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Abstract 
 

We present in this paper a system for recognition of 
printed Arabic text based on Hidden Markov Models 
(HMM). While HMMs have been successfully used in 
the past for such a task, we report here on significant 
improvements of the recognition performance with the 
introduction of minimum and maximum duration 
models. The improvements allow us to build a system 
working in open vocabulary mode, i.e., without any 
limitations on the size of the vocabulary. The 
evaluation of our system is performed using HTK 
(Hidden Markov Model Toolkit) on a database of word 
images that are synthetically generated. 
 
1. Introduction 
 

Most of the optical text recognition systems for 
Latin printed text assume that the characters can be 
isolated with an a priori segmentation procedure. This 
phase of segmentation is difficult in the case of cursive 
or semi-cursive writing. 
 In the seventies, several solutions of Arabic printed 
texts recognition have already been proposed [14]. 
Systems for the recognition of Arabic script can be 
divided into two categories: the first one is based on a 
global approach (Global approach models the word in 
its entirety, indifferently of the composing characters) 
and the second one is based on an analytical approach 
(Analytical approach considers the word as a 
composition of sub-entities. These sub-entities 
correspond to a character in a given context or to a 
fragment of character). 

However, the difficulty is now in the a priori 
segmentation of the word into these sub-entities. 
Several a priori segmentation approaches have been 

studied with limited success, see for example [3]. The 
recognition performance is actually very much 
dependent to the performance of the segmentation 
procedure.  

To face the difficulties of varying characters shapes 
and of the segmentation procedure, several researchers 
have proposed to use Hidden Markov Models (HMMs) 
to recognize Arabic script [4], [5], [7], [8], [9], [10], 
[11], [12], [13], [14]. HMMs have been widely used in 
many tasks involving sequence modelling where the 
observations are emitted by distinct states. A wide 
literature is available on HMMs, especially in the field 
of speech recognition [15]. HMMs have also been 
applied to cursive handwriting recognition [3], [1]. 

HMMs, by nature, are modelling a double stochastic 
process: emission of observations and transition of 
states. In the case of Arabic script, a word is 
transformed into a sequence of feature vectors which 
are the observations input to the HMM. An HMM is 
then used to model the word where states are 
associated to characters, sub-characters or directly to 
their variations. The transition probabilities between 
states are typically modelling the probability that one 
character follows another one.  

There are two main advantages of using HMMs to 
recognize Arabic script. First, the emission probability 
density functions of the HMMs can be trained to model 
variations of the character shapes. Second, the 
decoding procedure will solve in the same time the 
recognition of words and the segmentation into 
character models. 

In this paper, we present several improvements of a 
state-of-the-art HMM system similar to the one 
reported in [7]. More specifically, we analyze the 
benefits of introducing HMM topologies that are able 
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to model durations in characters1. Similar duration 
modelling approaches have already been introduced for 
the recognition of low-resolution text in images [6]. 
The improvements allow us to build an open 
vocabulary system, i.e., a system that can recognize 
any arbitrary word written in Arabic script, without 
limitations on the vocabulary size. The evaluation of 
our system is performed using the widely used Hidden 
Markov Model Toolkit (HTK) [16].  

The paper is organized as follows. In Section 2, we 
present the general characteristics of the Arabic 
writing. In section 3, the recognition system is 
described in more details. Section 4 presents the 
evaluation framework used for this work. Results are 
discussed in Section 5 and are followed by our 
discussions. 

 
2. General characteristics of the Arabic 

writing 
 

As illustrated in Figure 1, the Arabic script is 
written from right to left and is semi-cursive either in 
printed form or handwritten. Each character, in a word, 
has a left and/or right connection point that, lies on an 
imaginary line, which is the base line. The writing is 
unicase (the concept of upper and lower case letters 
does not exist). The Arabic alphabet is richer than the 
Latin as it contains 28 letters that have different 
appearances according to their position in the word. 
Typically, the shape of one character can be different 
depending if it is isolated or if its position is at the 
beginning, middle or end of the word. For example, the 
letter "  (Xaa)" has four kinds of appearances: isolated 

" " as in "  (shouting)" at the beginning " " as in 

"  (experience)", in the middle " " as in "  

(laboratory)" and at the end " " as in "  

(cooking)". We present in Table 1 the 28 Arabic letters 
with their different shapes according to their position 
in the word. Letters with just 2 shapes shown cannot be 
connected to the following letter, thus, their “Begin” 
shapes are simply their “Isolated” shapes, and their 
“Middle” shapes are their “End” shapes. 

Arabic word can be composed of one or more 
components (pseudo-word) and the characters of the 
same connected component can be ligatured 
horizontally and vertically. The ligature procedure is 
also dependent to the font used (in some fonts, we can 
go up to four vertical ligatures). Figure 1 shows a 

                                                 
1  Another difference in comparison to [7] is also the 
introduction of continuous estimators for the emission 
probability density functions, instead of discrete 
estimators. 

vertical ligature of three characters Alif, Miim and 
Jiim.  

Table 1. Arabic letters 
Letter label Isolated Begin Middle End 
Alif   

Baa     

Taaa     

Thaa     

Jiim     

Haaa     

Xaa     

Daal   

Thaal   

Raa   

Zaay   

Siin     

Shiin     

Saad     

Daad     

Thaaa     

Taa     

Ayn     

Ghayn     

Faa     

Gaaf     

Kaaf     

Laam     

Miim     

Nuun     

Haa     

Waaw   

Yaa 

 

 
 

Figure 1. Example of Arabic word with a vertical ligature 
and a vertical overlap 

 
Finally, vertical overlaps can occur at the 

intersection of pseudo-words and also within words for 
some sequence of characters. For more details on the 
characteristics of the Arabic script, we refer to [14]. 
 
3. System description 
 

The proposed system is based on HTK. As 
illustrated in Figure 2, the system is working in two 
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phases: training and recognition. These two phases are 
sharing the same feature extraction frontend. 

 
 

Figure 2. Processing steps involved in the HTK-based 
Arabic recognition system 

 
3.1. Preprocessing and feature extraction   

 
In the feature extraction part, words of each image 

are transformed into a sequence of feature vectors 
computed from a narrow analysis window of N pixels 
sliding from right to left on the word. In our settings, 
the uniform analysis window is shifted of 1 pixel. We 
performed several tests to determine the optimal size of 
the window to maximize the recognition rate and we 
obtained an optimal value with N=14. The size of this 
analysis window is of course dependent on the font 
size and font family and could be different for another 
task. A feature vector is extracted from each analysis 
window. As a result, no segmentation into letters is 
made and the word is transformed into a matrix of 
values where the number of lines corresponds to the 
number of analysis windows and the number of 
columns is equal to the number of coefficients in each 
feature vector.  

The feature extraction is divided into two parts. The 
first part extracts, for each window: 

– the number N1 of black connected components 
– the number N2 of white connected components 
– the ratio N1/N2 of black and white connected 

components 
– the position of the smallest black connected 

component divided by the height of the window 
– the perimeter of all components in 

window/perimeter of window 
– compactness ( ) ( )( )Area42 πPerimeter  
– gravity centre of the window, of the right and 

left half and of the first third, the second and the 
last part of the window: 
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The second part of the feature extraction consists of 
resizing the window into a normalized size of 20 pixels 
height and computing the horizontal and vertical 
projection values. The feature extraction, overall, 
results in a vector of 53 coefficients. Our feature 
extraction module is here implemented in Java. 

 
3.2. HMM with HTK 

 
We used the Hidden Markov model Toolkit (HTK) 

to realize our evaluation [16]. HTK was originally 
developed at the Speech Vision and Robotics Group of 
the Cambridge University Engineering Department 
(CUED). This toolbox has been built to experiments 
with Hidden Markov Models (HMMs) and has been 
extensively used in speech recognition research. HTK 
is a set of command line executables used for 
initializing, modifying, training and testing HMMs. 
The use of HTK typically goes through four phases: 
preparation of data, training, recognition and 
recognition performance evaluation. 

In the preparation phase of data, the sequences of 
features vectors representing the words are extracted as 
described in Section 3.1 and are converted into a file 
format compatible with HTK using the HTK HCopy 
command. 

In the learning phase, all training files are firstly 
used for the initialisation of HMM models for each 
letters, using HTK HCompV. For each training word 
image, the corresponding sub-models are connected 
together to form a right-left HMM. We experimented 
in this paper using different sub-model topologies as 
explained below in Section 3.3, the simplest topology 
being the single-state one as illustrated on Figure 3.B. 
An embedded training using the Baum-Welch iterative 
estimation procedure is used with HTK tool HERest.  

Using training set, all the observation sequences are 
used to estimate the emission probability functions of 
each sub-model. The training procedure actually 
involves two steps that are iteratively applied to 
increase the number of Gaussian mixtures to a given M 
value. In the first step, a binary split procedure is 
applied to the Gaussians to increase their number. In 
the second step, the Baum-Welch re-estimation 
procedure is launched to estimate the parameters of the 
Gaussians. 

At the end of the training phase, when applied, 
duration models are derived from a forced alignment 
procedure applied to the training data. The duration 
values are then applied to alter the HMM topology as 
explained below.  
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At recognition time, an ergodic HMM is composed 
using all sub-models. All transitions from one sub-
model to the other are allowed. The proposed model 
allows recognizing potentially any word in an open 
vocabulary fashion. The disadvantage of this procedure 
is that the system can propose invalid words as 
recognition. However, we show through the results 
obtained in this paper that the use of duration 
modelling at recognition time is reducing drastically 
the recognition errors of the system. Using ergodic 
topology offers the advantage of relatively lightweight 
memory and cpu footprint, when compared to more 
heavyweight approaches based on finite-state or 
stochastic grammars. The recognition is done by 
looking the best state sequence in the HMM using a 
Viterbi procedure implemented with the HTK tool 
HVite. 

Performances are evaluated in terms of word 
recognition rates using an unseen set of word images. 
It is obtained using the HTK HResult tool.  

 
3.3. Sub-model topologies  

 
The proposed recognition model is ergodic where 

all sub-models are connected together. Each model 
represents a letter or several letters (in the case of 
letters ligatures). Table 2 below summarizes the 60 
different sub-models that have been selected for our 
system. The selection procedure of the different sub-
models has been driven by grouping shapes of letters 
presenting few variations. Our assumption is here that 
the emission probability estimators based on Gaussian 
mixtures will offer enough flexibility to model the 
common parts and the variations within each letter 
category.  

Using the terminology introduced for speech 
recognition [15], our models are said to be context 
independent, i.e., each sub-model is considered 
independent to the next.  

We explored in this paper different context 
independent sub-model topologies that we present in 
three categories: 

1. Equal number of states for each model: an a 
priori fixed HMM topology is the same for all models, 
for example 1 state per sub-model (Figure 3.B) or 3 
states per sub-model (Figure 3.C).  

2. Number of states dependent to relative width 
and form of letters: the number of states in the sub-
model is dependent with form and with of letter image, 
for example alif_E is set to 1 state while saad_I is set 
to 5 states. 

3. Duration models based: a simple single-state 
HMM topology is used during training and is altered 
during testing to include a minimum duration model 

that is either knowledge-based using font metric 
information or inferred from the duration values 
obtained during training. The minimum duration model 
is simply obtained by repeating a given state Di times 
to force the decoding process to spend a minimum of 
feature vectors in the sub-model i. 

 
Table 2: Sub-models labels and their corresponding 

letter(s). 
Label Letters Label Letters 

Baa_B TaaaClosed_E 

Taaa_M YaaChadda_I 

Raa_I YaaChadda_M 

Ghayn_B Hamza 

Alif_E Laam_I 

Nuun_B Laam_M 

Taaa_E LaamAlif_I 

Miim_B Thaa_M 

Miim_I Gaaf_I 

Thaaa_I Gaaf_B 

Waaw Jiim_M 

Nuun_I Haaa_B 

Yaa_M Thaa_E 

Yaa_I HamzaUnderAlif
_I 

Saad_I HaaChadda_E 

Xaa_B HamzaAboveAlif 

Siin_I NuunChadda_E 

Siin_B Shiin_M 

Daal_I Taa_I 

Haa_I Baa_E 

Haa_B Shiin_I 

Thaal_I Saad_B 

Xaa_I Ayn_M 

AlifBroken_E Ayn_B 

Haaa_I Ghayn_M 

Zaay_I Daad_I 

Kaaf_I Daad_M 

Kaaf_B Jiim_I 

Ghayn_I Ghayn_E 

Ayn_E Faa_M 

 

 
 

Figure 3. Example of topologies using a fixed and equal 
number of states for sub-models (B:1-state)(C:3-states) 
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4. Evaluation Framework 
 
For the evaluation of our system, we have used a 

synthetic database of word images composed of 20'630 
word images. We generated the image using a Java 
procedure using the font Times, 24 points. The 
resulting images have a size of 56 pixels height as a 
maximum and are stored in PNG format. The 
generated images are synthetic but are somehow 
similar to what can be seen in standard newspapers.  

Using a synthetic database presents advantages and 
disadvantages. On the one side, the synthetic approach 
allows us to generate a quite large database of words 
images where the words are already isolated. The large 
quantity of data is beneficial in terms of evaluation as 
we can let the HMM training procedure converge to 
precise values of the probability density functions 
estimators. On the other side, the database does not 
contain variabilities that are usually present when 
scanning a document. 

Our objective in this paper is to evaluate the impact 
of duration models in a HMM system. The synthetic 
database used in this work is therefore sufficient for 
our objectives. 

The evaluation database is divided into a training 
set of 19'630 different and into a test set of 1'000 
words. These sets are fully independent. 
 
5. The experimental results 
 

All results (grouped in Table 3) were obtained 
keeping constant the different feature extraction 
parameters (N=14 pixels, shift of 1 pixel), model 
complexity (64 mixtures in each states) and training 
procedure (same number of iterations, same algorithm 
parameters). 

Results obtained using an equal number of states for 
each model show increasingly good results when the 
number of states per sub-models is increasing from 1 to 
6 states. The best results are obtained with 6 states per 
sub-models with 93.1% of word recognition rate.  

Several comments can be given on these results: 
- While performances are increased when model 

topologies have more states, this is at the cost of 
recognition time and memory footprints. 

- Although putting more states in each model 
seems to increase the performances, we could not go 
above 6 states per sub-models as training convergence 
conditions were not anymore met with HTK. 

- The results in terms of word recognition rates are 
low for single state models. However, the character 
recognition rates were mesure to be quite high at 
99.4%. This means that most of the letters are well 
recognized while some letters are inserted or deleted in 

many words. We did this observation for example with 
letter alif_E which is actually similar to sub-parts of 
many of the other letters and was then inserted 
frequently in words.  
 
Table 3: Results system using a fixed number of states 
Categ. Train Model Test Model % Word 

1 1-state 1-state 7.0 
1 3-states 3-states 70.4 
1 5-states 5-states 92.9 
1 6-states 6-states 93.1 
2 [1,3]-states [1,3]-states 18.1 
2 [3,5]-states [3,5]-states 85.9 
2 [1,3,5]-states [1,3,5]-states 78.5 
2 [3,5,6]-states [3,5,6]-states 88.6 

3 1-state knowledge-based 
min-duration 81.5 

3 1-state min-duration d= 
d/2 91.9 

 
In the second category of model topologies, the 

number of states is dependent on the relative length of 
each letter. For example, in the configuration [1,3,5]-
states, we have used 1 state for short letters, 3 states for 
medium sized letters and 5 states for long sized letters. 
The affectation of a sub-model to a given length was 
performed manually, inspecting their relative size. The 
motivations are here to provide richer models for 
longer letters while keeping low cpu and memory 
footprint by affecting less demanding models for the 
shortest states. The results show that the performances 
are always in between the performances of the 
configurations of category 1. 

For minimum duration models, we report about two 
experiments. For the first one, the minimum duration 
values are knowledge-based, measured manually from 
all letters and injected in the system. For the second 
experiment, the minimum duration values Di for each 
sub-model i are automatically inferred at training time, 
performing a Viterbi forced alignment on the input 
images and accumulating in histograms the number of 
times the self-loop transition is visited for all states. 
The average number of self-loop transitions i can be 
simply computed from the histograms. In our 
experiments, the minimum duration value Di has been 
set to half of this average value Di = i/2 [15]. The 
following observations can be done: 

- Inferring the minimum duration values from 
training time leads to better recognition results than the 
knowledge base approach. This is probably due to the 
segmentation procedures that are different between the 
manual and automatic approach. 

- When comparing the single state results (7%) and 
the minimum duration results (91.9%), we can observe 
all the benefits of introducing such minimum 
durations. The memory footprint remains more or less 
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exactly the same (60 bytes more to encode the duration 
values) and the cpu usage also show benefits thanks to 
a better pruning of less probable paths in the decoding 
procedure. 

The most interesting observation from these 
experiments is that we can recover similar 
performances of more complex models (6-states 
configuration) using less cpu and memory consuming 
single-state models by injecting simple minimum 
duration constraints in the HMM topologies. 

A remaining problem with the single state 
configuration is the systematic mis-recognition of 
words where same letters are consecutives. It is indeed 
equivalent for the system to remain more in a given 
state than to emit two similar consecutive states. This 
drawback will be addressed in future work with the 
introduction of other duration models that take into 
account minimum and maximum constraints. 
 
6. Conclusion 
 

In this paper, we have presented a system for open-
vocabulary recognition of Arabic printed text based on 
HMMs. The benefit of HMMs is clearly in its ability to 
segment the semi-cursive Arabic script into letters 
while performing the recognition at the same time. The 
novelty of the work reported in this paper over the state 
of the art in Arabic recognition is in the introduction of 
minimum duration models that allow to increase 
significantly the performances of the system while 
keeping an architecture which is lightweight in terms 
of cpu and memory. 
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