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Robust Multiuser Detection
in Non-Gaussian Channels
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Abstract—In many wireless systems where multiuser detec-
tion techniques may be applied, the ambient channel noise is
known through experimental measurements to be decidedly non-
Gaussian, due largely to impulsive phenomena. The performance
of many multiuser detectors can degrade substantially in the pres-
ence of such impulsive ambient noise. In this paper, we develop
robust multiuser detection techniques for combating multiple-
access interference and impulsive noise in CDMA communication
systems. These techniques are based on theM -estimation method
for robust regression. Analytical and simulation results show
that the proposed robust techniques offer significant performance
gain over linear multiuser detectors in impulsive noise, with little
attendant increase in computational complexity.

We also develop a subspace-based technique for blind adaptive
implementation of the robust multiuser detectors, which requires
only the signature waveform and the timing of the desired user
in order to demodulate that user’s signal. The robust multiuser
detection technique and its blind adaptive version can be applied
to both synchronous and asynchronous CDMA channels.

Index Terms—Impulsive noise, M-estimation, multiuser detec-
tion, signal subspace tracking.

I. INTRODUCTION

RECENT years have seen a significant interest in advanced
signal processing techniques for enhancing the perfor-

mance of nonorthogonal signaling schemes for multiple-access
communications. These techniques generally fall under the
category of multiuser detection [25], which refers to optimum
or near-optimum demodulation in such situations. One of the
key theoretical contributions in this field has been to show that
the use of multiuser detection (or derivative signal processing
techniques) can return performance in multiuser channels to
that of corresponding single-user channels, or at least to a
situation in which performance is no longer limited by the
multiple-access interference (MAI). By and large, the study
of this problem has focused on the situation in which the
ambient noise is additive white Gaussian noise (AWGN). This
has been an appropriate model in the previous studies since
the focus there has been on the mitigation of the most severe
noise source—the MAI. However, as increasingly practical
techniques for multiuser detection become available, such as
adaptive and blind adaptive multiuser detection methods [11],
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the situation in which practical multiple-access channels will
be ambient-noise limited can be realistically envisioned.

In many physical channels, such as urban and indoor radio
channels [4], [5], [17], [18], [20] and underwater acoustic
channels [6], [19], the ambient noise is known through ex-
perimental measurements to be decidedly non-Gaussian due
to the impulsive nature of man-made electromagnetic interfer-
ence and a great deal of natural noise as well. [For recent
measurement results of impulsive noise in outdoor/indoor
mobile and portable radio communications, see [4], [5], and
the references therein.] It is widely known in the single-
user context that non-Gaussian noise can be quite detrimental
to the performance of conventional systems based on the
Gaussian assumption, whereas it can actually be beneficial to
performance if appropriately modeled and ameliorated. Neither
of these properties is surprising. The first is a result of the lack
of robustness of linear and quadratic type signal processing
procedures to many types of non-Gaussian statistical behavior
[14]. The second is a manifestation of the well-known least
favorability of Gaussian channels.

In view of the lack of realism of an AWGN model for
ambient noise arising in many practical channels in which mul-
tiuser detection techniques may be applied, natural questions
arise concerning the applicability, robustness, and performance
of multiuser detection techniques for non-Gaussian multiple-
access channels. Although performance indices such as mean-
square-error (MSE) and signal-to-interference-plus-noise ratio
(SINR) for linear multiuser detectors are not affected by the
distribution of the noise (only the spectrum matters), the more
crucial bit-error rate can depend heavily on the shape of the
noise distribution. The results of an early study of error rates
in non-Gaussian direct-sequence code-division multiple-access
(DS-CDMA) channels are found in [1]–[3], in which the
performance of the conventional and modified conventional
detectors is shown to depend significantly on the shape of
the ambient noise distribution. In particular, impulsive noise
can severely degrade the error probability for a given level
of ambient noise variance. In the context of multiple-access
capability, this implies that fewer users can be supported
with conventional detection in an impulsive channel than in a
Gaussian channel. However, since non-Gaussian noise can, in
fact, be beneficial to system performance if properly treated,
the problem of joint mitigation of structured interference and
non-Gaussian ambient noise is of interest [22]. An approach
to this problem for narrowband interference (NBI) suppression
in spread-spectrum systems is described in [9]. A recent
study [23] has shown that the performance gains afforded
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by maximum likelihood (ML) multiuser detection in impul-
sive noise can be substantial when compared with optimum
multiuser detection based on a Gaussian noise assumption.
However, the computational complexity of ML detection is
quite high, and therefore, effective near-optimal multiuser
detection techniques in non-Gaussian noise are needed. In this
paper, we consider the MAI mitigation problem in DS-CDMA
channels with non-Gaussian ambient noise.

This paper is organized as follows. In Section II, the signal
model for a DS-CDMA communication system, as well as the
impulsive channel noise model, is described. In Section III,
we propose and analyze a robust technique for multiuser
detection is non-Gaussian channels, which is essentially a
robust version of the linear decorrelating multiuser detector.
The robustification is based on the -estimation method
found in robust statistics. We show both analytically and
through simulations that this robust multiuser detector offers
significant performance gain over the linear decorrelating
detector when the ambient channel noise in non-Gaussian,
with little attendant increase in computational complexity.
In Section IV, we develop a blind adaptive technique for
implementing the robust multiuser detector, which requires the
prior knowledge of only the signature waveform of the desired
user, in order to robustly demodulate that user’s signal. This
technique is based on tracking the signal subspace components
of the received signal. The analyses in Sections III and IV are
based on a synchronous CDMA model. In Section V, we show
that the robust and blind adaptive robust multiuser detection
techniques developed in this paper can be applied to the
more general asynchronous CDMA model as well. Section VI
contains some concluding remarks.

II. SYSTEM MODEL

Consider a baseband digital DS-CDMA network operating
with a coherent BPSK modulation format. The waveform
received by a given terminal in such a network can be modeled
as consisting of a set of superimposed modulated data signals
observed in additive noise

(1)

where and represent the useful signal and the
ambient channel noise, respectively. The ambient noise is
assumed to be white. The useful signal is comprised of
the data signals of active users in the channel and can be
written as

(2)

where is the number of data symbols per user in the data
frame of interest, is the symbol interval, and where ,

, , and
denote, respectively, the received amplitude, delay, symbol
stream, and normalized signaling waveform of theth user.
It is assumed that is supported only on the interval

and has unit energy and that is a collection of
independent equiprobable random variables. For the direct-
sequence spread-spectrum (DS-SS) multiple-access format, the

user signaling waveforms are of the form

(3)

where is the processing gain, is a
signature sequence of ’s assigned to theth user, and is
a normalized chip waveform of duration, where .

For the sake of simplicity of discussion, when developing
the robust multiuser detection algorithms in the next two
sections, we restrict our attention to the synchronous case of
model (2), in which . This does not
incur any loss of generality. As will be shown in Section V,
the robust techniques developed in Sections III and IV can
be readily applied to asynchronous channels with a properly
windowed received signal. For the synchronous case of model
(2), to demodulate theth symbols of the users, ,
it is sufficient to consider the received signal during theth
signaling interval, i.e.,

(4)

At the receiver, the received signal is first filtered by
a chip-matched filter and then sampled at the chip rate. The
resulting discrete-time signal sample corresponding to theth
chip of the th symbol is given by

(5)

or in vector form

(6)

where
is the normalized signature sequence of theth user, and

is the channel ambient noise
sample vector at theth symbol interval. It is assumed that the
sequence of noise samples is a sequence of indepen-
dent and identically distributed (i.i.d.) random variables with
a non-Gaussian distribution.

In this paper, we adopt the commonly used two-term Gauss-
ian mixture model for the additive noise samples . The
probability density function (pdf) of this noise model has the
form

(7)

with , , and . Here, the term
represents the nominal background noise, and the
term represents an impulsive component, withrepresenting
the probability that impulses occur. It is usually of interest to
study the effects of variation in the shape of a distribution on
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the performance of the system by varying the parameters
and with fixed total noise variance

(8)

This model serves as an approximation to the more fundamen-
tal Middleton Class A noise model [19], [29] and has been
used extensively to model physical noise arising in radio and
acoustic channels.

III. M ULTIUSER DETECTION VIA ROBUST REGRESSION

In this section, we propose and analyze some robust tech-
niques for multiuser detection in non-Gaussian ambient noise
CDMA channels, which are essentially robust versions of
the linear decorrelating multiuser detector. In Section III-
A, we consider the equivalence between linear decorrelating
multiuser detection and least-square regression. In Section III-
B, we propose robustifying the linear decorrelator via-
estimation-based robust regression techniques. In Section III-
C, we analyze the asymptotic performance of the proposed
robust multiuser detectors. In Section III-D, we discuss issues
arising in the implementation of the robust multiuser detectors.
In Section III-E, we provide some simulation examples to
demonstrate the performance gains afforded by the proposed
robust multiuser detection methods in non-Gaussian noise.

A. Least Squares Regression and the Linear Decorrelator

Consider the synchronous signal model (6). For simplicity,
we drop the symbol index and denote . Then, (6)
can be rewritten as

(9)

or in matrix notation

(10)

where , and .
Consider the linear regression problem of estimating the
unknown parameters from the observations

in (9). Classically, this problem can be solved
by minimizing the sum of squared errors, i.e., through the
least-squares (LS) method

(11)

If , then the pdf of the received signalunder
the true parameters is given by

(12)

It is easily seen from (12) that the maximum likelihood
estimate of under the i.i.d. Gaussian noise samples is given

by the LS solution in (11). Upon differentiating (11),
is the solution to the linear system of equations

(13)

or in matrix form

(14)

Define the cross-correlation matrix of the signature waveforms
of all users as Assuming that the user signature
waveforms are linearly independent, i.e.,has a full rank ,
then is invertible, and the LS solution to (13) or (14) is
given by

(15)

We observe from (15) that the LS estimate is exactly the
output of the linear decorrelating multiuser detector for the
users [16]. This is not surprising since the linear decorrelating
detector gives the maximum likelihood estimate of the product
of the amplitude and the data bit in Gaussian noise
[16]. Given the estimate , the estimated amplitude and the
data bit are then determined by

(16)

sgn (17)

B. Robust Multiuser Detection via
-Estimation-Based Regression

It is well known that the LS estimate is very sensitive to
the tail behavior of the noise density. Its performance depends
significantly on the Gaussian assumption, and even a slight
deviation of the noise density from the Gaussian distribution
can, in principle, cause a substantial degradation of the LS
estimate. Since the linear decorrelating multiuser detector is
in the form of the LS solution to a linear regression problem,
it can be concluded that its performance is also sensitive to the
tail behavior of the noise distribution. As will be demonstrated
in Section III-E, the performance of the linear decorrelating
detector degrades substantially if the ambient noise deviates
even slightly from a Gaussian distribution. In this section, we
consider some robust versions of the decorrelating multiuser
detector, which are nonlinear in nature. (Recall that robustness
of an estimator refers to its insensitivity to small changes in
the underlying statistical model.)

The LS estimate corresponding to (11) and (13) can be
robustified by using the class of -estimators proposed by
Huber [13]. Instead of minimizing a sum of squared residuals
as in (11), Huber proposed to minimize a sum of a less rapidly
increasing function of the residuals

(18)
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Suppose that has a derivative ; then, the solution to
(18) satisfies the implicit equation

(19)

or in vector form

(20)

where for any , and
denotes a -dimensional zero vector. An estimator defined
by (18) or (19) is called an -estimator. The name “ -
estimator” comes from “maximum likelihood type estimator”
[13] since the choice of gives the ordinary
maximum likelihood estimate. If is convex, then (18) and
(19) are equivalent; otherwise, (19) is still very useful in
searching for the solution to (18). To achieve robustness, it
is necessary that be bounded and continuous. Usually, to
achieve high efficiency at the Gaussian case, we require that

for small. Consistency of the estimate requires
that . Hence, for symmetric noise densities,

is usually odd symmetric. We next consider some specific
choices of the penalty function and the corresponding
derivative .

1) Linear Decorrelating Detector
The linear decorrelating detector, which is simply the LS

estimator, corresponds to having the penalty function and its
derivative, respectively, as

(21)

(22)

where is any positive constant. Notice that the linear
decorrelating detector is scale invariant.

2) Maximum Likelihood Decorrelating Detector
Assume that the i.i.d. noise samples have a pdf. Then,

the likelihood function of the received signalunder the true
parameters is given by

(23)

Therefore, the maximum likelihood decorrelating detector in
non-Gaussian noise with pdf [in the sense that it is a
maximum likelihood estimate of the product of the amplitude
and data bit ] is given by the -estimator with the
penalty function and its derivative, respectively, as

(24)

(25)

3) Minimax Decorrelating Detector
We next consider a robust decorrelating detector in a

minimax sense based on Huber’s minimax-estimator [13].
Huber considered the robust location estimator problem.
Suppose we have one-dimensional (1-D) i.i.d. observations

. The observations belong to some sample space
, which is a subset of the real line. A parametric model

consists of a family of probability distributions on the
sample space, where the unknown parameterbelongs to
some parameter space. When estimating location in the
model , the -estimator
is determined by a -function of the type ,
i.e., the -estimate of the location parameteris given by
the solution to the equation

(26)

Assuming that the sample distribution belongs to the set of
-contaminated Gaussian modelsgiven by

is a symmetric distribution (27)

where is fixed, and is the variance of the
nominal Gaussian distribution. It can be shown that, within
mild regularity, the asymptotic variance of an-estimator of
the location defined by (26) at a distribution is
given by [13]

(28)

Huber’s idea was to minimize the maximal asymptotic vari-
ance over , that is, to find an -estimator that satisfies

(29)

This is achieved by finding the least favorable distribution,
i.e., the distribution that minimizes the Fisher information

(30)

over all . Then, is the maximum likelihood
estimator for this least favorable distribution. Huber showed
that the Fisher information is minimized by [i.e., the least
favorable pdf in ]

for

for
(31)

where , , and are connected through

(32)
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(a) (b)

Fig. 1.  functions for the linear decorrelator, the maximum likelihood decorrelator, and the minimax decorrelator, under the Gaussian mixture noise
model. The variance of the nominal Gaussian distribution is�2 = 0:01. (a) � = 0:1. The cutoff point for the Huber estimator is obtained by solving
(32), resulting ink = 11:40. (b) � = 0:01; k = 19:45.

where , and . The
corresponding minimax -estimator is then determined by
the Huber penalty function and its derivative, which is given,
respectively, by

for
for

(33)

and

for
sgn for

(34)

The minimax robust decorrelating detector is obtained by
substituting and into (18) and (19).

Assuming that the noise distribution has the-mixture
density (7), in Fig. 1, we plot the functions for the three
types of decorrelating detectors discussed above for the cases

and , respectively. Note that for small
measurement, both and are essentially linear,
and they coincide with ; for large measurement,

approximates a blanker, whereas acts as a
clipper. Thus, the action of the nonlinear functionin the
nonlinear decorrelators defined by (19) relative to the linear
decorrelator defined by (13) is clear in this case. Namely, the
linear decorrelator incorporates the residual linearly into the
signal estimate, whereas the nonlinear decorrelators incorpo-
rates small residuals linearly, but blank or clip larger residuals
that are likely to be the result of noise impulses.

C. Asymptotic Performance of Robust Multiuser Detector

1) Influence FunctionThe influence function (IF) intro-
duced by Hampel [8], [13] is an important tool used to study
robust estimators. It measures the influence of a vanishingly
small contamination of the underlying distribution on the
estimator. It is assumed that the estimator can be defined

as a functional operating on the empirical distribution
function and that the estimator is consistent
as , i.e., , where is the
underlying distribution. It is defined as

IF (35)

where is the distribution that puts a unit mass at.
Roughly speaking, the influence function IF is the
first derivative of the statistic at an underlying distribution

and at the coordinate. We next compute the influence
function of the nonlinear decorrelating multiuser detectors
defined by (19).

Denote the th row of the matrix by , i.e.,

. Assume that the signature waveforms of all users
are random, and let be the distribution function of
with density . Assume further that the noise distribution
has density . Denote the joint distribution of the received
signal and the chip samples of the users under the
true parameter by with density

(36)

If is the empirical distribution function generated by the
signal samples , then the solution to (19) can

also be written as , where is the -dimensional
functional determined by

(37)

for all distributions for which the integral is defined. Let
the distribution be . Substituting this
into (37), differentiating with respect to, and evaluating it
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at , we get

IF (38)

where, by definition

IF (39)

Note that the second term on the right-hand side of (38)
is by (37). Now, assume that

the functional is Fisher consistent [8], i.e., ,
which means that at the model, the estimator
asymptotically measures the right quantity. We proceed with
(38) to obtain

IF

(40)

where

(41)

is the cross-correlation matrix of the random infinite-length
signature waveforms of the users. From (40), we obtain
the influence function of the nonlinear decorrelating multiuser
detectors determined by (19) as

IF (42)

2) Asymptotic Probability of Error:Under certain regular-
ity conditions, the -estimators defined by (18) or (19) are
consistent and asymptotically normal [8], i.e.,

as (43)

where the asymptotic covariance matrix is given by

IF IF

(44)

We can also compute the Fisher information matrix for the
parameters at the underlying noise distribution. Define the
likelihood score vector as

(45)

The Fisher information matrix is then given by

(46)

It is known that the maximum likelihood estimate based on
i.i.d. samples is asymptotically unbiased and that the asymp-
totic covariance matrix is [21]. As discussed earlier,
the maximum likelihood estimate of corresponds to having

. Hence, we can deduce that the asymptotic

covariance matrix when .

To verify this, substituting into (44), we obtain

(47)

where we have assumed that under regularity conditions, the
differentiation and integration can be interchanged so that

.
Next, we consider the asymptotic probability of error for

the class of decorrelating detectors defined by (19) for large
processing gain . Using the asymptotic normality
condition (43), . The asymptotic probability
of error for the th user is then given by

Pr

(48)

where is the asymptotic variance given by

(49)

Hence, for the class of -decorrelators defined by (19),
their asymptotic probabilities of detection error are connected
through the parameter. We next compute for the three
decorrelating detectors discussed in Section III-B under the
Gaussian mixture noise model (7).
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1) Linear Decorrelating Detector
The asymptotic variance of the linear decorrelator is given

by

Var

(50)

That is, asymptotically, the performance of the linear decorre-
lating detector is completely determined by the noise variance
independent of the noise distribution. However, as will be
seen in the next subsection, the noise distribution does af-
fect substantially the finite sample performance of the linear
decorrelating detector.

2) Maximum Likelihood Decorrelating Detector
The maximum likelihood decorrelating detector achieves the

Fisher information covariance matrix, and we have

(51)

Then, (51) gives the minimum achievable. To see this, we
use the Cauchy–Schwarz inequality to yield

(52)

where the last equality follows from the fact that
, as . To see this, we use (7) and (25) to obtain

as (53)

Hence, it follows from (52) that

(54)

3) Minimax Decorrelating Detector
For the minimax decorrelating detector, we have

sgn , and
, where is the indicator

function of the set , and denotes the Dirac delta function
at . After some algebra, we obtain

(55)

(56)

The asymptotic variance of the minimax decorrelating
detector is obtained by substituting (55) and (56) into (49).

In Fig. 2, we plot the asymptotic variance of the maxi-
mum likelihood decorrelator and the minimax robust decorre-
lator as a function of and , under the Gaussian mixture
noise model (7). The total noise variance is kept constant
as and vary, i.e., .
From the two plots, we see that the two nonlinear detectors
have very similar asymptotic performance. Moreover, in this
case, the asymptotic variance is a decreasing function of
either or when one of them is fixed. The asymptotic
variance of both nonlinear decorrelators are strictly less than
that of the linear decorrelator, which corresponds to a plane at

. In Fig. 3, we plot the asymptotic variance
of the three decorrelating detectors as a function ofwith

fixed , and in Fig. 4, we plot the asymptotic variance of
the three decorrelating detectors as a function ofwith fixed

. As before, the total variance of the noise for both figures
is fixed at . From these figures, we see that the
asymptotic variance of the minimax decorrelator is very close
to that of the maximum likelihood decorrelator for the cases
of small contamination, e.g., , whereas both of the
detectors can outperform the linear detector by a substantial
margin.

D. Computational Issues

In this section, we discuss computational procedures for
obtaining the output of the nonlinear decorrelating multiuser
detectors, i.e., the solution to (19). Assume that the penalty
function in (18) has a bounded second-order derivative,
i.e., , for some . Then, (19) can be
solved iteratively by the following modified residual method
[13]. Let be the estimate at theth step; then, it is updated
according to

(57)

(58)

where is a step-size parameter. Denote the cost function in
(18) by . We have the following re-
sult regarding the convergence behavior of the above iterative
procedure.



296 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 2, FEBRUARY 1999

(a)

(b)

Fig. 2. Asymptotic variance�2 of (a) the minimax robust decorrelating detector and (b) the maximum likelihood decorrelating detector as a function of�

and � under the Gaussian mixture noise model with variance of the noise fixed at�
2 (1 � �)�2 + ���

2 = (0:1)2.

Proposition 1: If , then the iterative estimates
defined by (57) and (58) satisfy

(59)

where is assumed to be positive definite, and

. Furthermore, if is convex and
bounded from below, then as , where
is the unique minimum point of the cost function , i.e.,
the unique solution to (19).

The proof of this result is found in Appendix A. Notice
that for the minimax robust decorrelating detector, the Huber
penalty function does not have second-order derivatives
at the two “corner” points, i.e., . In principle, this



WANG AND POOR: ROBUST MULTIUSER DETECTION IN NON-GAUSSIAN CHANNELS 297

Fig. 3. Asymptotic variance�2 of the three decorrelating detectors as a
function of � with fixed parameter�. The variance of the noise is fixed
�
2 (1 � �)�2 + ���

2 = (0:1)2.

can be resolved by defining a smoothed version of the Huber
penalty function, for example, as (60), shown at the bottom of
the page, where is a small number. The first– and second-
order derivatives of this smoothed Huber penalty function are
given, respectively, by (61) and (62), shown at the bottom of
the page. We can then apply the iterative procedure (57)–(58)
using this smoothed penalty function and the step size .
In practice, however, convergence can always be achieved
even if the nonsmooth nonlinearity is used.

Notice that matrix in (58) can be computed
offline, and the major computation involved at each iteration is
the product of this matrix with a -vector . For the
initial estimate , we can take the least squares solution, i.e.,

(63)

The iteration is stopped if for some small
number . Numerical experiments show that on average, it
takes fewer than ten iterations for the algorithm to converge.

Fig. 4. Asymptotic variance�2 of the three decorrelating detectors as a
function of � with fixed parameter�. The variance of the noise is fixed at
�
2 (1 � �)�2 + ���

2 = (0:1)2.

The operations of the -decorrelating multiuser detector
are depicted in Fig. 5. It is evident that it is essentially a
robust version of the linear decorrelating detector. At each
iteration, the residual signal, which is the difference between
the received signal and the remodulated signal , is passed
through the nonlinearity . Then, the modified residual
is passed through the linear decorrelating filter to get the
modification on the previous estimate.

E. Simulation Examples

In this section, we provide some simulation examples to
demonstrate the performance of the nonlinear-decorrelating
multiuser detectors against multiple-access interference and
non-Gaussian additive noise. We consider a synchronous sys-
tem with users. The spreading sequence of each user
is a shifted version of an -sequence of length .

We first demonstrate the performance degradation of lin-
ear multiuser detectors in non-Gaussian ambient noise. Two

if

if

if

(60)

if

if

if

(61)

if

if

if

(62)
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Fig. 5. Diagram of theM -decorrelating multiuser detector, which is a robust version of the linear decorrelating multiuser detector.

popular linear multiuser detectors are the linear decorrelating
detector and the linear MMSE detector. The performance
of the linear decorrelating detector in several different-
mixture channels is depicted in Fig. 6. In this figure, we plot
the error probability versus the signal-to-noise ratio (SNR)
corresponding to the first user under perfect power control.
The performance of the linear MMSE multiuser detector is
indistinguishable in this case from that of the decorrelating
detector. It is seen that the impulsive character of the channel
ambient noise can substantially degrade the performance of
both linear multiuser detectors. Similar situations have been
observed for the conventional matched filter receiver in [1]. In
[23], it is observed that non-Gaussian-based optimal detection
can achieve significant performance gain (more than 10 dB
in some cases) over Gaussian-based optimal detection in
multiple-access channels when the ambient noise is impulsive.
However, this gain is obtained with a significant penalty on
complexity. The robust techniques developed in this paper con-
stitute some low-complexity multiuser detectors that account
for non-Gaussian ambient noise. We next demonstrate the per-
formance gain afforded by this non-Gaussian-based suboptimal
detection technique over its Gaussian-based counterpart, i.e.,
linear multiuser detectors.

The next example demonstrates the performance gains
achieved by the minimax robust decorrelating detector over the
linear decorrelator in impulsive noise. The noise distribution
parameters are and . The bit error rate versus
SNR for the two detectors is plotted in Fig. 7. The performance
of an “approximate” minimax decorrelating detector is also
shown in this figure, in which the nonlinearity is taken as

for
sgn for

(64)

where the parameter is taken as , and the step
size parameter in the modified residual method (58) is set
as . The reason for studying such an approximate
robust detector is that in practice, it is unlikely that the exact
parameters and in the noise model (7) are known to
the receiver. However, the total noise variance can be
estimated from the received signal [as will be discussed in
the next section]. Hence, if we could set some simple rule for

Fig. 6. Probability of error versus signal-to-noise ratio (SNR) of the linear
decorrelating detector for user 1 in a synchronous CDMA channel with
Gaussian and�-mixture ambient noise.N = 31; K = 6. Perfect power
control is assumed.

Fig. 7. Probability of error versus signal-to-noise ratio (SNR) for user
1 for the exact minimax decorrelating detector, an approximate minimax
decorrelating detector and the linear decorrelating detector, in a synchronous
CDMA channel with impulsive noise.N = 31; K = 6; � = 0:01; � = 100.
The powers of the interferers are 10 dB above the power of user 1.
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Fig. 8. Probability of error versus signal-to-noise ratio (SNR) for user 1 for the approximate minimax decorrelating detector and the linear decorrelating
detector in a synchronous CDMA channel with impulsive noise.N = 31; K = 20; � = 0:01; � = 100. All users have the same power.

choosing the nonlinearity and , then this approximate
robust detector is much easier to implement in practice than the
exact one. It is seen from Fig. 7 that the robust decorrelating
multiuser detector offers significant performance gains over the
linear decorrelating detector. Moreover, this performance gain
increases as the SNR increases. Another important observation
is that the performance of the robust multiuser detector is
insensitive to the parameters and in the noise model,
which is evidenced by the fact that the performance of the
approximate robust detector is very close to that of the exact
robust detector. We next consider a synchronous system with
20 users . The spreading sequence of each user is
still a shifted version of the -sequence of length .
The performance of the approximate robust decorrelator and
that of the linear decorrelator is shown in Fig. 8. Again, it
is seen that the robust detector offers substantial performance
gains over the linear detector.

In the third example, we consider the performance of the
approximate robust decorrelator in Gaussian noise. Bit error
rate curves for the robust decorrelator and the linear decorre-
lator in a six-user system are shown in Fig. 9. It is
seen that there is only a very slight performance degradation
by the robust decorrelator in Gassian channels, relative to
the linear decorrelator, which is the optimal decorrelating
detector in Gaussian noise. Comparing the bit-error curves
of the robust decorrelator in Figs. 7 and 9, it is seen that
the robust detector performs better in impulsive noise than in
Gaussian noise with the same noise variance. This is because
in an impulsive environment, a portion of the total noise

Fig. 9. Probability of error versus signal-to-noise ratio (SNR) for user 1 for
the robust decorrelating detector and the linear decorrelating detector in a
synchronous CDMA channel with Gaussian noise.N = 31; K = 6. The
powers of the interferers are 10 dB above the power of user 1.

variance is due to impulses, which have large amplitudes.
Such impulses are clipped by the nonlinearity in the detector.
Therefore, the effective noise variance at the output of the
robust detector is smaller than the input total noise variance.
In fact, the asymptotic performance gain of the robust detector
in impulsive noise over Gaussian noise is quantified by the
asymptotic variance in (49) [cf., Figs. 2–4].
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In summary, we have seen that the performance of the
linear decorrelating detector degrades substantially when the
distribution of the ambient channel noise deviates even slightly
from Gaussian. By using the robust decorrelating detector,
such performance loss is prevented, and it offers significant
performance gains over the linear detectors, which translates
into a channel capacity increase in multiple-access channels.
On the other hand, even when the ambient noise distribution
is indeed Gaussian, the robust detector incurs only negligible
performance loss relative to the linear detectors.

IV. ROBUST BLIND MULTIUSER DETECTION

The robust multiuser detection procedure developed in the
previous section offers substantial performance gain over the
linear multiuser detectors when the ambient channel noise
becomes impulsive. In the previous sections, we have assumed
that the signature waveforms of all users, as well as the
distribution of the ambient noise, are known to the receiver
in order to implement the robust multiuser detectors. The
requirement on the knowledge of the exact noise distribution
can be alleviated since, as demonstrated in Section III-E, little
performance degradation is incurred if we simply adopt in
the robust multiuser detector a nonlinearity, which depends
only on the total noise variance but not the shape of the
distribution. In this section, we develop a technique to alleviate
the requirement on the knowledge of all users’ signatures. One
remarkable feature of the linear multiuser detectors is that
there existblind techniques that can be used to adapt these
detectors, which allow us to use a linear multiuser detector
for a given user with no knowledge beyond that required for
implementation of the conventional matched-filter detector for
that user. In this section, we show that the robust multiuser
detector can also be implemented blindly, i.e., with the prior
knowledge of the signature waveform of only the user of
interest.

There are two major approaches to blind adaptive multiuser
detection. In the first approach, the received signal is passed
through a linear filter, which is chosen to minimize, within a
constraint, the mean-square value of its output [10]. Adaptation
algorithms such as least-mean-squares (LMS) or recursive-
least-squares (RLS) can be applied for updating the filter
weights. Ideally, the adaptation will lead the filter converge to
the linear MMSE multiuser detector, irrespective of the noise
distribution. [In practice, the impulsiveness of the noise will
slow down the convergence.] Therefore, this approach can not
adapt the robust multiuser detector.

Another approach to blind multiuser detection is the
subspace-based method proposed in [27] through which both
the linear decorrelating detector and the linear MMSE detector
can be obtained blindly. As will be discussed in this section,
this approach is more fruitful in leading to a blind adaptive
robust multiuser detection method.

A. Subspace-Based Blind Robust Multiuser Detection

Denote and .
Since the data bits of users are independent
random variables, and they are independent of the noise

samples , the autocorrelation matrix of the received
signal in (6) is then given by

(65)

By performing an eigendecomposition of the matrix, we
can write

(66)

where diag ,
diag contains the largest eigenvalues of

in descending order, contains the
corresponding orthonormal eigenvectors , and

contains the orthonormal
eigenvectors that correspond to the eigenvalue. It is easy
to see that range . The range space of is
called thesignal subspace, and its orthogonal complement,
called thenoise subspace, is spanned by . The following
result is instrumental to developing the subspace-based blind
robust multiuser detector.

Proposition 2: Given the eigendecomposition (66) of the
autocorrelation matrix , suppose that

(67)

Then, we have

(68)

where is a positive constant given by

.
The proof of this result is found in Appendix B.
The above result leads to a subspace-based blind robust

multiuser detection technique as follows. From the received
data , we can estimate the signal subspace components,
i.e., diag , and . The
received signal in (10) can be expressed as

(69)

where . Now, instead of robustly estimating
the parameters using the known signature waveforms
of all users, as is done in the previous section, we can
robustly estimate the parametersusing the estimated signal
subspace coordinates . Denote such a robust estimate as

. Finally, we compute the estimate of the
parameter of the desired user (up to a positive scaling
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Fig. 10. Probability of error versus signal-to-noise ratio (SNR) for user 1
for the blind robust detector and the blind linear detector, using batch-SVD,
in a synchronous CDMA channel with non-Gaussian noise.N = 31; K = 6.
The powers of all interferers are 10 dB above the power of user 1.

factor) according to

(70)

Note that in the estimator (70), the denomiators are
instead of , as in (68). This makes the estimator
(70) less sensitive to the estimation errors in the estimated
quantities and . Moreover, if the noise has a
Gaussian distribution, then (70) corresponds to the output of
a linear MMSE multiuser detector [27]. Hence, the above
robust multiuser detection procedure can be viewed as a
robust version of the linear MMSE multiuser detector. Notice
that using this method to demodulate theth user’s data bit

, the only prior knowledge required at the receiver is the
signature waveform of this user and, thus, the termblind robust
multiuser detector. Notice also that since the columns of
are orthonormal, the modified residual method for updating
the robust estimate of is given by

(71)

(72)

There are two approaches to implementing subspace-based
blind robust multiuser detectors. In the classical approach,
a block of (say, ) received data samples is
collected first. The signal subspace components are
then computed through batch eigenvalue decomposition (ED)
of the sample autocorrelation matrix or batch singular value
decomposition (SVD) of the data matrix. We then apply the
robust procedure (70)–(72) to demodulate theth user’s data
bits . This approach is computationally expensive,
and it incurs a large delay in data demodulation.

A more attractive approach is to use computationally ef-
ficient sequential eigendecomposition (subspace tracking) al-

Fig. 11. Probability of error versus signal-to-noise ratio (SNR) for user 1 for
the blind robust detector and the blind linear detector, using subspace tracking
in a synchronous CDMA channel with non-Gaussian noise.N = 31; K = 6.
The powers of the interferers are 10 dB above the power of user 1.

gorithms to adaptively update the estimated signal subspace
components. For example, in [27], the projection approxi-
mation subspace tracking with deflation (PASTd) algorithm
[28] is used to implement subspace-based blind multiuser
detectors. This algorithm sequentially updates themost
dominant eigenvalues and the corresponding eigenvectors at
each iteration, using a recursive least-squares type of algo-
rithm. The computational complexity of this algorithm at each
iteration is . It is straightforward to use this subspace
tracking algorithm for the blind robust multiuser detector; at
the th symbol interval, after receiving theth data vector

, the signal subspace components are updated by the
PASTd algorithm. Then, the robust procedure in (68), (71),
and (72) is invoked to demodulate theth user’s data bit

. In what follows, we provide some simulation examples
to demonstrate the performance of the blind robust multiuser
detection algorithms.

B. Simulation Examples

As before, we consider the synchronous system with
users and spreading gain . First, we illustrate the
performance of the blind robust multiuser detector based on
batch SVD. The size of the data block is . The noise
distribution parameters are and . The bit
error rate versus the signal to noise ratio for user 1 is plotted
in Fig. 10 for both the blind linear MMSE detector and the
blind robust detector. The powers of all interferers are 10 dB
above that of user 1. The performance of the blind adaptive
robust multiuser detector based on subspace tracking is shown
in Fig. 11, where the PASTd algorithm from [28] is used for
tracking the signal subspace parameters. The forgetting factor
in this algorithm is 0.999. It is seen from these two figures that
as in the nonadaptive case, the robust multiuser detector offers
significant performance gain over the linear multiuser detector
in impulsive noise. Furthermore, in this example, the adaptive
version of the blind robust detector based on subspace tracking
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outperforms the batch SVD-based approach. [This is because
with a forgetting factor 0.999, the effective data window size is

, whereas the window size in the batch
method is , while it has a practical computational
complexity and incurs no delay in data demodulation.]

V. EXTENSION TO ASYNCHRONOUSCHANNELS

A. Robust Muliuser Detection in Asynchronous Channels

Thus far, we have assumed that the users are symbol and
chip synchronous. In this section, we consider the more general
case where the users are symbol and chip asynchronous. We
show that in this case, the techniques developed in the previous
sections can be applied on a signal with larger dimension,
resulting from an enlarged window on the received signal.

Consider the asynchronous signal model (2). Define
and . At the receiver, the received

continuous-time signal is filtered by a chip-matched filter
and sampled at the chip rate. Denote theth chip-matched
sample at theth symbol interval by , i.e.,

(73)

where , and

(74)

where and are parameters determined by theth
user’s signature sequence and delay, which are given later in
(77). Define the quantities

...
...

...

By stacking successive data samples, we further define the
quantities

...

...

and

...

Then, from (73) and (74), we can write

(75)

where is an diagonal matrix given
by [ denotes Kronecker product], and
is a generalized Sylvester matrix of the form

...
...

.. .
...

where the matrix and are matrices defined
as

(76)

with

(77)

The parameter is called the smoothing factor and is chosen
such that the Sylvester matrix has full column rank. It is
shown in [15] that under the conditions that a) is of full
column rank and b) the -transform of ,

is of full column rank for all ,
then, for all , has full column rank.

Assuming that has full column rank, we can then apply
the robust technique developed in the previous section for
detection of the th data bits from the data vector .
For example, if the signature waveforms of all users as well as
the relative delays are known to the receiver, then the Sylvester
matrix can be constructed. Now, similarly to (57) and (58),
we can robustly estimate the parameters as

(78)

(79)

(80)

The th data bits of users are then demodulated according
to sgn , where denotes
the subvector of consisting of the elements indexed from

through .
On the other hand, to do blind robust multiuser detection in

asynchronous channels, we first compute the signal subspace
components of the covariance matrix of the signal

(81)
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Fig. 12. Probability of error versus signal-to-noise ratio (SNR) for user 1 for
the robust detector and the linear detector in an asynchronous CDMA channel
with non-Gaussian noise.N = 31; K = 6. The powers of the interferers are
10 dB above the power of user 1.

Notice that the signal subspace has dimension . We
then proceed with the robust estimation in the signal subspace
as

(82)

(83)

Finally, the th user data bit is demodulated according to
sgn , where

(84)

with .

B. Simulation Examples

We consider an asynchronous CDMA system with spreading
gain and the number of users . The user
spreading sequences are the same as before. The delays
of the six users are randomly generated and are given by

. The performance
of the robust multiuser detectors and the linear decorrelating
detector in this system is plotted in Fig. 12. As before, both
the exact robust multiuser detector and the approximate robust
multiuser detector are considered. It is seen that, similarly
to the synchronous case, the robust detectors significantly
outperform the linear decorrelator. Moreover, the performance
of the robust detector is insensitive to the parameters.

Fig. 13 depicts the performance of the subspace-based blind
adaptive robust multiuser detector for the same asynchronous
CDMA system. The performance of the subspace-based blind
adaptive linear MMSE detector is also plotted. It is seen that
the robust techniques offer significant performance gain in
impulsive noise.

Fig. 13. Probability of error versus signal-to-noise ratio (SNR) for user 1
for the blind robust detector and the blind linear detector, based on the
subspace tracking in an asynchronous CDMA channel with non-Gaussian
noise.N = 31; K = 6. The powers of the interferers are 10 dB above
the power of user 1.

VI. CONCLUDING REMARKS

In many practical wireless channels in which multiuser
detection techniques may be applied, the ambient noise is
likely to have an impulsive component that gives rise to larger
tail probabilities than is predicted by the Gaussian model.
Impulsive noise can seriously degrade the error probability
of the linear multiuser detectors for a given level of the noise
power. In this paper, we have proposed a robust multiuser
detection technique that is seen to significantly outperform
linear multiuser detectors in non-Gaussian ambient noise. This
technique is based on the -estimation method for robust
regression. The asymptotic performance of several versions of
the robust detectors are analyzed and compared. Simulations
show that the robust multiuser detectors offer significant
performance gain over the linear multiuser detectors in non-
Gaussian noise, and they incur little performance loss when
the channel noise is indeed Gaussian.

We have also developed a subspace-based blind adaptive
technique for implementing the robust multiuser detectors,
which requires only the signature waveform of the user of
interest in order to robustly demodulate that user’s signal.
Finally, we have shown that the robust multiuser detection
method and its blind adaptive version can be readily applied
to asynchronous CDMA channels.

The robust multiuser detection methods developed in this
paper can be extended in a number of ways. For example,
the robust regression techniques can be applied to robustify
some nonlinear multiuser detectors, such as the decision-
feedback multiuser detectors [7] and the multistage multiuser
detectors [24]. A previous study [23] indicates that these
nonlinear detectors suffer similar performance loss in the pres-
ence of impulsive noise, just as do linear detectors. Another
possible extension is to incorporate the channel dispersion
due to multipath fading effects. A general framework for
blind joint equalization and multiuser detection in dispersive
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channels with Gaussian ambient noise is developed in [26].
By integrating the robust methods proposed in this paper into
such a framework, nonlinear signal processing techniques can
be developed for jointly combating multiple-access interfer-
ence, intersymbol interference, and impulsive ambient channel
noise.

APPENDIX A
DERIVATION OF (59)

We follow the technique used in [13] by defining the
function

(85)

Notice that

(86)

(87)

(88)

(89)

where in (89), denotes a zero matrix, and
denotes that the matrix is positive semidefinite. Equation
(89) follows from the assumption that . It then
follows from (87)–(89) that for any . Now,
letting , we obtain

(90)

Assume that the penalty function is convex and
bounded from below; then, the cost function is convex
and has a unique minimum . In this case, is the unique
solution to (19) such that . Since the sequence

is decreasing and bounded from below, it converges.
Therefore, from (90), we have

as (91)

Since the matrix has full rank, (91) implies that
. Since is a continuous function of and has a

unique minimum point , we thus have as .

APPENDIX B
DERIVATION OF (68)

Denote . Then, (67) can be written in
matrix form as

(92)

Denote .
Then, from (65) and (66), we obtain

(93)

Using (92) and (93), we obtain

(94)

(95)

(96)

where in (94), denotes the Moore–Penrose generalized
matrix inverse [12]; in (95), we used the fact that

, which can be easily verified by using the defini-
tion of the Moore–Penrose generalized matrix inverse [12]; in

(95), we used the facts that
. Equation (96) is the matrix form of (68). Finally, we

notice that

(97)

It follows from (97) that the th diagonal element of the

diagonal matrix satisfies .
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