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Abstract—The performance of mobile ad hoc networks 
(MANETs) depends upon a number of dynamic factors that 
ultimately influence protocol and overall system performance. 
Adaptive protocols have been proposed that adjust their 
operation based on the values of factors, such as traffic load, 
node mobility, and link quality. In this work, however, we are 
investigating the feasibility of an adaptive model-based self-
controller that can manage the values of controllable factors in 
MANETs. In general, the proposed self-controller should 
determine a set of factor values that will maximize system 
performance or satisfy specific performance requirements. The 
model-based controller adapts or reconfigures system-wide 
parameters or protocol operation as a function of the 
dynamically changing network state. In this paper, we describe 
the proposed self-controller, its design issues, and provide a 
preliminary case study to demonstrate the effectiveness and 
tradeoffs of two potential empirical-modeling techniques: 
regression and artificial neural networks. 
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I. INTRODUCTION 
Mobile Ad Hoc Networks (MANETs) are comprised of 

mobile nodes that self-organize to form a communications 
network among themselves, without the assistance of any 
predefined or centralized infrastructure (e.g., access points in 
WLANs). MANETs can be characterized as a network of 
mobile nodes that communicate using fully distributed 
protocols over a multi-hop wireless topology that changes 
frequently due to node mobility and wireless channel effects. 
These unique characteristics of MANETs facilitate a quickly 
deployable, low cost, and flexible network solution that is 
applicable in several application areas, including emergency 
search and rescue, environmental monitoring, military and law 
enforcement, ad-hoc gaming, and others [1,2]. However, these 
unique characteristics result in a plethora of factors that 
influence system performance and management capabilities, 
especially as the network scales to hundreds or thousands of 
nodes. Factors that can influence system performance include 
both uncontrollable factors (e.g., wireless channel effects), and 
controllable factors (e.g., protocol parameters, transmission 
power). Some factors (e.g., traffic load) may be controllable or 
uncontrollable depending upon the deployment strategy and 
the network protocols (e.g., admission control) used. 

In general, the goal is to select a combination of values 
for the controllable factors that yield the optimal performance 
or, alternatively, to meet specified performance requirements. 
However, the network state may vary dynamically (due 
changes in uncontrollable factors), requiring a different set of 
values for the controllable factors. So, dynamically 
determining the “best” factor values based on network 
performance and state changes is more appropriate, although 
non-trivial. For example, the system performance may depend 
upon the main and interactive effects of multiple factors, such 
that the appropriate value for factor A depends upon the value 
of factor B. The complexity of ad hoc networks and the 
interactions among parameters and protocols at different 
layers brings up an important question regarding self-
management: Can a MANET system automatically determine 
the appropriate combination of controllable factor values that 
will optimize system performance or satisfy a set of 
performance demands as the network state changes (i.e., as 
the uncontrollable factor values change)? 

In this work, we focus on the design of a system-level (as 
opposed to protocol-level) adaptive control framework that 
can coordinate protocol actions and parameter values across 
layers, with the aim of maximizing overall system 
performance. As shown in Fig. 1, our proposed approach 
includes the design of a feedback-based controller that uses 
empirical models to autonomously control and manage system 
performance [3, 4]. The idea is to develop models of the 
system that accurately characterize functional relationship 
among (1) the performance metrics, (2) the controllable 
factors, and (3) the uncontrollable factors. While, in principle, 
the models can be either analytical or empirical, we believe 
the large number of factors and the dynamic nature of 
MANETs leads to too many simplifying assumptions when 
using analytical models.  

The remainder of this paper is organized as follows. 
Section II provides the proposed feedback Adaptive controller, 
which includes experimental design and empirical models, 
ranking table and optimization approach. Followed by case 
study in section III and conclusions and future work in section 
IV. 

 



 
Figure 1.  Model-based Control of MANETs 

PMt: Targeted Performance Metrics, PMa: Actual Performance Metrics 

UCF: Uncontrollable Factors, RE: Regression Equations 

II. PROPOSED FEEDBACK ADAPTIVE CONTROLLER 
The proposed feedback adaptive controller is composed 

of three parts that work together to optimize the set of 
controllable factor values to optimize the network 
performance or to meet specific performance requirements. 
These parts are the empirical model unit, the rank table, and 
the optimizer. The empirical model unit is responsible for 
continuously monitoring the MANET environment, i.e. 
network factors and performance metrics. It monitors the 
controllable and the uncontrollable network factors and the 
correspondent network performance metrics to build the 
regression model and to extract regression equations. These 
regression equations together with the actual and the targeted 
performance metrics values are then sent to the factors 
controller (Optimizer and Rank table). The controller passes 
these inputs to the proposed ranking approach to fill a 
performance metrics ranking table that will be used by the 
optimizer to optimize the controllable factors to meet required 
network performance. Finally, the MANET controllable factor 
values are adjusted to the new optimized values. Because there 
are still uncontrollable factors that will deviate the actual 
performance metrics values from the targeted ones, the whole 
optimization process will be repeated again. In the next 
subsections we will introduce each part of the whole control 
process. 

A.  Factors and Performance Metrics 
In MANETs, a large number of factors (e.g., node 

mobility, network size, traffic load, energy consumption, 
transmission power, node density, bandwidth, …) can affect 
every measure of performance, including user-level quality of 
service-QoS, throughput, packet delivery ratio-PDR, and jitter. 
Not only is performance determined by the main effects of 
individual factors, but also their interactions effect should be 
considered (e.g. increasing the transmission range increases 

the node density, which reduces available bandwidth). These 
controllable factors and their operation ranges can be fed to 
statistical Analysis of Variance-ANOVA tool to study the 
main and interaction effects of these factors on the system 
performance metrics in order to decrease the number of factors 
to only those that are statistically significant [5]. A 
comprehensive factors and performance investigation is 
important and should be done in order to build an accurate 
model. 

B.  Empirical Models 
To date, we have examined the prediction capabilities of 

two empirical modeling techniques—linear regression and 
artificial neural networks. Linear regression models can be 
expressed as a mathematical equation that characterizes a 
response metric as a function of the independent factors and a 
set of parameters. The predicted performance y for the second 
order regression model is of the form: 

 

where k is the number of factors, β0 is the mean of y, the βi 
and xi are the regression coefficient and factor value for 
network factor Xi , respectively. The advantage of the linear 
regression approach is that it results in a physical equation that 
can be manipulated, while also capturing the main and 
interactive effects among factors. It is important to note that 
linear regression implies that the model is linear with respect 
to the regression coefficients, not the factor values. So, 
curvature due to changes in factor values is captured by linear 
regression models [5]. 

The artificial neural network model, used as a nonlinear 
modeling technique, is constructed as a feed-forwarded back 
propagation network that is composed of three layers: input, 
hidden, and output layers, as in Fig. 2. The number of neurons 
at the input layer corresponds to the number of factors 
(controllable and uncontrollable). The hidden layer neurons 
use a hyperbolic tangent sigmoid function to calculate the 
layer's output. This transfer function is mathematically 
equivalent to the tanh function [6]. The output layer has one 
neuron, corresponding to the performance metric modeled, 
with a linear transfer function.  

The predicted performance y given by this neural network 
model is as follows: 

 

where xj is the input to node j in the input layer. W1ji is the 
weight between node j in the input layer to node i in the 
hidden layer. Θ1i is the bias of node i (plays the role of an 
intercept in the linear regression) in the hidden layer. w2i1 is 
the weight between node i in the hidden layer to the node in 
the output layer. Θ21 is the bias of the node in the output layer.  



 
Figure 2. The proposed Neural Network Model 

The numbers 5 and n are the number of nodes in the hidden 
layer and in the input layer, respectively. To construct the 
neural network models, first output from the experimental 
scenarios are divided into a training set, a testing set, and a 
validating set. The training set is used to train the network for 
function approximation (nonlinear regression). The validating 
set is used to stop training early if the network performance on 
the validation set fails to improve. Test set is used to provide 
an independent assessment of the model predictive capability.  

C. Rank table and optimizer 
After an empirical model is developed, its regression 

equations are passed to the optimizer unit together with the 
actual and targeted performance metric values. Finding the 
controllable factor values that meet the targeted performance 
metrics is done in the optimizing unit by using constrained 
nonlinear Sequential Quadratic Programming- SQP technique 
to optimize these empirical regression equations [6]. The 
objective is to get the factor values that minimize the 
performance metrics regression equations, given a lower and 
upper bound for each network factor. For performance metrics 
that need to be maximized (e.g. PDR) its regression equation 
is multiplied by (-1) before the optimization process starts. 
However, using such an algorithm to search the entire factor 
space will be slow and may lead to finding a local minimum. 
Therefore, we propose an approach that starts by dividing the 
factor space (i.e. main cube in Fig. 4 a and 4 b) into smaller 
sub-regions. In our case study, two levels (high and low) per 
each of the three factors are used, i.e. total of 8 sub-regions. 
Factor ranges can be divided into more than two levels for 
more accuracy but with added time complexity. Each of these 
sub-regions has its own factors ranges (upper and lower 
bounds) different from other sub-regions. In each of these sub-
regions, we propose to rank each performance metric using a 
scale that goes from zero (bad performance, e.g. Delay is high) 
to two (good performance, e.g. Delay is low). To know the 
performance metric rank in a sub-region, the performance 
metric values in the corner points of that specific sub-region 
are averaged and rated as either good or bad on the scale, two 
or zero, respectively. Following the same approach, a rank 

table is then filled with the ranking for all performance metrics 
in all sub-regions (see table I). This table is constructed only 
once and will not be updated unless the network environment 
is changed. Each row in the table represents a specific sub-
region (with its upper and lower factor bounds). Each column 
in the table represents a performance metric ranking.  Adding 
all the rankings in a row gives an overall network performance 
rank for this network sub-region. The best overall network 
performance should be in the sub-region with largest total 
performance rank.  

The optimizer will use the rank table to identify the best 
sub-regions to search for optimum controllable network 
factors. In case a specific network performance is required, 
e.g. Delay and Jitter must be low, the rank table will suggest 
the sub range, i.e. the row, which will satisfy the network 
performance requirements. Otherwise, the sub range with the 
largest total performance rank will be reported to the optimizer 
to search in its boundaries for the optimum controllable 
network factors. Searching for optimum factors values in 
small ranges will lead to the global minimum and will also 
save time of searching the whole factors ranges. In the case 
where two rows have the same total rank, the optimizer will 
search in both sub-regions and then rank both results. The 
factor values that will give higher overall performance rank 
will be selected. Finally, MANET controllable factor values 
will be adjusted according to the optimizer output. 

III. CASE STUDY 
To demonstrate the feasibility of the proposed adaptive 

control framework on MANET, the following sections present 
an illustrative case study conducted on basic MANET. 

A.  Factors and Performance Metrics 
In this case study, three quantitative factors are 

considered: node speed (m/s), traffic load (number of source 
nodes), and number of nodes. One qualitative factor, routing 
protocol, is also considered. The three quantitative factors 
have been shown to have a significant impact on performance 
in previous studies [7].  The selected values for node speed 
represent a relatively slow-moving node at 5 m/s = 11 
miles/hour (walking/running scenario), an average speed of 15 
m/s = 35 miles/hour (city driving), and a faster moving node at 
25 m/s or 55 miles/hour (freeway driving scenario). The 
offered load is adjusted by varying the percentage of nodes 
within the network that act as source nodes (10%, 15%, and 
20%). To explore the impact of network size on MANET 
performance control (scalability of the proposed model), we 
consider a small size network of 100 nodes, a moderate size of 
300 nodes, and a relatively large network of 500 nodes. The 
network density (i.e., the average number of nodes in a given 
area) is held constant at 6 nodes, for all simulations runs, by 
varying the terrain size to avoid the congested areas and 
congestion related problems. Previous work has shown that 
the optimal throughput and connectivity are achieved when 
the network density ranges from 6-8 nodes [7]. The reactive 
routing protocols AODV and DSR are chosen to show how 
the proposed technique can quantify and compare the impact 
of distance vector routing versus source routing in MANETs. 



Each combination of factor values is called a design point or 
experimental scenario. Therefore, in this study we covered 
scenarios that range from small size network with slow speed 
nodes and lightweight traffic to large-scale networks with fast 
speed moving nodes and heavy traffic.  For each of these 
design points, we computed the system performance with 
respect to three response metrics: (1) End-to-end delay – 
computed at the application layer and measures the average 
time taken for a packet to be transmitted from a source to a 
destination node in seconds; (2) Packet delivery ratio – 
measures the average number of packets received to the 
number of packets sent; and (3) Jitter –measures the average 
variation in time between arriving packets in seconds. 

B. Simulation Setup 
The Qualnet network simulator [8] is used to simulate all 

design points. The simulation time for each scenario is chosen 
to be 1500 seconds. Each scenario is replicated five times and 
the resulting metrics are averaged to reduce the number of 
outliers in the statistical analysis of the network behavior. The 
traffic sources transmit constant bit rate-CBR traffic of 512-
byte packets at a rate of 2 packets per second during each 
simulation run. The traffic load is varied by varying the ratio 
of source nodes to total network size. The random waypoint 
mobility model is used to model the node mobility patterns 
using a node pause time of 30 seconds and node speed of 5, 
15, and 25 meters per second. The IEEE 802.11b standard is 
used at both the physical and medium access control layers 
with a channel data rate set to 2 Mbps, with the optional 
RTS/CTS handshake is always on. Free space propagation 
model is used with transmission range of 300 m. 

C. Empirical Models 
Using statistical design of experiments approach, 

including full and fractional factorial designs, and standard 
regression analysis techniques, we run 30 simulation 
experiments and build (1) first and (2) second-order regression 
models and (3) neural network models for each of the three 
performance metrics described in Section A. For more details 
on the models construction, validation process, and design 
matrix see [7].  

D. Discussion of Simulation Results 
Fig. 3 shows the simulation results for the 16 

common simulation scenarios between all models (linear and 
neural network models). The first eight scenarios and the 
second eight are for AODV and DSR, respectively. Fig. 3 
shows the prediction ability for the first order regression 
model (1OM), second order regression model (2OM), and 
neural network model (NNM). The most accurate model was 
the neural network model as it captures the nonlinearity of the 
MANET system and has the ability to learn this nonlinearity 
that exists in the factor readings. The disadvantage, however, 
of the neural network model, is that it is used as a black box. 
Although, the second order model is less accurate than neural 
network model, it is able to yield relatively accurate results 
while also generating physical regression equations.  

Fig. 3 also presents the first order regression model ability 
to model the MANET with least accuracy as compared to the 
previous two models. We present the comparisons with the 
first order regression to show that in some cases it gave 
comparable results to the real simulation readings, therefore it  
can be used for its simplicity when high accuracy is not that 
much needed. Cases like: 10, 11, 12 in Fig. 3a and 2, 3, and 9 
in Fig. 3b, support our statement. Fig. 4a and 4b visualize the 
3-D response surface models for End-to-End Delay and Packet 
Delivery Ratio, respectively. In Fig. 4a, we can see that Delay 
is minimum in two regions, lower number of nodes/traffic 
loads and larger number of nodes/traffic loads. This is 
because, as we mentioned earlier, network density is kept the 
same throughout simulations. So, for cases when a network 
has low traffic and low number of nodes, delay is also 
expected to have lower values. Increasing offered load and 
number of nodes but with keeping the node density the same, 
this is expected not to have that effect on delay. Fig. 5 
summaries a qualitative comparison between the three models 
according to the number of scenarios needed to build the 
model, complexity of the model, and the model prediction 
error.  

(a) End-to-End Delay 

 
(b) Packet Delivery Ratio 

Figure 3. MANET Simulation Results–SR, Neural Network Model-NMM, 
Second Order Model- 2OM, and First Order Model- 1OM 
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(a) End-to-End Delay 

 
(b) Packet Delivery Ratio- PDR 

Figure 4. AODV Response Surface Models 

 
Figure 5. Relation between empirical models 1OM, 2OM, and NNM 

It is worthy to mention that delay and jitter are found to 
have a high correlation (strong relationship) in all simulation 
scenarios, especially when AODV is used. The response 
surface models for Delay almost match the response surface 
model of the Jitter. 

E.  Rank table 
Table I shows the performance rank table for MANET 

running AODV routing protocol. Each row in the table 
represents a bounded sub-region. For example, sub-region one 
has lower bound of (S=5, L=10, N=100) and upper bound of 
(S=15, L=15, N=300). Sub-region two has lower bound of 
(S=5, L=15, N=100) and upper bound of (S=15, L=20, 
N=300), and so on. Sub-regions one and three suggest best 
overall network performance. While in sub-region 7, the 
network performance is the worst.  

TABLE I.  PERFORMANCE METRICS RANK TABLE FOR AODV 

Network Sub-regions Delay PDR Jitter Total Rank 
(N=L, S=L, L=L) 1 2 2 2 6
(N=L, S=L, L=H) 2 0 2 0 2
(N=L, S=H, L=L) 3 2 2 2 6
(N=L, S=H, L=H) 4 0 0 0 2
(N=H, S=L, L=L) 5 2 0 2 4
(N=H, S=L, L=H) 6 2 0 2 4
(N=H, S=H, L=L) 7 0 0 0 0
(N=H, S=H, L=H) 8 2 0 2 4

 
Figure 6. Simulation Scenarios overall performance 

 
Figure 7. Simulation Scenarios PDR performance. 

To show how the proposed technique of performance 
metric ranking helps in better understanding of MANET, Fig. 
6 and 7 compare the network performance for both AODV 
and DSR routing protocols. Ranking each performance metric 
in each simulation scenario and summing them gives an 
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overall ranking of how well the network is in that scenario. 
Figure 6 shows that AODV outperform DSR in all the 
simulation scenarios when considering overall performance. 
However, considering only PDR performance metric, figure 7, 
AODV outperform DSR in the first 4 scenarios (100 network 
nodes) and DSR outperform AODV in the remaining 
scenarios (500 nodes) which suggest using DSR in large 
number of nodes networks if packet delivery ratio is of 
concern.  

As mentioned before, constructing the ranking table is 
done only once. Updating its data will be needed when the 
MANET environment changes. The complexity to construct 
the table is O(n), since all factors will be traversed only once 
to calculate the factors rank. Sorting of total performance 
metrics rankings of all the table rows to select the search 
region is of O(n ), to the base two because we divide each 
factor range into two levels. 

Finally, in this proposed approach, the number of 
performance metrics and the number of network factors are 
not limited and can grow, as the model needs. The time 
complexity to construct the performance metrics rank table, 
which is done only once, will be compensated by faster 
searching in small factors regions instead of the entire design 
space.  

F. Optimizer unit (numerical example) 
Once the empirical regression equations and rank table 

are ready, the optimizer will search for optimum network 
factors values that satisfies the targeted network performance 
metrics. For example, suppose that the network’s nodes speed 
is 5 m/s, network Load is %10, and number of network nodes 
is 100. From simulation, the network performance metrics for 
this network state are 0.769, 0.385, and 2.777 for the Delay, 
PDR, and Jitter, respectively. To optimize these performance 
metrics assuming equal priority for all of them, the optimizer 
will check the rank table, table I, to identify the sub-regions 
that will be searched. In this case, the rank table will suggest 
that the search will be in both cubes 1 and 3 only (total rank 
equal 6). The optimizer then searches both sub-regions 
looking for the optimized factors values. The optimized 
factors in region one are 15, 10, and 100 for the Speed, Load, 
and Number of nodes, respectively. For these factors values, 
the Delay, PDR, Jitter values are 0.183, 0.647, and 0.0205, 
respectively. For region three, Speed, Load, Number of nodes 
values are 19.06, 10, 100, respectively. For these factors 
values, the Delay, PDR, Jitter values are 0.175, 0.636, and 
0.039, respectively. Both set of optimized controllable 
network factors satisfy overall network performance by setting 
the number of nodes to be 100, traffic load to be %10, and 
speed to either 15 or 19.06 m/s. If, for example, Delay is 
required to be 0.2 Sec, i.e. ranked high (=2), then the 
controller will not search in sub-regions 2, 4, or 7 (high delay 
regions) and will only search in sub-regions 1 and 3 since they 
are low delay regions with higher total rank equal to 6. 

IV. CONCLUSIONS AND FUTURE WORK 
In this paper, we presented an adaptive control technique 

to be used jointly with empirical models to analyze and 

optimize the performance of MANETs. Linear regression and 
neural network models are constructed to model the effects of 
network factors on MANET performance metrics. These 
models are described and investigated according to their 
prediction accuracy, complexity, and amount of data required 
to build the models. The proposed performance metrics 
ranking technique for searching for the optimum factors 
values that enhances the overall network performance is then 
described to be used jointly with the constructed regression 
models.  

The next step in this study is to conduct an exhaustive 
factor analysis to identify the critical factors and to quantify 
their respective performance effects on various performance 
metrics. We must also investigate prediction 
performance/tradeoffs of non-linear regression techniques, 
including auto-regressive techniques that allow the empirical 
model to be updated in real-time. After building the models, 
we intend to implement/test the self-controller in a simulated 
network, while addressing practical questions regarding 
efficient monitoring, data collection, and deployment 
strategies. The final step will be the deployment of the self-
controller in our outdoor campus testbed, comprised of static 
mesh backhaul and mobile ad hoc nodes (laptops and PDAs) 
[9]. The proposed technique is expected to give better 
performance optimization results when used with wireless 
mesh networks since they are more static than MANETs. 
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