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Robust Multiuser Detection
In Non-Gaussian Channels

Xiaodong WangMember, IEEE and H. Vincent PoorFellow, IEEE

Abstract—In many wireless systems where multiuser detec- the situation in which practical multiple-access channels will
tion techniques may be applied, the ambient channel noise is he ambient-noise limited can be realistically envisioned.

known.through experimental measurements to be decidedly non- In many physical channels, such as urban and indoor radio
Gaussian, due largely to impulsive phenomena. The performance !

of many multiuser detectors can degrade substantially in the pres- channels [4], [5], [17], [18], [20] and underwater acoustic
ence of such impulsive ambient noise. In this paper, we develop channels [6], [19], the ambient noise is known through ex-
robust multiuser detection techniques for combating multiple- perimental measurements to be decidedly non-Gaussian due
access interference and impulsive noise in CDOMA communication g the impulsive nature of man-made electromagnetic interfer-

systems. These techniques are based on thé-estimation method .
for robust regression. Analytical and simulation results show ence and a great deal of natural noise as well. [For recent

that the proposed robust techniques offer significant performance mea;urement results Of impulsive_ no_ise in outdoor/indoor
gain over linear multiuser detectors in impulsive noise, with littte mobile and portable radio communications, see [4], [5], and

attendant increase in computational complexity. . ~ the references therein.] It is widely known in the single-

_ We also develop a subspace-based technique for blind adaptive ,sor context that non-Gaussian noise can be quite detrimental
implementation of the robust multiuser detectors, which requires .

only the signature waveform and the timing of the desired user [0 the performance of conventional systems based on the
in order to demodulate that user's signal. The robust multiuser Gaussian assumption, whereas it can actually be beneficial to
detection technique and its blind adaptive version can be applied performance if appropriately modeled and ameliorated. Neither

to both synchronous and asynchronous CDMA channels. of these properties is surprising. The first is a result of the lack
Index Terms—mpulsive noise, M-estimation, multiuser detec- Of robustness of linear and quadratic type signal processing
tion, signal subspace tracking. procedures to many types of non-Gaussian statistical behavior
[14]. The second is a manifestation of the well-known least
|. INTRODUCTION favorability of Gaussian channels.

In view of the lack of realism of an AWGN model for
bient noise arising in many practical channels in which mul-
) . . Yuser detection techniques may be applied, natural questions
mance O].c noporthogonal S|gnallng schemes for multiple-acc e concerning the applicability, robustness, and performance
communications. These techniques generally fall under ¢ f multiuser detection technigues for non-Gaussian multiple-

category of multiuser detection [25], which refers to Optimurﬁccess channels. Although performance indices such as mean-

or near-optimum demodulation in such situations. One of g, ;e oo (MSE) and signal-to-interference-plus-noise ratio

key theoretical contributions in this field has been to show th INR) for linear multiuser detectors are not affected by the

the use of multiuser detection (or derivative signal processi L tribution of the noise (only the spectrum matters), the more

techniques) can return performance in multiuser channels 10 .~ " . :
. ) crucial bit-error rate can depend heavily on the shape of the
that of corresponding single-user channels, or at least to a

situation in which performance is no longer limited by thaoise distribution. The results of an early study of error rates

multiple-access interference (MAI). By and large, the stud? non-Gaussian direct-sequence code-division multiple-access
. TR S-CDMA) channels are found in [1]-[3], in which the

of this problem has focused on the situation in which th ; f th tional and dified tional
ambient noise is additive white Gaussian noise (AWGN). Th riormance c;} € cor:jven |o(;1a_ anf. mol me %onv?]n |onaf
has been an appropriate model in the previous studies si géector§ IS shown .to depend signi |(;anty on t € shape o
the focus there has been on the mitigation of the most sev & ambient noise distribution. In Pa”'C‘,’!ar- |mpuls_|ve noise
noise source—the MAI. However, as increasingly practic&fjln seyerely ‘?'egrad‘? the error probability for a given level
techniques for multiuser detection become available, such@s@mbient noise variance. In the context of multiple-access
adaptive and blind adaptive multiuser detection methods [1EfPability, this implies that fewer users can be supported
with conventional detection in an impulsive channel than in a

Manuscript received September 11, 1997; revised May 27, 1998. TK@Aaussian channel. However, since non-Gaussian noise can, in
work was supported by the U.S. National Science Foundation under Gréatt, be beneficial to system performance if properly treated,

NCR-9613108. The associate editor coordinating the review of this paper . P .
approving it for publication was Prof. Barry D. Van Veen. e problem of joint mitigation of structured interference and

X. Wang is with the Department of Electrical Engineering, Texas A&wMNon-Gaussian ambient noise is of interest [22]. An approach

ECENT years have seen a significant interest in advan
signal processing techniques for enhancing the perf

University, College Station, TX 77843 USA. o ___to this problem for narrowband interference (NBI) suppression
H. V. Poor is with the Department of Electrical Engineering, Princeton d t t is d ibed i 91 A t
University, Princeton, NJ 08540 USA (e-mail: poor@princeton.edu). in spread-spectrum systems is described in [ ] recen
Publisher Item Identifier S 1053-587X(99)00135-X. study [23] has shown that the performance gains afforded

1053-587X/99$10.00] 1999 IEEE



290 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 2, FEBRUARY 1999

by maximum likelihood (ML) multiuser detection in impul-user signaling waveforms are of the form
sive noise can be substantial when compared with optimum

. . . . . N-1
multiuser detection based on a Gaussian noise assumption. b .
However, the computational complexity of ML detection is si(t) = Z pie(t —iTe), te[01] (3)
quite high, and therefore, effective near-optimal multiuser I=0
detection techniques in non-Gaussian noise are needed. In \ml'%re N is the processing gain(8k, sk, ..., 5% ) is a

paper, we c_onsider the MAI mitigaFion prqblem in DS'CDMAsignature sequence dfl’s assigned to théth user, andy is
chanpels W'th_ non-Ggussmn ambient noise. ) ._anormalized chip waveform of duratidf}, whereNT, = T.

This paper is organized as foI_Iow_s. In Section II, the signal = e sake of simplicity of discussion, when developing
_modell_for ahDS-CI|3MA comm(;Jrilcgtu()jn sygk';erg, as well as thes 1ohyst multiuser detection algorithms in the next two
IMpuiSIve channel noise model, 1S described. In Sectlon I'slections, we restrict our attention to the synchronous case of
we propose and analyze a robust technique for m“'““ﬁ%da (2), in whichr, = 75 = --- = 75 = 0. This does not

S . N X , =17 =--=71 =0.
detection is non-Gaussian channels, which is essentlallyin@ur any loss of generality. As will be shown in Section V,
robust version of the linear decorrelating multiuser detectqf,, opust techniques developed in Sections IIl and IV can
;I'he dro_bustlgcanon is based on hthM—;zsthatloT _meﬁhod be readily applied to asynchronous channels with a properly
ound in robust statistics. We show both analytically angi,qowed received signal. For the synchronous case of model
through simulations that this robust multiuser detector oﬁe@) to demodulate théth symbols of thei users{b (i)}
’ ’ v k=1’

significant performance gain over the linear decorrelatiqgiS sufficient to consider the received signal during ftte
detector when the ambient channel noise in non-Gaussigrbna"ng interval. i.e

with little attendant increase in computational complexity.

In Section IV, we develop a blind adaptive technique for K
implementing the robust multiuser detector, which requires the(t) = ZAkbk(i)Sk(t—iT)-‘rﬂ(t), t e [iT,(i+1)T). (4)
prior knowledge of only the signature waveform of the desired k=1

user, in order to robustly demodulate that user's signal. Thjs . . . - :
y g he receiver, the received signalt) is first filtered by

hnique | king the signal i _ .
technique is based on tracking the signal subspace componéoﬁt ip-matched filter and then sampled at the chip rate. The

of the received signal. The analyses in Sections Il and IV afe®

based on a synchronous CDMA model. In Section V, we shdl ;ulting discrete-time signal sample corresponding tojthe

that the robust and blind adaptive robust multiuser detecti6A'P of thesth symbol is given by

techniques developed in this paper can be applied to the TG +H1)Te
more general asynchronous CDMA model as well. Section VI (i) = / r(t)e(t —iT — §T,) dt
contains some concluding remarks. iT+jTe
K
Il. SYSTEM MODEL = ;Akbk@s] +n;(2) (5)

Consider a baseband digital DS-CDMA network operating
with a coherent BPSK modulation format. The waveforl in vector form

received by a given terminal in such a network can be modeled K
as consisti_ng of a set of_superimposed modulated data signals r(i) = Z Apbr () sy, + n(3) (6)
observed in additive noise k=1

r(t) = S®) +n(t), —oco<t<o 1) Y\/here S 2 [3’6 o Sll(’—l]T = \/1]\7[[36“ - [3k’—1]T
where S(t) and n(t) represent the useful signal and théS the normalized signature sequence of #ib user, and
ambient channel noise, respectively. The ambient noiseZ§) = [r0(i) -+ nny-1(5)]" is the channel ambient noise

assumed to be white. The useful sigsgk) is comprised of sample vector at thé#h symbol interval. It is assumed that the
the data signals of¢ active users in the channel and can begéduence of noise samplés; (i)} is a sequence of indepen-

written as dent and identically distributed (i.i.d.) random variables with
X Mol a non-Gaussian distribution.
_ B P In this paper, we adopt the commonly used two-term Gauss-
S(t)=>» A b ()sp(t — i — 13 2
®) ; * ; KDt = ) @ ian mixture model for the additive noise samples(¢)}. The

) _ probability density function (pdf) of this noise model has the
where M is the number of data symbols per user in the daig;m

frame of interest,l” is the symbol interval, and wherd,,

ko {0(); @ =0,1,..., M — 1}, and{s)(t); 0 < t < T} f = (1= N(0,2) + eN(0, s1?) 7)
denote, respectively, the received amplitude, delay, symbol

stream, and normalized signaling waveform of #tth user. with » > 0, 0 < ¢ < 1, andx > 1. Here, theN'(0,?) term

It is assumed thak,(t) is supported only on the intervalrepresents the nominal background noise, andAtf8, ri1/?)
[0,7] and has unit energy and théli; ()} is a collection of term represents an impulsive component, wittepresenting
independent equiprobablel random variables. For the direct-the probability that impulses occur. It is usually of interest to
sequence spread-spectrum (DS-SS) multiple-access format stuely the effects of variation in the shape of a distribution on
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the performance of the system by varying the parametersy the LS solutionﬁLs in (11). Upon differentiating (11)_@Ls

and x with fixed total noise variance is the solution to the linear system of equations
2 A 2 2 I -
0% = (1 — e + err”. (8) N LS
Z 7’]'—23291 sf:(), k=1,....K (13)
This model serves as an approximation to the more fundamen- j=1 =1

tal Middleton Class A noise model [19], [29] and has been _

used extensively to model physical noise arising in radio a®d in matrix form

acoustic channels. T T
ST50=5"r.

(14)

IIl. M ULTIUSER DETECTION VIA ROBUST REGRESSION Define the cross-correlation matrix of the signature waveforms

In this section, we propose and analyze some robust tedfi-all users ask = S S. Assuming that the user signature
niques for multiuser detection in non-Gaussian ambient noisgveforms are linearly independent, i.8.has a full ranki,
CDMA channels, which are essentially robust versions tifien R is invertible, and the LS solution to (13) or (14) is
the linear decorrelating multiuser detector. In Section llgiven by
A, we consider the equivalence between linear decorrelating
multiuser detection and least-square regression. In Section Ill- Ors=(ST8)~1sr
B, we propose robustifying the linear decorrelator Vi& =R 157y
estimation-based robust regression techniques. In Section IlI-
C, we analyze the asymptotic performance of the proposg observe from (15) that the LS estimdg, is exactly the
robust multiuser detectors. In Section 1lI-D, we discuss issuggtput of the linear decorrelating multiuser detector for e
arising in the implementation of the robust multiuser detectorigsers [16]. This is not surprising since the linear decorrelating
In Section Ill-E, we provide some simulation examples tgetector gives the maximum likelihood estimate of the product
demonstrate the performance gains afforded by the propoggehe amplitude and the data i = A by in Gaussian noise
robust multiuser detection methods in non-Gaussian noise.[16]. Given the estimaté,, the estimated amplitude and the

data bit are then determined by

(15)

A. Least Squares Regression and the Linear Decorrelator

Consider the synchronous signal model (6). For simplicity, A = [0, (16)
we drop the symbol indexand denote,, £ A;b;.. Then, (6) by, = sgrfy.). (17)
can be rewritten as

K B. Robust Multiuser Detection via
= Z ngk +n;, j=1,...,N (9) M-Estimation-Based Regression
k=1

It is well known that the LS estimate is very sensitive to
the tail behavior of the noise density. Its performance depends

or in matrix notation ST . . .
significantly on the Gaussian assumption, and even a slight

r=S0+n (10) deviation of the noise density from the Gaussian distribution
can, in principle, cause a substantial degradation of the LS
where § £ [s;, sy --- sg], and@ 2 61 62 - 6k]T. estimate. Since the linear decorrelating multiuser detector is
Consider the linear regression problem of estimating &he in the form of the LS solution to a linear regression problem,
unknown parameterg, , 6, ..., 6 from the N observations it can be concluded that its performance is also sensitive to the
r1,72,...,7n In (9). Classically, this problem can be solvedail behavior of the noise distribution. As will be demonstrated
by minimizing the sum of squared errors, i.e., through thig Section llI-E, the performance of the linear decorrelating
least-squares (LS) method detector degrades substantially if the ambient noise deviates
even slightly from a Gaussian distribution. In this section, we
R ! Ko ? consider some robust versions of the decorrelating multiuser
O = arg H{oinz <7‘j - Z 359k> detector, which are nonlinear in nature. (Recall that robustness
= j=1 k=1

of an estimator refers to its insensitivity to small changes in
= argmin lr — S 8|* (11) the underlying statistical model.)

= The LS estimate corresponding to (11) and (13) can be
robustified by using the class df/-estimators proposed by
Huber [13]. Instead of minimizing a sum of squared residuals
as in (11), Huber proposed to minimize a sum of a less rapidly
increasing functiorp of the residuals

If n; ~ N(0, o2), then the pdf of the received signauinder
the true parameterg is given by

. 2
Jolr) = (27r02)_g exp<—M>. (12)

v 20-2
N K
It is easily seen from (12) that the maximum likelihood Qzargeglg}(zp<7’j - 28f9k> (18)
estimate ofg under the i.i.d. Gaussian noise samples is given gl k=1
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Suppose thap has a derivative) = p’; then, the solution to 3) Minimax Decorrelating Detector
(18) satisfies the implicit equation We next consider a robust decorrelating detector in a
) minimax sense based on Huber’'s minimifestimator [13].

K . . .
Zz/’ <Tj _ ZS%) =0, k=1.. K (19) Huber considered the robust location estimator problem.
=1

Suppose we have one-dimensional (1-D) i.i.d. observations

=t X4,...,X,,. The observations belong to some sample space
or in vector form X, which is a subset of the real lirle. A parametric model
consists of a family of probability distributiongy on the
STp(r — S 0) = 0, (20) sample space, where the unknown paramétdselongs to

N - K some parameter spad®. When estimating location in the
wherey(z) = [(x1),...,P(xx)]" foranye € R™, and0x  model ¥ = R, © = R, Fa(x) = F(x — 6), the M-estimator
denotes aK-dimensional zero vector. An estimator define¢k yotermined by a-function of the typey(z, 8) = (x —6)

by (18) or (19) is called am-estimator The name M- o "yhe r/.estimate of the location parametéris given by
estimator” comes from “maximum likelihood type estimator’,

; : : ) the solution to the equation
[13] since the choice of(x) = — log f(x) gives the ordinary
maximum likelihood estimate. Ip is convex, then (18) and n
(19) are equivalent; otherwise, (19) is still very useful in Zz/)(a:i —6)=0. (26)
searching for the solution to (18). To achieve robustness, it i=1
is necessary tha$ be bounded and continuous. Usually, to
achieve high efficiency at the Gaussian case, we require t
¥(z) = z for z small. Consistency of the estimate require
that E{y(n;)} = 0. Hence, for symmetric noise densities, A )
1 is usually odd symmetric. We next consider some specific P. = {(1 - e)N(0,v") + eH;
choices of the penalty functiop and the corresponding H is a symmetric distributioh (27)
derivative 1.

uming that the sample distribution belongs to the set of
g-contaminated Gaussian modas/en by

where 0 < ¢ < 1 is fixed, andi? is the variance of the
1) Linear Decorrelating Detector nominal Gaussian distribution. It can be shown that, within
The linear decorrelating detector, which is simply the L&ild regularity, the asymptotic variance of @tfi-estimator of
estimator, corresponds to having the penalty function and ite locationd defined by (26) at a distributiod” € P, is

derivative, respectively, as given by [13]
2 .
prs() = ;— (21) V(i F) = Jwmdl 7 (28)
r (9 dF)
Yrs(z) = ” (22)

Huber’s idea was to minimize the maximal asymptotic vari-
where ~ is any positive constant. Notice that the lineaance overP., that is, to find an\/-estimator, that satisfies
decorrelating detector is scale invariant.
sup V(to; ) = inf sup V(9. F). (29)

2) Maximum Likelihood Decorrelating Detector FcPpe v FCPe

Assume that the i.i.d. noise samples have a pdfThen,
the likelihood function of the received signalunder the true
parameterd is given by

5 i = [ (EY ar 30
Le(mé—bng(m—Zs?ek) ( )_/<F> (30)
j=1

This is achieved by finding the least favorable distributiGn
i.e., the distribution that minimizes the Fisher information

k=1
N K N over all FF € P.. Then,ipg = —FT is the maximum likelihood
==Y logflr—_ stk | (23)  estimator for this least favorable distribution. Huber showed
J=1 k=1 that the Fisher information is minimized by [i.e., the least

Therefore, the maximum likelihood decorrelating detector favorable pdf in7]

non-Gaussian noise with pdf [in the sense that it is a . 2 ‘2
maximum likelihood estimate of the product of the amplitude folz) = 4 V2= eXP(z?z)v for [z < kv (31)
and data bit;, £ A;bi] is given by theM -estimator with the ﬁ exp (¥ — klz]), for |z| > kv?
penalty function and its derivative, respectively, as

v
2

wherek, ¢, andr are connected through

pmL(z) = —log f(z) (24)
(=) P(kv) B €
Yme(z) = — Flo) (25) B Qkv) = 21— ¢) (32)
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Fig. 1. ¢ functions for the linear decorrelator, the maximum likelihood decorrelator, and the minimax decorrelator, under the Gaussian mixture noise
model. The variance of the nominal Gaussian distribution?s= 0.01. (a) ¢ = 0.1. The cutoff point for the Huber estimator is obtained by solving
(32), resulting ink = 11.40. (b) e = 0.01, k£ = 19.45.

where ¢(z) £ \/% % , and Q(¢) ft -% Jz. The as a functionalT operating on the empirical distribution

corresponding m|n|ma>M estlmator s then determined byfunction £,,, 7" = T'(F,,) and that the estimator is consistent
the Huber penalty function and its derivative, which is giver@s n — oo, i.e., T(F) = lim,_ T(F,), where F' is the

respectively, by underlying distribution. It is defined as
= for |z| < kv? s T((1=t)F +tA,) - T(F)
= 2¢%] = 33 IF(z; T, F) = lim 35
o) { 1 for x| > kv? 33) ( )=l t (39)

and where A, is the distribution that puts a unit mass at

Roughly speaking, the influence function(457, F') is the
(34) first derivative of the statistid@” at an underlying distribution
F and at the coordinate. We next compute the influence

The minimax robust decorrelating detector is obtained lgjlnctlon of the nonlinear decorrelating multiuser detectors
substitutingpy and<y into (18) and (19). efined by (19). T A
Assuming that the noise distribution has tlhamixture Denote thejth row of the matrix S by£ 5] -
density (7), in Fig. 1, we plot the functions for the three [s} --- si]. Assume that the signature waveforms of all users
types of decorrelating detectors discussed above for the cagkss random, and lek (£) be the distribution function 0§j
e = 0.1 and e = 0.01, respectively. Note that for smallwith densityk(£). Assume further that the noise distribution
measurement, bothiyvr,(z) andy;(z) are essentially linear, has densityf. Denote the joint distribution of the received
and they coincide withyys(xz); for large measurement, signalr; and the chip samples of th& users¢ . under the

YmL(z) approximates a blanker, whereds;(z) acts as a e parametef by Gi(r, <) with density
clipper. Thus, the action of the nonlinear functignin the

nonlinear decorrelators defined by (19) relative to the linear O = fr— Tk 36
decorrelator defined by (13) is clear in this case. Namely, the 90(r &) = J(r = £ HK(E)- (36)

linear decorrelator incorporates the residual linearly into tl? G is the empirical distribution function generated by the

signal estimate, whereas the nonlinear decorrelators incor
% Jnal samples{“,g 2., then the solutiord,, to (19) can
rates small residuals linearly, but blank or clip larger reS|duasg = '

that are likely to be the result of noise impulses. also be written 339(G ), where ¢ is the K-dimensional
functional determined by

V(@) = =, for |o| < kiv/?
H ksgn(z), for |z| > ki?.

A~

C. Asymptotic Performance of Robust Multiuser Detector
[t - e acno = oy (37)

1) Influence FunctionThe influence function (IF) intro-
duced by Hampel [8], [13] is an important tool used to study
robust estimators. It measures the influence of a vanishind®y all distributionsG for which the integral is defined. Let
small contamination of the underlying distribution on théhe distribution beGG = (1 — #)Gs + tA, . Substituting this
estimator. It is assumed that the estimator can be definiatb (37), differentiating with respect tt and evaluating it
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att = 0, we get We can also compute the Fisher information matrix for the
parameterg at the underlying noise distribution. Define the
0f = /1/1(7’ _ STQ(GQ))S d(Ae — Gy) likelihood score vector as
g
A
/w r— ET0(Go))E X f(r — £70) 5(r,&6) = 55 1096(r, &)
g
o _ Y _ T
B(&) & dr - = [0(G)] =0 gg &0
)
— 0l = € 8GE - [~ BG)EdGo _Lrme B (45)
GRS )
T
/z/} r= £ 0G)f(r § Q>§§ The Fisher information matrix is then given by
& dldr - 1F(r, &4, Go) (38)

J(0) 2 / s(r, & >< 0 gs(r,€) dr de
f

where, by definition

R R (46)
d ., a . B((1—8)Gs +1tAre) — 6(Go)
- [0(@)]|t=0 = lim . . . .
ot N =0 t It is known that the maximum likelihood estimate based on
=1F(r,&;0,Go). (39) i.i.d. samples is asymptotically unbiased and that the asymp-

totic covariance matrix is/(#)~! [21]. As discussed earlier,
Note thatTthe second term on the right-hand side of (3fhe maximum likelihood estimate @f corresponds to having
J(r — £ 8(Gp))§ dGy is Oy by (37). Now, assume that,;,) — /'@ Hence, we can deduce that the asymptotic
the functionald is Fisher consistent [8], |eQ(G ) =8, SR ’
. = covariance matri¥/ (8, Gy) = J(6)~* wheny(z) = _J;((w))_
which means that at the model, the estlma{té;; in > 1} ey )
asymptotically measures the right quantity. We proceed wiff® Verify this, substituting)(z) = — 5 into (44), we obtain

(38) to obtain

£ (w)? du :
’ T T T (9 GO) f ) "R"
0 = (r — £70)¢ - / W(r = E50)f(r — €7 0)E € L 2]
x k(&) dE dr - IF(r, &40, G) { } e
- By " du-R* - 1F(r, £,0.G N
— 0= "0~ [ W00f) du- B 0, 6:0.Ga) e .
(40)
where we have assumed that under regularity conditions, the
where differentiation and integration can be interchanged so that
. A T, J 7 (w)du = (f f(u)duw)” = 1" = 0.
£ = /g k(&) dg (41) Next, we consider the asymptotic probability of error for

. . . Lo hhe class of decorrelating detectors defined by (19) for large
is the cross-correlation matrix of the random infinite-lengt
processing gainV — oo. Using the asymptotic normality

signature waveforms of th& users. From (40), we obtain
the influence function of the nonlinear decorrelating multiusgpnd'tIon (43), 9’\ ~ N(§,Y). The asymptotic probability
detectors determined by (19) as of error for thekth user is then given by

PF2Prf, <06, >0)
; Pr =€)
IF(r,&0,Ge) = —E* ¢ (42) ]
- : S (u - Q (L) (48)

v/ [R* ek

is the asymptotic variance given by

2) Asymptotic Probability of Error:Under certain regular-
ity conditions, theA-estimators defined by (18) or (19) arg, herew
consistent and asymptotically normal [8], i.e.,

Vill, = 6) ~ N(O,V(0,Ga)), asn— oo (43) EP LA CHOLTS (49)
[ ") () ]

where the asymptotic covariance matrix is given by
R R R Hence, for the class of\/-decorrelators defined by (19),
V(8,Ge) = /'F(T’ £0,Ge) - IF(r,&0,Go)" dGo(r,€) their asymptotic probabilities of detection error are connected
% () f (1) du . through the parametew. We next c_omputa_; for the three
5 - L2 (44) decorrelating detectors discussed in Section 1lI-B under the
[ 9/ (w) f(w) du] Gaussian mixture noise model (7).
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1) Linear Decorrelating Detector

295

function of the sef?, andé, denotes the Dirac delta function

The asymptotic variance of the linear decorrelator is giveat . After some algebra, we obtain

by

vig = / u? f(u) du = Var(n;)
=(1- (:)1/2 + eri?. (50)

That is, asymptotically, the performance of the linear decorre-
lating detector is completely determined by the noise variance
independent of the noise distribution. However, as will be
seen in the next subsection, the noise distribution does af-
fect substantially the finite sample performance of the linear [ 211

y ple p ' (u) f(u) du = [

decorrelating detector.

2) Maximum Likelihood Decorrelating Detector

[ s
= 5[ - g - D)

. _Wek,/exp<_’“;:2)} (55)
2|3 -9 - )|
(56)

The maximum likelihood decorrelating detector achieves tH&1€ asymptotic variance?; of the minimax decorrelating

Fisher information covariance matrix, and we have

r

fw)
Then, (51) gives the minimum achievahlé. To see this, we
use the Cauchy-Schwarz inequality to yield

-
(/|¢< ) >|du2
([ vwrwa)
(
(

Vi, = [ (51)

(52)

where the last equality follows from the fact thagu) f(w) —
0, as|u| — oo. To see this, we use (7) and (25) to obtain

f'w) _

F)p(u) £ = f(u) o) —f'(u)
u U,2
- 2y 2712 {(1 —9 exp<—ﬁ>
€ U,2
“ (5]
— 0, as]u|— oc. (53)
Hence, it follows from (52) that
IRONOLIINS [ fw? du} e
[ (w)f(u) du]” ™

3) Minimax Decorrelating Detector
For the minimax decorrelating detector, we hayer) =

7 Yael<rezy + ESONE) - 1{jz>m2y, and ¢’ (x) >

l/2

L{je|<tr?) + kO_p2 — kbyy2, Where lo(x) is the indicator

detector is obtained by substituting (55) and (56) into (49).

In Fig. 2, we plot the asymptotic variane€ of the maxi-
mum likelihood decorrelator and the minimax robust decorre-
lator as a function ok and x, under the Gaussian mixture
noise model (7). The total noise variance is kept constant
ase and  vary, i.e., 02 = (1 — ) 4+ enr? = (0.1)%
From the two plots, we see that the two nonlinear detectors
have very similar asymptotic performance. Moreover, in this
case, the asymptotic varianeé is a decreasing function of
either ¢ or x when one of them is fixed. The asymptotic
variance of both nonlinear decorrelators are strictly less than
that of the linear decorrelator, which corresponds to a plane at
v? = 02 = (0.1)%. In Fig. 3, we plot the asymptotic variance
v? of the three decorrelating detectors as a function efith
fixed ¢, and in Fig. 4, we plot the asymptotic variancé of
the three decorrelating detectors as a functiom with fixed
k. As before, the total variance of the noise for both figures
is fixed ato? = (0.1)2. From these figures, we see that the
asymptotic variance of the minimax decorrelator is very close
to that of the maximum likelihood decorrelator for the cases
of small contamination, e.gg < 0.1, whereas both of the
detectors can outperform the linear detector by a substantial
margin.

D. Computational Issues

In this section, we discuss computational procedures for
obtaining the output of the nonlinear decorrelating multiuser
detectors, i.e., the solution to (19). Assume that the penalty
function p(x) in (18) has a bounded second-order derivative,
i.e.,|p’(z)] = |¢'(z)] < p, for somew > 0. Then, (19) can be
solved iteratively by the following modified residual method
[13]. Let §' be the estimate at thigh step; then, it is updated
according to

2! £ p(r — ST
6 =g 1 (57S)
I

wherey is a step-size parameter. Denote the cost function in
(18) by C(6) = Zj\f 1 p(r; 5 6). We have the following re-
sult regarding the convergence behavior of the above iterative
procedure.

(57)

1574t (58)
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Fig. 2. Asymptotic variance? of (a) the minimax robust decorrelating detector and (b) the maximum likelihood decorrelating detector as a function of
and = under the Gaussian mixture noise model with variance of the noise fixed & (1 — €)v? 4 exv? = (0.1)2.

Proposition 1: If |¢'(x)| < pu, then the iterative estimatesz(8) = P(r — ST6). Furthermore, ifp(z) is convex and

defined by (57) and (58) satisfy bounded from below, thed’ — 6* as! — oo, where §*
" is the unique minimum point of the cost functi@(é), i.e.,
) — @t > §(Ql — 6T R(E — 6" the unique solution to (19). m

1 The proof of this result is found in Appendix A. Notice

INT —1oT 11
(@) SRS 2(¢) (59)  that for the minimax robust decorrelating detector, the Huber

penalty functiorpy () does not have second-order derivatives
where R £ STS is assumed to be positive definite, an@t the two “corner” points, i.eq = +k2. In principle, this

—z
2u—
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Fig. 3. Asymptotic variance,? of the three decorrelating detectors as &ig. 4. Asymptotic variances? of the three decorrelating detectors as a
function of x with fixed parameter. The variance of the noise is fixed function of e with fixed parametek. The variance of the noise is fixed at
02 2 (1 — e)? + exr? = (0.1)%. 02 2 (1 — e? + exr? = (0.1)%

can be resolved by defining a smoothed version of the Huberrhe operations of the\/-decorrelating multiuser detector
penalty function, for example, as (60), shown at the bottom gfe depicted in Fig. 5. It is evident that it is essentially a
the page, where is a small number. The first— and secondrohust version of the linear decorrelating detector. At each
order derivatives of this smoothed Huber penalty function afgration, the residual signal, which is the difference between
given, respectively, by (61) and (62), shown at the bottom ¢{e received signal and the remodulated signslé’, is passed
the page. We can then apply the iterative procedure (57)-(38)ough the nonlinearityi(-). Then, the modified residuaf
using this smoothed penalty function and the step $ize . js passed through the linear decorrelating filter to get the
In practice, however, convergence can always be achiev@ddification on the previous estimate.

even if the nonsmooth nonlinearityy (x) is used.

Notice that matrix%(ﬁTﬁ)—lﬁT in (58) can be computed
offline, and the major computation involved at each iteration
the product of thig K x K') matrix with aK -vectorz!. For the In this section, we provide some simulation examples to
initial estimateg®, we can take the least squares solution, i.edemonstrate the performance of the nonlink&decorrelating

1 multiuser detectors against multiple-access interference and
6" ==(sT8) 15" (63) non-Gaussian additive noise. We consider a synchronous sys-
“ tem with X' = 6 users. The spreading sequence of each user
The iteration is stopped iﬂQl — Ql_1|| < e for some small is a shifted version of am-sequence of lengtiv = 31.
numbere. Numerical experiments show that on average, it We first demonstrate the performance degradation of lin-
takes fewer than ten iterations for the algorithm to convergear multiuser detectors in non-Gaussian ambient noise. Two

II%. Simulation Examples

2

S if |x] < (k—n)?
Py =< (k—n)z+n*”1n cosh(“”(’;%)”z), if x> (k—n)? (60)
—(k—=n)z+n*12n cosh(“”"'(:;%)”z), if 2 < —(k—n)?

|

, it || < (k — n)v?

— b ntanh (ZZEEDEY i g s (B )2 61)
(k —n) +ntanh (W;%)”Z), if z < —(k—n)r?

, it || < (k — n)v?

[1 - tanh? (T_(:;%)"z)], if x> (k—n)?

[1 — tanh? (ZHEDY] if o < —(k — )2

nv?

EraliN
]

<
mw
Il
S
T
|
|>—A TN|,_. tw|>—‘ |

Vi = P {

)

v

IA

1
- (62)
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Fig. 5. Diagram of thel/-decorrelating multiuser detector, which is a robust version of the linear decorrelating multiuser detector.

popular linear multiuser detectors are the linear decorrelating ,,-
detector and the linear MMSE detector. The performance

of the linear decorrelating detector in several different S
mixture channels is depicted in Fig. 6. In this figure, we plot 10’2L

the error probability versus the signal-to-noise ratio (SNR) s S

corresponding to the first user under perfect power control. Tl T

The performance of the linear MMSE multiuser detector is$ "} Tl R 1
indistinguishable in this case from that of the decorrelating_i_i el T
detector. It is seen that the impulsive character of the channe] N
ambient noise can substantially degrade the performance & * IR

— eps=0 (Gaussian)

both linear multiuser detectors. Similar situations have been
H - . . — — eps=0.01, kap=100

observed for the conventional matched filter receiver in [1]. In .| eps=0.1, kap=100
[23], it is observed that non-Gaussian-based optimal detection ~  eps=0.1, kap=1000
can achieve significant performance gain (more than 10 dB
in some cases) over Gaussian-based optimal detection in,,s ‘ ‘ ‘ .
multiple-access channels when the ambient noise is impulsive. ° 6 7 8 A L
However.' this gain is Obtain.ed with 2 signifi.cant. penalty 0Ir:]i 6. Probability of error versus signal-to-noise ratio (SNR) of the linear
complexity. The robust techniques developed in this paper ¢ E—orfelating detector for user 1 in a synchronous CDMA channel with
stitute some low-complexity multiuser detectors that accouhussian and-mixture ambient noiseN = 31, K = 6. Perfect power
for non-Gaussian ambient noise. We next demonstrate the g@pirol is assumed.
formance gain afforded by this non-Gaussian-based suboptimal ] epsion=0.01, kapp=100
detection technique over its Gaussian-based counterpart, i.e.,'° ' i ' ' ' ' ' !
linear multiuser detectors. '

The next example demonstrates the performance gainsio-
achieved by the minimax robust decorrelating detector over the
linear decorrelator in impulsive noise. The noise distribution ol
parameters are= 0.01 andx = 100. The bit error rate versus
SNR for the two detectors is plotted in Fig. 7. The performancé;
of an “approximate” minimax decorrelating detector is alsog‘o’a*
shown in this figure, in which the nonlinearity(-) is taken as

rror

Probal

=z for |z| < ko? 0
)= {77 o] < ko, 6
ksgnz), for |z| > ko .
1075k 7 exact robust decorrelator
where the parametek is taken ask = %2, and the step 77 approx robust dacorriator
. . ipe . . =« - linear decorrelator
size parametey: in the modified residual method (58) is set | ’
asu = o2. The reason for studying such an approximate "o 1 2 3 4 5 & 7 8 9 10

robust detector is that in practice, it is unlikely that the exact SN ()

parameterse and » in the noise model (7) are known toFig. 7. Probability of error versus signal-to-noise ratio (SNR) for user

the receiver. However. the total noise variange can be 1 for the exact minimax decorrelating detector, an approximate minimax
) ! decorrelating detector and the linear decorrelating detector, in a synchronous

estimated from the received signal [as will be discussed d#bma channel with impulsive noiseV = 31, K = 6, ¢ = 0.01, = 100.
the next section]. Hence, if we could set some simple rule fdhe powers of the interferers are 10 dB above the power of user 1.
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epsilon=0.01, kappa=100, K=20

Probability of Error

------ linear detecorrelator::::
_— robust decorrelator| ::

SNR (dB)

Fig. 8. Probability of error versus signal-to-noise ratio (SNR) for user 1 for the approximate minimax decorrelating detector and the lineatigcorre
detector in a synchronous CDMA channel with impulsive nolSe= 31, K’ = 20, ¢ = 0.01, x = 100. All users have the same power.

choosing the nonlinearity>(-) and p, then this approximate , Gaussian Channel

robust detector is much easier to implement in practice than the ' [~ ' ‘ ‘
exact one. It is seen from Fig. 7 that the robust decorrelating
multiuser detector offers significant performance gains over the el
linear decorrelating detector. Moreover, this performance gain
increases as the SNR increases. Another important observation
is that the performance of the robust multiuser detector isg ,,-
insensitive to the parameteksand « in the noise model,
which is evidenced by the fact that the performance of thez
approximate robust detector is very close to that of the exacg 10
robust detector. We next consider a synchronous system with :
20 users(K = 20). The spreading sequence of each user is ) f;‘;‘;:f*d"e‘if;’r:j;;"r' \
still a shifted version of then-sequence of lengtiv = 31. 107

The performance of the approximate robust decorrelator and
that of the linear decorrelator is shown in Fig. 8. Again, it

is seen that the robust detector offers substantial performance' o 2 s s 8 10 12
gains over the linear detector. SR

In the third example, we consider the performance of thdg. 9. Probability of error versus signal-to-noise ratio (SNR) for user 1 for
approximate robust decorrelator in Gaussian noise. Bit ef@i robust decorrelating detector and the linear decorrelating detector in a

ity of E

- chronous CDMA channel with Gaussian noi8é.= 31, K = 6. The
rate curves for the robust decorrelator and the linear decorgewers of the interferers are 10 dB above the power of user 1.

lator in a six-user systertK’ = 6) are shown in Fig. 9. It is

seen that there is only a very slight performance degradation .

by the robust decorrelator in Gassian channels, relative \@nan_ce s due to mpulses, which have _Iar_ge amplitudes.
the linear decorrelator, which is the optimal decorrelatin uch impulses are clipped by the nonlinearity in the detector.

detector in Gaussian noise. Comparing the bit-error curvkgerefore, the effective noise variance at the output of the
of the robust decorrelator in Figs. 7 and 9, it is seen thegbust detector is smaller than the input total noise variance.
the robust detector performs better in impulsive noise than limfact, the asymptotic performance gain of the robust detector
Gaussian noise with the same noise variance. This is becaimsénpulsive noise over Gaussian noise is quantified by the
in an impulsive environment, a portion of the total noisasymptotic variance? in (49) [cf., Figs. 2—4].
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In summary, we have seen that the performance of teamples{n(¢)}, the autocorrelation matrix of the received
linear decorrelating detector degrades substantially when #ignal (i) in (6) is then given by
distribution of the ambient channel noise deviates even slightly

from Gaussian. By using the robust decorrelating detector, K

such performance loss is prevented, and it offers significant CE B} =) Alssi +0°Ly
performance gains over the linear detectors, which translates k=1

into a channel capacity increase in multiple-access channels. =SAST +5%0I,. (65)

On the other hand, even when the ambient noise distribution
is indeed GaUSSian, the robust detector incurs Only negllgltg9 performing an eigendecomposition of the matQX we

performance loss relative to the linear detectors. can write
T
IV. ROBUST BLIND MULTIUSER DETECTION C=UAUT = [U.U,] {As A } [%%} (66)
The robust multiuser detection procedure developed in the =rnaen
previous se_ctlon offers substantial perform_ance gain over F\pvﬁere U = WU A = diagA,A) A, =
linear multiuser detectors when the ambient channel norﬁe \ N contains the K largest. eigenvalues of
becomes impulsive. In the previous sections, we have assu 5%11 a""’ é‘_) derl7 — 9 9 i h
that the signature waveforms of all users, as well as tie N descending orderl/, = [u; --- wuy] contains the

distribution of the ambient noise, are known to the receivéPresponding orthonormal eigenvectdrs = oIy, and

in order to implement the robust multiuser detectors. THé. = [ux41 -+ un] contains the(V — K)) orthonormal
requirement on the knowledge of the exact noise distributigigenvectors that correspond to the eigenvalttelt is easy

can be alleviated since, as demonstrated in Section IlI-E, littie see that rand®) = range(U,). The range space @, is
performance degradation is incurred if we simply adopt icalled thesignal subspaceand its orthogonal complement,
the robust multiuser detector a nonlineartywhich depends called thenoise subspages spanned by/,,. The following

only on the total noise variance but not the shape of thesylt is instrumental to developing the subspace-based blind
distribution. In this section, we develop a technique to alleviatgp st multiuser detector.

the requirement on the know!edge of al! users’ signaturgs. OneProposition 2: Given the eigendecomposition (66) of the
remarkaple feature of the linear multiuser detectors is thz%tocorrelation matrixC, suppose that

there existblind techniques that can be used to adapt these
detectors, which allow us to use a linear multiuser detector K %
for a given user with no knowledge beyond that required for Z Ors,, = ZCJ@J’ bR, ¢ €R. (67)
implementation of the conventional matched-filter detector for 1 )

that user. In this section, we show that the robust multiuser

detector can also be implemented blindly, i.e., with the pridthen, we have

knowledge of the signature waveform of only the user of

interest. K uTs,
There are two major approaches to blind adaptive multiuser b =y ﬁ(j, k=1,....K (68)
detection. In the first approach, the received signal is passed j=1""

through a linear filter, which is chosen to minimize, within a
constraint, the mean-square value of its output [10]. Adaptatisfhere oy, is a positive constant given by, 2 A =
algorithms such as least-mean-squares (LMS) or recursi\{e:{f_ ()5, 2]—1_ -

. . X =1 X\, —0o?
least-squares (RLS) can be applied for updating the filtert,o prjoof of this result is found in Appendix B.
weig_hts. Ideally, the ac_japtation will Ie_ad the fillter converge.to The above result leads to a subspace-based blind robust
the linear MMSE multiuser detector, irrespective of the noi ultiuser detection technique as follows. From the received

distribution. [In practice, the impulsiveness of the noise will . . .
[in p P datta{z('L)}, we can estimate the signal subspace components,

slow down the convergence.] Therefore, this approach can 1o S < o "
adapt the robust multiuser detector. €., _AS - _d'ag()‘_l""’)"")’ andU, = [y --- 4g]. The

Another approach to blind multiuser detection is thEfceived signat in (10) can be expressed as
subspace-based method proposed in [27] through which both

the linear decorrelating detector and the linear MMSE detector r=S0+n=U(+n (69)
can be obtained blindly. As will be discussed in this section,
this approach is more fruitful in leading to a blind adaptivevhere¢ £ [¢1,. ., C¢x]F. Now, instead of robustly estimating
robust multiuser detection method. the parameter® using the known signature wavefornts
of all users, as is done in the previous section, we can

A. Subspace-Based Blind Robust Multiuser Detection robustly estimate the parametefsising the estimated signal

DenoteS = [s; s, --- si] and A = diag(A2,...,A%). subspace coprdinatdﬁs. Denote such a robust estimate as
Since the data bits of users{by(i)} are independent-1 ¢ £ [¢1,..-,¢x]*. Finally, we compute the estimate of the

random variables, and they are independent of the nojsarameterd; of the desired user (up to a positive scaling
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Fig. 10. Probability of error versus signal-to-noise ratio (SNR) for user Big. 11. Probability of error versus signal-to-noise ratio (SNR) for user 1 for
for the blind robust detector and the blind linear detector, using batch-SVibe blind robust detector and the blind linear detector, using subspace tracking
in a synchronous CDMA channel with non-Gaussian nalée= 31, K’ = 6.  in a synchronous CDMA channel with non-Gaussian nalée= 31, ' = 6.

The powers of all interferers are 10 dB above the power of user 1. The powers of the interferers are 10 dB above the power of user 1.
factor) according to gorithms to adaptively update the estimated signal subspace
K o components. For example, in [27], the projection approxi-
ho_ Uj Sk » _ mation subspace tracking with deflation (PASTd) algorithm
b => ——(, k=1,... K. (70) . . . .
=N [28] is used to implement subspace-based blind multiuser

detectors. This algorithm sequentially updates #emost
dominant eigenvalues and the corresponding eigenvectors at

Note that in the estimator (70), the denomiators ér,e h iterati . Ve least : f al
instead of(\; —4?), as in (68). This makes the estimatof 2¢" tération, using a recursive least-squares type ot algo-

(70) less sensitive to the estimation errors in the estimatlr rn:l 'Ir'1hie gojrs;;gtaﬂoinal tﬁoimﬁ:f);:}vy ?(; tthls alg?r:;thm st each
quantitiesd;, A; and ¢;. Moreover, if the noisen has a eration isO( )- Itis straightforward to use this subspace

Gaussian distribution, then (70) corresponds to the outputt aflcklng algorithm for the blind robust multiuser detector; at

a linear MMSE multiuser detector [27]. Hence, the abovle ith symbol interval, after receiving thé&h data vector
! (¢), the signal subspace components are updated by the

robust multiuser detection procedure can be viewed as- ; X
robust version of the linear I\/FI)MSE multiuser detector. Noticg STd algor.|thm. Then, the robust procedureyln (68), (.71)'
that using this method to demodulate thin user's data bit anq (72) ';’ |r}Vﬁked to demo%ulate tmh usler.s data b'tl
b4(), the only prior knowledge required at the receiver is (e © 1% DS K BETCR SARe Sl 0 Rt
signature waveform of this user and, thus, the tbfimd robust detection al orithmsp

multiuser detector. Notice also that since the columng/of 9 :

are orthonormal, the modified residual method for updating

the robust estimate of is given by B. Simulation Examples
As before, we consider the synchronous system itk 6
2 éz/)(f—ngl) (71) users and spreading gaiN = 31. First, we illustrate the
141 PR RPN L performance of the blind robust multiuser detector based on
¢ =0+ ;Qs £- (72)  patch SVD. The size of the data block/i = 200. The noise

distribution parameters are = 0.01 and x = 100. The bit

There are two approaches to implementing subspace-basatr rate versus the signal to noise ratio for user 1 is plotted
blind robust multiuser detectors. In the classical approadh, Fig. 10 for both the blind linear MMSE detector and the
a block of (say,M) received data sample§r(¢)] ﬁ‘igl is blind robust detector. The powers of all interferers are 10 dB
collected first. The signal subspace componéntsU,, o are above that of user 1. The performance of the blind adaptive
then computed through batch eigenvalue decomposition (E@pust multiuser detector based on subspace tracking is shown
of the sample autocorrelation matrix or batch singular value Fig. 11, where the PASTd algorithm from [28] is used for
decomposition (SVD) of the data matrix. We then apply thigacking the signal subspace parameters. The forgetting factor
robust procedure (70)—(72) to demodulate ke user’s data in this algorithm is 0.999. It is seen from these two figures that
bits {bx, (i)}f‘igl. This approach is computationally expensiveas in the nonadaptive case, the robust multiuser detector offers
and it incurs a large delay in data demodulation. significant performance gain over the linear multiuser detector

A more attractive approach is to use computationally efirn impulsive noise. Furthermore, in this example, the adaptive
ficient sequential eigendecomposition (subspace tracking) atrsion of the blind robust detector based on subspace tracking
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outperforms the batch SVD-based approach. [This is becaasel
with a forgetting factor 0.999, the effective data window size is
1/(1 —0.999) = 1000, whereas the window size in the batch
method isM = 200, while it has a practical computational
complexity and incurs no delay in data demodulation.]

b(i — 1)

b (i) = :
Q(L +m— 1) K(m+1)x1

Then, from (73) and (74), we can write

V. EXTENSION TO ASYNCHRONOUSCHANNELS
rrn(i) = HrnArnbrn(i) + nrn(i)

A. Robust Muliuser Detection in Asynchronous Channels whereA,, is an[K (m+1) x K (m+1)] diagonal matrix given
Thus far, we have assumed that the users are symbol dydA4,, = A®I,, ., [® denotes Kronecker product], aftd,,

chip synchronous. In this section, we consider the more gendmb generalized Sylvester matrix of the form

case where the users are symbol and chip asynchronous. We

(75)

show that in this case, the techniques developed in the previous . H(1) H(O) - 0
sections can be applied on a signal with larger dimension, Hm = : ' . :
resulting from an enlarged window on the received signal. 0 H(1) H0) ] xps e (me1)

Consider the asynchronous signal model (2). Define=
| 7] and 7 = 7 — mk. At the receiver, the receivedwhere the matrix{(0) andH(1) are N x K matrices defined
continuous-time signal(t) is filtered by a chip-matched filter as

and sampled at the chip rate. Denote ik chip-matched

sample at theth symbol interval byr;(i), i.e.,

L [ITHGADT
ri(i) 2 /Tﬂ r(8)(t — T — §T.) dt
iT+j T,

K
=Y Ayf(@) +ni(i), j=0,....N—-1 (73)
k=1

wheren; (i) £ [T n(t)p(t — i — jT) dt, and

o s [TTHGFDT
Y, (4) =/
iT+5T.

[Ai:l bk(l)sk(t —1IT — Tk)]
X ot — T — JTIZ; dt

= b ()15 (0) + b (6 — )R (1) (74)

whereh*(0) and % (1) are parameters determined by ttté

H(0
2w o na (76)
with
“my ink'l'l
hy, = (1 —7g) S, + 7 Sy, (77)
Q]\T—'rnk QJ\’—nlk—l

The parametem is called the smoothing factor and is chosen
such that the Sylvester matri¥,,, has full column rank. It is
shown in [15] that under the conditions that/)1) is of full
column rank(K) and b) theZ-transform of {H(0), H(1)},
H(z) £ H(0)+ H(1)z~' is of full column rank for allz € C,
then, for allm > | 2] + 1, H,, has full column rank.
Assuming that,,, has full column rank, we can then apply
the robust technique developed in the previous section for
detection of theth data bitsb(:) from the data vector,,(z).

user's signature sequence and delay, which are given lateF ff €xample, if the signature waveforms of all users as well as

(77). Define the quantities
B 70(L)

: ] n(i) £
—TN—l(i) Nx1
M 01(1)
b(i) = |

Loxc(4) e ser

r(i) =

A
”N—.l ORI

the relative delays are known to the receiver, then the Sylvester
matrix ., can be constructed. Now, similarly to (57) and (58),
we can robustly estimate the paramet@®®&) = Anbp (i) as

0 — i(HZ;Hm)_lH,anm (78)

z' 2 (rm — H,,0") (79)
1

Ot =0 + —(HLH,,)*HT 2. (80)
12

By stackingm successive data samples, we further define tAde ith data bits of K users are then demodulated according

guantities
o r(d)
ro(i) 2 : ]
—f(i +m — 1) Nmx1
n(i)
nm(i) 2
—ﬂ(i +m— 1) Nmx1

to b(¢) = sgn®[K +1 : 2K]), where®@[K + 1 : 2K] denotes
the subvector o® consisting of the elements indexed from
K + 1 through 2K.

On the other hand, to do blind robust multiuser detection in
asynchronous channels, we first compute the signal subspace
components of the covariance matrix of the sighal,(¢)}

Cc= E{rm(i)rm(i)T} = HmArQnHZ; + 0211\’771,

=U,AUY + 52U, Ul (81)
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epsilon=0.01, kappa=100 epsilon=0.01 kappa=100
10 T T T T T T T T 10 T T T T

Probability of Error
Probability of Error

7 exact robust decorrelator

—.=. approximate.robust decorrelator

—— robust blind detector
- linear decorrelator = = 'blind linear MMSE detector

10" 1 1 L 1 Il L L 1 L 10 L L 1 L L 1 1
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

SNR (dB} SNR (dB)

Fig. 12. Probability of error versus signal-to-noise ratio (SNR) for user 1 fa¥ig. 13. Probability of error versus signal-to-noise ratio (SNR) for user 1

the robust detector and the linear detector in an asynchronous CDMA chartael the blind robust detector and the blind linear detector, based on the

with non-Gaussian nois&V = 31, K = 6. The powers of the interferers are subspace tracking in an asynchronous CDMA channel with non-Gaussian

10 dB above the power of user 1. noise. N = 31, K = 6. The powers of the interferers are 10 dB above
the power of user 1.

Notice that the signal subspace has dimendigm: + 1). We

then proceed with the robust estimation in the signal subspace VI. CONCLUDING REMARKS
as In many practical wireless channels in which multiuser
LA . detection techniques may be applied, the ambient noise is
z' = (r — U,() (82) likely to have an impulsive component that gives rise to larger
=l g lUTZl. (83) tail probabilities than is predicted by the Gaussian model.
p’ Impulsive noise can seriously degrade the error probability

of the linear multiuser detectors for a given level of the noise

Finally, the kth user data bit is demodulated according tBower. In this paper, we have proposed a robust multiuser
bx = sgr(6i), where detection technique that is seen to significantly outperform
linear multiuser detectors in non-Gaussian ambient noise. This
technique is based on th&/-estimation method for robust
=Y. ¢, k=1,...,K (84) : ; -

£ A regression. The asymptotic performance of several versions of

=t the robust detectors are analyzed and compared. Simulations
show that the robust multiuser detectors offer significant
performance gain over the linear multiuser detectors in non-
Gaussian noise, and they incur little performance loss when
B. Simulation Examples the channel noise is indeed Gaussian.

We consider an asynchronous CDMA system with spreadinge have also developed a subspace-based blind adaptive
gain N = 31 and the number of user& = 6. The user technique for implementing the robust multiuser detectors,
spreading sequences are the same as before. The devdyigh requires only the signature waveform of the user of
of the six users are randomly generated and are given ipjerest in order to robustly demodulate that user’s signal.
[24.73 29.46 14.00 1.93 15.45 16.78]T.. The performance Finally, we have shown that the robust multiuser detection
of the robust multiuser detectors and the linear decorrelatifggthod and its blind adaptive version can be readily applied
detector in this system is plotted in Fig. 12. As before, bofl@ asynchronous CDMA channels.
the exact robust multiuser detector and the approximate robusthe robust multiuser detection methods developed in this
multiuser detector are considered. It is seen that, similaiaper can be extended in a number of ways. For example,
to the synchronous case, the robust detectors significaritig robust regression techniques can be applied to robustify
outperform the linear decorrelator. Moreover, the performanseme nonlinear multiuser detectors, such as the decision-
of the robust detector is insensitive to the parameters. feedback multiuser detectors [7] and the multistage multiuser

Fig. 13 depicts the performance of the subspace-based blifeiectors [24]. A previous study [23] indicates that these
adaptive robust multiuser detector for the same asynchronaslinear detectors suffer similar performance loss in the pres-
CDMA system. The performance of the subspace-based bliadice of impulsive noise, just as do linear detectors. Another
adaptive linear MMSE detector is also plotted. It is seen thpossible extension is to incorporate the channel dispersion
the robust techniques offer significant performance gain thue to multipath fading effects. A general framework for
impulsive noise. blind joint equalization and multiuser detection in dispersive

K 1
(m+1) u?hk

with hy = [I—Y’f Q?\wf(ran)]T'
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channels with Gaussian ambient noise is developed in [2G]nce the matrix[ﬂ_lﬁT] has full rank, (91) implies that
By integrating the robust methods proposed in this paper in;_t()Ql) — 0. Sincez(#) is a continuous function of and has a
such a framework, nonlinear signal processing techniques aarique minimum poing*, we thus have' — 6* asi — .
be developed for jointly combating multiple-access interfer-

ence, intersymbol interference, and impulsive ambient channel

noise.

APPENDIX A
DERIVATION OF (59)

We follow the technique used in [13] by defining the

function
d(r) = %[C(Ql) - (¢ +1)]
+3 - 25T e REL (69
Notice that
d(0) = 0 (86)
D )= L iy — €10+ )¢
or ' u ot A e
+ 5757 - iﬁTz(Ql)E:g (87)
= ;STZ(QI +7)+8TST
- %ﬁugmzzg —o (88)
9 1 al ’ T gl T, ¢Tg
=27 d(D) —;Zw (rj =& @' +D)g & +578

(89)

where in (89),0 denotes aKk x K zero matrix, and4d > B

denotes that the matriA— B is positive semidefinite. Equation

(89) follows from the assumption that’(xz) < u. It then
follows from (87)—(89) thatl(r) > 0 for any = € R*. Now,
letting 7 = 6" — 6' = L(575)~1572(¢'), we obtain

1

0<d(r) = ;[C(Ql) iG]
- #K(QI)TE(ETE)_IETZ(QI)

1 1
= —[0() - CE'™)) - 5 (ST S)r. (90)
12

Assume that the penalty functiop(z) is convex and
bounded from below; then, the cost functi6i{#) is convex

and has a unique minimur®(#*). In this casef™ is the unique

solution to (19) such that(6*) = 0. Since the sequence
C(6") is decreasing and bounded from below, it convergegy,

Therefore, from (90), we have

2(0H)F[SR™'ST]2(8Y)

< 2u[C(8) — C(8"H)] — 0, asl— .

(91)

APPENDIX B
DERIVATION OF (68)

Denote¢ £ [¢ -+ Cx]¥. Then, (67) can be written in

matrix form as
S8=UL. (92)

DenoteA, = A, — 02, = diag(\; — 02,..., g — 0?).
Then, from (65) and (66), we obtain

SAST =U AUT. (93)

Using (92) and (93), we obtain
57(sAsT)I 56 = sT(UAUT)ULC (94)
= (575N a v (stsye = sTU AT UTUL ) (98)
=8 = ASTU AF'C (96)

where in (94),Jr denotes the Moore—Penrose generalized
matrix inverse [12]; in (95), we used the fact tI@‘tAgT)Jr =

§TTA_1§T, which can be easily verified by using the defini-
tion of the Moore—Penrose generalized matrix inverse [12]; in

(95), we used the facts th@TﬁTT) - (sts) =W, =
1,.. Equation (96) is the matrix form of (68). Finally, we
notice that

At =5T(s48T)ts
= ST (U ATTUT)S

(97)

It follows from (97) that thekth diagonal elementi; * of the
K (@ls,)’

diagonal matrixA~* satisfiesA, * = >, Sy
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