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Abstract— We consider a class of stochastic games with finite
number of resource states, individual states and actions per
states. At each stage, a random set of players interact. The states
and the actions of all the interacting players determine together
the instantaneous payoffs and the transitions to the next states.
We study the convergence of the stochastic game with variable
set of interacting players when the total number of possible
players grow without bound. We provide sufficient conditions
for mean field convergence. We characterize the mean field
payoff optimality by solutions of a coupled system of backward-
forward equations. The limiting games are equivalent to discrete
time anonymous sequential population games or to differential
population games. Using multidimensional diffusion processes,
a general mean field convergence to coupled stochastic differ-
ential equation is given. Finally, the computation of mean field
equilibria is addressed using Q/H learning.

I. INTRODUCTION

Dynamic Game Theory deals with sequential situations
of several decision makers (often called players) where the
objective for each one of the players may be a function of not
only its own preference and decision but also of decisions
of other players.

Dynamic games allow to model sequential decision mak-
ing, time-varying interaction, uncertainty and randomness of
interaction by the players. They allow to model situations
in which the parameters defining the games vary in time
and players can adapt their strategies (or policies) according
the evolution of the environment. At any given time, each
player takes a decision (also called an action) according
to some strategy. A (behavioral) strategy of a player is
a collection of history-dependent maps that tell at each
time the choice (which can be probabilistic) of that player.
The vector of actions chosen by players at a given time
may determine not only the payoff for each player at that
time; it can also determine the state evolution. A particular
class of dynamic games widely studied in the literature is
the class of stochastic games. Those are dynamic games
with probabilistic state transitions (stochastic state evolution)
controlled by one or more players. The discrete time state
evolution is often modeled as interactive Markov decision
processes while the continuous time state evolution is re-
ferred to stochastic differential games. Discounted stochastic
games have been introduced in [6]. Stochastic games and
interactive Markov decision processes are widely used for
modeling sequential decision-making problems that arise
in engineering, computer science, operations research, and
social sciences. However, it is well known that many real-
world problems modeled by stochastic games have huge state
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and/or action spaces, leading to the well-known curse of
dimensionality that makes solution of the resulting models
intractable. In addition, if the size of the system grows
without bound, the number of parameters: states, actions,
transitions explode exponentially.

In this paper we develop a mean field limit for stochastic
games with variable number of interacting players. Central-
ized and decentralized mean field solutions are obtained by
identifying a consistency relationship between the individual-
state-mass interaction such that in the population limit each
individual optimally responds to the mass effect and these
individual strategies also collectively produce the same mass
effect presumed initially. This leads to a coupled system
forward/backward optimality equations (partial differential
equation or difference equations).

Short overview of mean field stochastic games in discrete
time Mean field interactions with spatially distributed play-
ers and types can be described as a sequence of dynamic
games. Since the population profile involves many players
for each type or class, a common approach is to ignore in-
dividual players and to use continuous variables to represent
the aggregate average of type-location-secondary actions.
The validity of this method has been proven only under
specific time-scaling techniques and regularity assumptions.
The mean field limit is then modeled by state and location-
dependent time process. This type of aggregate models, also
known as non-atomic or population games have been studied
by addressed by von Neumann (1944), Nash (1951). In the
context of transportation networks, Wardrop (1952) have
studied population games in a deterministic and stationary
setting of indistinguishable players.

Discrete time mean field games with continuum of play-
ers have been studied in [4] under the name Anonymous
sequential games. Classes of mean field approximations and
oblivious equilibria have been studied in [1], [13]. Transition
from discrete to continuous time mean field stochastic games
are considered in [8], [10]. Bergin and Bernhardt [2] showed
how stochastic mean field limit can be introduced into the
model (so the mean field limit evolves stochastically). In
[11], we have applied noisy mean field limit in malware
propagation in opportunistic networks.

What is new in the mean field game approach? In the
mean field Markov game modeling in discrete time, there
must be an equation to express the dynamic optimization
problem of each player. Usually this involves one equation
for each player. If players are classified together by sim-
ilar player classes, there is one equation per class. This
equation is generally a Bellman-Shapley equation, since a
large proportion of optimization problems fall within the
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framework of dynamic programming. Hence, the Bellman-
Shapley equations will be used to compute optimal behav-
ioral strategies. An equation is also needed to express the
class’ behavior, the mean field behavior of each class. The
dynamics of the distribution is governed by a Kolmogorov
forward equation. In this Kolmogorov forward equation, the
optimal behaviors of the players occur as data, since it is the
infinite collection of individual behaviors that is aggregated
and constitutes collective behavior by consistency. Thus,
the modeling of the behavior of a group of players (sub-
population) naturally leads to a BS-K (Bellman-Shapley and
Kolmogorov) system of equations. The discrete BS-K have
been studied by Jovanovic & Rosenthal in the eighty’s.
The novelty in their study is that the mean field games
formalism involves the density of players on the state space
can enter in the Bellman-Shapley equation. Thus, the mean
field equilibrium is defined by an BS-K system in which the
Bellman-Shapley equations are doubly coupled: individual
behaviors are given for the Kolmogorov forward equation
and, at the same time, the distribution of players in the state
space enters in the Bellman equation which is completely
innovative. This means that players can incorporate into their
preferences the density of states/actions of other players
at the anticipated equilibrium. Therefore each player can
construct his strategy by taking account of the anticipated
distribution of strategies and of the actions of other players.
Under suitable conditions, this fixed-point of behaviors, the
mean field equilibria can be defined by moving to the limit
on the number of players in the class of Markov games in
discrete time (or difference games) that are asymptotically
invariant (in law) by permutation within the same class
of players called Asymptotic Indistinguishability Per Class
Property.

Our contribution can be summarize as follows. We provide
mean field convergence results for a class of mean field
stochastic games with multiple classes of players. We char-
acterize the mean field limit as a solution of Kolmogorov
forward equations. Then, we formulate individual dynamic
optimization problem in which each player optimizes its
expected long-term payoff under individual stochastic dy-
namics and mean field limit. The mean field solutions are
obtained by identifying a consistency relationship between
the individual-state-mass interaction such that in the popu-
lation limit each individual optimally responds to the mass
effect and these individual strategies also collectively pro-
duce the same mass effect presumed initially. This leads to a
coupled system forward-backward equations. The existence
of solutions, the computation of the solutions as well as Q/H-
learning aspects are discussed.

The remainder of the paper is structured as follows. In
the next section we present the model description. We then
focus on mean field convergence. In section II sufficiency
conditions for convergence to deterministic mean field limit
are provided. When these conditions fail, some possible
extension are given in section III in which the convergence
to stochastic mean field limit is presented. Due to the space
limitation, all the proofs are omitted.

II. DISCRETE TIME MEAN FIELD MODEL

In this section, we describe the controlled mean field
interaction model. Time t ∈ N is discrete. There is a set of
resources those states are represented by Sn(t) ∈ S (finite).
There are n players (n ≥ 2). For every player j, X is its
own state space. An individual state has two components as
follows: the type of the player and the internal state. The type
is a constant during the game. The state of player j at time
t is denoted by Xn

j (t) = (θj , Y
n
j (t)) where θj is the type.

The set of possible states Xj = {1, 2, ...,Θ} × Yj is finite.
Yj may include other parameters, such as, space location,
current direction and so on. The individual state of player
j at time t is denoted by Xn

j (t). For every player j, Ãj is
the set of actions of that player. Aj : S × Xj −→ 2Ãj is
a set-valued map (correspondence) that assigns to each state
(s, xj) ∈ S×Xj the set of actions Aj(s, x) that are available
to player j. We assume that the set Aj(s, x) depends only
on the type θj and value of the state xj . The action of player
j at time t is Anj (t). The global state of the system at time
t is (Sn(t), Xn(t)) = (S(t), Xn

1 (t), ..., Xn
n (t)). Denote by

An(t) = (An1 (t), . . . , Ann(t)) the action profile at time t.
The system (Sn(t), Xn(t)) is Markovian once the action
profile An(t) are drawn under Markovian strategies. We
denote the set of Markovian strategies by U . The player
coupled not only via their instantaneous payoff function
by rn(Sn(t), Xn(t), An(t)) but also via the state evolution
Xn(t) i.e the evolution of Xn

j (t) depends on the states and
the actions of the other players.

For u ∈ U , define Mn[u](t) to be the current population
profile i.e

Mn
x [u](t) =

1

n

n∑
j=1

1l{Xnj (t)=x}. (1)

At each time t, Mn[u](t) is in the finite set
{0, 1

n ,
2
n , . . . , 1}

|X |, and Mn
x [u](t) is the fraction of players

who belong to population of individual state x. For a subset
X1 ⊆ X , define Mn[u](t)(X ′1) := 1

n

∑n
j=1 δ{Xnj [u](t)∈X′

1}.

Note that Xn
j [u](t) (and hence and Mn[u](t)) depends

implicitly on the decision process. To simplify the notations,
we write Xn

j (t) (resp. Mn(t)) to denote the state process
driven by u (resp. the mean field process driven by u).

Similarly, we associate the process Una (t) =
1
n

∑n
j=1 1l{Anj (t)=a} to the fraction of players per action.

Strategies and random set of interacting players: At time
slot t, an ordered list Bnt , of players in {1, 2, . . . , n},
without repetition, is selected randomly as follows. First we
draw a random number of players kt such that P(|Bnt | =
k | Mn(t) = m) =: Jnk (m) where the distribution Jnk (m) is
given for any n, m ∈ {0, 1

n ,
2
n , . . . , 1}

|X |. Second, we set Bnt
to an ordered list of kt players drawn uniformly at random
among the n(n− 1)...(n− kt + 1) possible ones.

Each player such that j ∈ Bnt takes part in a one-shot
interaction at time t, as follows. First, each selected player
j ∈ Bnt chooses an action aj,t ∈ A(s, xj) with probability
u(aj | s, xj , n, t) where (s, xj) is the current state of that
player and the state of the resource. The stochastic array
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u can be interpreted as the strategy profile of the hull
population. We write unt to denote a generic Markov strategy
at time t.

Denoting the current set of interacting players Bnt =
{j1, . . . , jk}. Given the actions aj1 , ..., ajk drawn by the k
players, we draw a new set of individual states (x′j1 , ..., x

′
jk

)
and resource state s′ with probability Lns;s′(k,m, a), where a
is the vector of the selected actions by the interacting players.

We assume that for any given Markovian strategy, the
transition kernel Ln is invariant by any permutation of the
index of the players within the same type. This implies in
particular that the players are only distinguishable through
their individual state. Moreover, this means that the process
Mn(t) is also Markovian once the sequence of strategy
is given. Denote by wns,s′(u,m) be the marginal transition
probability between the resource states. Given any Markov
strategy and any vector m of ∆(X ), the resource state
generates an irreducible Markov decision process with lim-
iting invariant measure ws(u,m). Then, we can simplify the
analysis by fixing the resource state S(t) = s without losing
generality.

A. Kernel definitions

We provide a general convergence result of the mean
field to a stochastic differential equation and a martin-
gale problem for the law of process Mn(t). Let Fnt =
σ(S(t′), Xn(t′), An(t′), t′ ≤ t) be the filtration generated
by the sequence of states and actions up to t. The evolution of
the system depends on the decision of the interacting players.
Given a history ht = (S(0), Xn(0), An(0), . . . , S(t) =
s,Xn(t), An(t)) ∈ Fnt . Xn(t+ 1) evolves according to the
transition probability

Ln(x′;x, u, s) = P (Xn(t+ 1) = x′ | Fnt ) .

The term Ln(x′;x, u, s) is the transition kernel on Xn
under the strategy Un. Let xn = (xn1 , . . . , x

n
n) such that

1
n

∑n
j=1 δxnj = m and define

Ln(m′;m,u, s) =
∑

(x′1,...,x
′
n)

1
n

∑n
j=1

δ
x′
j
=m′

Ln(x′;x, u, s).

The system evolves according to the kernel

Ln(m′;m,u, s)

:= P(Mn(t+ 1) = m′ |Mn(t) = m,Un(t) = u, S(t) = s)

= P(Mn(t+ 1) = m′ |h̃t)

where h̃t = (S(t′), Xn(t′), An(t′), t′ ≤ t, S(t) =
s,Xn(t) = xn), such that 1

n

∑n
j=1 δxnj = m. The term

Ln(m′;m,u, s) corresponds to the projected kernel of Ln.

III. MEAN FIELD CONVERGENCE

In this section, we present two main mean field conver-
gence results.

A. Deterministic mean field limit

Proposition 1: Let Md
n = {m | nm ∈ Nd}. Suppose that

A0: For every s, the function ws(u,m) is continuously
differentiable in m and u.

A1: ∃ 0 < δn, εn ↘ 0, and a continuously differentiable
function f : Rd × U × S −→ Rd such that

lim
n

sup
u∈U

sup
‖m‖≤1

‖ f
n(m,u, s)

δn
− f(m,u, s) ‖= 0,

where x ∈ X and fnx (m,u, s) =∫
m′∈Md

n

1l‖m′−m‖≤2(m′x −mx)Ln(dm′;m,u, s),

A2:

sup
n

sup
u∈U

1

δn

∫
m′∈Md

n

‖ m′−m ‖ Ln(dm′;m,u, s) < +∞

A3: limn supu∈U
1
δn

∫
m′∈Md

n
1l‖m′−m‖>εn ‖ m′ − m ‖

Ln(dm′;m,u, s) = 0,
A4: Mn(0) = mn

0 converges to m0 ∈ ∆(X ).

Then, for all ε > 0, T < +∞,

lim
n

P

(
sup
t∈[0,T ]

‖ M̃n(
t

δn
)−m(t, u,m0) ‖> ε

)
= 0,

where M̃n
t is the interpolated process from Mn

t , m(t, u,m0)
is the unique solution of the ordinary differential equation
ṁt = f̃(ut,mt) starting from m0 ∈ ∆(X ) where

f̃(ut,mt) :=
∑
s∈S

ws(ut,mt)f(ut,mt, s).

The assumption A1 demands that as n grows large, the
expected changes per time unit fn

δn
converge uniformly to a

Lipschitz continuous vector field f . Lipschitz continuity of
f ensures the existence and uniqueness of solutions of the
mean field game dynamics ṁt = f(ut,mt),m(0) = m0 The
assumption A2 requires that the expected absolute changes
per time unit is bounded. The assumption A3 demands that
jumps larger than εn make vanishing contributions to the
motion of the processes, where εn is a sequence of constants
that converges to zero. A0 and A4 are respectively regularity
assumptions and initialization conditions.

Consequently, under the vanishing scaling assumptions
δn, εn and the hypothesis A0-A4, one has a deterministic
approximation of the random process Mn and the determin-
istic trajectory is described by the ODE.

As we can see some of the assumptions in the above
proposition may not be satisfied in wide range of applications
in large population. The assumptions are satisfied when
the second moment of number of players that change their
individual states in one time slot are bounded in expectation.
However, when there are simultaneous and many local inter-
actions as large population games, the second moment may
not be finite when the size of the population goes to infinity.
Then, a natural question is to ask is: what will happens if
the second moment condition is not satisfied?

In the next section, we will partially answer to this
question by proving a mean field convergence to controlled
stochastic differential equation called noisy mean field limit
in [7].
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B. Stochastic mean field limit

Below we provide sufficient conditions on the transition
kernels Ln to get a weak convergence of the process Mn

t

under the strategy Un(t).

B0: For every s ∈ S, ws(u,m) is continuously differen-
tiable in m and u.

B1: There exists δn ↘ 0 and continuous mapping a : Rd×
U × S −→ Rd×d such that (x, x′, s) ∈ X 2 × S,

lim
n

sup
u∈U

sup
‖m‖≤1

‖ a
n(m,u, s)

δn
− a(m,u, s) ‖= 0,

where (x, x′, s) ∈ X 2 × S, anx,x′(m,u, s) =∫
m′

1l‖m′−m‖≤2(m′x−mx)(m′x′−mx′)Ln(dm′;m,u, s),

and the third moment is finite. Denote by

ãx,x′(m,u) =
∑
s∈S

ws(m,u)ax,x′(m,u, s)

B2: There exists a continuous mapping f : Rd×U×S −→
Rd such that ∀s ∈ S,

lim
n

sup
u∈U

sup
‖m‖≤1

‖ f
n(m,u, s)

δn
− f(m,u, s) ‖= 0,

B3: For all ε > 0; ∀s ∈ S,

lim
n

sup
u∈U

1

δn

∫
m′∈Rd

1l‖m′−m‖>εLn(dm′;m,u, s) = 0,

B3’: ∀s ∈ S,

sup
u∈U

sup
m∈Rd

sup
n≥1

[
‖ a

n(m,u, s)

δn
‖ + ‖ f

n(m,u, s)

δn
‖
]
<∞,

Proposition 2: Assume B0 − B3. Then, for any test
function φ, the generator 1

δn
Lnφ(m,u) −→ Lφ(m,u) for

any m,u where Lφ(m,u) =
∑
x f̃x(m,u) ∂

∂mx
φ(m,u) +

1
2

∑
x,x′ ãx,x′(m,u) ∂2

∂mx∂mx′
φ(m,u).

Moreover, if the function ã(., .) and f̃(., .) have the
property that for each (m,u) ∈ Rd × U , the martingale
problem for a and f has exactly one solution πm,u starting
from m. Then πn,m,u −→ πm,u as δn ↘ 0 uniformly
in m for any strategy u ∈ U where πn,m,u is the law of
interpolated process from Mn(t). In addition, if B3′ holds
then the martingale problem has a unique solution.

This result provides a mean field convergence to a solution
of stochastic differential equation with drift f and diffusion
term a which is reported in the following corollary:

Corollary 1: Suppose that Mn
0 −→ µ0 in law where µ0

is a probability measure. Under B0-B3’, the process Mn
t

converges in law to a solution of the stochastic differential
equation (SDE) given by

dm̃t = f̃(ut, m̃t)dt+ σ̃(ut, m̃t)dBt

where σ̃σ̃t = ã, and B is a standard Brownian motion (a
Wiener process).

This result follows from Proposition 2 and the convergence
of 1

δn
Lnφ(m,u, s) −→ Lφ(m,u, s) using the tightness

properties of the processes.

C. Connection to propagation of chaos

Under the above assumptions, we have shown the con-
vergence of the process (Mn(t))t∈[0,T ] for any T ∈ R.
Since our mean field stochastic games model satisfies the
invariance in law by any permutation with players index
within the same type if the control u satisfies this property,
one can use the asymptotic indistinguishability per class
or indistinguishability per class to establish a propagation
of chaos. Let Xn

j = (Xn
j (t))t≥0. The process M̄n =

1
n

∑n
j=1 δXnj converges in law to the process m̃ with law

µ and for any k, any measurable and bounded functions
φ1, . . . , φk

lim
n

E

 k∏
j=1

φj(X
n
j )

 =

k∏
j=1

(∫
φjdµ

)
(2)

Note that the propagation of chaos property holds if the ODE
(resp. the SDE) has a unique global attractor m∗. However
the propagation of chaos property may not hold in stationary
regime, see [9].

IV. MEAN FIELD OPTIMALITY

A. Vanishing step-size

From the above sections, we know that under the assump-
tions A0-A4, the mean field limit is deterministic and it is
the unique solution of the ODE

ṁt = f(ut,mt), m(0) = m0 ∈ ∆(X ). (3)

Consider the long-term payoff FT (u,m) =∫ T
t
r(ut′ ,mt′) dt′ + g(mT ) subject to the constraint

of (3). Let v be the optimal value i.e v = supu FT (u,m).
The mean field optimality1 for horizon T is given by

v(T,m) = g(m)
− ∂
∂tv(t,mt) = suput∈U {r(mt, ut)

+
∑
x∈X f̃x(mt, ut)

∂
∂mx

v(t,m)
}

mt = m0 +
∫ t
0
f̃(mt′ , u

∗
t′)dt

′, t′ > 0
m0 = m.

which is a backward-forward system of differential equa-
tions.

Similarly, when considering the assumptions B0-B3’,
the mean field limit is stochastic and given by the
stochastic differential equation dm̃t = f̃(ut, m̃t)dt +
σ̃(ut, m̃t)dBt, m̃(0) = m̃0 ∈ ∆(X ). For the ex-
pected long-term payoff with horizon T, F̃T (t, u,m) =

E
(∫ T

t
r(ut′ ,mt′) dt

′ + g(m(T ))
)
. Under regularity of the

above functions, we use Itô’s formula for the payoff evolution
for a fixed horizon T and a fixed u and we apply dynamic
programming principle under noise to get the following mean
field optimality:

1Note that the term “mean field optimality” does not refer the optimality
of the strategy. Here we restrict our attention to mean field responses which
are not necessarily optimal in the finite regime.
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

ṽ(T,m) = g(m),
− ∂
∂t ṽ(t,mt) = suput∈U {r(mt, ut)

+
∑
x∈X f̃x(mt, ut)

∂
∂mx

ṽ(t,mt)

+ 1
2

∑
(x,x′)∈X 2 ãx,x′(mt, ut)

∂2

∂mx∂mx′
ṽ(t,mt)

}
∂tmt + div

(
f̃(mt, u

∗
t )mt

)
= 1

2

∑
x,x′ ∂2xx′ (ãxx′(mt, u

∗
t )mt)

m0 = m.

The result follows by combining Itô-Dynkin’s formula
and Hamilton-Jacobi-Bellman-Fleming’s stochastic optimal-
ity equation which is obtaining by using the dynamic pro-
gramming principle associated to the maximization problem.

The first equation of the system is a Hamilton-Jacobi-
Bellman-Fleming (HJBF) backward equation and the sec-
ond equation of the last system is called Fokker-Planck-
Kolmogorov (FPK) forward equation.

Now, considering any generic player j which optimizes
its own long-term payoff, we define the best response to
{mt}t denoted BR(m) as the set of strategy {ut}t that are
maximizers of the individual payoff of any generic player
when the mean field limit follows {mt}t.

We say that the pair (u∗,m∗) such that (u∗t ,m
∗
t ) ∈ U ×

∆(X ) is a mean field equilibrium if u∗ ∈ BR(m∗) and m∗

is generated by u∗.

B. Non-vanishing step-size

In this subsection, we analyze the case where the step-
size is not vanishing when n goes to infinity. In that case,
the mean field limit is in discrete time and driven by the
probability transition Lt(u,m). Given a initial population
profile m0 and a terminal payoff g, the sequence of popu-
lation profile {mt}t is driven by the transition probabilities
{Lt,x,x′(ut,mt)}t.

mt+1(x) =
∑
x′∈X

mt(x
′)Lt,x,x′(ut,mt). (4)

where Lt,x,x′(u,m) =
∑
k≥0

∑
s ws(u,m)Lt,s,x,x′(u,m; k)Jk(m),

Lt,s,x,x′(u,m; k) is the limiting probability transition from
x to x′ when the resource state is s and the number of
interacting players is k. Combining with the Bellman-
Shapley optimality criterion, one gets the following system
in the finite horizon case:

vt(s, x) = maxu {r(s, x, u,mt)

+
∑
s′,x′ L(s′, x′|s, x, u,mt)vt+1(s′, x′)

}
mt+1(x) =

∑
x′∈X mt(x

′)Lt,x′,x(ut,mt)

Proposition 3: Under the above assumptions, the finite
horizon (resp. the discounted) mean field stochastic game
has at least one mean field equilibrium.

Similarly, backward-forward system of mean field opti-
mality can be derived for the discounted payoff.

The proof of this result follows from Jovanovic & Rosen-
thal (1988). Of course, we need to check the assumptions:
non-emptiness, compactness of the actions spaces, continuity
and boundedness of the payoff functions. The idea of the
proof is to construct a correspondence (set-valued mapping)

in the space of measure ”m” that satisfied (i) non-emptiness,
closed-valued, convex-valued and upper-semi-continuity, (ii)
compatibility with the intersection of the measures generated
by the Kolmogorov forward equations. Then, we use Fan-
Glicksberg-Debreu (1952) fixed-point theory to conclude.

Note that the above results do not say that the mean field
equilibria are approximated equilibria for large n. In order
to have approximated equilibria one may need additional
assumptions on the payoff functions rn and its relation to r.
The same remark holds for centralized case: in general for
a given approximating first then optimizing is different than
optimizing first and approximating the optimizers in second
step. In our situation on may need a specific structure of
1
n

∑n
j=1 r

n(Xn
j (t), Xn

−j(t), A
n(t)).

V. DISCUSSION ON MEAN FIELD Q/H LEARNING

In this section we discuss on mean field Q/H learning for
stochastic games.

A. Mean field Q-learning

Q-learning is a technique used to compute an optimal
policy for a controlled Markov chain based on observations
of the system controlled using a non-optimal policy. Many
interesting results have been obtained for models with finite
state and action space.

While an optimal strategy can, in principle, be obtained
by the methods of dynamic programming, policy iteration,
and value iteration, such computations are often prohibitively
time-consuming. In particular, if the size of the state space
grows exponentially with the number of state variables, a
phenomenon referred to by Bellman as the curse of dimen-
sionality. Similarly, the size of the action space can also
lead to computational intractability. Following the idea of
Q-learning [12], we define the Q-value Q(s, xj , aj ,mt) =
rj(s, xj , a,mt)+

∑
s′,x′ L(s′, x′j | s, xj , aj , ut,mt)v(s′, x′j).

Let σ = (σt)t≥0, σt is a mapping that assigns to every
finite history hj,t an element of ∆(Aj(st, xj,t)), hjt is a
collection of history up to t that are available to player j.
Every strategies σ , together with the initial state s0, xj,0 and
the mean field m induces a probability distribution Ps0,xj,0,σ
over the space of infinite plays. We denote the corresponding
expectation operator by Es0,xj,0,σ. For the discounted payoff
case with discount factor βj , the payoff is

Fnj,βj (s0, xj,0, σ)

= Es0,xj,0,σ

[ ∑
t∈δnN

βtjr
Bnt
j (st, xt, at)1l{j∈Bnt }

]
(5)

Assuming that j ∈ Bn(t),∀t ≥ 0 one gets,

Q∗(s, xj , aj ,m) = rj(s, xj , aj ,m)

+βj
∑
s′,x′

j

L(s′, x′j | s, xj , aj ,m)

(
sup

bj∈Aj(s′,x′
j)

Q∗(s′, x′j , bj ,m
′)

)

One nice feature is to learn the Q-value without the knowl-
edge of the transition probabilities. The iterative version is
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given by

Qt+1(s, xj , aj ,m) = Qt(s, xj , aj ,m)

+λt(s, xj , aj) [rj(s, xj , aj ,m)+

βj

(
sup

bj∈Aj(s′,x′
j)

Qt(s
′, x′j , bj ,m

′)

)
−Qt(s, xj , aj ,m)

]
(6)

where λt(s, xj , aj) ≥ 0 is a learning rate function satisfying∑
t λt(s, xj , aj) = +∞,

∑
t λt(s, xj , aj)

2 < +∞, which is
a standard assumption in stochastic approximation.

B. Mean field H-learning
What does Q-learning have to do with the Hamilton-

Jacobi-Bellman equation and the Pontryagin maximum prin-
ciple?

The answers to this question have been examined in detail
in [5] in a deterministic setting. The authors show that the
Hamiltonian appearing in nonlinear control theory is essen-
tially the same as the Q-function that is the object of interest
in Q-learning. They established a close connection between
Q-learning and differential dynamic programming [3] state
space and general action space. This allows us to address
the H-learning (learning under the Hamiltonian function) in
mean field limit. The analogue of the Q-function is the H-
function defined by

H(u,m, p,M) = r(u,m) + 〈p, f̃〉+
1

2
trace(ãM)

where p is a d−diemensional vector and M ∈ Rd×d. Denote
by Wl an approximation value at iteration l. The algorithm
is described as follows:
• Initialize m0

• At iteration l use ml to compute the payoff r(.,ml).
• Use the Hamilton-Jacobi-Bellman-Fleming optimality

to obtain Wl

• compute the optimal control u∗l via the H-function
(Pontryagin maximum principle)

• Use u∗l to get m∗l solution of the Fokker-Planck-
Kolmogorov forward equation

VI. CONCLUSION

We have studied mean field stochastic games with ran-
dom number of interacting players and established a mean
field convergence to stochastic differential equations under
suitable conditions. Combining Itô-Dynkin’s formula with
dynamic programming principle, we derived mean field
optimality criterion characterizing mean field equilibria.

ACKNOWLEDGMENTS

The author would like to thank three anonymous review-
ers, the seminar audience at GERAD, UIUC and INRIA
Hipercom and RAP for their interesting comments on a
preliminary version of this paper.

REFERENCES

[1] S. Adlakha, R. Johari, G. Weintraub, and A. Goldsmith. Oblivious
equilibrium for large-scale stochastic games with unbounded costs.
Proceedings of the IEEE Conference on Decision and Control, 2008.

[2] J. Bergin and D. Bernhardt. Anonymous sequential games with
aggregate uncertainty. Journal of Mathematical Economics, 21:543–
562, 1992.

[3] D. H. Jacobson and D. Q. Mayne. Differential dynamic programming.
American Elsevier Pub. Co., New York, NY, 1970.

[4] B. Jovanovic and R. W. Rosenthal. Anonymous sequential games.
Journal of Mathematical Economics, 17:77–87, 1988.

[5] P. Mehta and S. Meyn. Q-learning and pontryagin’s minimum
principle. in IEEE Proc. CDC, 2009.

[6] L. S. Shapley. Stochastic games. Proceedings of the National Academy
of Sciences of the United States of America, 39(10):1095–1100, 1953.

[7] H. Tembine. Mean field stochastic games: Simulation, dynamics and
network applications. Supelec, 2010.

[8] H. Tembine. Population games in large-scale networks. LAP, 250
pages, 2010.

[9] H. Tembine. Hybrid mean field game dynamics in large populations.
American Control Conference, ACC, 2011.

[10] H. Tembine, J. Y. Le Boudec, R. ElAzouzi, and E. Altman. Mean
field asymptotic of markov decision evolutionary games and teams. in
the Proc. of GameNets, May 2009.

[11] H. Tembine, P. Vilanova, and M. Debbah. Noisy mean field model
for malware propagation in opportunistic networks. Gamenets, 2011.

[12] C.I.C.H. Watkins and P. Dayan. Q-learning. Machine Learning, 8:279–
292, 1992.

[13] G. Y. Weintraub, L. Benkard, and B. Van Roy. Oblivious equilibrium:
A mean field approximation for large-scale dynamic games. Advances
in Neural Information Processing Systems, 18, 2005.

2428


