
Duration Models for Arabic Text Recognition using Hidden Markov Models

Fouad SLIMANE1,2, Rolf INGOLD2, Adel M. ALIMI1, Jean HENNEBERT2,3

1REsearch Group on Intelligent Machines (REGIM)
University of Sfax, National Engineering School of Sfax, BP. W-3038, Sfax, Tunisia

2 Department of Informatics
University of Fribourg, Bd de Pérolles, 1700 Fribourg, Switzerland

3 Business Information Systems Institute, University of Applied Science Western Switzerland,
HES-SO, TechnoArk 3, 3960 Sierre, Switzerland

Fouad.Slimane@unifr.ch, Rolf.Ingold@unifr.ch, Adel.Alimi@enis.rnu.tn,
Jean.Hennebert@unifr.ch

Abstract

We present in this paper a system for recognition of
printed Arabic text based on Hidden Markov Models
(HMM). While HMMs have been successfully used in
the past for such a task, we report here on significant
improvements of the recognition performance with the
introduction of minimum and maximum duration
models. The improvements allow us to build a system
working in open vocabulary mode, i.e., without any
limitations on the size of the vocabulary. The
evaluation of our system is performed using HTK
(Hidden Markov Model Toolkit) on a database of word
images that are synthetically generated.

1. Introduction

Most of the optical text recognition systems for
Latin printed text assume that the characters can be
isolated with an a priori segmentation procedure. This
phase of segmentation is difficult in the case of cursive
or semi-cursive writing.
 In the seventies, several solutions of Arabic printed
texts recognition have already been proposed [14].
Systems for the recognition of Arabic script can be
divided into two categories: the first one is based on a
global approach (Global approach models the word in
its entirety, indifferently of the composing characters)
and the second one is based on an analytical approach
(Analytical approach considers the word as a
composition of sub-entities. These sub-entities
correspond to a character in a given context or to a
fragment of character).

However, the difficulty is now in the a priori
segmentation of the word into these sub-entities.
Several a priori segmentation approaches have been

studied with limited success, see for example [3]. The
recognition performance is actually very much
dependent to the performance of the segmentation
procedure.

To face the difficulties of varying characters shapes
and of the segmentation procedure, several researchers
have proposed to use Hidden Markov Models (HMMs)
to recognize Arabic script [4], [5], [7], [8], [9], [10],
[11], [12], [13], [14]. HMMs have been widely used in
many tasks involving sequence modelling where the
observations are emitted by distinct states. A wide
literature is available on HMMs, especially in the field
of speech recognition [15]. HMMs have also been
applied to cursive handwriting recognition [3], [1].

HMMs, by nature, are modelling a double stochastic
process: emission of observations and transition of
states. In the case of Arabic script, a word is
transformed into a sequence of feature vectors which
are the observations input to the HMM. An HMM is
then used to model the word where states are
associated to characters, sub-characters or directly to
their variations. The transition probabilities between
states are typically modelling the probability that one
character follows another one.

There are two main advantages of using HMMs to
recognize Arabic script. First, the emission probability
density functions of the HMMs can be trained to model
variations of the character shapes. Second, the
decoding procedure will solve in the same time the
recognition of words and the segmentation into
character models.

In this paper, we present several improvements of a
state-of-the-art HMM system similar to the one
reported in [7]. More specifically, we analyze the
benefits of introducing HMM topologies that are able

CIMCA 2008, IAWTIC 2008, and ISE 2008

978-0-7695-3514-2/08 $25.00 © 2008 IEEE
DOI 10.1109/CIMCA.2008.229

838

to model durations in characters1. Similar duration
modelling approaches have already been introduced for
the recognition of low-resolution text in images [6].
The improvements allow us to build an open
vocabulary system, i.e., a system that can recognize
any arbitrary word written in Arabic script, without
limitations on the vocabulary size. The evaluation of
our system is performed using the widely used Hidden
Markov Model Toolkit (HTK) [16].

The paper is organized as follows. In Section 2, we
present the general characteristics of the Arabic
writing. In section 3, the recognition system is
described in more details. Section 4 presents the
evaluation framework used for this work. Results are
discussed in Section 5 and are followed by our
discussions.

2. General characteristics of the Arabic

writing

As illustrated in Figure 1, the Arabic script is
written from right to left and is semi-cursive either in
printed form or handwritten. Each character, in a word,
has a left and/or right connection point that, lies on an
imaginary line, which is the base line. The writing is
unicase (the concept of upper and lower case letters
does not exist). The Arabic alphabet is richer than the
Latin as it contains 28 letters that have different
appearances according to their position in the word.
Typically, the shape of one character can be different
depending if it is isolated or if its position is at the
beginning, middle or end of the word. For example, the
letter " (Xaa)" has four kinds of appearances: isolated

" " as in " (shouting)" at the beginning " " as in

" (experience)", in the middle " " as in "

(laboratory)" and at the end " " as in "

(cooking)". We present in Table 1 the 28 Arabic letters
with their different shapes according to their position
in the word. Letters with just 2 shapes shown cannot be
connected to the following letter, thus, their “Begin”
shapes are simply their “Isolated” shapes, and their
“Middle” shapes are their “End” shapes.

Arabic word can be composed of one or more
components (pseudo-word) and the characters of the
same connected component can be ligatured
horizontally and vertically. The ligature procedure is
also dependent to the font used (in some fonts, we can
go up to four vertical ligatures). Figure 1 shows a

1 Another difference in comparison to [7] is also the
introduction of continuous estimators for the emission
probability density functions, instead of discrete
estimators.

vertical ligature of three characters Alif, Miim and
Jiim.

Table 1. Arabic letters
Letter label Isolated Begin Middle End
Alif

Baa

Taaa

Thaa

Jiim

Haaa

Xaa

Daal

Thaal

Raa

Zaay

Siin

Shiin

Saad

Daad

Thaaa

Taa

Ayn

Ghayn

Faa

Gaaf

Kaaf

Laam

Miim

Nuun

Haa

Waaw

Yaa

Figure 1. Example of Arabic word with a vertical ligature
and a vertical overlap

Finally, vertical overlaps can occur at the

intersection of pseudo-words and also within words for
some sequence of characters. For more details on the
characteristics of the Arabic script, we refer to [14].

3. System description

The proposed system is based on HTK. As
illustrated in Figure 2, the system is working in two

839

phases: training and recognition. These two phases are
sharing the same feature extraction frontend.

Figure 2. Processing steps involved in the HTK-based
Arabic recognition system

3.1. Preprocessing and feature extraction

In the feature extraction part, words of each image

are transformed into a sequence of feature vectors
computed from a narrow analysis window of N pixels
sliding from right to left on the word. In our settings,
the uniform analysis window is shifted of 1 pixel. We
performed several tests to determine the optimal size of
the window to maximize the recognition rate and we
obtained an optimal value with N=14. The size of this
analysis window is of course dependent on the font
size and font family and could be different for another
task. A feature vector is extracted from each analysis
window. As a result, no segmentation into letters is
made and the word is transformed into a matrix of
values where the number of lines corresponds to the
number of analysis windows and the number of
columns is equal to the number of coefficients in each
feature vector.

The feature extraction is divided into two parts. The
first part extracts, for each window:

– the number N1 of black connected components
– the number N2 of white connected components
– the ratio N1/N2 of black and white connected

components
– the position of the smallest black connected

component divided by the height of the window
– the perimeter of all components in

window/perimeter of window
– compactness () ()()Area42 πPerimeter
– gravity centre of the window, of the right and

left half and of the first third, the second and the
last part of the window:

Widthn

x
G

n

i i

x ×
= =1 Heightn

y
yG

n

i i

×
= =1

The second part of the feature extraction consists of
resizing the window into a normalized size of 20 pixels
height and computing the horizontal and vertical
projection values. The feature extraction, overall,
results in a vector of 53 coefficients. Our feature
extraction module is here implemented in Java.

3.2. HMM with HTK

We used the Hidden Markov model Toolkit (HTK)

to realize our evaluation [16]. HTK was originally
developed at the Speech Vision and Robotics Group of
the Cambridge University Engineering Department
(CUED). This toolbox has been built to experiments
with Hidden Markov Models (HMMs) and has been
extensively used in speech recognition research. HTK
is a set of command line executables used for
initializing, modifying, training and testing HMMs.
The use of HTK typically goes through four phases:
preparation of data, training, recognition and
recognition performance evaluation.

In the preparation phase of data, the sequences of
features vectors representing the words are extracted as
described in Section 3.1 and are converted into a file
format compatible with HTK using the HTK HCopy
command.

In the learning phase, all training files are firstly
used for the initialisation of HMM models for each
letters, using HTK HCompV. For each training word
image, the corresponding sub-models are connected
together to form a right-left HMM. We experimented
in this paper using different sub-model topologies as
explained below in Section 3.3, the simplest topology
being the single-state one as illustrated on Figure 3.B.
An embedded training using the Baum-Welch iterative
estimation procedure is used with HTK tool HERest.

Using training set, all the observation sequences are
used to estimate the emission probability functions of
each sub-model. The training procedure actually
involves two steps that are iteratively applied to
increase the number of Gaussian mixtures to a given M
value. In the first step, a binary split procedure is
applied to the Gaussians to increase their number. In
the second step, the Baum-Welch re-estimation
procedure is launched to estimate the parameters of the
Gaussians.

At the end of the training phase, when applied,
duration models are derived from a forced alignment
procedure applied to the training data. The duration
values are then applied to alter the HMM topology as
explained below.

840

At recognition time, an ergodic HMM is composed
using all sub-models. All transitions from one sub-
model to the other are allowed. The proposed model
allows recognizing potentially any word in an open
vocabulary fashion. The disadvantage of this procedure
is that the system can propose invalid words as
recognition. However, we show through the results
obtained in this paper that the use of duration
modelling at recognition time is reducing drastically
the recognition errors of the system. Using ergodic
topology offers the advantage of relatively lightweight
memory and cpu footprint, when compared to more
heavyweight approaches based on finite-state or
stochastic grammars. The recognition is done by
looking the best state sequence in the HMM using a
Viterbi procedure implemented with the HTK tool
HVite.

Performances are evaluated in terms of word
recognition rates using an unseen set of word images.
It is obtained using the HTK HResult tool.

3.3. Sub-model topologies

The proposed recognition model is ergodic where

all sub-models are connected together. Each model
represents a letter or several letters (in the case of
letters ligatures). Table 2 below summarizes the 60
different sub-models that have been selected for our
system. The selection procedure of the different sub-
models has been driven by grouping shapes of letters
presenting few variations. Our assumption is here that
the emission probability estimators based on Gaussian
mixtures will offer enough flexibility to model the
common parts and the variations within each letter
category.

Using the terminology introduced for speech
recognition [15], our models are said to be context
independent, i.e., each sub-model is considered
independent to the next.

We explored in this paper different context
independent sub-model topologies that we present in
three categories:

1. Equal number of states for each model: an a
priori fixed HMM topology is the same for all models,
for example 1 state per sub-model (Figure 3.B) or 3
states per sub-model (Figure 3.C).

2. Number of states dependent to relative width
and form of letters: the number of states in the sub-
model is dependent with form and with of letter image,
for example alif_E is set to 1 state while saad_I is set
to 5 states.

3. Duration models based: a simple single-state
HMM topology is used during training and is altered
during testing to include a minimum duration model

that is either knowledge-based using font metric
information or inferred from the duration values
obtained during training. The minimum duration model
is simply obtained by repeating a given state Di times
to force the decoding process to spend a minimum of
feature vectors in the sub-model i.

Table 2: Sub-models labels and their corresponding

letter(s).
Label Letters Label Letters

Baa_B TaaaClosed_E

Taaa_M YaaChadda_I

Raa_I YaaChadda_M

Ghayn_B Hamza

Alif_E Laam_I

Nuun_B Laam_M

Taaa_E LaamAlif_I

Miim_B Thaa_M

Miim_I Gaaf_I

Thaaa_I Gaaf_B

Waaw Jiim_M

Nuun_I Haaa_B

Yaa_M Thaa_E

Yaa_I HamzaUnderAlif
_I

Saad_I HaaChadda_E

Xaa_B HamzaAboveAlif

Siin_I NuunChadda_E

Siin_B Shiin_M

Daal_I Taa_I

Haa_I Baa_E

Haa_B Shiin_I

Thaal_I Saad_B

Xaa_I Ayn_M

AlifBroken_E Ayn_B

Haaa_I Ghayn_M

Zaay_I Daad_I

Kaaf_I Daad_M

Kaaf_B Jiim_I

Ghayn_I Ghayn_E

Ayn_E Faa_M

Figure 3. Example of topologies using a fixed and equal
number of states for sub-models (B:1-state)(C:3-states)

841

4. Evaluation Framework

For the evaluation of our system, we have used a

synthetic database of word images composed of 20'630
word images. We generated the image using a Java
procedure using the font Times, 24 points. The
resulting images have a size of 56 pixels height as a
maximum and are stored in PNG format. The
generated images are synthetic but are somehow
similar to what can be seen in standard newspapers.

Using a synthetic database presents advantages and
disadvantages. On the one side, the synthetic approach
allows us to generate a quite large database of words
images where the words are already isolated. The large
quantity of data is beneficial in terms of evaluation as
we can let the HMM training procedure converge to
precise values of the probability density functions
estimators. On the other side, the database does not
contain variabilities that are usually present when
scanning a document.

Our objective in this paper is to evaluate the impact
of duration models in a HMM system. The synthetic
database used in this work is therefore sufficient for
our objectives.

The evaluation database is divided into a training
set of 19'630 different and into a test set of 1'000
words. These sets are fully independent.

5. The experimental results

All results (grouped in Table 3) were obtained
keeping constant the different feature extraction
parameters (N=14 pixels, shift of 1 pixel), model
complexity (64 mixtures in each states) and training
procedure (same number of iterations, same algorithm
parameters).

Results obtained using an equal number of states for
each model show increasingly good results when the
number of states per sub-models is increasing from 1 to
6 states. The best results are obtained with 6 states per
sub-models with 93.1% of word recognition rate.

Several comments can be given on these results:
- While performances are increased when model

topologies have more states, this is at the cost of
recognition time and memory footprints.

- Although putting more states in each model
seems to increase the performances, we could not go
above 6 states per sub-models as training convergence
conditions were not anymore met with HTK.

- The results in terms of word recognition rates are
low for single state models. However, the character
recognition rates were mesure to be quite high at
99.4%. This means that most of the letters are well
recognized while some letters are inserted or deleted in

many words. We did this observation for example with
letter alif_E which is actually similar to sub-parts of
many of the other letters and was then inserted
frequently in words.

Table 3: Results system using a fixed number of states
Categ. Train Model Test Model % Word

1 1-state 1-state 7.0
1 3-states 3-states 70.4
1 5-states 5-states 92.9
1 6-states 6-states 93.1
2 [1,3]-states [1,3]-states 18.1
2 [3,5]-states [3,5]-states 85.9
2 [1,3,5]-states [1,3,5]-states 78.5
2 [3,5,6]-states [3,5,6]-states 88.6

3 1-state knowledge-based
min-duration 81.5

3 1-state min-duration d=
d/2 91.9

In the second category of model topologies, the

number of states is dependent on the relative length of
each letter. For example, in the configuration [1,3,5]-
states, we have used 1 state for short letters, 3 states for
medium sized letters and 5 states for long sized letters.
The affectation of a sub-model to a given length was
performed manually, inspecting their relative size. The
motivations are here to provide richer models for
longer letters while keeping low cpu and memory
footprint by affecting less demanding models for the
shortest states. The results show that the performances
are always in between the performances of the
configurations of category 1.

For minimum duration models, we report about two
experiments. For the first one, the minimum duration
values are knowledge-based, measured manually from
all letters and injected in the system. For the second
experiment, the minimum duration values Di for each
sub-model i are automatically inferred at training time,
performing a Viterbi forced alignment on the input
images and accumulating in histograms the number of
times the self-loop transition is visited for all states.
The average number of self-loop transitions i can be
simply computed from the histograms. In our
experiments, the minimum duration value Di has been
set to half of this average value Di = i/2 [15]. The
following observations can be done:

- Inferring the minimum duration values from
training time leads to better recognition results than the
knowledge base approach. This is probably due to the
segmentation procedures that are different between the
manual and automatic approach.

- When comparing the single state results (7%) and
the minimum duration results (91.9%), we can observe
all the benefits of introducing such minimum
durations. The memory footprint remains more or less

842

exactly the same (60 bytes more to encode the duration
values) and the cpu usage also show benefits thanks to
a better pruning of less probable paths in the decoding
procedure.

The most interesting observation from these
experiments is that we can recover similar
performances of more complex models (6-states
configuration) using less cpu and memory consuming
single-state models by injecting simple minimum
duration constraints in the HMM topologies.

A remaining problem with the single state
configuration is the systematic mis-recognition of
words where same letters are consecutives. It is indeed
equivalent for the system to remain more in a given
state than to emit two similar consecutive states. This
drawback will be addressed in future work with the
introduction of other duration models that take into
account minimum and maximum constraints.

6. Conclusion

In this paper, we have presented a system for open-
vocabulary recognition of Arabic printed text based on
HMMs. The benefit of HMMs is clearly in its ability to
segment the semi-cursive Arabic script into letters
while performing the recognition at the same time. The
novelty of the work reported in this paper over the state
of the art in Arabic recognition is in the introduction of
minimum duration models that allow to increase
significantly the performances of the system while
keeping an architecture which is lightweight in terms
of cpu and memory.

7. References

[1]A. Schlapbach and H. Bunke, “Using HMM-based
recognizers for writer identification and verification”, Proc.
9th Int. Workshop on Frontiers in Handwriting Recognition,
2004, pp. 167-172.

[2] B. Al-Badr, S.A. Mahmoud, “Survey and bibliography of
Arabic Optical Text Recognition”, Signal processing, 1995,
vol. 41, pp. 49-77.

[3]U-V. Marti and H. Bunke, “Using a statistical language
model to improve the performance of an HMM-based cursive
handwriting recognition system”, Journal of Pattern
Recognition and Art. Intelligence 15, 2001, pp. 65-90.

[4] H. Miled, C. Olivier, M. Cheriet, Y. Lecourtier,
“Coupling observation/letter for a Markovian modelisation
applied to the recognition of arabic handwriting”, IEEE Proc.
4th International conference on document analysis and
recognition (ICDAR'97), Ulm, Germany, 1997, pp. 580-583.

[5] H. Miled, M. Cheriet, C. Olivier, Y. Lecourtier,
“Modélisation markovienne de l'écriture arabe manuscrite:
une approche analytique”, Proc. 1er Colloque international
francophone sur l'écrit et le document (CIFED'98), Québec,
Canada, 1998, pp. 50-59.

[6] F. Einsele, R. Ingold, J. Hennebert, "A Language-
Independent, Open-Vocabulary System Based on HMMs for
Recognition of Ultra Low Resolution Words", In proc. of
23rd Annual ACM Symposium on Applied Computing
(ACM SAC 2008), Fortaleza (Brasil), March 16 - 21
2008.

 [7] M S. Khorsheed, “Offline recognition of omnifont
Arabic text using the HMM ToolKit (HTK)”, Pattern
Recognition Letters 28(12), 2007, pp. 1563-1571.

[8] M. S. Khorsheed, “Off-line arabic character recognition–
– a review”, Pattern Anal, 2002, Appl. 5, 31–45.

[9] M. S. Khorsheed, Clocksin, W.F., “Multi-font arabic
word recognition using spectral features”, The 15th
International Conference on Pattern Recognition ICPR, vol.
4. Barcelona, Spain, 2000, pp. 543–546.

[10] M. S. Khorsheed, “Recognising handwritten Arabic
manuscripts using a single hidden Markov model”, Pattern
Recognition Letters, v.24 n.14, October 2003, pp.2235-2242.

[11] M.C. Fehri, “Reconnaissance de textes arabes mutifonte
à l'aide d'une approche hybride neuro-markoviennes”. Thèse
de doctorat, Université des sciences, des techniques et de
médecine de Tunis II, Tunisie, 1999.

[12] M.C. Fehri, M. Ben Ahmed, “Off-line arabic
handwriting recognition”, Computational engineering in
systems applications (CESA'98), Nabeul-Hammamet,
Tunisie, 1998, pp.1-3.

[13] N. Ben Amara : “Utilisation des modèles de Markov
cachés planaires en reconnaissance de l'écriture arabe
imprimée”. Thèse de doctorat, Université des sciences, des
techniques et de médecine de Tunis II, Tunisie, 1999.

[14] N. Ben Amara, A. Belaïd and N. Ellouze, “Utilisation
des modèles markoviens en reconnaissance de l'écriture arabe
:État de l’art”, CIFED, 2000.

[15] Rabiner, L., Juang, B., “Fundamentals of Speech
Recognition”, Prentice Hall, 1993.

[16] Young, S., Evermann, G., Kershaw, D., Moore, D.,
Odell, J., Ollason, D., Valtchev, V., Woodland, P., “The
HTK Book”, Cambridge University Engineering Dept., 2001.

843

