue according to the FP DVS schedule.
The DVS schedule is computed off-line, using an algorithm
similar to the one presented in (Quan, 2001). Other on-
line DVS techniques that can dynamically reclaim system
resources (such as (Kim, 2003)) can be readily incorpo-
rated into this algorithm. The only variation when apply-
ing these techniques is to use the threshold speed (sth) if
a designated processor speed is less than sth—since using
speeds less than sth will increase the total active energy—
and dynamically compute the LST. The key to the success
of Algorithm 1 is the computation of the LST for jobs ar-
riving after the processor is idle, which is presented in the
following section.

5 Computing the LST

Delaying execution of jobs helps to extend the idle interval
length. At the same time, however, it may also cause a job
to miss its deadline. The major challenge when extending
the length of idle intervals is to determine how long a job
set can be delayed without causing any future job to miss
its deadline.

5.1 Delaying job executions for FP job sets

Lee et al. (Lee, 2003) first propose delaying the FP hard
deadline tasks by their promotion times computed based
on the dual priority scheduling scheme. However, this
method has been shown to be infeasible (Jejurikar, 2004a).
Jejurikar et al.(Jejurikar, 2004a) further proposed to delay
the execution of a job by the minimal promotion time over
all lower and equal priority tasks. However, this strategy
still cannot guarantee the schedulability of FP-jobs as il-
lustrated in Figure 2.

A task set with two periodic tasks, i.e, τ1 and τ2, sched-
uled with RMS is shown in Figure 2. According to the DP
scheme, task τi can meet its deadline if its promotion time
(Yi) satisfying

Yi ≤ Di − Ri, (6)

where Di is the (relative) deadline of periodic task τi and
Ri is its worst case response time. It is not difficult to
verify that Y1 = 6 and Y2 = 7 in this example. However,
assuming processor is idle before t = 0, delaying jobs to
t = min(Y1, Y2) = 6 will cause the first job of τ2 to miss its
deadline as shown in Figure 2. This is because that delay-
ing the high priority jobs may increase the blocking time of
lower-priority jobs. For example in Figure 2, without de-
laying, at most one job from τ1 can preempt any job of τ2.
However, more than one job of τ1 can preemp/block the
execution of a job of τ2 if the delayed execution is allowed,
and thus cause τ2 to miss its deadline. Only by strictly ad-
hering to the DP rules, (i.e., the second job of τ1 will stay
in the low priority queue until t = 16) can the deadlines be
satisfied. This prevents “extra” higher priority jobs (the
second job of τ1 in this case) from preempting/blocking
the execution of lower priority jobs (i.e., the first job of
τ2). Therefore, the previous job procrastination strategies
based on the promotion time are not feasible when jobs
are scheduled according to the FP scheduling scheme.

In (Mochocki, 2002), Mochocki et al. introduced a
method to compute LST (J) when J is scheduled accord-
ing to EDF. Their method is based on the following lemma.

Lemma 1. (Mochocki, 2002) Let job set (J) be executed
with a constant speed s∗, and

lst(Ji) = di −
∑

Jk∈hp(Ji)

ck

s∗
, (7)

where hp(Ji) is the jobs with the same or higher priorities
than that of Ji. Then,

LST (J) = min
i
{lst(Ji)}. (8)

Figure 2: Using the minimal promotion time as the LST
may cause FP task sets to miss their deadlines.

The rationale behind Lemma 1 is that if the accumu-
lated workload from a job Ji and all the higher priority
jobs can be finished before di, the deadline of Ji will be
met. It is worthy mentioning that in Lemma 1, equation
(7) is pessimistic in evaluating the latest starting time for a
job, but equation (8) tightly defines the latest starting time
for the entire job set scheduled with EDF policy. While
equation (8) can indeed guarantee the feasibility of an FP
job set, the feasible starting time for the job set can be
far from the latest. For example, in Figure 3(a), accord-
ing to equation (7) and (8), assuming sth = 0.5, we have
lst(J1) = 13, lst(J2) = 14, lst(J3) = 3, lst(J4) = 6, and
therefore, LST (J) = 3. However, even though all the jobs
can meet their deadlines, not all the short idle intervals
can be effectively merged (Figure 3(a)). For example, if
the LST of the task set is delayed to 6 as shown in Fig-
ure 3(b), all jobs can meet their deadlines and the short idle
intervals are merged to one single idle interval. The reason
is that, as opposed to the EDF case, a job with a higher
fixed priority can have a deadline much later than that of
the current job. Therefore, it would be too pessimistic to
assume that all higher priority jobs have to finish before
the deadline of the current job.

5.1.1 Identifying the LST of a FP job set

In what follows, we present a more effective method to
compute the LST of a FP job set. Our method identifies
the LST by judiciously expunging the high priority jobs
during the LST computation. We theoretically prove that
all jobs can meet their deadlines under the FP scheduling
policy with the LST computed from our algorithm. Before
we explain our strategy in detail, we first introduce some
terminology used in this paper.

Definition 2. (Scheduling point)4 Time t is called a
Jn-scheduling point if t = dn or t = ri, i < n and
rn < ri < dn.

Definition 3. (Reduced job set) A job set is called a
Jn-reduced job set, denoted by R(Jn) if every job Ji in

4This is a more general definition of the similar term defined
in (Lehoczky, 1989).

the set satisfies ri ≥ rn.

We use Figure 3 to illustrate these definitions. Fig-
ure 3(c) shows the R(J3) and all the J3-scheduling points
(as marked by “x”). Note that in Figure 3(c) if J3 is to
be finished at any one of the J3-scheduling points (e.g.,
t = 12) all the higher priority jobs arriving before this
scheduling point (e.g., J1) must be completed before this
scheduling point. Therefore, if Jn needs to finish at a Jn-
scheduling point t, the execution of Jn or any higher pri-
ority jobs that may interfere with Jn must begin no later
than stn(t), where

stn(t) = t −
∑

Jk∈hp(Jn)

ck

sk
, rk < t, (9)

where hp(Jn) is the set of jobs arriving before t and with
priority greater than or equal to that of Jn.

It is not difficult to see that different Jn-scheduling
points can lead to different values for stn(t). If we let
S(Jn) be the set of all Jn-scheduling points, and let

lst(Jn) = max{stn(t), t ∈ S(Jn)}, (10)

then lst(Jn) is the latest time that Jn or any job in
hp(Jn) needs to start to ensure that Jn can meet its dead-
line. We denote the corresponding Jn-scheduling point by
P (lst(Jn)). From Figure 3(c), we have lst(J3) = 8 (and
P (lst(J3)) = 12). It can be readily verified that J3 can
meet its deadline with respect to lst(J3) = 8.

Note that, while lst(Jn) can guarantee the feasibility
of job Jn, it cannot guarantee the schedulability for any
other job in the Jn-reduced job set. This is shown in Fig-
ure 3(d). If J3 and all the higher priority jobs are delayed
to t = 8, J4 will miss its deadline. The reason is that,
with lst(J3) = 8, J3 and the higher priority jobs are not
completed until the corresponding scheduling point t = 12,
which will block the execution of J4 and cause it to miss
deadline. Next, we present an algorithm to determine the
latest starting time that can guarantee the deadlines of a
job and all lower priority jobs. We call this time the effec-
tive latest starting time for the job. Based on this time,
we present our technique to determine the latest starting
time for the entire job set.

As stated before, lst(Jn) can guarantee the feasibility
of job Jn but may cause jobs with lower priorities to miss
their deadlines. A remedy for this problem is to compute
the latest starting times in a similar way for all the lower
priority jobs that may potentially be preempted, and pick
the smallest one. The above idea is formulated in Algo-
rithm 2.

Algorithm 2 first identifies lst(Jn) and stores it in vari-
able nlst (line 3) such that Jn can meet its deadline if Jn

is delayed to nlst. At the same time, the corresponding
scheduling point is saved to variable end. Delaying Jn to
nlst may block the executions of the lower priority jobs
arrived within interval [nlst, end). Algorithm 2 solves this
problem by checking the earliest starting time for each of
these low priority jobs and modifying variables nlst and

t=0
 5
 15
13
10

J1

J4

J3

J2

C2=3

C3=1

C4=3

22

C1=1

1
 12

(a)

3
 18
 t=0
 5
 15
13
10

J1

J4

J3

J2

C2=3

C3=1

C4=3

22

C1=1

1
 12

(b)

8
 18
7

idle

interval

idle

interval

idle

interval

t=0
 5
 22
13
 15
12

J1

J4

J3

J2
 C2=3

C3=1

C4=3

C1=1

1
 10

(c)

t=0
 5
 15
13
10

J1

J4

J3

J2

C2=3

C3=1

C4=3

22

C1=1

1
 12

(d)

8
 18

deadline miss

6

Figure 3: (a) A job set with four jobs scheduled with FP. The processor speed for each job is less than sth (assuming
sth = 0.5) in the un-constrained DVS voltage schedule. The LST is computed to be 3 according to Lemma 1. (b)
Delay the job set until t = 6 and every job can meet its deadline. (c) J3-scheduling points (marked by “x”). (d) Delay
execution of the job set untill t = 8 and J4 misses its deadline.

Algorithm 2 Compute the effective latest starting time
˜lst(Jn) for job Jn such that Jn and all the lower priority
jobs in the Jn-reduced job set can meet their deadlines.

1: Input: The Jn-reduced job set, i.e., R(Jn).
2: Output: The effective latest starting time for Jn, i.e.,

˜lst(Jn)
3: nlst = lst(Jn); //Equation (10)
4: end = P (lst(Jn));//the scheduling point correspond-

ing to lst(Jn)
5: for Jk ∈ R(Jn), k = n + 1, n + 2, ... do
6: if rk < end then
7: nlst = min{nlst, lst(Jk)};
8: end = max{end, P (lst(Jk))};
9: end if

10: end for
11: ˜lst(Jn) = nlst;

end when necessary (line 5-10). To formally demonstrate
that Algorithm 2 indeed produces the effective latest start-
ing time for Jn, we present the following lemma and proof.

Lemma 2. The effective latest starting time,
i.e.,(˜lst(Jn)), output from Algorithm 2, is the latest
time that Jn and all the higher priority jobs can be delayed
to such that Jn and all the lower priority jobs in R(Jn)
will meet their deadlines.

Proof. We first prove schedulability. The schedulability of
Jn is guaranteed by equation 10 and in line (3) of Algo-
rithm 2, as well as the fact that nlst can only be smaller
(line (7)) as the algorithm continues. For any low prior-
ity job with a release time earlier than end, which may be

potentially preempted when delaying Jn and all other jobs
with priorities higher than Jn to time nlst, its schedula-
bility is guaranteed by line (7) similar to that of Jn. For
other lower priority jobs (i.e., with a release time later
than end during each FOR loop), consider Jk(k > n) and
let rk > end. Note that, any higher priority job that is
delayed to nlst will finish no later than end. Therefore,
delaying these jobs will not affect the schedulability of Jk.
Moreover, the value of nlst can only be reduced later on,
so Jk can meet its deadline if J is delayed to nlst.

We next prove that ˜lst(Jn) is the latest. From equa-
tion 10 as well as line (3) and line (7) in Algorithm 2, any
further delay will cause Jn or some low priority jobs to
miss their deadlines. Therefore, ˜lst(Jn) is the latest time
that Jn and other higher priority jobs need to start such
that Jn and all the lower priority jobs in R(Jn) can meet
their deadlines.

Recall that our goal is to identify the latest starting time
for a job set such that every job can meet its deadline. Us-
ing ˜lst(Jn) cannot completely achieve this goal because (1)
it is based on an adjusted job set and (2) the schedulabil-
ity of jobs with a priority higher than that of Jn is not
guaranteed in Lemma 2. To find the LST for the entire
FP job set, we have the following theorem. The proof of
the theorem is given in the appendix of this paper.

Theorem 1. Given job set J , the latest starting time for
J can be computed as

LST (J) = min
n

{ ˜lst(Jn))}. (11)

where ˜lst(Jn) is computed according to Algorithm 2.

For the example in Figure 3, according to Theorem 1,
we have ˜lst(J1) = 8, ˜lst(J2) = 16, ˜lst(J3) = 6, ˜lst(J4) =
10, and therefore LST (J) = 6, which is exactly the case
shown in Figure 3(b). As shown in Figure 3(b), all the idle
intervals are successfully merged into one single interval.

While equation (11) requires computing the effective
LST for all jobs, it is not necessary in practice. Note that,
to ensure the schedulability, a task set cannot be delayed
past the earliest deadline of a job, which bounds the maxi-
mal value of LST. Therefore, we only need to compare the
effective LSTs for jobs released before this bound and use
the minimal one as the LST for the entire job set. To fur-
ther reduce the on-line cost, we can compute the LST for
each possible reduced job set off-line. Note that, whenever
the processor is idle, the rest of the job set can always be
viewed as a reduced job set. We therefore can construct all
the possible reduced job sets off-line and then compute the
corresponding LSTs. For a periodic task set, this means
the computation of total

∑
n

P
Pn

reduced job sets, where P
is the least common multiple of the periods and Pn is the
period for task n. During on-line phase, the LST can be
readily determined by the LST associated with the next
job that arrives. This on-line technique has a very low
complexity, i.e., a constant time complexity for a single
table lookup operation.

6 Experimental results

In this section, we evaluate the proposed technique using
simulations. We consider the following scenarios in our
experiments.

• Base The task sets are scheduled on a processor with-
out DVS capability, i.e., all jobs are always executed
using the highest speed. A processor is shut down
when there is enough idle time, and no task instance
is delayed. This is the most primitive scheduling ap-
proach, and its results are used as the reference to
compare other approaches.

• DVS The task sets are scheduled according to the
DVS voltage schedules without considering leakage
(i.e. the threshold speed), and no task instance is
delayed.

• DVS with No Delay (DVS-ND) Task sets are
scheduled with DVS voltage schedules and leakage is
considered (i.e., the threshold speed is enforced), but
no job execution is delayed.

• DVS with Shut down and Delay (DVSSD-FP)
Task sets are scheduled with DVS voltage schedules,
the threshold speed is enforced and execution delay is
computed using (Algorithm 1). The LST computation
is based on Theorem 1.

In addition, we have also implemented and compared
our algorithm with the dual-priority approach introduced
in (Jejurikar, 2004a), even though it is not strictly an FP

approach. We call this approach DVS Dual Priority(DVS-
DP).

We conducted two groups of experiments to evaluate the
performance of our approaches. The first group of exper-
iments were based on synthesized task sets and a more
theoretical processor. In our second group of experiments
we intended to make our test conditions as close as possi-
ble to that in the practical scenarios. The test cases were
drawn from practical applications, and a more practical
processor model that supports only discrete voltage levels
was used. The experiments and results are discussed in
the following.

6.1 Experiments with synthesized task sets

In this group of experiments, the periodic real-time tasks
were randomly generated and used as the test cases. These
systems consist of five periodic tasks, with task periods
randomly chosen in the range of [10, 50]ms, and deadlines
assumed to be equal to their periods. We assumed that
the actual execution time of a job is normally distributed
between its best case execution time (BCET) and worst
case execution time (WCET), with BCET/WCET = 0.4.
We examine the performance of the above techniques for
systems with different utilizations. Based on the utilization
bound for periodic task set with five periodic tasks, i.e.,
U = 5(21/5 − 1) = 0.74, we divide utilization ranging from
0.0 to 0.7 into intervals of length 0.1. Within each interval,
we randomly generated no less than 10 periodic task sets.

For the processor model used for this group of experi-
ments, similar to (Jejurikar, 2004b), we assumed the pro-
cessor voltage is continuously variable, and adopted the
same threshold speed and sleep state power as that used
in (Jejurikar, 2004b), i.e., sth = 0.41 and Psleep = 50µW .
We conservatively assumed that the power consumption
when processor is idle comes only from the leakage power
consumption, which is computed according to the model
in (Martin, 2002). We also made a conservative assump-
tion that it takes only 1ms for the processor to be put into
the low leakage mode even though the actual time can be
much longer (Intel PXA250, 2002). The shut-down energy
overhead consists of two parts: the leakage energy con-
sumption during the shut-down process, which was com-
puted based on the power model in (Martin, 2002), and the
fixed energy overhead to flush/restore the cache contents,
which was set to 483µJ according to (Jejurikar, 2004b).

For approaches DVS, DVS-ND, and DVSSD-FP, we
used VSLP (Quan, 2001) to find the unconstrained job-
level DVS voltage schedule. This heuristic was chosen in-
stead of the optimal algorithm (Quan, 2002) because the
FP DVS problem is NP-Hard while the computation com-
plexity of VSLP is polynomial (O(N3)). The optimal al-
gorithm is not practical for systems with a large number
of jobs. On the other hand, VSLP (Quan, 2001) cannot be
applied for DVS-DP approach. DVS-DP computes the
delay for the task set based on the worst case timing anal-
ysis, which is not possible if different jobs from the same
task have different worst case execution times. We hence

used the task-level DVS scheduling algorithm (i.e. (Shin,
2000)) to find the DVS schedule in this approach. To dy-
namically reclaim the system resource when real-time jobs
finish earlier than their worst case execution times, we sim-
ply prolonged the execution of a real-time job to its dead-
line or next arrivals of new jobs (whichever is the earliest)
when it is the only job in the ready queue. To be overall
energy-efficient, the processor speed will never be set below
the threshold speed when dynamically reclaiming run-time
slack.

0

5

10

15

20

25

30

0.0 - 0.1
 0.1 - 0.2
 0.2 - 0.3
 0.3 - 0.4
 0.4 - 0.5
 0.5 - 0.6
 0.6 - 0.7

Utilization

N
u

m
b

er
 o

f
Id

le
 In

te
rv

al
s

(%
)

DVS-ND
 DVSSD-FP
 DVS-DP

Figure 4: The average idle intervals by three different ap-
proaches for synthesized task sets.

We first study the number of idle intervals resulting from
each scheduling strategy. A large number of idle intervals
is undesirable in terms of energy reduction, especially for
leakage energy reduction. Schedules with large number of
idle intervals either incur higher transition overhead due to
more frequent transitions or simply cannot go into the low
leakage mode due to shorter idle interval lengths. Figure 4
compares the normalized (according to the results from
the Base approach) number of idle intervals resulting from
several approaches within the LCM of the task periods.

Figure 4 clearly shows that our proposed technique (i.e.
DVSSD-FP) can merge the idle intervals very effectively.
From Figure 4, DVSSD-FP can significantly cut the
idle interval numbers, i.e., ranging from 34.3% to 44.3%,
with an average of 39.1%, by DVS-ND. The results for
DVSSD-FP and DVS-DP are interesting. Note that,
when the utilization is low (i.e., less than 0.3), the num-
bers of idle intervals by DVSSD-FP and DVS-DP are
quite close. But when the utilization is relatively high,
DVS-DP can lead to much larger number of idle inter-
vals than DVSSD-FP. For example, when utilization is
around 0.6-0.7, the number of idle intervals by DVS-DP
is 30% higher than that by DVSSD-FP. This is because
of two reasons. First, DVS-DP can exploit DVS capabil-
ity only at the task level, i.e. different jobs of the same
task always have the same processor speed, which may re-
quire jobs to run at much higher speeds than they actually
need and increase the idle intervals. Second, DVS-DP al-
ways computes the latest starting time based on the worst
case response time. When utilization is relatively high,

this strategy can severely underestimate the maximal de-
lay that a job is allowed, and therefore cannot merge the
idle intervals effectively.

0

10

20

30

40

50

60

70

0.0 - 0.1
 0.1 - 0.2
 0.2 - 0.3
 0.3 - 0.4
 0.4 - 0.5
 0.5 - 0.6
 0.6 - 0.7

Utilization

T
o

ta
l E

n
er

g
y

C
o

n
su

m
p

ti
o

n
 (

%
)

DVS
 DVS-ND
 DVSSD-FP
 DVS-DP

Figure 5: The average energy consumption of different ap-
proaches for synthesized task sets.

We next study the overall energy consumption for the
same task sets by different strategies. Figure 5 shows the
normalized average total energy consumptions by four ap-
proaches, i.e., DVS, DVS-ND, DVSSD-FP, and DVS-
DP.

From Figure 5, one can readily conclude that using DVS
without considering leakage current cannot effectively re-
duce the overall energy consumed. This is particularly true
when the utilization of the task set is low. As shown in
Figure 5, when the utilization is less than 0.1, the average
overall energy using the “pure” DVS voltage schedule can
be more than 25% higher than the leakage-conscious ap-
proaches such as DVSSD-FP and DVS-DP. This is due
to the factor that, when the utilization is low, the processor
is required to run at a very low speed according to the clas-
sical DVS approach. While reducing supplied voltage can
reduce the dynamic and leakage power consumption, the
extended execution time with a lower processor speed will
rapidly increase the leakage energy consumption, which
may actually increase the total energy consumption. We
would expect a leakage-conscious approach to be more ef-
fective when leakage power consumption becomes the dom-
inant component in overall power consumption.

On the other hand, when utilization is relative high, we
do observe that DVS can be slightly better than the oth-
ers. There are several reasons for this result. First, we
adopt the concept of the threshold speed as defined in
equation (5). Note that such a speed can only optimize
the energy consumption in executing a job (i.e., during
the active mode), but not necessarily minimize the energy
consumption during the entire life cycle (including both
the active and idle period) of the system. When the sys-
tem utilization is very high, reducing processor speed as
low as possible is still beneficial since both dynamic and
leakage power consumption are significantly reduced. The
power reduction outweighs the extended execution times
of tasks and thus leads to overall energy reduction. Sec-

ond, we delay the job execution as late as possible, which
is not necessarily the optimal approach to merge the idle
intervals. To find the theoretically optimal solution for
this problem is an interesting one and will be our future
research.

Figure 5 also shows that our approach outperforms those
that adopt a similar heuristic. By effectively merging the
idle times, our approach, i.e., DVSSD-FP consumes over
14% less energy than that by DVS-ND. Compared with
DVS-DP which also delays job executions, we can see
that the energy savings of DVSSD-FP vs. DVS-DP
vary depending on the utilization. DVS-DP works under
the assumption that each task is assigned a unique scal-
ing factor, which is determined based on the worst case
scenario. As a result, real-time jobs may run at speeds
much higher than necessary, which is not energy-efficient
and also cause more idle intervals. In our approach, dif-
ferent jobs may be assigned different processor speeds as
necessary, and the idle intervals can be effectively merged.
When the utilization is low, for example, within the in-
terval [0.0, 0.4], both approaches have the similar energy
consumptions since most of the jobs are forced to exe-
cute with the threshold speed and most of the idle inter-
vals can be long enough for shutting down the processor.
When the task utilization is higher, DVSSD-FP can save
much more energy than DVS-DP, not only because it
can take the advantage of the job-level DVS schedule but
also because it can merge the idle intervals more effec-
tively. As shown in Figure 5, when utilization is around
0.6, DVSSD-FP consumes 27% less energy than DVS-
DP.

6.2 Experiments with practical applications

In our second group of experiments, the test cases are
drawn from two real world applications, i.e., CNC (Com-
puterized Numerical Control) (Kim, 1996) and INS (Iner-
tial Navigation System) (Burns, 1995). The processor and
power models used in this group of experiments are the
same as that in the previous ones expect that the processor
supports only five discrete voltage levels, with normalized
speeds as 0.2, 0.4, 0.6, 0.8 and 1.0. The critical speed was
chosen to be sth = 0.4.

When the processor supports only a number of discrete
voltage levels, more idle intervals are created since the pro-
cessor speeds for real-time jobs often have to be rounded
up to a higher level. Our experimental results exhibit the
excellent performance of our approach in merging the idle
intervals under this scenario. Figure 6(a) compares the
normalized number of idle intervals for CNC and INS by
different approaches. As can be seen from Figure 6(a),
DVSSD-FP can cut approximately 50% of the idle in-
tervals produced by DVS-ND, and around 29% of those
produced by DVS-DP for CNC application. For the INS
application, DVSSD-FP can cut around 44% of the idle
intervals produced by DVS and DVS-ND, and around
15% of those produced by DVS-DP.

Our experimental results demonstrate the excellent per-

formance of our approach for practical applications not
only in merging the idle intervals, but also in total energy
savings as well. It is interesting that Figure 6(b) shows
that DVSSD-FP achieves different energy saving perfor-
mance for CNC and INS. A closer look at our experimental
results reveals that, for CNC application, the numbers of
idle intervals are small (i.e. 28 for DVS-ND and 14 for
DVSSD-FP), and the energy consumption during the ac-
tive mode dominates the energy of the idle mode. Further,
all the processor speeds from the DVS schedule are higher
than the threshold speed. As a result, we see almost no
difference between DVS, DVS-ND, and DVSSD-FP.
For CNC, however, DVS-DP consumes much more en-
ergy than the other approaches (over 21%) since it cannot
effectively reduce the processor speed. For the INS ap-
plication, the number of idle intervals is much higher (i.e.,
747 for DVS-ND and 418 for DVSSD-FP), which makes
the idle interval merging more profitable. As shown in Fig-
ure 6(b), DVSSD-FP can reduce the energy consumed by
as much as 10.4% when compared with DVS and DVS-
ND.

7 Summary

Reducing the overall power dissipation is critical in the de-
sign of future real-time embedded systems. As the IC tech-
nology continues to scale down, leakage power consump-
tion is becoming a more and more significant part of the
overall power consumption. In this paper, we investigate
the problem of applying real-time scheduling techniques to
reduce the overall energy consumption of real-time systems
scheduled by the FP schemes.

As demonstrated in our experiments, applying a DVS
based voltage schedule alone cannot effectively reduce the
overall energy consumption for the system, and can even
increase it significantly. A leakage-power-conscious volt-
age schedule may require the processor to adopt a speed
higher-than-necessary to avoid the rapidly increasing leak-
age energy consumption at low voltage levels. This could
result in a large number of small idle intervals during job
execution. Having a large number of small idle intervals is
not in favor of energy savings since (i) the idle intervals can
be too short to shut down the processor and save energy,
or (ii) the overhead associated with the process of shutting
down and waking up the processor can severely degrade
the energy-saving performance.

To reduce the processor shutdown overhead and improve
the overall energy performance, previously proposed tech-
niques are based on the task level DVS which require that
real-time jobs run at unnecessarily high speeds and may
generate even more idle intervals. In this paper, we pro-
posed an efficient and effective approach to merge idle in-
tervals and improve the overall energy performance of FP
systems. Under the job-based analysis paradigm, our tech-
niques can be applied to both periodic and aperiodic real-
time tasks, and are more flexible and efficient in dealing
with the run-time variations. Extensive and comprehen-

0

10

20

30

40

50

60

CNC
 INS

Practical Applications

N
u

m
b

er
 o

f
Id

le
 In

te
rv

al
s

(%
)

DVS
 DVS-ND
 DVSSD-FP
 DVS-DP

(a) Idle Interval

20

30

40

50

60

70

80

90

CNC
 INS

Practical Applications

T
o

ta
l E

n
er

g
y

C
o

n
su

m
p

ti
o

n
s(

%
)

DVS
 DVS-ND
 DVSSD-FP
 DVS-DP

(b) Total Energy

Figure 6: The average number of idle intervals and energy consumptions for INS and CNC.

sive experiments are conducted and clearly demonstrate
that our approaches can significantly outperform previous
techniques in reducing the number of idle intervals and the
overall energy consumption.

8 Appendix

8.1 Proof for Theorem 1

The proof of Theorem 1 needs the following lemma re-
garding to the effective latest starting time for a job, i.e.,
˜lst(Jn) (see section5.1.1).

Lemma 3. For job set J , let Ji, Jk ∈ J , i < k. Then
˜lst(Ji) ≤ ˜lst(Jk) if ri < rk.

Proof. The proof for the case di ≤ rk is trivial since ˜lst(Ji)
cannot exceed di. We use contradiction to prove that when
di > rk and ri < rk, ˜lst(Ji) > ˜lst(Jk) is not possible.

Let Ji and Jk represent the corresponding Ji- and Jk-
reduced job sets, respectively, and LP (Jp,Jp) represent
the jobs in Jp with priorities the same or lower than that
of Jp. Then

Ji ⊃ Jk, and LP (Ji,Ji) ⊃ LP (Jk,Jk).

According to Lemma 2, delaying the execution of Ji to
˜lst(Ji) can ensure that all jobs in LP (Ji,Ji) meet their
deadlines. If ˜lst(Ji) > ˜lst(Jk), this contradicts to the fact
that ˜lst(Jk) is the latest time that Jk can be delayed to
such that the jobs in LP (Jk,Jk) can meet their deadlines.

To prove Theorem 1, let LST (J) = ˜lst(Ji) =
minn{ ˜lst(Jn)}. We want to prove that any other Jk ∈ J
can meet its deadline if J is delayed to ˜lst(Ji). We con-
sider two different cases separately.

• Case 1: k < i.

From Lemma 3, we have for any k < i, rk ≥ ri. Let job
rq be the earliest arrival time for any job Jq such that

q < k. If we have rq ≥ rk, Jk can meet its deadline

since ˜lst(Jk) ≥ ˜lst(Ji). On the other hand, if rq <
rk, the schedulability of Jk is guaranteed according to
Lemma 2 due to the fact that ˜lst(Jq) ≥ ˜lst(Ji) and Jk

is a lower priority job of Jq.

• Case 2: k > i

If all the jobs arrive later than Ji, Lemma 2 can guar-
antee Jk’s deadline. Assume there is at least one job
arriving earlier than Ji, and let Jk be the one with
the earliest arrival time. Since ˜lst(Ji) ≤ ˜lst(Jk), Jk

and all the lower priority jobs can meet their dead-
lines. Therefore, we only need to consider the job Jq

such that i < q < k. Note that, for any such job Jq,
removing Jk and all the lower priority jobs from J
neither changes its feasibility nor increase ˜lst(Jq). If
rq < ri and rq is the next earliest arrival time of the
jobs, we can prove that Jq and all the lower priority
jobs can meet their deadlines similarly. By repeating
this process, we thus prove that all the lower priority
jobs can meet their deadlines if J is delayed to ˜lst(Ji).

ACKNOWLEDGMENT

We sincerely thank the anonymous reviewers for their
constructive opinions and suggestions. Quan’s work is
supported in part by the National Science Foundation
under the CAREER Award CNS-0545913. Hu’s work is
supported in part by the National Science Foundation
under grant numbers CNS-0410771 and CCR02-08992.

REFERENCES

Burns, A. and Tindell, K. and Wellings A. (1995) ‘Ef-
fective analysis for engineering real-time fixed priority
schedulers’, IEEE Transactions on Software Engineer-
ing, May, Vol. 21, pp.920–934.

Andrei, A., Schmitz, M., Eles, P., Peng, Z. and Al-
Hashimi, B.(2004) ‘Overhead-conscious voltage selec-
tion for dynamic and leakage energy reduction of time-
constrained systems’, Proc. DATE’04, pp.10518–10523.

Aydin, H., Melhem, R., Mosse, D. and Alvarez, P.
(2001) ‘Dynamic and aggressive scheduling techniques
for power aware real-time systems’, Proc. RTSS, pp.95–
105.

Calhoun, B.H., Honore, F.A. and Chandrakasan, A. (2003)
‘Design methodology for fine-grained leakage control in
mtcmos’, Proc. ISLPED, pp.104–109.

Chetto, H. and Chetto,M. (1989) ‘Some results of the earli-
est deadline scheduling algorithm’, IEEE Transction On
Software Engineering, October, Vol. 15, No.10, pp.1261–
1269.

Clark, L., Patel, R. and Beatty, T. (2004) ‘Managing
standby and active mode leakage power in deep sub-
micron design’, Proc. ISLPED, pp.274–279.

Davis, R. and Burns, A. (1989) ‘Optimal priority assign-
ment for aperiodic tasks with firm deadlines in fixed-
priority preemptive systems’, Information Processing
Letters, Vol. 53, No.5, pp.249–254.

Duarte, D., Vijaykrishnan, N., Irwin, M.J., Kim, H.-S.
and McFarland, G.(2002a) ‘Impact of scaling on the ef-
fectiveness of dynamic power reduction schemes’, Proc.
ICCD, pp.382–387.

Duarte, S., Tsai, Y., Vijaykrishnan, N. and Irwin, M.
(2002b) ‘Evaluating run-time techniques for leakage
power reduction’, Proc. ASP-DAC, pp.31–36.

PXA250 and PXA210 Applications Pro-
cessors Design Guide (2002) URL:
http://handhelds.org/ joshua/PDFs/278524-001.pdf

Irani, S., Shukla, S. and Gupta, R. (2003) ‘Algorithms for
power savings’, Proc. SODA, pp.37–46.

Ishihara, T. and Yasuura, H. (1998) ‘Voltage scheduling
problem for dynamically variable voltage processors’,
Proc. ISLPED, pp.197–202.

International Technology Roadmap for Semiconductors
(2001) URL: http://public.itrs.net

Jejurikar, R. and Gupta, R. (2004a) ‘Procrastination
scheduling in fixed priority real-time systems’, Proc.
LCETS.

Jejurikar, R., Pereira, C. and Gupta, R. (2004b) ‘Leakage
aware dynamic voltage scaling for real-time embedded
systems’, Proc. DAC. pp.275–280

Jejurikar, R. and Gupta, R. (2005) ‘Dynamic slack recla-
mation with procrastination scheduling in real-time em-
bedded systems’, Proc. DAC.

Johnson, M., Somasekhar, D., Choiu, L. and Roy, K.
(2002) ‘Leakage control with efficient use of transistor
stacks in single threshold cmos’, IEEE Trans. on VLSI,
February, Vol. 10, No. 1, pp.1–5.

Kim, W., Kim, J. and Min, S.L. (2002) ‘A dynamic voltage
scaling algorithm for dynamic-priority hard real-time
systems using slack analysis’, Proc. DATE.

Kim, W., Kim, J. and Min, S.L. (2003) ‘Dynamic voltage
scaling algorithm for fixed-priority real-time systems us-
ing work-demand analysis’, Proc. ISLPED.

Kwon, W. and Kim, T. (2003) ‘Optimal voltage allocation
techniques for dynamically variable voltage processors’,
Proc. DAC. pp.125–130.

Lee, Y., Reddy, K. and Krishna, C. (2003) ‘Scheduling
techniques for reducing leakage power in hard real-time
systems’, Proc. ECRTS.

Lehoczky, J., Sha, L. and Ding, Y. (1989) ‘The rate mono-
tonic scheduling algorithm: Exact characterization and
average case behavior’, Proc. RTSS. pp. 166–171.

Lehoczky J. and Ramos-Thue S. (1992) ‘An optimal algo-
rithm for scheduling soft-aperiodic tasks in fixed-priority
preemptive systems’, Proc. RTSS. pp. 110-123.

Liu, C.L. and Layland, J.W. (1973) ‘Scheduling algorithms
for multiprogramming in a hard real-time environment’,
Journal of the ACM, Vol. 17, No. 2, pp.46–61.

Liu, J. (2000) ‘Real-Time Systems’, Prentice Hall, NJ.

Martin, S. and Flautner, K., Mudge, T. and Blaauw, D.
(2002) ‘Combined dynamic voltage scaling and adaptive
body biasing for lower power microporcessor under dy-
namic workloads’, Proc. ICCAD.

Mochocki, B., Hu, X. and Quan, G. (2002) ‘A realistic
variable voltage scheduling model for real-time applica-
tions’, Proc. ICCAD.

Neau, C. and Roy, K. (2002) ‘Optimal body bias selec-
tion for leakage improvement and process compensation
over different technology generations’, Proc. ISLPED.
pp. 116-121

Kim, N., Ryu, M., Hong, S., Saksena, M., Choi, C. and
Shin, H. (1996) ‘Visual assessment of a real-time system
design: a case study on a cnc controller’, Proc. RTSS.

Kim, W., Kim, J. and Min, S. L. (2004) ‘Preemption-aware
dynamic voltage scaling in hard real-time systems’, Proc.
ISLPED. pp. 393–398.

Pillai, P. and Shin, K. G.(2001) ‘Real-time dynamic volt-
age scaling for low-power embedded operating systems’,
Proc. SOSP.

Quan, G. and Hu, X.(2001) ‘Energy efficient fixed-priority
scheduling for real-time systems on voltage variable pro-
cessors’, Proc. DAC. pp 828-833.

Quan, G. and Hu, X.(2002) ‘Minimum energy fixed-
priority scheduling for variable voltage processors’, Proc.
DATE.

Roy, K., Mukhopadhyay, S. and Mahmoodi-Meimand,H.
(2003) ‘Leakage current mechanisms and leakage reduc-
tion techniques in deep-submicrometer cmos circuits’,
Preceedings of IEEE. Vol 91, No. 2, pp. 305-327.

Seth, K., Anantaraman, A., Mueller, F. and Rotenberg E.
(2003) ‘FAST: Frequency-Aware Static Timing Analy-
sis’, Proc. RTSS. pp.40–51.

Shin, Y., Choi, K. and Sakurai, T. (2000) ‘Power optimiza-
tion of real-time embedded systems on variable speed
processors’, Proc. ICCAD. pp.365–368.

Yan, L., Luo, J. and Jha, N.K. (2003) ‘Combined dynamic
voltage scaling and adaptive body biasing for hetero-
geneous distributed real-time embedded systems’, Proc.
ICCAD.

Yao, F., Demers, A. and Shenker, S. (1995) ‘A scheduling
model for reduced cpu energy’, Proc. FOCS, pp. 374-382

Zhai, B., Blaauw, D., Sylvester, D. and Flautner, K.(2004)
‘Theoretical and practical limits of dynamic voltage scal-
ing.’, Proc. DAC. pp 868-873.

