
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 3, MARCH 2004 245

DCG: Deterministic Clock-Gating for Low-Power
Microprocessor Design

Hai Li, Swarup Bhunia, Yiran Chen, Kaushik Roy, Fellow, IEEE, and T. N. Vijaykumar, Member, IEEE

Abstract—With the scaling of technology and the need for
higher performance and more functionality, power dissipation
is becoming a major bottleneck for microprocessor designs.
Because clock power can be significant in high-performance pro-
cessors, we propose a deterministic clock-gating (DCG) technique
which effectively reduces clock power. DCG is based on the key
observation that for many of the pipelined stages of a modern
processor, the circuit block usage in the near future is known a few
cycles ahead of time. Our experiments show an average of 19.9%
reduction in processor power with virtually no performance loss
for an eight-issue, out-of-order superscalar by applying DCG to
execution units, pipeline latches, D-cache wordline decoders, and
result bus drivers.

Index Terms—Deterministic clock-gating (DCG), superscalar
microarchitecture.

I. INTRODUCTION

PRESENT-DAY, general-purpose microprocessor designs
are faced with the daunting task of reducing power dissi-

pation since power dissipation is quickly becoming a bottleneck
for future technologies. Lowering power consumption is impor-
tant for not only lengthening battery life in portable systems,
but also improving reliability, and reducing heat-removal cost
in high-performance systems.

Clock power is a major component of microprocessor power
mainly because the clock is fed to most of the circuit blocks in
the processor, and the clock switches every cycle. Table I shows
the published power breakdowns for the Intel Pentium Pro and
Alpha 21 264 [2]. Note that the total clock power is accounted
for in different ways for the two processors. Pentium Pro re-
ports that the global clock (i.e., the global clock distribution tree,
not including pipeline latches and functional units) contributes
7.9% to the total processor power. In contrast, Alpha 21 264 re-
ports that the total (i.e., global + local) clock power is 34.4%
of the overall power consumption of the processor. Hence, total
clock power is a substantial component of total microprocessor
power dissipation.

Clock-gating is a well-known technique to reduce clock
power. Because individual circuit usage varies within and
across applications [1], not all the circuits are used all the
time, giving rise to power reduction opportunity. By ANDing

Manuscript received February 28, 2003; revised July 1, 2003. This work was
supported in part by Defense Advanced Research Projects Agency (DARPA)
PAC/C, in part by Intel Corporation, and in part by Semiconductor Research
Corporation.

The authors are with the Department of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN 47906 USA (e-mail: hl@ecn.purdue.edu;
bhunias@ecn.purdue.edu; yc@ecn.purdue.edu; kaushik@ecn.purdue.edu;
vijay@ecn.purdue.edu).

Digital Object Identifier 10.1109/TVLSI.2004.824307

TABLE I
POWER BREAKDOWNS FOR INTEL PENTIUM PRO AND ALPHA 21 264

the clock with a gate-control signal, clock-gating essentially
disables the clock to a circuit whenever the circuit is not used,
avoiding power dissipation due to unnecessary charging and
discharging of the unused circuits. Specifically, clock-gating
targets the clock power consumed in pipeline latches and dy-
namic-CMOS-logic circuits (e.g., integer units, floating-point
units, and wordline decoders of caches) used for speed and area
advantages over static logic.

Effective clock-gating, however, requires a methodology that
determines which circuits are gated, when, and for how long.
Clock-gating schemes that either result in frequent toggling of
the clock-gated circuit between enabled and disabled states, or
apply clock-gating to such small blocks that the clock-gating
control circuitry is almost as large as the blocks themselves,
incur large overhead. This overhead may result in power
dissipation to be higher than that without clock-gating. While
the concept of circuit-level clock-gating is widely known, good
architectural methodologies for effective clock-gating are not.
Pipeline balancing (PLB) is a recent technique, which essen-
tially outlines a predictive clock-gating methodology [1]. PLB
exploits the inherent variation of instruction level parallelism
(ILP) even within a program. PLB uses heuristics to predict a
program’s ILP at the granularity of 256-cycle window. If the
degree of ILP in the next window is predicted to be lower than
the width of the pipeline, PLB clock-gates a cluster of pipeline
components during the window.

In contrast to PLB’s predictive methodology, we propose a
deterministic methodology. Deterministic clock-gating (DCG)
is based on the key observation that for many of the pipeline
stages in a modern processor, a circuit block usage in a specific
cycle in the near future is deterministically known a few cycles
ahead of time. DCG exploits this advance knowledge to clock-
gate the unused blocks. In particular, we propose to clock-gate
execution units, pipeline latches of back-end stages after issue,
L1 D-cache wordline decoders, and result bus drivers. In an
out-of-order pipeline, whether these blocks will be used is

1063-8210/04$20.00 © 2004 IEEE

246 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 3, MARCH 2004

known at the end of issue based on the instructions issued. There
is at least one cycle of register read stage between issue and the
stages using execution units, D-cache wordline decoder, result
bus driver, and the back-end pipeline latches. DCG exploits this
one-cycle advance knowledge to clock-gate the unused blocks
without impacting the clock speed (Section III).

DCG has the following key features; 1) DCG is based on ac-
tual usage of circuit blocks and not on predictions. Therefore,
DCG avoids performance loss due to mispredictions causing cir-
cuits to be gated when they are needed, and lost opportunity due
to mispredictions causing circuits not to be gated when they are
idle. 2) DCG clock-gates at fine granularities of a few (1–2) cy-
cles on small circuit blocks (execution units, D-cache decoders,
result bus drivers, and pipeline latches). The fine granularity en-
ables flexible gating of individual pipeline stages without the
all-or-nothing restriction of gating the entire pipeline backend,
making DCG effective. However, DCG’s blocks are still sub-
stantially larger than the few gates added for clock-gating, al-
lowing DCG to amortize the overhead. 3) DCG is a simple
technique requiring no fine-tuning of thresholds, and is general
enough to be applicable to clustered and nonclustered microar-
chitectures.

Using Wattch and a subset of the SPEC2000 suite, we show
that (neglecting leakage power), DCG saves on average 20.3%
of total processor power and power-delay for an 8-issue, out-of-
order processor with virtually no performance impact. In con-
trast, PLB achieves 9.9% average power savings and 7.2% av-
erage power-delay savings, while incurring 2.9% performance
loss, which are in line with [1]. If we assume leakage power
accounts for 10% of dynamic power, on an average 18.3% im-
provement in total processor power is obtained for DCG while
PLB the improvement is 8.9%.

This paper makes the following contributions.

• There is no literature on clock-gating methodology. This
paper fills this gap by proposing DCG, presenting the is-
sues, and evaluating the deterministic methodology.

• DCG not only achieves large power savings, but also in-
curs no performance loss, while being simple.

The rest of the paper is organized as follows. Section II dis-
cusses related work. Section III describes basic clock-gating,
and identifies the out-of-order-issue pipeline stages to which we
apply DCG. Section IV presents implementation details for each
pipeline stage. In Section V, we describe our experimentation
methodology. Section VI presents the results and Section VII
concludes the paper.

II. RELATED WORK

As mentioned before, pipeline balancing [1] is a predictive
methodology to clock-gate unused components whenever the
ILP is predicted to be low. Folegnani et al. proposed a deter-
ministic scheme to reduce the issue queue power [6]. Manne et
al. reduced energy without major performance penalty by re-
stricting instruction fetch when the machine is likely to mispre-
dict [5]. Brooks et al. discussed value-based clock-gating [9]
and operation packing in integer arithmetic logic units (ALUs)
[10]. Several papers have proposed schemes to reduce cache en-
ergy and power [11]–[15].

Fig. 1. Clock-gating a latch element.

Fig. 2. Clock-gating a dynamic logic gate.

StrongArm used the conditional clocking in [18]. The Alpha
21 264 processor implemented clock–gating in floating-point
functional units [3].

Popular technology approaches to reduce power include tech-
nology scaling, supply voltage change, frequency scaling, and
leakage reduction technique by changing transistor threshold
voltage , etc. [16].

Circuit-level clock-gating focuses on clock-gating finite state
machines (FSM) [17]. The limitation of gated-clock FSM is that
its power saving heavily depends on the FSM characteristics.
However, the approach is not effective for general-purpose mi-
croprocessor pipelines.

III. DETERMINISTIC CLOCK GATING

A. Principle of Clock-Gating

The clock network in a microprocessor feeds clock to se-
quential elements like flip-flops and latches, and to dynamic
logic gates, which are used in high-performance execution units
and array address decoders (e.g. D-cache wordline decoder).
At a high level, gating the clock to a latch or a logic gate by
ANDing the clock with a control signal prevents the unneces-
sary charging/discharging of the capacitances when the circuit
is idle, and saves the circuit’s clock power.

Fig. 1(a) shows the schematic of a latch element. is the
latch’s cumulative gate capacitance connected to the clock. Be-
cause the clock switches every cycle, charges and discharges
every cycle and consumes significant amount of power. Even if
the inputs do not change from one clock to the next, the latch still
consumes clock power. In Fig. 1(b), the clock is gated by ANDing
it with a control signal, which we refer as Clk-gate signal. When
the latch is not required to switch state, Clk-gate signal is turned
off and the clock is not allowed to charge/discharge , saving
clock power. Because the latches of an operand (32 or 64 b) can
be driven by an AND gate, the capacitance of the AND gate itself
is much smaller than the sum of multiple of these latches.
Hence, we can get a net power saving.

Now, let us consider a dynamic logic cell, the schematic of
which is shown in Fig. 2(a). is the effective gate capacitance
that appears as a capacitive load to the clock, and is the

LI et al.: DCG: DETERMINISTIC CLOCK-GATING FOR LOW-POWER MICROPROCESSOR DESIGN 247

capacitive load to the dynamic logic cell. Similar to the latch,
the dynamic logic’s also charges and discharges every cycle
and consumes power.

In addition to , also consumes power: at the precharge
phase of the clock, charges through the pMOS precharge
transistor and during the evaluate phase, it discharges or retains
value depending on the input to the pull-down logic (shown as
“PDN” in Fig. 2). Whether consumes power or not depends
on both the current input and previous output. There are two
cases: (1) If holds a logic “1” at the end of a cycle, and
the next cycle output evaluates to a “1,” then does not
consume any power: Precharging an already-charged does
not consume power unless there are leakage losses (which we
do not consider in this paper). Because the next output is a “1,”
there is no discharging. (2) If holds a “0” at the end of a
cycle, consumes precharge power, irrespective of what the
inputs are in the next cycle. Even if the input does not change,
this precharge power is consumed. If the next output is a “1,”
no discharging occurs; otherwise, more power is consumed in
discharging .

Fig. 2(b) shows the same cell with gated clock. If the dynamic
logic cell is not used in a cycle, Clk-gate signal prevents both
and from switching in the cycle. While clock-gating latches
reduce only unnecessary clock power due to , clock-gating
dynamic logic reduces unnecessary dissipation of not only the
clock power due to , but also the dynamic logic power due to

. Here also, because the AND gate’s capacitance itself is much
smaller than , there is a net power saving. Moreover, a
single AND gate can be used to gate the clock to a large number
of dynamic logic cells.

B. Overview of DCG in a Microprocessor

In this section, we analyze the opportunity of DCG in dif-
ferent parts of a superscalar microarchitecture. DCG depends on
two factors: 1) opportunity due to existence of idle clock cycles
(i.e., cycles when a logic block is not being used) and 2) advance
information about when the logic block will not be used in the
future.

Fig. 3 depicts the general pipeline model for a superscalar
processor [4]. The pipeline consists of eight stages with pipeline
latches between successive stages, used for propagating instruc-
tion/data from one stage to the next. While we clock-gate the
stages and pipeline latches marked with a “tick mark” in Fig. 3,
we do not clock-gate the stages and latches with a “cross mark”
due to lack of opportunity and/or advance information. Next, we
explain why we do or do not clock-gate each individual pipeline
latch and stage.

1) DCG for Pipeline Latches: Pipeline latches uncondi-
tionally latch their inputs at every clock edge, resulting in
high power dissipation. As the technology scales down, deeper
pipeline stages with more latches are used. Furthermore, the
data width (e.g., 32 versus 64 b) also increases with micropro-
cessor evolution. Consequently, the ratio of the latch power to
the total processor power increases. Because most of the stage
latches have some idle cycles, clock-gating the latches during
these cycles can substantially save processor power. We now
analyze each of the stages to determine if an idle cycle for the
stage can be known in advance.

Fig. 3. Basic superscalar pipeline.

Instructions are fetched from the instruction cache every
cycle. The instructions are then decoded, checked for depen-
dences, renamed, and deposited in an instruction window. For
a branch, the instructions on the predicted path will be taken
before the branch is resolved. At the end of decode, we can
determine how many of the instructions are in the predicted
path out of those fetched. That is, if the third instruction in
a fetched block is a branch and the branch is predicted to be
taken then the instructions from the fourth instruction to the
end of the fetched block are thrown away. Only the first three
instructions enter the rename stage. Unfortunately, we cannot
clock-gate the latches following fetch and decode because
before decode we do not know how many instructions are in
the fetched path. However, we can determine the number of
instructions that will enter the rename stage at the end of decode
and clock-gate the unnecessary parts of the rename latch. We
have the entire rename stage to set up the clock-gate control of
the rename latch. In [5], the authors propose a branch prediction
confidence estimation method to reduce power dissipation due
to often-mispredicted branches. In our method, however, we
stick to purely deterministic means of realizing clock-gating
without performance loss, and do not apply any confidence
methods, which come at the cost of performance loss.

Because we can identify which and how many instructions are
selected to issue only at the very end of issue, we do not have
enough time to clock-gate the issue latch. We can clock-gate the
latches for the rest of the pipeline stages [i.e., register read (Rf),
execute (Ex), memory access (Mem) and writeback (WB)]. At
the beginning of the each of the stages we know how many in-
structions are entering the stage, and we can exploit the time
during the stage to set up the clock-gate control for these latches.

2) DCG for Pipeline Stages: Fetch stage uses the decoders
in the instruction cache and decode stage uses instruction
decoder, both of which are often implemented with dynamic
logic circuits. However, we cannot clock-gate fetch and decode
logic, because fetch and decode occur almost every cycle. We
do not know which instructions are useless until we decode
them, which is too late to clock-gate the decode stage. Rename
stage consumes little power and so we do not consider rename
stage for clock-gating.

The issue stage consists of the issue queue, which uses an as-
sociative array and a wakeup/select combinational logic. There
are many papers on reducing the issue queue power. Ref. [1]
clock-gates the issue queue using its predictive scheme. Ref. [6]
proposes a scheme in which issue queue entries that are either
deterministically determined to be empty, or deterministically
known to be already woken up, are essentially clock-gated. Be-
cause [6] already presents a deterministic method to clock-gate

248 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 3, MARCH 2004

Fig. 4. Schematic of a selection logic cell with the clock-gate signals extracted
from it.

the issue queue, we do not explore applying DCG to the issue
queue.

Register read stage consists of a register file implemented
using an array. However, only at the very end of issue, we know
how many instructions are selected and are going to access
the register file in the next cycle. Hence, there is no time to
clock-gate the register file.

We can clock-gate the execution units, which are often imple-
mented with dynamic logic blocks for high performance. Based
on the instructions issued, we deterministically know at the end
of issue which unit is going to be used in the cycle after the reg-
ister read stage. Hence, we can clock-gate the rest of the unused
execution units, by setting the clock-gate control during the read
cycle. Modern caches use dynamic logic for wordline decoding
and the writeback stage uses result bus driver to route result
data to the register file. Instructions that enter the execute stage
go through the memory and writeback stages. We can use the
same clock-gate control used in execute to clock-gate the rele-
vant logic in these stages. The control signal needs to be delayed
by one and two clock cycle(s), respectively, for the memory and
writeback stages.

IV. IMPLEMENTATION OF DCG

A. Execution Units

At the end of instruction issue, we know which execution
units will be used in the execute stage, a few cycles into the
future. The selection logic in a conventional issue queue not only
selects which instructions are to be issued based on execution
unit availability, but also matches instructions to execution unit.
Hence, we leverage the selection logic to provide information
about which execution units will remain unused and clock-gate
those units.

Fig. 4 shows the schematic of selection logic associated
with one type of execution units (e.g., either integer ALU, or
floating-point adder, or floating-point multiplier, etc.) [4]. The
request signals (REQ) come from the ready instructions once
the wakeup logic determines which instructions are ready. The
selection logic uses some selection policy to select a subset of
the ready instructions, and generates the corresponding grant
signals (GRANT). In our implementation, we send the GRANT
signals to the clock-gate control.

Fig. 5 shows the pipeline details of the control. Because in-
structions selected in cycle X use the execution units in cycle

Fig. 5. Clock-gating of the execution units.

Fig. 6. Timing diagram for execution units clock-gating.

(as shown in Fig. 6), we have to pass the GRANT sig-
nals down the pipeline through latches for proper timing of
clock-gating. We extend the pipeline latches for the issue and
read stages by a few extra bits to hold the GRANT signals. We
note that the gated clock line (output of the AND gates in Fig. 5)
that feeds the execution units may be skewed a bit because of
the delay through the latch and the AND gate. This skew affects
only the precharge phase and not the evaluate phase. Therefore,
DCG is likely not to lengthen execution unit latencies.

The control for clock-gating execution units is simple and the
overhead of the extended latches and the AND gates is small
compared to the execution units (e.g., 32- or 64-b carry-look-
ahead adders) themselves. Therefore, the area and power over-
head of the control circuitry are easily amortized by the signifi-
cant power savings achieved.

If execution units keep toggling between gated and nongated
modes, the control circuitry keeps switching, resulting in an in-
creased overhead due to the power consumed by the control cir-
cuitry. To alleviate this problem, we apply sequential priority
policy for execution units: Among the execution units of the
same type, we statically assign priorities to the units, so that
the higher priority units are always chosen to be used before the
lower priority units. Thus, most of the time the (lower) higher
priority units stay in (gated) nongated mode, minimizing the
control power overhead.

B. Pipeline Latches

We clock-gate pipeline latches at the end of rename, reg-
ister read, execute, memory, and writeback stages. For rename,
the number of clock-gated latches in any cycle is known from
the decode stage in the previous cycle. For latches in the other
stages, the number of clock-gated latches in any cycle is known
from the issue stage. We augment the issue stage to generate
a one-hot encoding of how many instructions are issued every
cycle. The encoding has a “0” to represent an empty issue slot,
and a “1” to represent a full issue slot for an issued instruction,
for all the issue slots of the pipeline. Much like the execution

LI et al.: DCG: DETERMINISTIC CLOCK-GATING FOR LOW-POWER MICROPROCESSOR DESIGN 249

Fig. 7. Clock-gating of pipeline latches.

units, the clock the one-hot encoding is passed down the pipe
via extended pipeline latches.

Fig. 7 shows the clock-gating control for the stages following
issue queue. The outputs of the extended latches carrying the
one-hot encoding are ANDed with the clock line to generate a set
of gated clock inputs for pipeline latches corresponding to indi-
vidual issue slots. Note that the clock line for the extra latches
themselves is not gated.

Extensions to the pipeline latches and the extra AND gates
for the control are small compared to the pipeline latches
(containing issue-width number of operands per instruction

operand width bits, e.g., b) themselves,
and clock drivers, respectively. Hence, the impact of the extra
control logic on area and power is not significant.

C. D-Cache Wordline Decoder

D-cache wordline decoders are clock-gated using the
load/store issue information; similar to the way the pipeline
latches are gated. The number of load/store instructions issued
in a cycle is one-hot encoded and passed down the pipeline
through some extra latches added to the regular pipeline latches.
A load instruction issued at cycle X uses the D-cache in cycle

. The load/store queue does not delay the load; the load
accesses the cache and the queue simultaneously. Therefore, in
cycle X, the one-hot encoding deterministically identifies how
many ports would be used in cycle , allowing DCG to
work.

Stores, however, may be delayed in the load/store queue
waiting until commit, so that the timing of store accesses
to the cache may not be pre-determinable. Depending upon
the load/store queue details, there are two possibilities. 1) An
upcoming store access may be known in the previous cycle,
giving time for the clock-gate control to be set up. 2) If no
advance knowledge is available, the store may have to be
delayed by one cycle to allow for clock-gate control set up.
Because stores, unlike loads, do not produce values for the
pipeline, this delay will result in virtually no performance
loss.

If in one cycle, we find that the number of loads and stores
to use the D-cache in the next cycle is less than the number of
ports, we clock-gate the ports which are unused in the next cycle.
As before, the amount of extra logic for controlling the clock is
small compared to the large wordline decoders.

Fig. 8. Clock-gating in the D-cache decoder structure.

Fig. 9. Clock-gating of result bus driver.

Fig. 8 shows the schematic of a port decoder, which is imple-
mented in 3 stages [7]. In the first stage, a set of NAND gates is
used to implement 3–8 decoders. The second stage consists of a
large number of NOR gates equal to the number of rows and the
third stage consists of wordline drivers. The 3–8 decoders and
the NOR gates are usually implemented in dynamic logic due to
speed and area advantage and, hence, can be clock-gated.

D. Result Bus Driver

To route the results to the register file, writeback stage drives
large capacitive load arising from the result bus. When the input
of the result bus transitions back and forth between the two logic
levels, power is consumed to charge/discharge the load capaci-
tance of result bus driver.

Fig. 9 shows the schematic of clock-gating the result bus
driver. Here, is the load capacitance rising from the result
bus. In Fig. 9(a), the result bus driver uses static logic, and
clock-gating is implemented at the pipeline latch which feeds
the driver. While the result bus is not used, Clk-gate signal
isolates the input data from the result bus. Hence, is not
charged/discharged even if the input switches spuriously. A
clock-gating schematic for result bus driver using dynamic
logic is shown in Fig. 9(b). Here, clock-gating can be imple-
mented directly to the result bus drivers. If the result bus is not
used in a particular clock cycle, Clk-gate signal prevents
from switching, and reduces power. As mentioned before, the
AND gate’s capacitance itself is much smaller than the total gate
and drain capacitance of dynamic-logic result bus drivers, and
hence, there is a net power saving.

Result bus drivers in writeback stage are clock-gated by using
the similar way as the pipeline latches. The number of instruc-
tions executed in a cycle is one-hot encoded and passed down
the pipeline through some extra latches added to the pipeline
latches. The instruction executed in cycle X goes though write-
back stage at cycle . So the execution units’ control signals
can be used but need to be delayed by two cycles. The amount
of extra logic is small compared to the large result bus driver.

250 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 3, MARCH 2004

TABLE II
BASELINE CCONFIGURATION OF SIMULATED PROCESSOR

V. EXPERIMENTAL METHODOLOGY

A. Architectural Simulation

We modified Wattch [2] to perform our simulations. [2] re-
ported that Wattch is within 20% of Alpha and Pentium power
dissipation in terms of absolute accuracy. However, Wattch is
fairly accurate in estimating the relative contribution of various
circuit blocks (similar to the breakdown shown in Table I). Be-
cause we show relative improvements we believe that our results
are fairly accurate.

Wattch used dynamic logic for power estimation of execu-
tion units [2]. Cacti and Wattch used static logic for D-cache
wordline decoder [2], [7]. We modified the code to use dynamic
logic. We estimate overall processor energy using Wattch scaled
for a 0.18- m technology. The baseline processor configuration
is summarized in Table II.

We use precompiled Alpha Spec2000 binaries [8] to ana-
lyze DCG’s performance and power. We use ref inputs, fast-for-
ward two billion instructions, and simulate five hundred million
instructions.

B. DCG Power Calculation

For each of the execution units, pipeline latches, D-Cache
wordline decoders and result bus drivers, the circuit power is
included if the circuit is not clock-gated. If the circuit is clock-
gated, zero power is added. This is the ideal case. In practice, it is
impossible to totally shut off the power even the clock is gated.
There is still leakage loss to be considered. Here, we assume
unused units consume 10% of its dynamic power.

There is power overhead associated with DCG’s control
circuitry. We include the power overhead due to the extended
pipeline latches when calculating latch power consumption.
Apart from latches, DCG adds some extra AND gates. These
AND gates can be designed with minimum size so that their
power overhead is negligible, compared to large drivers for the
clock tree.

C. Simulation Environment for PLB

For comparison, we also implemented pipeline balancing
method (PLB), which is proposed for a clustered pipeline [1]. We
adapted PLB to a nonclustered eight-wide issue out-of-order su-
perscalar shown in Table II. In our PLB implementation, we use
the same clock-gating granularity as [1], except our pipeline is
not clustered. Accordingly, there are three possible issue widths:
eight-wide issue, six-wide issue and four-wide issue. Eight-wide
issue is the normal mode, while six-wide and four-wide are used
for low-power mode. When the predicted instructions per cycle

(IPC) is low, the machine transfers to six-wide (1/4 of issue slot
is disabled) or four-wide issue (half of issue slot is disabled). To
be consistent with experiments reported in [1], we used the same
state machine and trigger condition for state transition as in [1].

PLB [1] reduced power for only the execution units and issue
queue. DCG clock-gates execution units, cache, result bus and
pipeline latches. If we compare DCG and PLB as they stand,
the differences in their effectiveness will include not only the
differences in their methodologies but also the fact that they op-
timize different pipeline components. To isolate the differences
in their methodology, we show two versions of the PLB scheme;
we show the savings for the original scheme under PLB-orig.
We have extended PLB to clock-gate pipeline latches, D-cache
wordline decoder in addition to the execution units and issue
queue, in the scheme called PLB-ext. For the D-cache, we mod-
ified the heuristic to reduce the number of ports from 2 to 1
whenever the issue width reduces from 8 to 4. In PLB-ext, we as-
sume that the appropriate number of pipeline latches and result
buses are clock-gated whenever the issue width reduces from 8
to 6 to 4. Note that while PLB-orig and PLB-ext clock-gate the
issue queue, DCG does not.

D. Optimal Number of Integer ALU Units

Usually a superscalar processor is designed with the same
number of integer ALU units as its issue width (e.g., the
eight-wide issue processor should have eight integer ALUs).
This number is intended to achieve high performance by
ensuring that if all ready instructions happen to use integer
units, they need not wait. This case may be a rarity for most
applications and some integer units may remain unused almost
all the cycles. These unused execution units, on the other hand,
dissipate similar amount of power as the used ones. Therefore,
a processor with as many integer ALU units as its issue width
may not be optimal for power and performance together.

Measuring the impact of clock-gating in a processor with
redundant execution units may exaggerate the technique’s ef-
fectiveness. To determine the optimal configuration in terms of
the number of integer units for the eight-wide issue processor,
we observed the effect of reducing number of integer units on
processor performance starting with eight integer units. In the
worse case among our benchmarks, the relative performance is
98.8% with six integer ALU units and 92.7% with four integer
units. Although a configuration with four units should dissipate
less power than one with six units, the former incurs significant
performance loss. With respect to both power and performance
six integer units seem to be optimal for eight-wide issue pro-
cessor, we use this configuration in all our experiments. For the
other execution units also, we choose the number of units based
on power-performance consideration.

VI. RESULTS

In this section, we present power and performance results
obtained from Wattch simulation. First, we present results on
the effectiveness of DCG. Second, we isolate the power saving
for execution units, pipeline latches, D-cache wordline decoders
and result bus drivers and present them in Sections VI-B–VI-E.
Finally, we discuss the effectiveness of DCG for future genera-
tion processors with deeper pipelines.

LI et al.: DCG: DETERMINISTIC CLOCK-GATING FOR LOW-POWER MICROPROCESSOR DESIGN 251

Fig. 10. Total processor power savings.

A. Effectiveness of DCG

In this section, we present the power savings of DCG. Here,
we consider power-delay product, which takes into account both
power savings and performance loss and is a better metric to
compare the effectiveness of the methods.

Recall from Section V that PLB-orig clock-gates only the
execution units and issue queue, but PLB-ext clock-gates the
issue queue in addition to the same pipeline components as
DCG—execution units, pipeline latches, D-cache wordline
decoders, and result bus. Not considering the issue queue
advantage of PLB-ext, the difference between PLB-ext and
DCG comes entirely from the nonpredictive nature and the
finer granularity of DCG, and not from the choice of which
pipeline components to clock-gate.

In Fig. 10, we plot the total power savings in the ideal
case achieved by DCG (left bar), PLB-orig (middle bar) and
PLB-ext (right bar) as a percentage of the total processor power
for the base case processor, which does not implement any
clock-gating. Y axis represents power savings computed as a
percentage of total power.

In the ideal case, leakage power consumption on unused sec-
tions need not be considered. DCG achieves average savings of
21.3% and 19.3% for integer and floating-point (FP) programs,
respectively. The corresponding savings for PLB-orig are 6.3%
and 4.9%. Our PLB-orig numbers are in line with those in [1].
PLB-ext improves upon PLB-orig and saves 11.0% and 8.7%
power on average. If we assume leakage power for unused sec-
tions is 10% of its dynamic power, DCG achieves average sav-
ings of 19.2% and 17.4% for integer and FP programs, respec-
tively. The corresponding savings for PLB-ext are 9.9% and
7.8%, respectively.

DCG achieves the highest savings for mcf and lucas, because
these two programs stall frequently due to unusually high cache
miss rates, affording large opportunity for gating.

The difference in power savings between DCG and PLB for
a particular program largely relies on the utilization of different
execution units in the program. For some integer programs, such
as perlbmk, power savings achieved by PLB-orig and PLB-ext
are much smaller than that achieved by DCG. While these pro-
grams have high utilization of the integer units, they seldom use
the FP units. These unused FP units can be clock-gated using
DCG, but PLB does not clock-gate the units because of PLB’s
coarser granularity (i.e., the integer units of the corresponding
“cluster” are in use, so the FP units are not disabled).

Fig. 11. Total processor power-delay savings.

Fig. 11 shows the power-delay savings achieved for the pro-
cessor by DCG, PLB-orig and PLB-ext methods computed as a
percentage of the base case processor’s power-delay. Y axis rep-
resents the percentage power-delay savings. The corresponding
bars follow the same trends as the plot in Fig. 10 with one
key difference. Because DCG incurs virtually no performance
degradation, power-delay saving for DCG is the same as its
power saving. Because of the impact on performance in PLB,
power-delay bars for PLB-orig and PLB-ext are shorter than
the corresponding power bars in Fig. 10. PLB-orig suffers 2.9%
performance loss for both integer and FP programs, delivering
3.5% and 2.0% power-delay savings, respectively. PLB-ext, on
the other hand, does better than PLB-orig in terms of power-
delay (8.3% and 5.9%, respectively) since it saves more power
by gating more components.

In the following sections, we deal with power saving in indi-
vidual components. We show that DCG’s savings comes from
all, not any one, of the components.

B. Execution Units

In this section we discuss power saving in integer and FP units
when we apply deterministic clock-gating to these units.

In initial simulations, we observed that the utilization of in-
teger execution units for the integer benchmarks is on average
35%, while the FP units have almost no utilization for these pro-
grams. On the other hand, for the FP benchmarks, average uti-
lizations of the FP units is about 23% while the integer units are
used for about 25% of the cycles on average. DCG allows us to
clock-gate an execution unit for all its idle cycles (Section IV).
Hence, we expect to achieve about 65% power saving in the in-
teger units for the integer benchmarks and 77% saving in the FP
units for the FP benchmarks. We also expect to save almost all
of the FP units’ power for integer benchmarks and about 75%
of integer units’ power for the FP benchmarks.

PLB-ext clock-gates half of the pipeline resources when the
processor works in four-wide issue mode for 50% power sav-
ings. In six-wide issue mode, we disable one integer ALU, one
FPU, and one FP mul/div unit, which amounts to 25% power
savings.

Fig. 12 shows the ideal power savings in integer execution
units by using DCG (left bar) and PLB-ext (right bar) for all
the benchmarks considered. The Y axis corresponds to power
saving obtained as a percentage of total integer units’ power
for the base case processor. Without considering leakage power

252 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 3, MARCH 2004

Fig. 12. Integer execution unit power savings.

Fig. 13. FP execution unit power savings.

consumption, DCG achieves about 72.0% of the total power sav-
ings for the integer units on average. The integer execution unit
power savings are 64.8% and 26.4% for DCG and PLB-ext, re-
spectively.

Fig. 13 shows similar plot for FPUs. Y axis represents power
savings in the FPUs calculated as the percentage of total power
dissipated in the FPUs. DCG (left bar) achieves 77.2% total
power saving for FP programs on average, and close to 100%
power saving for most integer benchmarks. On an average,
PLB-ext saves 26.4% and 23.0% of FPUs’ power for integer
and FP benchmarks, respectively.

C. Pipeline Latches

In this section, we discuss power saving for clock-gating
pipeline latches with DCG. In our simulations, we have observed
that the utilization of pipeline latches is about 60% on average.
Because DCG allows us to clock-gate a latch for all its unused
cycles (Section IV), we expect to save about 40% of latch power
with this method. The extra pipeline latches required for
implementing control in DCG, are not clock-gated, but account
for merely 1% of total latch power. Though this overhead is
small, we consider the overhead in all our experiments.

PLB-ext clock-gates 1/4 and 1/2 of the pipeline latches for
each stage, when the issue width reduces from 8 to 6 and from 8
to 4 for 17% and 33% power savings, respectively. This reduc-
tion ensures that the pipeline has the right number of latches to
accommodate for the low-power-modes issue widths.

Fig. 14 shows the ideal latch power savings for DCG (left
bar) and PLB-ext (right bar). The Y axis corresponds to
the power savings computed as a percentage of total power
dissipated in pipeline latches without any clock-gating. The
power saving achieved with DCG includes the power overhead
due to DCG’s extended latches. As expected, the power saving
for pipeline latches is 41.6% on average using DCG. PLB-ext

Fig. 14. Pipeline latch power savings.

Fig. 15. D-cache power savings.

achieves 17.6% power saving in pipeline latches. Mcf and lucas
stand out in terms of DCG’s savings. Recall that mcf and lucas
stall frequently due to high cache miss rates, affording large
opportunity for clock-gating the pipeline latches.

D. D-Cache Wordline Decoder

In this section, we present power saving results in D-cache
wordline decoder for clock-gating. In DCG, we expect to dis-
able a wordline decoder for almost all the cycles for which the
corresponding cache port is not used. Simulations about the uti-
lization of memory ports demonstrate about 40% average usage
of a memory port for the processor configuration considered.
Because the wordline decoders consume about 40% of total
D-cache power, we expect to save about 25% of cache power
with DCG.

PLB-ext disables one port when the processor switches its
issue width from 8 to 4, resulting in 50% of decoder power and
20% of D-cache power saving. To avoid undue impact on per-
formance, we keep both the ports enabled in six-wide issue.

Fig. 15 shows the D-cache power saving results for DCG (left
bar) and PLB-ext (right bar). The Y axis represents power sav-
ings as a percentage of total D-cache power for the processor
with no clock-gating. DCG achieves 27.2% power saving on av-
erage, which closely matches the expected saving. After consid-
ering leakage power consumption on unused D-cache wordline
decoder, the D-cache power savings are 24.5% and 7.3% for
DCG and PLB-ext, respectively.

E. Result Bus Drivers

In this section, we discuss power saving in the result bus
drivers. We have observed that the utilization of result bus is
about 40% on average. Because we can save power in all the un-
used cycles, we expect to save about 60% of power consumed
in the bus driver using DCG.

LI et al.: DCG: DETERMINISTIC CLOCK-GATING FOR LOW-POWER MICROPROCESSOR DESIGN 253

Fig. 16. Result bus power savings.

Fig. 17. Processor power saving for deeper pipelines.

For PLB-ext, we disable 2 (or 4) of the eight result buses,
when the processor changes issue width from 8 to 6 (or 4) for
25% (or 50%) power savings.

Fig. 16 shows ideal power savings in result bus for DCG (left
bar) and PLB-ext (right bar). The Y axis represents power sav-
ings as a percentage of total result bus power for the base case
processor. DCG achieves 59.6% average power savings, which
is according to the expected value. The average power saving
with PLB-ext is about 32.2%. The result bus driver power sav-
ings are 53.6% and 29.0% for DCG and PLB-ext, respectively,
considering total power (dynamic + leakage).

F. DCG for Deeper Pipeline

One important trend in high-performance processor design is
to lengthen the processor pipelines to accommodate for higher
clock rates. In this section, we discuss the impact of DCG on
a deeper pipeline. Because the advance knowledge of resource
usage does not change with pipeline depth (e.g., how many ALU
units will be used in execute is still known after issue, and if any-
thing there are more cycles between issue and execute), DCG
should perform as well or better with deeper pipelines.

All the resources, which we can gate for the baseline archi-
tecture, can also be gated for longer pipelines, but the oppor-
tunity to gate the extra latches depends on which stages in the
basic pipeline are lengthened. In particular, if a new pipeline
stage is introduced for any step except fetch, decode, or issue,
pipeline latches at the end of those stages can be gated using
DCG, making DCG an equally or more effective technique for
processors of future generations.

Fig. 17 shows the DCG power savings for a deeper pipeline
without considering leakage power consumption. The Y axis
corresponds to DCG power savings computed as a percentage

of the total processor power for the base case processor, which
does not implement any clock-gating. The left and right bars
are for an 8- and 20-stage processor, respectively. On average,
the 20-stage pipeline achieves 24.5% power savings and that is
larger than the 8-stage processor’s 20.3% savings.

VII. CONCLUSIONS

In this paper, we introduced a deterministic clock-gating
(DCG) methodology based on the key observation that for
many of the stages in a modern pipeline, a circuit block’s usage
in a specific cycle in the near future is deterministically known
a few cycles ahead of time. Using this advance information,
DCG clock-gates unused execution units, pipeline latches,
D-Cache port decoders, and result bus drivers. Results show
that DCG is very effective in reducing clock power in high
performance microprocessors.

As high-performance microprocessor pipelines get deeper
and power becomes a more critical factor, we have shown
that DCG’s effectiveness and simplicity will continue to be
important.

REFERENCES

[1] R. I. Bahar and S. Manne, “Power and energy reduction via pipeline
balancing,” in Proc. 28th Int. Symp. Computer Architecture (ISCA), July
2001, pp. 218–229.

[2] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for ar-
chitectural-level power analysis and optimizations,” in Proc. 27th Int.
Symp. Computer Architecture (ISCA), July 2000, pp. 83–94.

[3] M. Gowan, L. Biro, and D. Jackson, “Power considerations in the design
of the Alpha 21 264 microprocessor,” in Proc. 35th Design Automation
Conf. (DAC), June 1998, pp. 726–731.

[4] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-effective su-
perscalar processors,” in Proc. 24th Annu. Int. Symp. Computer Archi-
tecture (ISCA), June 1997, pp. 206–218.

[5] S. Manne, A. Klauser, and D. Grunwald, “Pipeline gating: speculation
control for energy reduction,” in Proc. 25th Int. Symp. Computer Archi-
tecture (ISCA), June 1998, pp. 132–141.

[6] D. Folegnani and A. Gonzalez, “Energy-effective issue logic,” in Proc.
28th Int. Symp. Computer Architecture (ISCA), July 2001, pp. 230–239.

[7] G. Rienman and N. Jouppi. Cacti 2.0: An Enhanced Access and Cycle
Time Model or On-Chip Caches. [Online]. Available: http://research.
compaq.com/wrl/people/jouppi/CACTI.html

[8] D. Weaver. (2000) Pre-Compiled Little-Endian Alpha ISA SPEC2000.
Binaries. [Online]. Available: http://research.compaq.com/wrl/people/
jouppi/CACTI.html

[9] D. Brooks and M. Martonosi, “Value-based clock gating and operation
packing: dynamic strategies for improving processor power and perfor-
mance,” ACM Trans. Comput. Syst., vol. 18, no. 2, pp. 89–126, May
2000.

[10] , “Dynamically exploiting narrow width operands to improve pro-
cessor power and performance,” in Proc. 5th Int. Symp. High-Perfor-
mance Computer Architecture (HPCA), Jan. 1999, pp. 13–22.

[11] D. H. Albonesi, “Selective cache ways: on-demand cache resource al-
location,” in Proc. 32nd Annu. IEEE/ACM Int. Symp. Microarchitecture
(MICRO 32), Nov. 1999, pp. 248–259.

[12] C.-L. Su and A. M. Despain, “Cache design trade-offs for power and
performance optimization: a case study,” in Proc. Int. Symp. Low-Power
Electronics Design (ISLPED), 1995, pp. 63–68.

[13] N. Bellas, I. Hajj, and C. Polychronopoulos, “Using dynamic manage-
ment techniques to reduce energy in high-performance processors,” in
Proc. 1999 Int. Symp. Low-Power Electronics and Design (ISLPED),
Aug. 1999, pp. 64–69.

[14] J. Kin, M. Gupta, and W. H. Mangione-Smith, “The filter cache: an en-
ergy efficient memory structure,” in Proc. 30th Ann. IEEE/ACM Int.
Symp. Microarchitecture (MICRO 30), Dec. 1997, pp. 184–193.

[15] M. Powell, A. Agrawal, T. N. Vijaykumar, B. Falsafi, and K. Roy,
“Reducing set-associative cache energy via selective direct-mapping
and way prediction,” in Proc. 34th Annu. Int. Symp. Microarchitecture
(MICRO), Dec. 2001, pp. 54–65.

254 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 3, MARCH 2004

[16] K. Roy and S. C. Prasad, Low-Power CMOS VLSI Circuit Design. New
York: Wiley, 2000.

[17] J. C. Monteiro, “Power optimization using dynamic power manage-
ment,” in Proc. XII Symp. Integrated Circuits Systems Design (ICSD),
Sept. 1999, pp. 134–139.

[18] J. Montanaro et al., “A 160-MHz, 32-b, 0.5-W CMOS RISC micropro-
cessor,” IEEE J. Solid-State Circuits, vol. 11, pp. 1703–1714, Nov. 1996.

Hai Li received the B.S. degree in electrical
engineering and the M.S. degree in microelectronics
from Tsinghua University, Beijing, China, in 1998
and 2000, respectively. She is currently working
toward the Ph.D. degree in electrical and computer
engineering at Purdue University, West Lafayette,
IN.

Her research interests include low-power inte-
grated circuits and architecture.

Mrs. Li received a Fellowship from Purdue Uni-
versity, West Lafayette, IN, for the year 2000–2001.

Swarup Bhunia received the undergraduate degree
from Jadavpur University, Calcutta, India, and
the Master’s degree from the Indian Institute of
Technology (IIT), Kharagpur. He is currently
working toward the Ph.D. degree in the Department
of Electrical Engineering, Purdue University, West
Lafayette, IN.

He has worked in the EDA industry on RTL syn-
thesis and verification since 2000. His research in-
terest includes defect-based testing, diagnosis, noise
analysis, and noise-aware design.

Yiran Chen received the B.S. and M.S. degrees in
electronic engineering from Tsinghua University,
Beijing, China, in 1998 and 2001, respectively.
He is currently working toward the Ph.D. degree
in electrical and computer engineering at Purdue
University, West Lafayette, IN.

He was with Micron Advanced System Research
Lab, Boise, ID, and in Minneapolis, MN, in the
summers of 2002 and 2003, respectively, where
he worked on optical-interconnect projects. His
research interests includes power supply noise

analysis, interconnect modeling, low-power circuits and architecture design.

Kaushik Roy (S’83–M’83–SM’95–F’02) received
the B.Tech. degree in electronics and electrical
communications engineering from the Indian
Institute of Technology, Kharagpur, India, and the
Ph.D. degree from the Electrical and Computer
Eengineering Department, University of Illinois at
Urbana-Champaign in 1990.

He was with the Semiconductor Process and
Design Center of Texas Instruments, Dallas, where
he worked on FPGA architecture development and
low-power circuit design. He joined the electrical

and computer engineering faculty at Purdue University, West Lafayette, IN, in
1993, where he is currently a Professor. His research interests include VLSI
design/CAD with particular emphasis in low-power electronics for portable
computing and wireless communications, VLSI testing and verification, and
reconfigurable computing. He has published more than 225 papers in refereed
journals and conferences, holds 6 patents, and is a coauthor of a book on Low
Power CMOS VLSI Design (New York: Wiley, 2000).

Dr. Roy received the National Science Foundation Career Development
Award in 1995, IBM faculty partnership award, ATT/Lucent Foundation
Award, Best Paper Awards at the 1997 International Test Conference, IEEE
2000 International Symposium on Quality of IC Design, IEEE Latin American
Test Workshop, and is currently a Purdue University Faculty Scholar Professor.
He is on the Technical Advisory Board of Zenasis Inc. and a Research Visionary
Board Member of Motorola Labs (2002). He has been on the Editorial Board
of IEEE DESIGN AND TEST, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS,
and IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI)
SYSTEMS. He was Guest Editor for Special Issue on Low-Power VLSI in the
IEEE DESIGN AND TEST (1994) and IEEE TRANSACTIONS ON VERY LARGE

SCALE INTEGRATION (VLSI) SYSTEMS (June 2000), IEE Proceedings—Com-
puters and Digital Techniques (July 2002).

T. N. Vijaykumar (S’90–M’98) received the
B.E. degree (Hons.) in electrical and electronics
engineering and the M.Sc. Tech. degree in computer
science from the Birla Institute of Technology
and Science, Pilani, India, in 1990, and the M.S.
and Ph.D. degrees in computer science from the
University of Wisconsin, Madison, in 1992 and
1998, respectively.

He is currently an Assistant Professor in the School
of Electrical and Computer Engineering, Purdue Uni-
versity, West Lafayette, IN. His research interests in-

clude computer architecture, VLSI microarchitecture, low-power microproces-
sors, fault-tolerant architectures, speculative multithreading, and network pro-
cessors.

Prof. Vijaykumar received a National Science Foundation (NSF) CAREER
Award in 1999. He is a Member of the Association for Computing Machinery
(ACM).

