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Abstract—Displaying the abundant information contained in a
hyperspectral image is a challenging problem. Almost any visu-
alization approach reduces the information content. However, we
want to maximize the amount of object or material information
presented. A visualization approach that uses classification as
an intermediate step may maximize the information transfer. In
our research, we are particularly interested in the display of
mixed-pixel classification results, since most pixels in a remotely
sensed hyperspectral image are mixed pixels. In this paper, we pro-
pose a visualization technique that employs two layers to integrate
the mixture information (i.e., endmembers and their abundances)
in each pixel. Images can be displayed with any desired level of
details.

Index Terms—Hyperspectral imagery visualization, linear un-
mixing analysis, unsupervised classification.

I. INTRODUCTION

A HYPERSPECTRAL imaging sensor uses hundreds of
coregistered channels to acquire images of the same area

on the Earth. It provides high-resolution spectral information to
enable more accurate material detection, classification, identifi-
cation, and quantification. However, it is challenging to display
the abundant information contained in such a 3-D image cube.
There exist two major categories in visualization: one is to
represent as much data information as possible, and the other
is to use the human perceptual channels ergonomically. In this
paper, we focus on the methods in the first category.

False-color images, which map three spectral channels into
three RGB channels, have been used to display multispectral
remotely sensed images for decades. For instance, a color
infrared composite, which provides a quick overview of the
materials in a scene, is a typical method to display multispectral
data [1]. Robertson and O’Callaghan suggested using a linear
transformation to project the original bands into three channels
and then to map the three channels to a perceptual color space
to achieve high contrast image [2]. Durand and Kerr selected
three channels and balanced the signal-to-noise ratio (SNR) to
obtain an enhanced color contrast image [3]. When displaying
hyperspectral imagery, these methods may not be sufficient
to visualize the information contained in hundreds of spectral
channels.
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One of the solutions in the hyperspectral imagery display is
to condense the information into three major channels and map
it to the RGB color space. A typical method is to display the
first three principal components (PCs) from PC analysis (PCA)
[4]. However, the original PCA method does not balance the
SNR well. Moreover, lots of information including interesting
object information may be present in other PCs. Therefore,
a noise-adjusted PCA (NAPCA) may be a better choice. A
PCA-class method for color display has been presented for the
hyperspectral image display [5], [6]. In the work of Jacobson
and Gupta [7], fixed linear spectral weighting envelopes were
introduced to create a natural-looking imagery that displays
the same materials in different datasets consistently. However,
these unsupervised transformation-based techniques result in
the loss of information, including objects.

Another way to exhibit hyperspectral images is to visualize
the classification results. In pure-pixel classification, a false-
color display, which assigns a color label to each class, can
be used [8]. Since most pixels are mixed in a remotely sensed
hyperspectral image due to a low spatial resolution, it is more
useful to conduct a mixed-pixel classification. In mixed-pixel
classification, a pixel has a certain percentage of each class.
Traditionally, one displays the resulting grayscale classification
maps separately and views them side by side, making it diffi-
cult to build the spatial relationship among classes. It is also
impossible to perceive the contents within a single pixel. A
visualization system was developed by Wessels et al. [9], in
which the pixel color was assigned to be the color of the most
abundant class, but other class information was suppressed.

It should be noted that the visualization of classification
result can be considered a multivariate visualization problem.
This problem has been studied for many years [10]–[12]. In
[10], discrete and continuous visual elements were combined
to visualize multiple fields on a surface. Texture mapping and
3-D surface shape were employed to display multivariate data
in [11]. Bokinsky used different sizes and distributions of dots
to represent different variables [12]. All of these methods take
the multivariates as independent variables, and no relation-
ship exists among them because they are different physical
quantities.

According to our ad hoc study, color display using clas-
sification result generally can produce better data analysis
performance than one that uses a simple data transformation.
Thus, in this paper, we investigate how to effectively visual-
ize the mixed-pixel classification results. We present a new
approach that employs two layers to visualize the mixed-pixel
information with different levels of details. This approach takes

0196-2892/$25.00 © 2007 IEEE



CAI et al.: HYPERSPECTRAL IMAGERY VISUALIZATION USING DOUBLE LAYERS 3029

TABLE I
NUMBER OF BANDS BEFORE AND AFTER AUTOMATIC SELECTION

advantage of the classification result from fully constrained lin-
ear unmixing, such as the technique in [13]. At the very detailed
level, it displays pixel composition at the subpixel level. On
the other hand, it can display the overall material distribution
in the image scene. Viewers can choose any detail level for
information display. Based on this double-layer scheme, a
visualization system with interactive tools is developed.

This paper is organized as follows. Section II provides the
details on hyperspectral image processing and analysis. In
Section III, the color mapping strategies and double-layer visu-
alization approach are presented. In Section IV, the developed
hyperspectral image visualization interface is introduced. Three
visualized examples are shown in Section V. Section VI draws
the conclusion.

II. DATA PROCESSING AND ANALYSIS

Preprocessing or data preparation is a necessary part of the
visualization process. A hyperspectral image may contain some
bad bands, such as water absorption and low SNR bands,
and bad pixels, such as white spots due to sensor saturation.
These bad bands and bad pixels impact the data analysis. Before
classification, they need to be automatically removed.

A. Removal of Bad Bands

A hyperspectral image has high spectral correlation. Thus,
two adjacent bands tend to have very high correlation. The
bands that are not similar to their neighbors may contain a high
level of noise. Due to low reflectance, noise plays a key role
in water absorption bands. Therefore, the correlation between
adjacent water absorption bands is also very low. These facts
are used to automatically remove all these unwanted bands. The
detailed steps are as follows.

1) Compute the correlation coefficient between each pair of
bands.

2) For each band, compare the correlation coefficients with
the neighboring channels. If both of the correlation coef-
ficients are greater than a given threshold η, this band is
kept; otherwise, it is removed as a bad band.

Table I lists the bad-band removal result for three datasets
with the threshold η = 0.8. The high quality of bands selected
demonstrates that this approach can efficiently remove the
water absorption and low SNR bands, and the result is very
close to that from manual selection.

B. Removal of Bad Pixels

Due to sensor noise, some bad pixels may occur in a selected
band. Two types of noise may exist: isolated pixels and striping

Fig. 1. Band 173 in the AVIRIS low altitude data (a) before bad pixels are
removed and (b) after bad pixels are removed.

lines. An isolated noisy pixel is not spatially or spectrally
correlated with the neighboring pixels. The pixels in a noisy line
are correlated. Thus, different algorithms are used to remove
isolated pixels and lines.

1) Removal of Isolated Noisy Pixels: A lowpass filter can
smooth out the isolated noisy pixels, but it will also blur the
normal pixels. In order to reduce the impact to the normal
pixels when removing the abnormal pixels, an algorithm with
the following steps is applied.

1) Find the maximum pixel value in the band.
2) Find the pixels whose values are greater than a certain

percentage (λ1) of the maximum value, and take these
pixels as abnormal pixel candidates.

3) Check the value of the abnormal pixel candidates in the
adjacent bands. If the pixel value exceeds the maximum
value of the same pixel in the adjacent bands by a certain
percentage (λ2), it is considered as a bad pixel.

4) Conduct the signature interpolation and use the interpo-
lated values to replace the bad pixels.

In practice, λ1 = 80% and λ2 = 90% can achieve good
results. The spectral inspection in Step 3) is particularly im-
portant to avoid accidentally removing those normal pixels
with large reflectance. Fig. 1 displays Band 173 in the Airbore
Visible/Infrared Imaging Spectrometer (AVIRIS) low-altitude
imagery before and after bad pixel removal. Fig. 1(a) is dark be-
cause some isolated pixel values are so large that they suppress
the brightness of other pixels. Fig. 1(b) is the image after the
bad pixels have been removed, where image content becomes
visible.

2) Removal of Dark or White Noisy Lines: Stripe patterns
may exist in some bands [14]. The algorithm to automatically
remove a dark line with the Hough transform [15] has the
following steps.

1) Compare each pixel with its four closest neighbors. If its
value is less than ε, for example, 80%, of the neighbor-
hood average, mark this pixel as a bad pixel candidate.

2) Create a binary image where the pixels corresponding to
the bad pixel candidates are set to 1 and others 0.

3) Detect lines across the entire binary image using the
Hough transform. The candidates that are located in the
detected lines are considered as bad pixels.

4) Interpolate and replace the bad pixels along the detected
lines.
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Fig. 2. Band 10 of Hyperion data. (a) Original image, (b) detected stripes, and
(c) after the stripes are removed.

As shown in Fig. 2, the line noise can be effectively detected
and removed. This algorithm can be easily modified to detect
white line noise.

C. Linear Mixture Analysis

Linear mixture analysis is a widely used method to classify
and quantify multispectral/hyperspectral imagery. Each pixel
in the hyperspectral imagery can be represented as a vector r
whose dimension is l × 1, where l is the number of spectral
bands. Assume that the number of endmember materials is n.
Let M be the signature matrix of these materials donated as
M = [m1,m2, . . . ,mn], where mj is an l × 1 vector corre-
sponding to the signature of the jth material. According to the
linear mixture model, the pixel r can be represented as

r = Mα + n (1)

where α = (α1 . . . αi . . . αn)T is an n× 1 column vector
called the abundance vector, whose ith element represents the
proportion of the ith endmember material in the pixel r. Here,
n represents an additive noise or sensor measurement error.

Since α represents endmember abundance, αi for 1 ≤ i ≤ n
should be a positive value. Also, the whole pixel is constructed
by all the endmembers. Hence, their sum should be one. These
two constraints can be formed as

n∑
i=1

αi = 1 0 ≤ αi ≤ 1. (2)

When the M is known, a constrained optimization problem
can be imposed to estimate α that yields the minimum esti-
mation error when the constraints in (2) are satisfied, which is
referred to as fully constrained least squares linear unmixing
(FCLSLU). It can simply be achieved by using a quadratic
programming. If M is unknown, then unsupervised FCLSLU
needs to be performed [13], whose procedure can be described
as follows.

1) Select the two pixels with the maximum and minimum
norms from the image and construct M = [m1,m2].
Then, use the quadratic programming to solve α =
[α1, α2].

2) Calculate the reconstruction error e between the pixel
vector r and its estimate, i.e., e = |r−Mα|.

3) Find the pixel that has the maximum error and take it as a
third endmember, i.e., M = [m1,m2,m3]. Then, use the
quadratic programming again to estimate the abundances
in the new α.

4) Repeat Steps 2) and 3) for additional endmembers
and their abundances, until the error is less than a
given threshold ξ or reach the maximum number of
endmembers.

When the number of endmembers is unknown, a large num-
ber can be assumed first to run the unsupervised FCLSLU
algorithm. Then, the similar endmember signatures can be
combined after the similarity comparison using Spectral Angle
Mapper (SAM), and the endmember signatures correspond-
ing to noisy abundance images with large entropies can be
removed. The remaining signatures are used for the super-
vised FCLSLU to generate the final abundance images for
visualization.

III. DOUBLE-LAYER VISUALIZATION SCHEME

The resulting abundance images from the linear mixture
analysis in Section II provide the spatial distribution of each
endmember material in an image scene. Traditionally, each
abundance image is displayed as a grayscale image [13]. If
there are n endmember materials, then n grayscale abundance
images will be generated. There are, at least, two drawbacks for
visualizing the abundance images as separate grayscale images:
1) it is difficult for viewers to find the overall distribution of the
n materials in the image scene; and 2) it is difficult for viewers
to know the material composition at any specific location in the
image scene.

Therefore, in our approach, we visualize the n abundance
images in one single color image by employing double layers
to overcome these two drawbacks. First, distinctive colors
are determined for all the abundance images. Second, a final
color image is formed by applying a double-layer visualization,
where Layer I displays the general distribution of materials
and Layer II displays the detailed composition of each pixel.
The final image display is generated by overlaying Layer II on
Layer I.

A. Color Assignment Strategies

In the study of color perception, one of the first mathemati-
cally defined color spaces is the CIE XYZ color space. It was
derived from a series of experiments which showed that almost
all of the colors can be represented by a linear combination of
three basic spectral signatures (roughly red, green, and blue),
which are taken as the three coordinates X , Y , and Z. However,
the CIE XYZ system does not give a direct way of estimating
color differences. It would be desirable if a distance on a
chromaticity diagram corresponded to the degree of difference
between two colors. The two uniform color spaces provided
by CIE are CIE LAB and CIE LUV, where the perceptual
distance approximately equals the Euclidean distance in these
two color spaces [16], [17]. However, the difference and the
appearance of color not only depend on the tristimulus but also
heavily depend on the adapted state of viewers, the constancy
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and contrast, and the temporal and spatial structures of the
tristimulus. A real ideal uniform color space should involve
these factors. Unfortunately, such an ideal color visual model
is unavailable because these factors are very complex, and the
viewer’s environments are not predictable [17].

Healey addressed three criteria for color selection: color
category, color distance, and linear separation [18], [22]. When
the number of colors to be selected is less than ten, the color
labels selected from the hue-saturation-value (HSV) color space
can belong to different color categories [18], [19]. The HSV
space is very similar to the CIE LUV space when S = 1
and V = 1. Although the HSV color space is not uniform,
the colors in the slice are very close to being uniform. Thus,
the color selection from the HSV space does not theoretically
satisfy the three criteria, but it is very close. However, in some
cases, even when distinctive colors have been assigned, the final
color display result may not be as good as expected because
color perception is nonlinear. It is also suggested by other
researchers that the color selection will have good performance
if a luminance (or lightness) dimension is separated from the
chromatic dimensions [20].

Therefore, we will conduct a distinct color selection in the
HSV color space with the goal that a color display should have
the capability of conveying more information about the spatial
relationship among objects or materials and make it easier to
separate pixels into different classes [21]. In some cases, ex-
perienced analysts may have a preknowledge about the classes
and want to assign a specific color to a class. For instance, one
may want to use green to display healthy vegetation. Therefore,
two automatic color assignment strategies are developed: one
with class similarity constraint only and one with both class
similarity and color consistency constraints.

1) Automatic Color Assignment With Class Similarity Con-
straint: The endmembers determined in Section II can be
arranged in a sequence based on their signature similarity using
a metric such as SAM. Without loss of generality, assume
that the endmembers matrix A = [α1, . . . ,αi, . . . ,αn] are
arranged according to signature similarity, i.e., αi is more
similar to αi+1 than to αi+2. To relax the similarity constraint
in color assignment, the color for the ith abundance image
corresponding to αi is less similar to the (i+ 1)th image than to
the (i+ 2)th.

In the HSV color space, hue is an angle between 0◦ and 360◦,
and each angle corresponds to a specific color tone. In order to
choose the colors as distinctively as possible, the angles of hues
are uniformly selected from [0◦, 360◦] for the n classes, with
the saturation and value being 1.0. The n color labels can be
represented as

CLj =



Hj = 360◦ j/n
Sj = 1.0 j = 0, . . . , n− 1
Vj = 1.0

. (3)

In order to separate similar classes as far as possible, the color
labels are assigned in an interleaved way. Let hi be the color
vector in the HSV space for the ith class, for i = 1, . . . , n. Also,

let the color labels assigned to hi be denoted as CLji. The
index ji can be determined by

ji = (ji−1 + �n/2�) mod n (4)

if CLji
has not been assigned. Otherwise

ji = ((ji−1 + �n/2�) mod n) + 1. (5)

Here, �n/2� chooses the largest integer that is less than or
equal to n/2. j1 can be any number between (0, n− 1). But,
in general, j1 = 0. Fig. 3(a) shows the six color labels assigned
to six classes using (4) and (5) where the correspondences are
h1 ← CL0, h2 ← CL3, h3 ← CL1, h4 ← CL4, h5 ← CL2,
h6 ← CL5.

2) Automatic Color Assignment With Class Similarity and
Color Consistency Constraints: In this color assignment
method, the viewer can define the colors of some abundance
images for consistent rendering. For instance, green is an obvi-
ous choice for healthy vegetation. Also, if a standard signature
library is available, the identities of some endmembers may be
recognized, and then, their abundance images may be assigned
consistent colors if desired. The colors for the rest of the abun-
dance images can be assigned with the similarity constraints.
It should be noted that it may be impossible to satisfy both
class similarity and color consistency constraints for the entire
set of abundance images because these two constraints are
contradictory in most cases.

Assume that K (0 < K < n) color labels have been prede-
fined forK classes. TheK color labels divide the 360◦ hue slice
into K intervals (π1 . . . πk . . . πK), where πk is the interval
between [Hk,Hk+1]. Those classes whose colors have not been
predefined are determined by the following rules.

1) Arrange the rest of classes on the order of similarity.
2) Pick the next class to assign the color vector h.
3) Find the maximum interval πi and assign H = (Hi +

Hi+1)/2 as the hue component of h. If more than one
interval have the maximum π, then choose the one that
results in the H which is farthest from that for the
previous class in the sequence.

4) Redivide the 360◦ hue slice into K + 1 intervals.
5) Repeat 2)–4) until all the classes are assigned colors.

Fig. 3(b) shows the color labels assigned to six classes where
Class 1 and 3 are predefined as blue and green, respectively.

After the colors have been assigned in the HSV color space,
they are converted to the RGB color space so that they can be
used in the next visualization steps and displayed on standard
color monitors.

B. Layer I—Background Layer

Layer I, referred to as the background layer, is formed by
preassigning a color to each of the n abundance images and
merging them using a linear transformation. This layer gives
the viewers the overall spatial distribution of endmembers.

1) Pixel Color Generation: Each pixel in the abundance
images can be presented as a vector α = (α1 . . . αi . . . αn)T

constrained by (2). The color that is selected by the color
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Fig. 3. Color assignment results. (a) Six classes are assigned color according
to their signature similarity. (b) Class 1 and class 3 are predefined as blue and
green, respectively.

Fig. 4. Mapping scheme from pixels to vertices.

assignment strategies for the ith endmember can be denoted as
ci = (ri gi bi)T in the RGB color space. Then, a color matrix
can be constructed as

C =




cT
1
...

cT
i
...

cT
n




=




r1 g1 b1
...

...
...

ri gi bi
...

...
...

rn gn bn



. (6)

The final color for the vector α in Layer I can be achieved by
multiplying the pixel vector with the color matrix, i.e.,

cT = αTC. (7)

Since α was constrained by (2), the final color will be within
the normal range [0, 1] of color components.

2) Mapping Pixels to Vertices: OpenGL is a device-
independent 3-D graphics library [23]. Setting a series of prim-
itives in OpenGL can easily render 2-D or 3-D images. One
of these primitives displays an OpenGL point with a size and
color, which is referred to as vertex. A vertex can be considered
a geometrical point with a given spatial position and color. A
simple mapping function is formed from an image pixel to an
OpenGL vertex as

f : pij → νij . (8)

Fig. 4 illustrates the mapping procedure. The vertical and
horizontal distance between two adjacent vertices is u. Then,
the mapping functions between pij and νij are represented as

pij · position =(i, j)

νij · position =(iu, ju)

νij · color = pij · color. (9)

Fig. 5. Fan-shaped superpixel with its mixture composition.

Fig. 6. Mapping function from pixels to superpixels.

Based on this mapping function, the color of vertices is
determined by the color of the corresponding pixel, which is
obtained by (7). The color of any point that is not a vertex will
be determined by linearly interpolating the colors of the four
closest vertices. The color of any point in this layer, including
vertices and the intervening space, is denoted as CI.

C. Layer II—Detail Layer

Layer II, referred to as the detail layer, introduces a
“superpixel” to display the distribution detail of each endmem-
ber in a pixel at that position. Superpixel, also known as circle
segments [24] and star maps [25], is a method to visualize
multivariate data.

In this layer, each endmember is represented by a pie chart,
as shown in Fig. 5. Without preknowledge about the classified
endmembers, each member is considered as equally important.
Therefore, an endmember is randomly assigned to the ith fan
region. In general, the first endmember is chosen to assign the
first region, and so on. The area of a fan-shaped region for
the ith endmember is proportional to the angle θi, which is
determined by its abundance αi, i.e.,

θi = αi · 360◦. (10)

Its starting and ending positions can be represented as

βs
i =

i−1∑
j=1

θj βe
i =

i∑
j=1

θj (11)

respectively. They can be related by θi = βe
i − βs

i and βs
1 = 0◦.

Because α is constrained by (2), a pixel is shown as a full disk,
i.e., βe

n = 360◦.
Similar to the mapping in Layer I, Layer II maps a superpixel

center to the corresponding vertex, and the radius of a super-
pixel is u/2 as shown in Fig. 6. The space in the pie chart will
be filled by the color of the endmember that has been assigned
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Fig. 7. Interface in the double-layer visualization system.

to this wedge. The color of the points that are not covered by
the superpixels is set to black, i.e., c = [0, 0, 0]T. A color in
Layer II is referred to as CII.

D. Blending

After colors have been assigned to the two layers, Layer I,
which gives the general distribution, and Layer II, which gives
the details of the distribution, the final display can be generated.
In order to display the two layers on the same device simulta-
neously, the color in the final image is determined by blending
CI and CII. The blending is achieved by linearly combining CI

and CII, which can be described as

Cfinal = t CI + (1− t)CII for 0 ≤ t ≤ 1. (12)

Therefore, the color of the final image is within [CI, CII]. When
t, the blending parameter, approaches 1, the final color trends
to CI, which means that the final image displays the general
distribution information; when t is close to 0, the final color
trends to CII, which means that the final color image gives the
detail distribution information.

IV. VISUAL EXPLORATION TOOLS

Visualization research has shown that interaction is a very
efficient way to help viewers analyze data. In order to help
viewers dig into the details of endmember distribution, the
developed visualization system provides several interactive ex-
ploration tools to provide additional information in the main
visual interface. The main visual interface, as shown in Fig. 7,
is divided into five linked view areas: main display area, navi-
gation display area, precise pixel information display area,
signature information display area, and class labels and colors.

In the main display area, viewers can easily manipulate the
visual result, such as zooming in, zooming out, and moving to

Fig. 8. AVIRIS Lunar Lake scene of size 200 × 200.

select the region of interest (ROI) area. By selecting a ROI,
one can obtain the desired degree of details. For example,
by selecting a large area, Layer I will dominate the display,
whereas the mixing details of each pixel are more visible if a
small ROI is chosen. If a very small area is selected, the precise
quantitative mixing information of each individual pixel can be
seen. To avoid losing the spatial position when viewers select a
very small ROI, a small navigation box is displayed to indicate
the position of the ROI. Also, it can be used to change the ROI.

Although the distribution details can be revealed by Layer II,
it may still be difficult for viewers to figure out the very precise
distribution of endmembers. Therefore, the precise pixel infor-
mation can be displayed, which includes the pixel position and
exact abundances. Endmember signatures are always important
in data analysis. Viewers can choose the spectral signatures to
be shown, and the color of the signature is the same as the pixels
in Layer I, which is also presented in the class color label area.
Other information can be easily added to the visual interface.

V. EXPERIMENTS

Three examples are shown using the developed visualization
system. They represent three different cases. The AVIRIS Lunar
Lake scene to be visualized does not have noisy pixels; the
AVIRIS low-altitude data are contaminated by isolated noisy
pixels; and the Hyperion data contain lines that are noise. The
two AVIRIS data are free downloads from the AVIRIS website
(aviris.jpl.nasa.gov). The Hyperion data were obtained from the
Earth Resources Observation Systems Data Center of the U.S.
Geological Survey and in an area south of Mississippi State
University.

The two color assignment strategies are used for these three
examples. Because we have some prior knowledge about the
AVIRIS Lunar Lake scene, the vegetation was preassigned to
green. The rest of the class colors were automatically assigned
based on the signature similarity. The second and third exper-
iments implemented an automatic color assignment with the
signature similarity constraint only, since no prior knowledge
of the endmember types is available.

A. AVIRIS Lunar Lake Experiment

The AVIRIS Lunar Lake data, as shown in Fig. 8, were
visualized by the proposed approach. After water absorption
and low SNR bands were removed, 158 bands remained for
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Fig. 9. Abundance images of the AVIRIS Lunar Lake and their assigned
colors.

Fig. 10. Composite image based on the color assigned in Fig. 9. (a) Layer I.
(b) Layer II.

processing. Fig. 9 shows the grayscale images of the six
material abundances found by the unsupervised FCLSLU algo-
rithm. In the abundance grayscale images, a bright pixel means
that a large abundance of the specific material is resident in
this location. Although the general distribution of one particular
material is clearly displayed, it is difficult to visualize the
constituent of a pixel.

Fig. 10 shows the Layers I and II images, in which each
material was assigned the color indicated in Fig. 9. The right-
most abundance image in the first row in Fig. 9 is vegetation;
therefore, it was displayed in green. In Fig. 10(a), the six
endmembers can be easily distinguished by color, such as
magenta, blue, green, yellow, red, and cyan. In particular, an
anomaly that is highlighted in the circle is displayed in yellow.
Such a color display shows the overall material distribution and
the fuzzy memberships of a pixel, but it cannot represent the
detailed portions of materials within each pixel. For example,
in the magenta area, it is difficult to see if other materials exist
in this area and their portions. These cannot be resolved by only
one layer. By introducing a second layer, as shown in Fig. 10(b),
such detailed information can be revealed.

More details about the final color composite are shown in
Fig. 11. The first column is the result when only Layer I was
used to visualize the six endmembers, and the second column
was generated when only Layer II was used. The third column
is the result of blending the two layers with the specified values
of t. On the other hand, the first row in Fig. 11(a) shows the

Fig. 11. Visualization results for the AVIRIS Lunar Lake data (from left to
right: Layer I, Layer II, and double layers). (a) Overall images. (b) Details of
pixels (the anomaly and its neighboring pixels).

Fig. 12. AVIRIS low-altitude scene of size 512 × 512.

complete image using different values of t, and the second row
in Fig. 11(b) zooms in on the ROI as highlighted in the first row
where individual superpixel disks can be easily distinguished.
As described in Section III, each disk represents a pixel, and the
pie charts indicate the abundance of each material. In Fig. 11(b),
we can easily see the anomaly pixel and its composition in the
context of the neighborhood. This important information can-
not be conveyed by viewing the original grayscale abundance
images one after another.

This experiment clearly demonstrates the roles of Layer I
and Layer II, and that, the double layers can effectively display
the overall distribution and pixel composition details at the
same time.

B. AVIRIS Low-Altitude Experiment

An AVIRIS low-altitude subimage with size of 512 × 512,
as shown in Fig. 12, was processed before visualization. One
hundred thirty-two bands were kept after water absorption,
and low SNR bands were removed. Isolated noisy pixels were
removed using the algorithm in Section II-B. Without prior
knowledge about this image scene, 30 materials were generated
first, and seven meaningful material signatures were kept after
abundance image selection and similar signature combination.
Then, seven abundance images were produced by applying the
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Fig. 13. Seven abundance images of AVIRIS low-altitude and their colors.

Fig. 14. Visualization results for the AVIRIS low-altitude data (from left to
right: Layer I, Layer II, and double layers).

supervised FCLSLU. Fig. 13 displays these images and the
automatically assigned colors.

Fig. 14 shows the final visualized images, such as Layer I
(first column), Layer II (second column), and double layers
(third column). The blending parameter t controls the amount
of Layer I and Layer II in the final color display. The second
row in Fig. 14 is about a ROI, a yellow spot, which is located
in the white circle in the first row. Without using the double-
layer display, viewers may be able to tell that this position
contains some “yellow” material, but cannot gain a clear idea
about its distribution. Our visualization system shows that the
yellow spot not only contains this “yellow” material but also
three other materials, and this material is the major component.
The viewer can easily know the percentage of each material by
looking at the top-right window, as shown in Fig. 7.

C. Hyperion Experiment

The Hyperion data, as shown in Fig. 15, were used to test
the system as well. After water absorption and low SNR bands
were removed, 152 bands remained. As the first spaceborne hy-
perspectral sensor, the images it produces contain lots of sensor
noise such as dark lines. These dark lines greatly affect the
classification results; therefore, the algorithm in Section II-B
was employed to detect and remove these dark lines. After

Fig. 15. Hyperion image scene of size 150 × 200.

Fig. 16. Five abundance images of the Hyperion data and their colors.

Fig. 17. Visualization results for the Hyperion data (from left to right:
Layer I, Layer II, and double layers).

the dark lines were removed, 20 materials were extracted first
using the unsupervised FCLSLU. Then, five signatures were
kept after the selection of meaningful abundance images and
combination of similar signatures. The five abundance images
generated by the supervised FCLSLU and the automatically
assigned colors are shown in Fig. 16.

Fig. 17 shows the color visualization comparison among
the Layer I, Layer II, and double layers. For example, the
distribution of the material in purple, corresponding to the
buildings and roads, is easily seen in the first row; the small
purple area highlighted in the first row is displayed as the ROI
in the second row where we can see that none of the pixels is
pure, and the largest abundance is about 90%. This experiment



3036 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 45, NO. 10, OCTOBER 2007

further demonstrates that by using double layers, we can display
both the general and detailed information as needed.

VI. CONCLUSION

This paper presents a novel approach to visualize hyperspec-
tral remote sensing images by employing double color layers.
It is an improvement from the conventional grayscale display
that needs to show several grayscale images one after another,
and it is also an improvement from other color displays that
only give the general distribution of the endmembers. The pro-
posed double-layer visualization technique can simultaneously
display the overall endmember spatial distribution and their
composition at the subpixel level. This technique is based on
the unsupervised linear unmixing result, where noise and inter-
ference in the original image have been well presuppressed. It is
particularly useful when the subpixel information is of interest.
For example, by using the developed visualization system, it
is easy to estimate the size of some special objects, such as
military targets, by just looking at the detail layer. Additional
information about the image scene is also provided with in-
teractive exploration tools. Overall, this technique can create
informative displays in a succinct form to support practical
decision making.
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