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Many scientists in the field of x-ray imaging rely on the simulation of x-ray images. As the phantom 
models become more and more realistic, their projection requires high computational effort. Since x-ray 
images are based on transmission, many standard graphics acceleration algorithms cannot be applied to 
this task. However, if adapted properly, simulation speed can be increased dramatically using state-of-the-
art graphics hardware. 25 
A custom graphics pipeline that simulates transmission projections for tomographic reconstruction was 
implemented based on moving spline surface models. All steps from tessellation of the splines, projection 
onto the detector, and drawing are implemented in OpenCL. We introduced a special append buffer for 
increased performance in order to store the intersections with the scene for every ray. Intersections are 
then sorted and resolved to materials. Lastly, an absorption model is evaluated to yield an absorption 30 
value for each projection pixel. 
Projection of a moving spline structure is fast and accurate. Projections of size 640x480 can be generated 
within 254 ms. Reconstructions using the projections show errors below 1 HU with a sharp reconstruction 
kernel. Traditional GPU-based acceleration schemes are not suitable for our reconstruction task. Even in 
the absence of noise, they result in errors up to 9 HU on average, although projection images appear to be 35 
correct under visual examination. 
Projections generated with our new method are suitable for the validation of novel CT reconstruction 
algorithms. For complex simulations, such as the evaluation of motion-compensated reconstruction 
algorithms, this kind of x-ray simulation will reduce the computation time dramatically. Source code is 
available at http://conrad.stanford.edu. 40 
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I. INTRODUCTION 

Significant efforts to reduce x-ray dose to the patient have been made over the last few years, and today’s 

scanners expose patients to only a limited amount of radiation [1][2]. However, x-ray imaging is still 50 

based on ionizing radiation, and therefore efforts to reduce patient dose continue [3] [4] [5][6] [7]. 

Following the ALARA principle, dose to the patient should be as low as reasonably achievable.  To 

facilitate the development of new algorithms while avoiding additional dose to the patient, simulation of 

the imaging process is required [8][9]. Numerical phantoms are frequently used in this process [10]. 

However, these numerical phantoms more often than not deviate significantly from realistic anatomy and 55 

hence results from phantom data are difficult to generalize to in vivo data. 

Modern phantoms depict anatomy more realistically [11][12] and model different artifact sources such as 

breathing motion [13] and heart motion [14]. The simulation of x-ray physics in a Monte Carlo simulation 

has also been combined with complex numerical phantoms [15]. 

A major drawback of all these methods is that such detailed simulation is numerically expensive and the 60 

simulation of a single scan takes from several hours up to several days. Monte Carlo studies are often 

only performed if effective doses are to be computed or if correction methods for specific physical effects 

such as scatter are to be developed. In particular, for motion and its compensation, most studies simulate 

only mono-energetic x-ray behaviour [16][17][18] as the link between motion and physical effects at the 

photon level is rather weak. 65 

In recent years, there have been great advances in computer graphics, many of which have found their 

way into the field of medical imaging. One of the most predominant methods is the use of so-called 

general-purpose graphics processing units (GPGPUs), which are programmed using e.g. Nvidia’s 

Compute Unified Device Architecture (CUDA) [19][6][20] or the Open Computing Language (OpenCL) 

[21]. Furthermore, there have also been algorithmic advances that are suitable for x-ray imaging 70 

[22][23][24][25]. Especially in the field of digitally rendered radiographs (DRRs), these methods are 

commonly used to create 2-D projections of voxelized data [26]. 
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In contrast to traditional DRRs, we use an analytic model of the scene for DRR generation. This model 

describes the scene in 3-D and is additionally parameterized with time. Hence, the scene is defined in four 

dimensions. While this approach seems similar to methods presented by Villard et al. [27], our approach 75 

differs from theirs and provides the required high accuracy for subsequent reconstruction.  Villard et al. 

[27] describe a system that generates x-ray projection images of a breathing chest phantom in real-time 

using OpenGL with the goal of training physicians in an angiographic, i.e. 2-D, environment. Since the 

data is displayed on a normal computer monitor, a dynamic range of 8 bits is sufficient. Their images are 

rendered and displayed directly on the computer screen and therefore small errors in the depth values are 80 

not visible with this rough quantization. In addition, the subsequent use of the generated images does not 

require fetching the data from the graphics card back to the host computer’s memory. In the context of 

their application, it would not make sense to use a more accurate (and computationally expensive) 

quantization. In CT reconstruction, the subtle differences in the absorption values that are lost by a coarse 

quantization are crucial to obtaining an accurate reconstruction. Furthermore, the approach presented in 85 

[27] does not generate correct values for all projection pixels. In some cases, an incorrect value is 

obtained. These outliers are detected by a subsequent filter and defect pixel interpolation is applied. 

Again, this is sufficiently accurate for visual interaction, but is another unacceptable source of error for a 

subsequent tomographic reconstruction. Overall, their approach is very different from ours. In the 

approach we present here, everything in the graphics pipeline was adjusted including the rasterization, 90 

which cannot be altered in OpenGL.  

In the following, we will describe a novel simulation pipeline that allows fast generation of x-ray 

transmission images from an analytic time-variant scene description. Our model is able to generate 

geometrically accurate x-ray absorption images with respect to motion and physical effects that can be 

described on a ray-intersection level. Simulation of particle effects such as scattered photons is not yet 95 

part of our image formation process. 
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II. METHODS 100 

The complete processing pipeline is designed to run entirely on graphics card hardware.  In this paper, we 

will mainly focus on the use of spline-based geometrical descriptions, although any geometric shape is 

suitable for this method, since any shape can be represented by a set of sufficiently small triangles. Figure 

1 displays the processing pipeline in more detail. First, a set of 3-D points that sample the surface of the 

imaged object is generated. Since spline surfaces are an analytic description of the object’s shape, any 105 

number of sample points can be generated. Connection of neighbouring points with triangles delivers a 

piecewise-linear approximation of the analytic shape. This process is also known as “tessellation”. Next, 

the points are projected onto the detector plane. As this is an affine transform, triangles are projected onto 

triangles in detector coordinates. In most applications in computer graphics, these triangles would directly 

be drawn onto the screen buffer in the graphics card and displayed. In our case, however, we need to 110 

perform additional steps to form the final image. For each pixel, we store the intersections of its ray with 

each triangle in a so-called “append buffer” structure. Then these intersections are sorted according to 

their depth. For each segment along the ray, the traversed object and its material is identified. Based on 

these intersections an absorption model is then evaluated to compute the final absorption value per pixel. 

In the following sections, we will explain each of these steps in more detail and describe necessary 115 

adaptations of the algorithms that are commonly used in computer graphics in a similar way. 
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Figure 1: Processing order of the described graphics pipeline: First, the scene is sampled into sets of 
connected points. These 3-D points are then projected onto detector coordinates and subsequently drawn 120 
into an “append buffer”, i.e. a screen buffer that is able to store a list of intersections per pixel. For each 
pixel the line segments that traverse different materials have to be determined. They are used in the 
absorption model to compute the pixel’s observed accumulated mass attenuation. 
 

 125 

A. FAST TIME-VARIANT SPLINE TESSELLATION 

For tessellation, spline shapes have to be sampled often and therefore should also be sampled quickly. 

Spline-based surfaces are commonly used in geometric modelling, with the most common being cubic 

spline surfaces. Although we only describe B-splines in this paper, all the methods can also be applied to 

other spline-based models such as NURBS [28]. 130 

In general, a spline shape always has an internal and an external dimension. The internal dimension 

describes the dimension of the manifold that the spline represents. A spline of internal dimension one is a 

curve, while a spline of internal dimension two describes a surface. Splines with internal dimension three 

will describe a surface that is moving over time. The external dimension is the dimension in which the 

spline’s control points are defined, that is, splines with external dimension two are defined in a 2-D space 135 

and splines with external dimension three are defined in a 3-D space. In the experimental part of this 

paper we deal with moving surface models in 3-D. Therefore, the spline models used have internal and 
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external dimension three. In the following, we will follow the notation of Ruijters et al. [29] closely. 

A spline 𝒔(𝑢) with internal dimension one is defined as a weighted sum of its control points 𝒄(𝑙) 

𝒔(𝑢)  = ∑  𝑙   𝒄(𝑙)𝛽(𝑢 − 𝑙),                  (1) 140 

where 𝑢 indexes the internal dimension and 𝑙 iterates over all control points. The term 𝛽(𝑢 − 𝑙) describes 

the weighting function for each control point. A possible definition of 𝛽(𝑢) for a cubic spline is 

𝛽(𝑢)  = �

0,                                                     |𝑢| ≥ 2  
1
6

(2 − |𝑢|)3,                        1 ≤ |𝑢|  < 2 
2
3
− 1

2
|𝑢|2(2 − |𝑢|),                    |𝑢| < 1

� .             (2) 

Note that with this definition of 𝛽(𝑢), only the four control points with non-zero weights have to be 

evaluated in Eq. 1. With this definition, a spline with internal dimension three is evaluated as 145 

𝒔(𝑢, 𝑣, 𝑡) = ∑ ∑ ∑ 𝒄(𝑙,𝑘, 𝑖)𝛽(𝑢 − 𝑙)𝛽(𝑣 − 𝑘)𝛽(𝑡 − 𝑖)𝑙𝑘𝑖 .             (3) 

Each sum evaluates four control points. Hence, a 4x4x4 loop has to be performed for each spline 

evaluation and global memory has to be accessed 64 times. 

In [22] it is shown that this operation can be executed more quickly on graphics hardware. By means of 

linear interpolation, the computation can be mapped onto the texture units of the graphics card: 150 

𝑓(𝑙 + 𝜆) = (1 − 𝜆)𝑓(𝑙) +  𝜆𝑓(𝑙 + 1),               (4) 

where 𝑙 is the integer part of the interpolation position and 𝜆 its decimal part. Sigg et al. [22] exploit the 

fact that any weighted addition of neighbouring elements can be described by a weighted linear 

interpolation. This is given by 

𝑎𝑓(𝑙) + 𝑏𝑓(𝑙 + 1) = (𝑎 + 𝑏)𝑓 �𝑙 + 𝑏
𝑎+𝑏

�.               (5) 155 

Using the fact that 𝑢 can be split into 𝑙 + 𝜆 and that there are only four relevant points, Eq. 1 can be 

rewritten as 

𝒔(𝑢) = 𝒔(𝑙 + 𝜆) = 𝒄(𝑙 − 1)𝛽(𝜆 + 1) +  𝒄(𝑙)𝛽(𝜆) +  𝒄(𝑙 + 1)𝛽(𝜆 − 1) +  𝒄(𝑙 + 2)𝛽(𝜆 − 2). 

Now Eq. 5 can be applied which yields 

𝒔(𝑢) = 𝒔(𝑙 + 𝜆) = 𝑔𝑙0𝒄(𝑙 + ℎ𝑙0) +  𝑔𝑙1𝒄(𝑙 + ℎ𝑙1)              (6) 160 

with 
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𝑔𝑙0 = 𝛽(𝜆 + 1) +  𝛽(𝜆),        𝑔𝑙1 = 𝛽(𝜆 − 1) +  𝛽(𝜆 − 2)           (7) 

ℎ𝑙0 =
𝛽(𝜆)
𝑔𝑙0

− 1,               ℎ𝑙1 =
𝛽(𝜆 − 2)
𝑔𝑙1

+ 1 

Using the same procedure, this process can also be extended to splines with higher internal dimensions. 

With internal dimension three, weights for the decomposition of the internal dimensions 𝑣 = 𝑘 + 𝜅 and 

𝑡 = 𝑖 + 𝜄 can be defined in a manner analogous to that of Eq. 7. Using this process, Eq. 3 is reformulated 165 

to 

𝒔(𝑢, 𝑣, 𝑡) = 𝑔𝑖0{𝑔𝑙0[𝑔𝑘0𝒄(𝑙 + ℎ𝑙0,𝑘 + ℎ𝑘0, 𝑖 + ℎ𝑖0) + 𝑔𝑘1𝒄(𝑙 + ℎ𝑙0,𝑘 + ℎ𝑘1, 𝑖 + ℎ𝑖0)]

+ 𝑔𝑙1 [𝑔𝑘0𝒄(𝑙 + ℎ𝑙1,𝑘 + ℎ𝑘0, 𝑖 + ℎ𝑖0) + 𝑔𝑘1𝒄(𝑙 + ℎ𝑙1,𝑘 + ℎ𝑘1, 𝑖 + ℎ𝑖0)]}

+ 𝑔𝑖1{𝑔𝑙0[𝑔𝑘0𝒄(𝑙 + ℎ𝑙0,𝑘 + ℎ𝑘0, 𝑖 + ℎ𝑖1) + 𝑔𝑘1𝒄(𝑙 + ℎ𝑙0,𝑘 + ℎ𝑘1, 𝑖 + ℎ𝑖1)]

+ 𝑔𝑙1 [𝑔𝑘0𝒄(𝑙 + ℎ𝑙1,𝑘 + ℎ𝑘0, 𝑖 + ℎ𝑖1) + 𝑔𝑘1𝒄(𝑙 + ℎ𝑙1,𝑘 + ℎ𝑘1, 𝑖 + ℎ𝑖1)]}. 

While this computation is analytically equivalent to the formulation in Eq. 3, it requires only 8 3-D 

texture interpolations instead of 64 accesses to the global memory. When memory bandwidth is an issue, 

computations can be performed without time penalty. Attention has to be paid to the accuracy of the 

computation when the interpolation units are used.  Therefore, numerical stability will be evaluated in the 170 

results section.  

Sigg and Hadwiger [22] further suggest replacing the computation of the weights in Eq. 7 by a texture 

look-up. This method again requires access to the global memory. Depending on the generation of the 

graphics card and its ratio of computational power to global memory access rates, this can even lead to 

decreased performance, since the computational power of graphics cards is increasing more rapidly than 175 

their global memory access rates [30]. Since the local computation also allows higher numerical accuracy, 

we chose to compute the interpolation weights locally in our implementation, as proposed in reference 

[29].  

In order to get a mesh of triangles, 𝒔(𝑢, 𝑣, 𝑡) is now sampled for every point in time 𝑡, on a 𝑈 × 𝑉 grid, 

where 𝑈 is the number of points in the 𝑢 direction and 𝑉 is the number of points in the 𝑣 direction. Every 180 

cell in this grid generates two triangles, 𝑇1 and 𝑇2. 𝑇1 is described by the points 𝒔(𝑢, 𝑣, 𝑡), 𝒔(𝑢 + 1, 𝑣, 𝑡), 



 8 

and 𝒔(𝑢 + 1, 𝑣 + 1, 𝑡) and 𝑇2 by the points 𝒔(𝑢, 𝑣, 𝑡), 𝒔(𝑢, 𝑣 + 1, 𝑡), and 𝒔(𝑢 + 1, 𝑣 + 1, 𝑡) . 

 

B. PROJECTION 

In our framework, the projection of 3-D points onto 2-D points is performed using a perspective 

projection. We formulate this using a 3x4 projection matrix 𝑷 in homogeneous coordinates [31] 185 

𝒔′(𝑢, 𝑣, 𝑡) = �
𝑥′
𝑦′
𝑧′
� = 𝑷 ⋅ �𝒔(𝑢,𝑣,𝑡)

1 �.                   (8) 

Because this process is affine, lines are projected onto lines and thus triangles onto triangles.  

The homogeneous detector coordinates (also called screen coordinates in computer graphics) have two 

interesting properties which will be used in the following: First, the coordinate system is now aligned 

with the detector orientation. And second, the last coordinate of the projected 2-D point represents the 190 

depth of the respective 3-D point, i.e., its distance from the detector pixel. In this manner, one can easily 

check whether the normal of a triangle is pointing towards the detector or not. The normal 𝒏 of triangle 𝑇1 

is computed as 

𝒏 = [𝒔′(𝑢 + 1, 𝑣, 𝑡) − 𝒔′(𝑢, 𝑣, 𝑡)] ×  [𝒔′(𝑢 + 1, 𝑣 + 1, 𝑡) − 𝒔′(𝑢, 𝑣, 𝑡)],            (9) 

where × denotes the vector product. The direction 𝑑 is then computed as 195 

𝑑 = sign�𝒏 ⋅ �
0
0
1
�� = sign(𝑛3)                   (10) 

where ⋅ denotes the inner product. 

In order to determine the coordinates (𝑥,𝑦, 𝑧) of 𝒔′(𝑢, 𝑣, 𝑡) on the detector, we set 

𝑥: =
𝑥′
𝑧′

  

𝑦: =
𝑦′
𝑧′

     and 

𝑧: = �𝑧′2 + 𝑥2 + 𝑦2 . 

Note that 𝑧′ contains depth information in the direction that is parallel to the principal ray. Hence 𝑧′ is 
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only correct for the principal ray. Here we assume that the principal ray hits the detector at (0, 0). We are, 200 

however, interested in the actual path length of the ray. Thus, we need to correct this with the orientation 

of the ray. Note that in a scenario without noise and the assumption of a single x-ray energy, we can 

directly compute a cosine-weighted projection image using 

𝑧: = 𝑧′. 

 

C. DRAWING ONTO THE APPEND BUFFER 205 

In normal rendering, the triangles would be drawn into the screen buffer of the graphics card after they 

were transformed to detector coordinates (also called screen coordinates in computer graphics). Usually, a 

scan line algorithm is applied for this process. The algorithm determines the pixels affected by each 

triangle efficiently and calls a program to draw each pixel onto the screen buffer which represents the x-

ray detector in our case. The depth values of the drawn pixels are interpolated from the vertices of the 210 

triangle [32]. In computer graphics, the algorithm also determines the colour that has to be drawn onto the 

screen. In our case, we replace this by a more general term, 𝑑𝑎𝑡𝑎, which reflects the ID of the drawn 

object, its depth 𝑧, and its direction 𝑑 (cf. Eq. 10). 

In most cases in computer graphics, objects are opaque and hence the viewing ray cannot penetrate more 

than the first intersection with the scene. Only one intersection with the scene is relevant for the image 215 

formation process. As all triangles are drawn in parallel into the screen buffer, the correct observation for 

each pixel (𝑥,𝑦), i.e. only the closest triangle, has to be drawn onto the screen buffer 𝑆(𝑥,𝑦) at the 

respective position. Therefore, a so-called z-buffer 𝑍(𝑥,𝑦) is introduced. 𝑍(𝑥,𝑦) is initialized to a 

maximum value. Then, all triangles are drawn onto the screen buffer using Algorithm A1 shown below. 

The respective pixel is only updated if the currently considered pixel/triangle is closer to the screen than 220 

the one drawn before. Note that the comparison and update of the z-buffer must be performed as an 

atomic operation, i.e., the operations must be executed without interruption by another thread. Otherwise, 

the outcome of the algorithm is non-deterministic.  
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 225 

 

Instead of only one intersection per pixel we have to store a list of all intersections per pixel which is 

dynamically created during the painting process. If the number of intersections is uniformly distributed 

over the image, the use of a k-buffer is useful [24]. The k-buffer uses memory usually used for anti-

aliasing for the storage of these lists. A drawback of the k-buffer method is that a maximum number of 230 

intersections per pixel has to be chosen in advance. If this maximum is exceeded, compensation strategies 

have to be developed in order to create a correct image. For each pixel an array is allocated that is large 

enough to contain the maximum number of intersections. Therefore, the algorithm is capable of drawing 

only a limited number of objects in the same field of view. In contrast, the use of an append buffer [25] 

allows arbitrary distribution of the number of intersections across the detector. Our algorithm uses a 235 

global array – the append buffer – in which a linked list per pixel is stored. Hence, the algorithm is only 

limited by the total number of intersections, i.e., the size of the append buffer. The algorithm requires 

three buffers:  

1. the append buffer 𝐴(𝑖),  

2. a global pointer 𝑡𝑎𝑖𝑙 which stores the position of the last entry to the append buffer,  240 

3. and a field 𝐹(𝑥,𝑦) that points to the last entry for the pixel at location (𝑥,𝑦). This field has 𝑈 × 𝑉 

entries. 

At the initialization of the projection, all fields are initialized with 0. Then Algorithm A2 is executed for 

every processed pixel: First the next free index in the append buffer is retrieved by reading the 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

from 𝑡𝑎𝑖𝑙 and incrementing it in an atomic operation. Next, the index of the last entry for pixel (𝑥,𝑦) is 245 

read from 𝐹(𝑥,𝑦) while  𝐹(𝑥,𝑦) is updated to 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 in an atomic operation. Then the data can be 

Algorithm A1 
 
draw_z_buffer (𝑥,𝑦, 𝑧,𝑑𝑎𝑡𝑎) { 
 if (𝑍(𝑥,𝑦)  >  𝑧){ 
  𝑍(𝑥,𝑦) ∶=  𝑧 
  𝑆(𝑥,𝑦) ∶=  𝑑𝑎𝑡𝑎 

} 
} 
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written into the append buffer. Note that we store two elements for each intersection. In the first element 

(at 𝐴(2 ∗ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)), we store the data, while in the second element (at 𝐴(2 ∗ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 1)) we store 

the index of the previous buffer entry for this pixel to create a linked list. 

 250 

 

 

After the drawing is finished, the data can then be read from the append buffer into a single array 𝑞(𝑖) per 

pixel, using Algorithm A3: The variable 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is initialized with the last element in the field 𝐹(𝑥,𝑦). 

Then each intersection of the ray through the pixel (𝑥,𝑦) is read from the append buffer successively until 255 

the end at 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =  0 is reached. 

 

 

In this manner, a complete list of all intersections with the scene is obtained for every pixel. 

As the atomic access to the global memory is quite slow, we also implemented a second variant of the 260 

         𝑞(𝑖): =  𝐴(2 ∗ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 
    𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ≔  𝐴(2 ∗ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 1) 

Algorithm A3 
 
read_append_buffer (𝑥,𝑦, 𝑞) { 
  𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛: =  𝐹(𝑥,𝑦) 
  𝑖: = 0 
    while (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 >  0) { 

    𝑖 + + 
} 

} 

        𝑡𝑎𝑖𝑙 + + 

        𝑙𝑎𝑠𝑡𝑝𝑜𝑠 ∶= 𝐹(𝑥,𝑦) 
        𝐹(𝑥,𝑦): = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

    𝐴(2 ∗ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛): = 𝑑𝑎𝑡𝑎 
    𝐴(2 ∗ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 1): = 𝑙𝑎𝑠𝑡𝑝𝑜𝑠 

Algorithm A2 
 
draw_append_buffer (𝑥,𝑦, 𝑧,𝑑𝑎𝑡𝑎) { 
 atomic increment { 
    𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛: =  𝑡𝑎𝑖𝑙 

} 
atomic exchange { 

} 

} 



 12 

algorithm that uses local buffering in each thread that draws the triangles. Global memory access is only 

performed for the access to 𝐹(𝑥,𝑦) and at the end of a thread when data for a complete chunk of 

intersections is written to the append buffer. Note that the local buffering strategy is only suitable for 

rather small triangles, as the number of drawn pixels per triangle must not exceed the size of the local 

buffer. In our case the local buffer could store only 1000 intersections per triangle. 265 

Another modification that is required is the drawing algorithm itself. First of all, we store the depth values 

in 32 bit floating-point values. If not scaled correctly, integer-valued depth information may introduce 

artefacts in the resulting reconstruction.  

Additional parts of the drawing routine also require alteration. In computer graphics (e.g. OpenGL), 

triangles are usually drawn into the screen buffer by determination of the three closest raster points. 270 

During this process the floating point values are transformed into integer pixel coordinates. Then, a 2-D 

drawing routine is applied that is optimized for drawing speed based on a raster grid. As this approach is 

approximate, it is often combined with so-called anti aliasing where the projection is actually generated in 

a higher resolution which is then reduced to the desired detector grid. In the following, we will refer to 

this as the traditional triangle drawing technique. 275 

In our case, this traditional procedure is sub-optimal, since the 3-D position of the triangle is affected by 

this procedure. In 3-D space, the deletion of the floating point information is equivalent to moving the 

original point less than a detector cell. This change is invisible in a single projection image. The cropping 

of the floating point information is dependent on the position of the detector grid in 3-D as the points are 

projected onto their nearest neighbours with respect to the grid. This operation is dependent on the 280 

viewing angle. Thus, the triangle’s location is different in every view which will introduce artefacts in the 

subsequent reconstruction that are not visible in the DRRs. For this work, we chose to check every raster 

point within the 2-D bounding box of the triangle to be drawn. Only those raster points that were inside 

the true 3-D triangle corners, as represented by floating-point values, were drawn onto the detector. 

As we draw onto a raster image, the correct depth-value has to be computed for each raster point. We do 285 

this by estimation of a plane that fits the three corners of the triangle to the respective 𝑧∗ coordinate: 
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𝑧∗ = 𝑚0 + 𝑚1𝑥∗ + 𝑚2𝑦∗ 

In this case, 𝑥∗, 𝑦∗, and  𝑧∗ denote the coordinates on the raster grid, while 𝑚0 …  𝑚2 are the plane 

parameters that are estimated for each triangle. Each raster point is then drawn with the correct depth 

value into the append buffer. 

While the last two modifications would seem to cause additional computational effort, we did not 290 

measure an appreciable increase in runtime during testing. This effect is likely to be related to the append 

buffer drawing procedure that relies on atomic access to the memory. Thus additional computations do 

not increase runtime as the problem is memory-bandwidth bound. 

 

D. SCENE RESOLUTION 295 

Once the intersections for each pixel have been determined, the segments that the ray passes through have 

to be computed, requiring several additional steps. First, the intersections have to be sorted according to 

their depth along the ray. 

Due to the way that the image was created, the points at the boundary between two triangles may be 

drawn twice, hence these duplicates have to be eliminated. Another problem in the procedure is 300 

occurrence of multiple intersections with the same object along the ray (cf. Figure 2). The figure shows 

two rays with four intersections each. While Ray A enters and leaves the object only once, Ray B enters 

and leaves the same object twice. Although all four intersections are at the same relative position, Ray A 

has a much longer path through the material. Fortunately, the direction of the face normals can be used to 

resolve this contradiction: An entry point is found if the direction 𝑑 (cf. Eq. 10) is negative and an exit 305 

point is found if it is positive. Only alternating entry and exit points of the same object are considered. 

In some cases objects do not completely overlap other objects. Hence, it may occur that a ray enters 

Object A, then Object B, and exits Object A before Object B. In these cases, it is unclear at what point the 

ray is inside Object A and at what point it is inside Object B (cf. Figure 3). The only way to resolve this is 

to assign a priority to each object. Then the contradiction can be resolved: If the ray is inside multiple 310 

objects, only the object of highest priority is relevant. 
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Figure 2: The direction of the face normals is used to resolve multiple intersections along the same ray. 
 315 

 

 

Figure 3: Each object has a priority that describes which shape lies on top: Only the shape with the 
highest priority is drawn. 
 320 

The application of the previously described steps yields a list of line segments 𝑟(𝑥, 𝑦, 𝑖) that describe the 

path of the ray through the scene. 

 

E. ABSORPTION MODELING 

As the path of the ray through the scene is now resolved, the correct absorption value for each pixel can 325 

be determined according to Lambert-Beer's Law [8] 

𝑁(𝑥,𝑦) = � 𝑁𝑏 ⋅ 𝑒−∑ 𝜇(𝑟(𝑥,𝑦, 𝑖),𝐸(𝑏)) ∗ 𝛿(𝑟(𝑥, 𝑦, 𝑖))𝑖
𝐵−1

𝑏=0
, 
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where 𝑁(𝑥,𝑦) is the number of detected photons in the respective detector cell, 𝑁𝑏 the number of initial 

photons emitted from the source at energy 𝐸(𝑏), 𝜇(𝑟(𝑥,𝑦, 𝑖),𝐸(𝑏)) is the energy-dependent absorption 

value of segment 𝑟(𝑥,𝑦, 𝑖), 𝛿(𝑟(𝑥,𝑦, 𝑖)) its length, and 𝐵 the number of energy bins. Note that in order to 

resolve 𝜇(𝑟(𝑥,𝑦, 𝑖),𝐸(𝑏)) only the ID of the material that describes segment 𝑟(𝑥,𝑦, 𝑖) is required. The 330 

actual value is determined from a look-up table as provided for example in reference [33]. If only one 

energy bin is chosen, the formulation simplifies to the monochromatic case without summation (B=1). 

 

III. RESULTS 

In the following, we evaluate the performance of our projection generation pipeline at three levels. On the 335 

lowest level, we investigate whether the time-variant surface spline tessellation creates acceptable results. 

We do this by comparison to state-of-the-art 1-D and 2-D tessellation algorithms. 

On the next level, we evaluate whether the projection generation is computationally efficient in terms of 

runtime for different tessellation grid sizes.  

With these intermediate results showing acceptable error margins, we can then evaluate the method for 340 

the task of 3-D reconstruction.  

All experiments were conducted using a Nvidia Quadro FX 5800 graphics card.  

 

A. SPLINE TESSELLATION 
 345 
 
Three sample splines were tessellated 1000 times at one million locations each and the average 

computation time was measured. As the 1-D spline shape, we chose a 3-D curve with 12 control points. 

For 2-D, the same shape was extended to a curved surface but with 12x8 control points. In the 3-D 

tessellation task, the right atrium of XCAT was chosen with 31x12x35 control points. This is a common 350 

number of control points for the XCAT phantom. We also implemented the same algorithms on the CPU 

using the Java programming language in double precision as a baseline system for accuracy comparison. 

All GPU experiments were performed in single precision.  
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Table 1: Overview of the results using hardware acceleration: Tessellation was performed with one 
million sample points each. The dimensionality refers to the internal dimension of the spline: 1-D is a 355 
curved line, 2-D a surface, and 3-D a time-variant surface. 

 

Table 1 reports the results. As expected the CPU implementation using the Java virtual machine and 

double precision was significantly slower than the GPU implementation. The main point of the CPU 

implementation was to get a baseline result in terms of computational accuracy. In the 1-D case the 360 

accuracy of the OpenCL implementation is within floating point precision. Hence, there is no loss of 

accuracy; this is also the case for the 2-D spline surface implementation. Interestingly, a slight loss of 

accuracy is found in the 3-D OpenCL implementation. A much higher loss in terms of accuracy is found 

as soon as texture units are used in the computation. In the 3-D case, the accuracy already degrades to 

0.028 mm. Although this is a dramatic increase, the accuracy is still sufficient for our application, which 365 

targets imaging with a detector pixel size of at least 0.15 mm. Hence, we do not expect any visible artifact 

from the accelerated tessellation. In terms of computation times, the texture units show very good results. 

The time for one million evaluations in 3-D is 10 ms. 

 

B.  PROJECTION GENERATION 370 

Next, we evaluated the speed of the projection generation using a more realistic scenario. We generated 

monochromatic projection data of 23 time-variant surface splines of the XCAT phantom [14]. Each spline 

surface was sampled with a grid of 𝑈 × 𝑉 points with 𝑈,𝑉 ∈ [50, 70, 100] at time 𝑡 = 0 and drawn into a 

1-D Time [ms] Accuracy [mm]
CPU (Java) 278    -
Open CL 13 4.24 E-7
Open CL Texture 7 0.0018

2-D Time [ms] Accuracy [mm]
CPU (Java) 1097 -
Open CL 27 9.63 E-7
Open CL Texture 1 0.0031

3-D Time [ms] Accuracy [mm]
CPU (Java) 4146 -
Open CL 81 4.35 E-5
Open CL Texture 10 0.028
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640 × 480 projection image (cf. Figure 4). In total we looked at five different setups of the simulation 

routine: 375 

• A traditional 2-D raster image triangle drawing routine using depth value encoding in integer 

values in [0.5 mm]. This drawing routine represents a projection data generation routine that 

employs a course quantization. As the triangles were rather small, we used a local buffering 

strategy to fill the append buffer. The algorithm is denoted as “depth as integer” in the following. 

• The same triangle drawing routine as in “depth as integer”, but with a floating-point 32 bit depth 380 

encoding (denoted as “no anti alias” in the following). 

• The same triangle drawing routine as in “depth as integer”, with floating-point 32 bit depth 

encoding and 4-fold anti aliasing, i.e. the image is actually generated in a resolution that is four 

times higher in each dimension. After drawing, the image is then resampled to its intended size 

(denoted as “4x anti alias” in the following). One effect of the anti aliasing is that the area of the 385 

triangles is increased by a factor of 16 that inhibits a local buffering strategy. Thus a global 

buffering strategy had to be chosen. 

• The proposed method using correct depth and triangle values (denoted as “proposed” in the 

following, cf. Section II.C). For the proposed method, a local buffering strategy could be 

employed. 390 

• A CPU-based ray-casting technique that we refer to as the gold standard (Denoted as “CPU” in 

the following). 

Except for the CPU version, all algorithms were implemented on graphics hardware. Runtime was 

measured including all steps to generate the projection (tessellation, drawing, and evaluation of the 

absorption model). Memory transfer times were not included.  395 

Table 2 displays an overview of the computation times. For a grid of 50 × 50 sample points the local 

append buffer strategy failed, because with increasing area of the triangles, the number of intersections 

per thread becomes too large and exceeds the size of the local memory. Hence, the experiments for “depth 
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as integer”, “no anti alias”, and “proposed” could not be conducted. Instead, we reported the 

corresponding numbers using a global buffering strategy in brackets. Note that the global buffering 400 

strategy increases runtime significantly due to the large number of atomic operations.  

With larger grid sizes, i.e. smaller triangles, a clear trend towards the local buffering strategy can be seen.  

With a growing number of triangles, there is only a slight increase in ray-object-intersections, which 

causes the number of drawn points in the append buffer to increase. Hence, the best computational 

performance is found at a grid size of 70 × 70 pixels here. However, the increase in runtime to increase 405 

to a 100 × 100 grid is only minor.  

The ray-casting-based CPU method has a dramatic increase in runtime with a growing number of 

triangles, as each ray is intersected with each triangle. 

 

Figure 4: Sample scene of an animated heart-like shape with 23 spline surfaces (𝒕 = 𝟎). We increased the 410 
contrast of the coronary arteries for demonstration purposes. 
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Table 2: Computation times using the heart scene at time 𝒕 = 𝟎 at a resolution of 𝟔𝟒𝟎 × 𝟒𝟖𝟎. The 
different columns report different rasterization sizes for the splines. The total computation time of the 
proposed method for 𝟏𝟎𝟎 × 𝟏𝟎𝟎 × 𝟐𝟑 × 𝟐 = 𝟒𝟔𝟎𝟎𝟎𝟎 triangles is 254 ms (using the local buffering 415 
scheme). In cases where the local buffering strategy failed, we report the computation time for the global 
strategy in brackets.  

 

 
C.  RECONSTRUCTION ACCURACY 420 

 
Lastly, we evaluated the effect of different projection methods on the reconstruction quality. Although we 

aim at modelling dynamic scenes, we chose to evaluate this using a static scene, as we wanted to be 

independent of the accuracy of a motion compensated reconstruction algorithm. We generated 360 

monochromatic projections (640 × 480 pixels, detector element size 0.75 × 0.75 mm 2, source detector 425 

distance 120 cm, source to center of rotation distance 80 cm) over 360 degrees of 23 time-variant spline 

surfaces of the XCAT phantom. The diameter of the heart was approximately 15 cm. The phantom 

contains only two relevant materials: Blood and heart tissue. Both were simulated as water-like material 

at a density of 1.06 [g/cm 3] for blood and 1.05 [g/cm 3] for the heart tissue. The contrast in Figure 4 was 

simulated as dense water with 4.0 [g/cm 3]. As image quality is improved with a higher grid size, we 430 

chose to use the 100 × 100 tessellation grid. We chose 70 kV for the monochromatic energy for 

projection generation. 

Reconstruction was performed using an FDK-type reconstruction [8] in a 2563 voxel grid. The voxel size 

was chosen to be 1 mm in each dimension.  No noise was added to the projections, in order to investigate 

only the geometric error that was introduced by the simulation. We chose a Shepp-Logan kernel in the 435 

X-Cat Heart
(23 Splines)

Buffering
Strategy

50 x 50
Time [ms]

70 x 70
Time [ms]

100 x 100
Time 
[ms]

Depth as 
integer

local - (477) 168    194

No anti alias local - (477) 152 193

4x anti alias global 6552 6700 6903

Proposed local - (405) 165 254

CPU - 47807 82074 142975
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filtering step.  

Furthermore, we directly computed cosine-weighted projection images (cf. Section II.B) in the graphics 

hardware implementations. The approaches “depth as integer”, “no anti alias”, and “proposed” showed 

similar performance as in the second experiment. The approach “4x anti alias” had an execution time that 

was about 24 times higher than the proposed approach. The runtime of the CPU version was 14.2 hours 440 

which was the reason to develop the proposed method in the first place. 

Figure 5 displays qualitative results of the different algorithms. While all five versions seem to yield 

satisfactory projection images (top row), the quality of the reconstructed images varies dramatically. Only 

correct modelling of the drawing process provides an accurate reconstructed image as seen in the 

proposed and the CPU methods. While anti aliasing helps to reduce image artefacts, some error still 445 

remains as shown when using the narrow visualization window presented in the last row. 

The difference in the generated projection images is emphasized in Figure 6. The figure shows line 

profiles created with the different algorithms. While the artifacts in “depth as integer” are clearly visible, 

only slight differences between “no anti alias” and the CPU version can be found. The “4x anti alias” and 

“proposed” approaches show almost no difference to the CPU version. 450 

Similar observations can also be made when looking at quantitative measures in the reconstructions 

reported in Table 3. We measured the noise that was caused by the reconstruction method as the standard 

deviation in the left ventricle (the top right circle in the presented slice). Only “4x anti alias”, “proposed”, 

and “CPU” yield standard deviations below 1 HU. The proposed method yields almost as little noise as 

the CPU method while “4x anti alias” has almost twice the noise. In terms of runtime, the proposed 455 

method is in the same range as the traditional triangle-based methods “depth as integer” and “no anti 

alias”. 
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Table 3: Measurements of image noise caused by the reconstruction method with a 100x100 sampling. 

 460 

 

Figure 5: Results of the different simulation methods. Anti aliasing helps to increase reconstruction 
quality. Accurate processing, however, yields a quality that is similar to the ray-casting approach on the 
CPU. 
 465 

Heart Scene
(23 Splines)

Mean 
[HU]

Standard 
Deviation

[HU]

Total 
Runtime

Speed-up
factor

(vs. CPU)
Depth as 
integer

59.4 8.76 77.9 s    656.2 x

No anti alias 59.5 2.50 77.9 s 656.2 x

4x anti alias 60.5 0.735 2428.1 s 21.1 x

Proposed 60.5 0.468 98.5 s 519.0 x

CPU 60.9 0.404 14.2 h 1.0 x
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Figure 6: Comparison of line profiles through the projection images. While the effects in the projection image can 
still be observed clearly for the “depth as integer” and “no anti alias”, the differences between “proposed” “4x anti 
alias” and “CPU” are almost invisible in the projection image profile. Note that for visualization purposes, the 
contours are displayed with gaps in between, as their overlap inhibits comparison. 470 
 

IV. DISCUSSION 

Tessellation of the spline surfaces was extremely successful. All errors were within acceptable margins 

even using texture memory. Interestingly, there was almost no loss in runtime when changing from 1-D to 

3-D. We ascribe this effect to the fact that each spline evaluation was called individually and the time to 475 

copy the evaluated points into the computer’s main memory was included in the runtime measurement. 

The evaluation costs almost no time compared to the memory transfers. Compared to the execution time 

of the remaining processing the runtime of the tessellation is negligible. Thus, tessellation time was not 

explicitly measured in the other experiments. 

For our use case, we assume that the projections that are generated will be used to create a specific 480 

reconstruction. Thus, the number of sampling points will be dependent on the reconstruction grid and the 

size of the tessellated organ. For the present paper, we chose a fixed number of sampling points per spline 

0 10 20 30 40 50 60 70 80 90 100 110 120 130 

Depth as integer 

No anti alias 

4x anti alias 

proposed 

CPU 
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in order to enable a better comparison with respect to runtime. As a rule-of-thumb, we picked the number 

of sampling points such that the spacing between points was approximately equal to the resolution of the 

reconstruction grid. Thus, we suggest that the number of sampling points be increased for large organs 485 

and decreased for smaller organs. In order to prevent long triangles, we furthermore suggest picking the 

longest edge of the bounding box of the organ to determine the sampling points. This heuristic has been 

used successfully [34][35] [36][37] [38]. 

There are two main limitations of the append buffer strategy. The first one is graphics memory. At present 

we used projection images of 640x480 pixels. This corresponds to 1.17 MB in floating point accuracy. 490 

With a consumer graphics card with 512 MB of memory this allows us to have about 400 intersection 

points on average per pixel. With respect to the phantom this implies that there should be no more than 

200 convex shapes on average on the intersection path of the ray. If the objects are non-convex this 

number is even lower. With respect to commonly used phantoms, like XCAT, this number should be 

sufficient as most rays intersect only 10 to 15 shapes. 495 

The second limitation is the atomic access to the append buffer. With the global access scheme runtime 

will increase with the number of drawn points as the append buffer pointer is accessed in a global atomic 

way. This inhibits parallelization. However, as shown in the experiments section, the problem could be 

reduced by using a local buffering strategy which better preserves parallelizability. 

At present we focussed our pipeline on flat panel detector geometries. In 3rd generation CT scanners, 500 

however, cylindrical detectors are used. At present the pipeline does not handle this kind of geometry. 

However, this is not a fundamental problem of the software architecture, as it is designed in a modular 

fashion. In order to implement cylindrical detectors, one would have to adapt the projection in Step 2 of 

Figure 1 to a cylindrical geometry. Furthermore, one would have to incorporate the cylindrical shape of 

the detector into Step 3 of Figure 1. There the drawing routine would need to incorporate the curved 505 

shape of the detector into the interpolation process.  

The simulation of a focal spot of finite size could also be realized with the software by computation of 

multiple images for discrete focal spot positions. The final image with finite focal spot size is then 
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obtained as a weighted sum of the different focal spot positions. 

 510 

V. SUMMARY 

In this paper, we propose a fast simulation method for x-ray absorption images. The method adapts 

several techniques that have already been successfully applied in computer graphics. We use hardware 

tessellation to generate a mesh of triangles. In the state-of-the-art in computer graphics this is performed 

for static 2-D surfaces. We have extended this to moving 2-D surfaces. The triangles are then drawn into 515 

an append buffer that is used to keep track of all intersections of a pixel with the scene. As we require 

more information in the subsequent absorption model, this process was augmented to enable use of x-ray 

material property descriptors. Once all intersections within the scene are available, an absorption model is 

applied directly on the graphics card to generate an x-ray image. Using this method we are able to 

generate x-ray projection image simulations of realistically moving objects like the beating heart within 520 

254 ms with an accuracy that is suitable for CT reconstruction. 

The software and source code that was created for this article can be found at http://conrad.stanford.edu. 
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