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ABSTRACT
We introduce our vision for mining fine-grained urban traf-
fic knowledge from mobile sensing, especially GPS location
traces. Beyond characterizing human mobility patterns and
measuring traffic congestion, we show how mobile sensing
can also reveal details such as intersection performance statis-
tics that are useful for optimizing the timing of a traffic sig-
nal. Realizing such applications requires co-designing pri-
vacy protection algorithms and novel traffic modeling tech-
niques so that the needs for privacy preserving and traffic
modeling can be simultaneously satisfied. We explore pri-
vacy algorithms based on the virtual trip lines (VTL) con-
cept to regulate where and when the mobile data should be
collected. The traffic modeling techniques feature an inte-
gration of traffic principles and learning/optimization tech-
niques. The proposed methods are illustrated using two case
studies for extracting traffic knowledge for urban signalized
intersection.
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1. INTRODUCTION AND MOTIVATION
The recent proliferation of Global Positioning System (GPS)
equipped vehicles and devices have led to the emergence and
rapid deployment of mobile traffic sensors, which move with
the traffic flow they are monitoring. Mobile sensors can
collect detailed location traces of individual persons or ve-
hicles, information that promises great advances in many
science and engineering fields, including public health mon-
itoring/diagnostics [19], extraction of personal or social be-
haviors [7] and mobility patterns [8], and transportation [12,
2].

In the transportation area, mobile sensing has recently moti-
vated two important investigations, namely, city-scale trans-
portation knowledge extraction and fine-grained urban traf-
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fic knowledge extraction. The former concerns with large
scale (i.e., city-scale) traffic congestion patterns such as travel
times [26], routing [26, 25], social activity patterns [16], ur-
ban planning [28], land use [23], human mobility patterns
[8], among others. Chapter 5 in [29] provides a summary of
city-scale transportation knowledge extraction, focusing on
possible patterns that can be extracted from location traces
(trajectories). Other related critical issues are also discussed
in [29] such as privacy concerns. On the other hand, fined-
grained urban traffic knowledge extraction emphasizes on
detailed, smaller-scale descriptions of urban traffic flow, such
as traffic states and performances, as well as associated traf-
fic operations and control. Applications for fine-grained ur-
ban traffic knowledge extraction can be broadly categorized
as those for highways and urban arterials. Highway traf-
fic can be generally modeled as continuous flow [11, 12, 24].
Arterial traffic however is often disrupted, e.g., by traffic sig-
nals, resulting in discontinuities and kinks in arterial traffic
flow states. Such unique features can actually be utilized
to reconstruct arterial traffic flow patterns such as delay (or
travel times) [2] and queue lengths [1, 6], as well as signal
timing information [9].

City-scale and fine-grained urban knowledge extraction rep-
resent, respectively, the macro-level and micro-level model-
ing of urban transportation systems. They are thus equally
important for better understanding, describing, and man-
aging the urban transportation systems. They share many
commonalities, e.g., their methodologies require integration
of data mining tools and some domain knowledge, privacy
seems to be a concern to both areas, etc. Their also have
distinctive differences, in terms of their specific application
domains and the detailed study methodologies. In partic-
ular, city-scale applications require wide-area data cover-
age but may tolerate coarse resolution accuracy in time or
space. For example, Taxi GPS data reported in a 2-5 minute
interval can be used to mine routing and city-scale traffic
conditions [26, 25]. Fine-grained urban knowledge extrac-
tion however requires much finer resolution especially in the
time domain (second-by-second location traces is usually de-
sirable) and relatively high penetration [1]. On the other
hand, fine-grained applications usually need only smaller-
area data coverage (e.g., signal performance modeling based
on mobile data only needs location traces that cover a single
intersection or several intersections).

In this paper, we focus on fine-grained urban traffic knowl-
edge extraction to estimate real time traffic signal perfor-



mances using mobile sensing especially location traces. We
show that the traffic knowledge that can be mined from mo-
bile sensing is much richer than the traffic congestion and
mobility pattern knowledge that has been the focus of most
research so far for city-scale urban knowledge extraction.
For example, it has been a long-standing challenge to collect
traffic data in urban environment such as arterial signalized
intersections. The primary source of data collection has been
traditionally via fixed-location sensors such as loop detec-
tors. However, the deployment of such detectors are limited
and the cost to expand their coverage is prohibitive. For ex-
ample, the New York City has over 95% of its total 12,225
traffic signals as pre-timed and no detector is deployed at
most of these intersections [1]. As a result, recently the
National Traffic Signal Report Card assigned the grade ”F”
(the lowest) to the detection and data collection system for
traffic signals in the United States (NTOC, 2007). The wide
deployment of mobile sensors will eventually allow collecting
traces at low cost from a significant fraction of the popula-
tion, which enables the estimation of detailed traffic system
states, i.e., fine-grained urban traffic knowledge extraction,
from individual drivers sharing their location/driving infor-
mation via mobile sensors. This in turn can greatly benefit
existing and emerging applications in urban traffic knowl-
edge extraction, such as performance measurement of traffic
signals and arterial networks.

Fine-grained urban traffic knowledge extraction using mo-
bile sensors can be considered as a special form of Human
Centric Sensing which needs to address a set of challenges
[20]. In this paper we focus on two of them that are particu-
larly important to transportation modeling applications: (i)
the development of novel modeling methodologies to utilize
the unique format of mobile data; and (ii) privacy protec-
tion. First, compared with fixed-location sensor data, data
from mobile sensors has distinct features. Figure 1 illus-
trates the difference of the two data types in a time-space
coordinate system at a signalized intersection. We show the
red time duration and green time duration at the location
of the intersection. Short line segments represent the fixed-
location sensor data collected by the loop detector system
which consists of a presence detector at the stop line and
an advanced detector in the upstream link. Two long thick
curves in the figure represent the trajectories obtained from
the mobile sensors. As shown in the figure, fixed-location
sensors collect traffic flow measures, such as volume, den-
sity, and speed, for all vehicles, but only at spatially discrete
locations where sensors are deployed. Mobile sensors on the
other hand can reveal detailed behaviors and provide (al-
most) spatially continuous trajectories of vehicles, but only
for a sample of the traffic flow. Since part of the traffic flow
is hidden, we cannot obtain accurate aggregated measures,
such as traffic volume or density, from mobile sensors. As a
result, existing modeling methods that work well for fixed-
location sensors may not be directly applied to mobile data.

The unique characteristics of mobile data thus call for novel
modeling approaches. Unfortunately, existing research on
using mobile data (often called “probe data”) in transporta-
tion is limited by very low penetration of such data. As a re-
sult, mobile data have been used mainly as a supplement to
fixed location sensor data. Pure statistical analysis has been
the main method to deal with mobile data [14], focusing on

Figure 1: Comparison of mobile data and fixed-
location-sensor data

applications to estimate average traffic flow or travel times
[18]. Those previous approaches cannot fully capture and
utilize the unique features of mobile data shown in Figure 1.
In this paper, we focus on relatively large penetration of mo-
bile data (e.g., larger than 10%) since we believe this will be
the future trend. Under relatively high penetration, mobile
data will play a dominate or at least equally important role
(compared with fixed-location sensor data) for traffic data
collection and modeling. This has the potential to trans-
form current practice of urban traffic knowledge extraction.
Privacy violation is another issue to concern. As mobile sen-
sors can potentially reveal the complete traces of travelers
that could contain sensitive location related information, the
medical conditions, political affiliations or commercial secret
may be inferred. Today the privacy issues of mobile devices
are well realized by the public; see e.g., [22].

These two challenges call for an integrative framework to
simultaneously consider modeling data needs and privacy
preservation, i.e., to co-design privacy algorithms and mod-
eling techniques so that the needs for urban traffic knowl-
edge extraction and privacy protection can be both satisfied.
This paper summarizes the authors’ recent work in this area.
We present the privacy protection scheme first in the next
section. The new traffic modeling methods using privacy
preserving mobile data are then presented and illustrated
using case studies for fine-grained urban traffic knowledge
extraction. We conclude the paper by discussing several im-
portant future research directions.

2. PRIVACY PROTECTION SCHEME
Our research pursues a privacy-by-design approach [5] to
balance traffic modeling data needs and privacy protection
when dealing with mobile data. This approach seeks to mini-
mize the collection of personally identifiable information. To
this end, we anonymize information by omitting any iden-
tifiers (such as names, equipment serial numbers, etc.) and
further restrict the collection of location traces to limit re-
identification risks. One aspect of restricting collection is
to only record data in those locations where it is actually
required for providing the service. To achieve this, we have
introduced together with other colleagues Virtual Trip Lines
(VTLs) [13], which define point locations on roadways where
data should be collected, and VTL zones, which are areas
along roadways where data is needed. Figure 2 shows an ex-
ample VTL zone for an intersection monitoring application.



Figure 2: VTL mobile data collection system
(source: [22])

It shows the VTL locations for the east-west street through
dashed bold lines. Not shown are the VTL locations for
north-south street, which would be part of a general so-
lution. These VTL locations can be stored on the mobile
sensing device. The device monitors its own location using
GPS, for example, and will only report its speed and location
trajectory to the location server between the upstream and
downstream VTLs that demarcate the VTL zones. Notice
that the exact VTL locations can be adjusted depending on
application requirements. In this example VTL1 is placed
farther away from the intersection than VTL2 in order to
capture the queuing process of vehicles approaching the in-
tersection. Since anonymous data can be often re-identified
by correlating it with other data sources, the application
server can apply further cloaking algorithms that filter the
data to reduce risk as described in [13] or [27].

The use of these different types of privacy filtered data has
been tested for both freeway modeling [11, 24] and urban
arterial modeling [2, 1]. Sun et al. [21] further showed that
the mobile data (such as travel times, short trajectories)
collected via such a system can be properly used for traffic
modeling applications such as real time estimation of vehic-
ular queue lengths at a traffic signal. In this paper, we will
illustrate this with the following two case studies that use
the travel times of vehicles equipped with mobile sensors
(called sample vehicles).

3. CASE STUDY I: DELAY PATTERN
Delay caused by traffic signals is the major source of de-
lay in urban environment. Intersection delay pattern here
refers to the experienced delay of a vehicle arriving at the
intersection at any time. As shown in Figure 3, what we
can actually measure in real world is the discrete delays or
travel times from individual vehicles (shown as the circles
on the piecewise linear curve in the bottom of the figure).
Delay pattern is thus a continuous approximation of such
discrete measurements. In fact, when people talk about in-
tersection delays at a certain time (say 8 am), they never
care if there is a vehicle actually arriving at the intersection
at that particular time; indeed, they refer to the delay pat-
tern of the intersection. To show how delay pattern can be
estimated using mobile data, we show in Figure 3 a signal-
ized intersection with two VTLs deployed upstream (VTL1)
and downstream (VTL2). Under certain assumptions, we
can use the bold solid triangles (or trapezoids) in the figure

Figure 3: Intersection delay pattern

to represent how queue forms and dissipates based on the
traffic shockwave theory [15, 17, 2]. The horizontal part of
a triangle represents the duration of red time. As shown
by the trajectories of vehicles (dashed lines), if a vehicle ap-
proaches the intersection in red time or if the queue length
is not zero (e.g., trajectory a in the figure), the vehicle will
join the end of the queue first and thus be delayed. The de-
lay encountered by the vehicle is the horizontal part of the
trajectory. Otherwise, if a vehicle arrives during green time
and there is no queue (e.g., trajectory b), the vehicle will
pass the intersection with no delay. By analyzing the geom-
etry of the triangles, we can construct the theoretical delay
pattern curve as shown in the bottom of Figure 3. The curve
is piecewise linear and contains critical points, i.e., disconti-
nuities and non-smoothness. Discontinuities indicate traffic
signal changes (such as the start of the red time) and non-
smoothness indicate traffic state changes (such as a queue is
fully discharged).

Mobile data however cannot be used to construct directly
the delay pattern; rather they provide samples of intersec-
tion delays, shown as circles along the delay curve in the
figure. These sample delays, under proper penetration, can
be used to identify the critical points of and further to esti-
mate the delay pattern curves. In [2], this is done via a least
square estimation algorithm to fit the sample travel times
to the piece wise linear curves after grouping the samples
into different cycles. Figure 4 shows the results of applying
the estimation algorithm to a field test in the Bay Area in
California [1]. In the figure, the asterisks along the piece-
wise lines (i.e., the estimated delay pattern) are the observed
travel times (delay plus a constant minimum traverse time
from VTL1 to VTL2) and the plus signs at the bottom are
the errors. It is clear that the delay pattern can match
well the observed samples. Knowing the pattern will help
identify traffic conditions, e.g., over-saturation (i.e., vehicles
cannot be fully discharged within a cycle) as indicated in
the figure, or to estimate real time queue lengths [1].

The above analysis underlines the most salient feature of
the new modeling method, i.e., a proper integration of traf-
fic principles and learning/optimization techniques. For the
delay pattern estimation here, the knowledge is based on the
traffic flow theory that describes the delay pattern as piece-
wise linear curves whose critical points (discontinuities and
non-smoothness) have clear physical meanings. On the other
hand, the learning/optimization techniques is least square
estimation that helps estimate the key parameters of such



Figure 4: Delay pattern estimation of a field test
(Source: [2])

patterns from mobile data and ultimately reconstruct the
patterns. These two components need to be integrated in a
holistic manner, which however may be different for different
applications, as shown in the next case study.

4. CASE STUDY II: SIGNAL TIMING
Mobile data, especially intersection travel times, can be used
to estimate the timing parameters of urban traffic signals
(such as the cycle length, number of phases, and cycle by
cycle red and green times), which are important for traffic
signal operations and signal/arterial performance measure-
ment. It has been for long assumed that such parameters
should be available input, e.g., from transportation man-
agement agencies such as departments of transportation, to
traffic models. In fact, collecting signal timing parameters
directly from the agencies is probably trivial for small scale
data collection (such as for a few signals). However, col-
lecting such information this way for large areas (such as a
region or nation-wide) can be very challenging and time con-
suming due to many possible technical and institutional hur-
dles. On the other hand, many traffic information providers
have started to collect increasingly large amount of mobile
data. Therefore an alternative way is to infer the signal
timing information directly from the data that have already
been collected such as travel times, probably with the help
of limited (and easily obtained) knowledge about traffic sig-
nals.

[9] developed a robust signal timing estimation method based
on intersection travel times. The method is again featured
by a combination of traffic flow theories and learning/ opti-
mization methods, which can estimate the exact cycle start/end
times. The method contains three major steps: cycle break-
ing, exact cycle boundary detection, and effective red (or
green) time estimation. Cycle breaking determines whether
a new cycle starts by applying the support vector machine
(SVM) to identify travel time samples that indicate the
starts of red times. The exact cycle boundary estimation
detects the exact cycle start/end times. It can be formu-
lated as a nonlinear program by assuming that the cycle
length is constant (the effective red and green times may

Figure 5: Cycle breaking (source: [7])

vary from cycle to cycle, which covers a large portion of ex-
isting traffic signals, e.g., in the US). The method can fur-
ther detect the number of missing cycles using sample delays
and the SVM results. The effective red (or green) time es-
timation calculates the duration of effective red (or green)
times. This is done via using delay patterns by investigating
when non-smoothness in the delay pattern happens. Due to
space limitation, we only present in this paper how the cycle
breaking is done via the use of SVM.

We first define, as shown in Figure 3, a cycle breaking vehi-
cle (CBV) as the first sample vehicle in a cycle. The other
vehicles in this cycle are defined as non-cycle breaking vehi-
cle (NCBV). Note that the CBV of a cycle is not necessarily
the first vehicle actually arriving at the signal in the cycle
if the penetration is not 100% (in this case, the first vehicle
may not be sampled). The CBVs usually have higher delays
as shown in Figure 3. In [2], this feature is used to detect
whether a new cycle starts by defining a threshold: if the
delay increase from one vehicle to the next vehicle exceeds
this threshold, a new cycle starts. The results however are
not reliable due to oscillation and noise in measurements,
and especially low penetration rate of mobile data. In [9],
the SVM model applies two features: the arrival time differ-
ence ti− ti−1 and the delay difference τi− τi−1 between two
consecutively sampled vehicles. Here ti is the ith sample ve-
hicle’s arrival time at VTL1 and τi is the intersection delay
of the ith sample vehicle. The second feature is exactly what
was used in [2]. Figure 5 depicts these two features for a field
test under 60% and 30% penetration rate of travel time data
[9]. In the figure, dots are for NCBVs and plus signs are for
CBVs. We can see that there is a clear margin of separation
between CBVs and NCBVs using these two features. Using
either feature or a simple combination of the two features
however is not effective. In Figure 5, the vertical dashed
bold line indicates the threshold in delay increase; the hor-
izontal dashed bold line indicates the threshold in arrival
times. The figure shows that even both measures are used
(e.g., a CBV needs to satisfy at least one of the two mea-
sures), there will be still large errors for mis-identification,
as those indicated by the circles.

SVM can combine the two features in a more intelligent
way. To show how the SVM model can be developed, let
the historical travel time data be denoted by (xi, yi), i =
1, . . . , M , where xi = (ti − ti−1, di − di−1)

T is a data point
and yi = 1 is the corresponding label (yi = 1 for CBV
and yi = −1 for NCBV). SVM divides the data set into
two groups: one for yi = 1 and the other for yi = −1.
It can further produce two support planes (lines in the R2



Figure 6: Cycle breaking results: Simulation and
NGSIM datasets (source: [7])

space) for such separation as depicted in Figure 5. Let w =
(w1, w2)

T ∈ R2 and b be a scalar. If w and b are properly
selected, we will have wxi−b ≥ 1 for yi = 1 and wxi−b ≤ −1
for yi = −1. Then the two support lines are wxi − b = 1
and wxi−b = −1. The distance between these two lines can
be shown as 2/||w|| with ||w|| denoting the norm of w. If
we aim to maximize the distance between these two support
planes, (w, b) can be determined by solving the following
SVM problem [9]:

minw,b 1/2||w||2 + G(

M∑
i=1

εi) (1)

subject to yi(wxi − b) ≥ 1− εi, i = 1, . . . , M, (2)

εi ≥ 0, i = 1, . . . , M. (3)

Here εi is the error term for cases where the classes can-
not be perfectly divided. G is the weight factor assigned
to the error terms in the overall objective function; a larger
G assigns a larger penalty to the error. Solving the above
SVM model is usually not computationally demanding since
it is a convex, quadratic program; see [4, 3]. After solving
the SVM model, the (w, b) pair, in particular, the two planes
(lines): wxi−b = 1 and wxi−b = −1, can be used to identify
whether a given data sample xj is a CBV or NCBV. Figure
6 shows the results of applying the SVM model to break
cycles using the datasets of simulation and NGSIM (next
generation simulation, widely used for traffic research) [9],
based on which to estimate the cycle boundaries and lengths.
Compared with the previous method in [2], the root mean
square error (RMSE) of the results is much improved: from
9.6 seconds to 1.6 seconds for the simulation data, and from
8.2 seconds to 3.0 seconds for the NGSIM data.

Figure 7 shows the signal timing estimation results by apply-
ing the three step method for the NGSIM dataset. There
are in total 9 cycles in the dataset and is no sample for
the second and third cycles. The figure shows that the two

Figure 7: Signal timing estimation results: NGSIM
dataset (source: [7])

missing cycles can be correctly detected by the three step
method. The estimated start times of red are plotted using
vertical solid lines and the estimated start times of green are
plotted using vertical dashed lines. The actual starts of red
and green times are also shown in the figure using dotted
lines. We can see that the estimated cycle boundaries and
red and green times match well with those from field obser-
vations, indicating that the method works reasonably well.
Same conclusion can also be obtained for the simulation data
which is omitted here.

The above analysis underlines again the unique feature of
the new modeling method that integrates traffic principles
(in this case, how delay changes within a cycle and across
cycles) with learning/optimization methods (in this case,
SVM and nonlinear programming). It also highlights the
importance of learning techniques in such a process: the
knowledge (i.e., the two features for cycle breaking) has to
be used intelligently since simple use of them may not work
well (as illustrated by the plot to the right in Figure 5).
On the other hand, traffic knowledge (such as the signal cy-
cle length is fixed and the vehicle delay after signal turns
red will “jump”) is also critical. After all, we are dealing
with a physical traffic system with control devices and ve-
hicles/drivers. Traffic knowledge usually represents some
important physical phenomena or characteristics of the sys-
tem and thus needs to be properly respected and integrated
into the learning/optimization models to produce meaning-
ful results.

5. DISCUSSIONS AND FUTURE RESEARCH
We presented in this paper our recent work on co-designing
privacy protection algorithms and traffic modeling methods
for fine-grained urban traffic knowledge extraction using lo-
cation traces from mobile sensoring. The privacy protec-
tion scheme is based on the VTL concept to regulate the
collection of mobile data. The traffic modeling method is
featured by a combination of traffic principles and learn-
ing/optimization techniques. Two case studies were also
presented to demonstrate the proposed methods.



Figure 8: Privacy-aware modeling paradigm

The development of the VTL concept is based on a close
collaboration between location privacy experts and trans-
portation researchers, with the aim to properly balance the
needs of both traffic modeling (i.e., traffic knowledge ex-
traction) and privacy protection. It clearly indicates that
for many traffic/transportation applications, data needs for
modeling do not necessarily have to be compromised to en-
sure privacy protection. An application-aware design of pri-
vacy algorithms can retain features important for the ap-
plication, while still achieving privacy by removing features
that are less important. The key is the close collaboration
between the two research communities of privacy protection
and transportation to simultaneously consider privacy pro-
tection and application needs: being aware of the effects of
applying privacy schemes to data when developing model-
ing methods, and being aware of data needs when designing
privacy preserving mechanisms. As the future paradigm will
likely shift from traditional sensors (such as loops) to mobile
sensors as shown in Figure 8, such collaboration is critical to
transform the current modeling techniques with no or little
privacy consideration to a new paradigm for privacy-aware
modeling techniques to satisfy requirements of both data
needs for modeling and privacy protection.

The proper integration of transportation principles and data-
mining tools is important to develop new mobile-data-based
traffic modeling methods, especially when the penetration of
mobile data reaches certain “critical mass.” In this case, the
mobile data can present patterns that reveal traffic system
control or state changes (such as red time starts or queue
disappears, as we discussed in the delay pattern estimation
section). Knowledge about these patterns (many of which
are indeed well-known in the application domain) are crucial
since they can provide guidance to the learning/optimization
models to focus on the most relevant, important features.
Applying advanced learning/optimization techniques on the
other hand is also critical to obtain accurate, robust estima-
tion of the patterns, and further system control and states.

Fine-grained urban traffic knowledge extraction using mo-
bile sensoring is an emerging area and many challenges still
remain. Below we summarize the limitations of our current
research and highlight some challenges for future research.

(a) Our current focus in on urban intersections which are a
crucial component for urban traffic. The next step is
to expand it to model arterial corridors (consist of a
number of intersections) and networks. The important

issue for such expansion is to capture the interactions
among different intersections, which can be revealed
by vehicle platooning. The key challenge therefore is
to study how vehicle platoons form and disperse at
intersections using mobile data.

(b) The presented models in this paper are deterministic.
Since traffic is random in nature, we need to capture
such sotchasticity in the modeling process. This is par-
ticularly important when modeling urban corridors or
networks (such as to study the vehicle platooning pro-
cess). We recently developed Bayesian Network based
statistical learning methods to model arterial traffic
flow [10]. The method will be expanded for large scale
arterial applications.

(c) The VTL based privacy protection algorithm is suitable
for modeling urban intersections. Our research also
indicates that specific privacy techniques may need to
be developed for different urban applications such as
origin-destination demand estimation, urban conges-
tion pricing, among others. For this, a comprehensive
framework is needed. It should contain a suite of pri-
vacy techniques that can be used/tailored depending
on specific urban applications. The authors are work-
ing on this topic and results will be reported in subse-
quent papers.
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