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a b s t r a c t

Based on the concepts of eigenstrain and equivalent inclusion of Eshelby for inhomogeneity problems, a
computational model and its solution procedure are presented using the proposed three-dimensional
(3D) eigenstrain formulation of boundary integral equations (BIE) for simulating ellipsoidal particle-rein-
forced (and/or void-weakened) inhomogeneous materials. In the model, the eigenstrains characterizing
deformation behaviors of each particle embedded in the matrix are determined using an iterative scheme
with the aid of the corresponding Eshelby tensors, which can be obtained beforehand either analytically
or numerically. With the proposed numerical model, the unknowns of the problem appear only on the
boundary of the solution domain, since the interface condition between particles/voids and the matrix
is satisfied naturally. The solution scale of the inhomogeneity problem can thus be significantly reduced.
Using the algorithm, the stress distribution and the overall elastic properties are identified for ellipsoidal
particle-reinforced/void-weakened inhomogeneous materials over a representative volume element
(RVE). The effects of a variety of factors on the overall properties of the materials as well as the conver-
gence behavior of the algorithm are studied numerically, showing the validity and efficiency of the pro-
posed algorithm.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Determination of the elastic behavior of an inclusion embedded
in a matrix is of considerable importance in a wide variety of phys-
ical and engineering problems. Following the pioneering work of
Eshelby [1,2], inclusion and inhomogeneity problems have been a
focus of solid mechanics for several decades. Due to Eshelby’s work
on an equivalent inclusion and eigenstrain solution, numerous
investigations both analytical [3–9] and numerical [10–17] have
been reported in the literature. In various physical problems, the
eigenstrain can represent thermal mismatch, lattice mismatch,
phase transformation, microstructural evolution, and intrinsic
strains in residual stress problems [18]. Eshelby’s solution is of
great versatility and has been employed to address a wide range
of physical problems in materials science, mechanics, and physics.

The analytical equivalent inclusion models available in the liter-
ature can be taken as the basis for predicting stress/strain distribu-
tion either within or outside the inhomogeneity and for further
study of the mechanical performance of heterogeneous materials.
However, the available solutions apply generally to only simple

geometries such as single ellipsoidal, cylindrical and spherical
inclusions in an infinite domain, because of the complexity of the
mathematical expression and difficulty in solving the correspond-
ing governing equations in 3D systems. Therefore, numerical
methods including finite element methods (FEM), volume integral
methods (VIM) and boundary element methods (BEM) have been
used in the analysis of inhomogeneity problems involving various
shapes and materials. The FEM may yield results for the entire
composite materials, including results within the inhomogeneity
[11], but the solution scale would be very large since both matrix
and inhomogeneities must to be discretized. The VIM and the
BEM seem more suitable than the FEM for the solution of inhomo-
geneity problems in comparison. In the VIM [12–14], the domains
of inhomogeneity are represented by volume integrals, essentially
simplifying the construction of the final matrix of the linear alge-
braic system to which the problem is reduced to some extent after
the discretization. However, as the interfaces between matrix and
inclusion need to be discretized in the VIM, it is suitable for small
scale problems with only a few inhomogeneities. The situation in
the application of the BEM to inclusion problems, often coupled
with VIM [15,16], is much the same as that of the VIM in which
problems of simple arrays of inclusions are solved on a small scale,
for a similar reason to that in the VIM, i.e., unknowns appearing in
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the interfaces. For large-scale problems of inhomogeneity with the
BEM [17], special techniques of fast multipole expansions [19]
must be employed, which leads to complexity of the solution
procedure.

To the authors’ knowledge, the potential engineering applications
of Eshelby’s idea of equivalent inclusion and eigenstrain solution
have not yet been fully explored in the area of computational treat-
ment of materials with inhomogeneities [20]. With Eshelby’s idea as
the basis, Ma et al. [21] recently proposed the eigenstrain formula-
tion of the BIE for modeling elliptical particle-reinforced materials
in two-dimensional elasticity. In the present work, that computa-
tional model is extended to the three-dimensional case by incorpo-
rating the corresponding BEM for analyzing the stress/strain
behavior of ellipsoidal particle-reinforced/void-weakened materials.

2. Eigenstrain formulations of BIE

In the present model, perfect adhesion between the particle and
the matrix, both being isotropic materials, is assumed, so that the
displacement continuity and the traction equilibrium still hold
true along their interfaces. The solution domain considered is a fi-
nite region X filled with the matrix and inclusions, bounded by the
outer boundary C. The domain of the inhomogeneity is denoted by
XI with the boundary CI(CI = XI \X). The displacement and stress
fields of the problem can be described by the eigenstrain formula-
tions of the BIE [21,22] as follows:

CðpÞuiðpÞ ¼
Z

C
sjðqÞu�ijðp; qÞdCðqÞ �

Z
C

ujðqÞs�ijðp; qÞdCðqÞ

þ
XNI

I¼1

Z
XI

e0
jkðqÞr�ijkðp; qÞdXðqÞ ð1Þ

CðpÞrijðpÞ ¼
Z

C
skðqÞu�ijkðp; qÞdCðqÞ �

Z
C

ukðqÞs�ijkðp; qÞdCðqÞ

þ
XNI

I¼1

Z
XI

e0
klðqÞr�ijklðp; qÞdXðqÞ þ e0

klðpÞO
�
ijklðp; qÞ ð2Þ

where

O�ijklðp; qÞ ¼ lim
Xe!0

Z
DCe

xls�ijkðp; qÞdCðqÞ ð3Þ

in which Xe (surrounded by the boundary Ce) represents an infini-
tesimal zone within XI when the source point p approaches the field
point q [23] and xl = xl(q) � xl(p). In Eqs. (1) and (2), u�ij, s�ij and r�ij
stand for the Kelvin’s fundamental solutions for displacements,
tractions and stresses, respectively. u�ijk, s�ijk and r�ijk are correspond-
ingly the derived fundamental solutions [21,22]. NI is the total num-
ber of particles in the domain X.

In Eshelby and Mura’s terminology [3], an inclusion is a
bounded region within a material with the same material proper-
ties as the surrounding material but containing a stress-free trans-
formation strain or eigenstrain. In contrast, an inhomogeneity (a
particle) existing in a bounded region within a material has differ-
ent material properties and may (or may not) contain an eigen-
strain. Eshelby showed [1,2] that an inhomogeneity under
loading can be simulated via an equivalent inclusion containing a
fictitious eigenstrain, e0

ij, expressed by domain integrals in Eqs.
(1) and (2), the so-called the eigenstrain formulations. The eigen-
strains of particles here are determined using an iterative scheme,
which will be described in detail in the following section. Obvi-
ously, the eigenstrains in each particle depend on the applied stres-
ses or strains, the geometry of the particle, as well as the material
constants of particle and matrix.

Eshelby’s original work [1,2] related the constrained strain eC
ij

developed in an inclusion located in an infinite matrix to the eigen-

strain (the stress-free strain or the transformation strain) e0
ij via

what is now widely known as the Eshelby tensor Sijkl, that is

eC
ij ¼ Sijkle0

kl ð4Þ

The Eshelby tensor Sijkl is geometry dependent only, and gener-
ally takes the form of integrals. For simple geometries, the compo-
nents of Sijkl can be given explicitly and are available, for example,
in the literature [1,4,9] or can be computed numerically [21] by

Sijkl ¼
1
2
ðdikdjl þ dildjkÞ þ Cijmn

Z
CI

xls�mnkðp; qÞdC ¼ 1
2
ðdikdjl þ dildjkÞ

þ 1
4l

Z
CI

xl s�ijk þ s�jik �
2v

1þ v dijs�mmk

� �
dC ð5Þ

where Cijkl is the compliance tensor of the matrix, l the shear mod-
ulus. By defining the Young’s modulus ratio b = EI/EM, where the
subscripts I and M represent the inhomogeneity (particle) and the
matrix, respectively, the following relation holds true according to
Hooke’s law. If a particle is subjected to an applied strain eij, it
can be replaced by an equivalent inclusion without altering its
stress state:

ð1� b1ÞeC
ij þ b2dijeC

kk � e0
ij �

mM

1� 2mM
dije0

kk

¼ �ð1� b1Þeij � b2dijekk ð6Þ

where

b1 ¼
1þ vM

1þ v I
b; b2 ¼

vM

1� vM
� v I

1� 2v I
b ð7Þ

and v is Poisson’s ratio. Combining Eqs. (4) and (6), the eigenstrains
in each particle can be estimated from the given applied strains.

3. Solution procedures

The present computational model for ellipsoidal particle-rein-
forced materials is solved numerically by way of the BEM [22]. In
order to avoid domain discretization, the domain integrals in Eqs.
(1) and (2) need to be transformed into boundary-type integrals
before discretization, as [23]Z

XI

r�ijk dX ¼
Z

CI

xks�ij dC ð8Þ

Z
XI

r�ijkl dXþ O�ijkl ¼
Z

CI

xls�ijk dC ð9Þ

in which the eigenstrains in each particle are assumed to be con-
stant. It is noted that the applied strains (or the applied stresses)
over each particle are disturbed by other particles, especially those
near the particle of interest, because the eigenstrain in a particle
will induce a self-balanced stress field in both the particle and the
matrix. In addition to the applied load, the eigenstrain-induced
stresses outside the particle are superimposed on other particles.
As a result, the applied strains with regard to the eigenstrains are
corrected in an iterative way in the solution procedure. After dis-
cretization and incorporated with the boundary conditions, Eq. (1)
can be written in matrix form as:

Ax ¼ bþ Be ð10Þ

where A is the system matrix, B the coefficient matrix for eigen-
strains, b the right vector related to the known quantities applied
on the outer boundary, x the vector unknowns to be solved. e is
the eigenstrain vector of all the particles to be corrected in the iter-
ation. It should be mentioned that the coefficients in A, B and b are
all constants, and thus need to be computed only once. At the start-
ing point, the vector e is assigned by initial values for the applied
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strains via Eq. (2) at each position of the particles in the elastic state,
computed irrespective of particles (i.e., the whole solution domain
contains the homogeneous matrix only). Then the unknown vector
x can be computed by the following iterative formulae:

xðkþ1Þ ¼ A�1 bþ BeðkÞ
� �

ð11Þ

where k is the iteration count. Define the maximum iteration error
as

emax ¼max eðkÞ � eðk�1Þ� ��� �� ð12Þ

which is the maximum difference of the eigenstrain components
between two consecutive iterations. The convergent criterion in
the present study is chosen as follows:

EMemax 6 10�3 ð13Þ

where EMemax corresponds to the maximum difference of the ‘stress’
components among total equivalent inclusions between two con-
secutive iterations and EM is the Young’s modulus of the matrix
material. If the criterion (13) is not met, then the stress states at
each particle, XI, are computed using a modified Eq. (2), as follows,
with the renewed vector x and then the applied strains to update
the values of the eigenstrains:

rijðpÞ ¼
Z

C
skðqÞu�ijkðp; qÞdCðqÞ �

Z
C

ukðqÞs�ijkðp; qÞdCðqÞ

þ
XNI

J¼1;J–I

e0
klðqÞ

Z
CJ

xls�ijkðp; qÞdCðqÞ;

p 2 XI; I ¼ 1; . . . ;NI ð14Þ

It should be noted here that in Eq. (14), the current particle has
been excluded because the stress state at the due place is gener-
ated, in addition to the applied load, by the disturbances of all
other particles in the solution domain. The principal steps in the
solution procedures can be summarized as follows:

(a) Compute the constant coefficients in A, B and b in Eq. (1).
(b) Assign the vector e an initial value which is the solution to

the applied strains via Eq. (2) at the corresponding position
of each particle without the presence of particles (i.e., the
whole solution domain contains the homogeneous matrix
only).

(c) Compute the unknown vector x using the iterative formulae
(11) with the current eigenstrain vector e.

(d) Check the convergent criterion (12).
(e) If the criterion (13) is not met, perform the following:

(i) Compute the current stresses in each particle using Eq.
(14) with the current particle absent at the correspond-
ing place.

(ii) Compute the current applied strains in each particle
using Hooke’s Law.

(iii)
Renew the eigenstrain vector e using Eq. (6).
and then return to the step (c). Otherwise proceed to the
next step (f).

(f) Compute the stresses of interest or the overall properties,
etc.

It can be seen that the determination of eigenstrains in each
particle is the crucial step where the Eshelby tensor plays an essen-
tial role. Although some explicit expressions exist in the literature

Begin

End

Data preparation

Compute constants in
A, B, b

Compute the unknown 
vector x

No

Convergence ? Yes

Compute particle 
stresses

Compute applied 
strains in particles

Update the vector x

Compute
overall properties, etc.

Renew the eigenstrains

Assign initial values of 
eigenstrains

Compute stresses of 
interest

Fig. 1. Flowchart of the algorithm for the eigenstrain formulation of BIE.
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Fig. 2. (a) RVE with triply periodically spaced particles; (b) element mesh of the outer surface; and (c) element mesh for the boundary of a particle in one octant.
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for simple cases, in general the Eshelby tensor can always be ob-
tained conveniently via the numerical means. The flow chart of
the algorithm is shown in Fig. 1.

4. Numerical examples

In this section, the technique of one-point computing [24] is
first assessed and used for evaluating domain integrals in Eqs. (1)
and (2), in order to improve the efficiency of the proposed algo-

rithm further. As mentioned at the beginning of Section 2, perfect
adhesion between particle and matrix is assumed in the present
computational model, which is solved by way of the BEM, so that
the displacement continuity and the traction equilibrium hold true
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Fig. 4. Comparison of absolute errors between one-point computing and Gauss
quadrature.
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Fig. 5. A single ellipsoidal particle in a RVE.

0.8 1.0 1.2 1.4 1.6

0

1

2

3

4

5

MatrixParticle
Tension in x3
EI/EM=0.01
c/a=0.3 (a=b)
r0/l=0.001

 By sub-domain
σ11
σ22
σ33

C
om

pu
te

d 
St

re
ss

es

ξ1/a

Fig. 6. Comparison of the computed stresses across the interface of a single soft
particle in tension with those using BEM with the sub-domain technique.
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Fig. 7. Comparison of the computed stresses across the interface of a single hard
particle in tension with those using BEM with the sub-domain technique.

0.8 1.0 1.2 1.4 1.6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

MatrixParticle

Shear load
EI/EM=0.01
c/a=0.3 (a=b)
r0/l=0.001

 By sub-domain
σ11
σ23

C
om

pu
te

d 
St

re
ss

es

ξ1/a

Fig. 8. Comparison of the computed stresses across the interface of a single soft
particle in pure shear with those using BEM with the sub-domain technique.
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along their interfaces. To demonstrate the accuracy and efficiency
of the proposed algorithm, the results of stresses across the inter-
faces for a simple example are obtained using the present algo-
rithm and compared with those from the conventional BEM.
Further, the overall properties and the stress distributions of a rep-
resentative volume element (RVE) in a particle-reinforced material
are identified using the proposed model. The convergent perfor-
mance of the algorithm is assessed through investigating the effect
of various factors on the number of iterations.

In the following analysis, a cube as shown in Fig. 2a is chosen as
the RVE containing triply periodically spaced ellipsoidal particles.
The element mesh used is shown in Fig. 2b for the outer boundary
of the RVE and in Fig. 2c for the interface between matrix and par-
ticle (an octant of particle surface). It should be pointed out that
the domain cells are no longer required as the domain integrals

have been transformed into the boundary-type. It should also be
mentioned that the interface discretization makes no contribution
to the degrees of freedom of the problem for the present algorithm.
The purpose of the discretization is only for numerical evaluation
of the boundary-type integrals in Eqs. (8) and (9), when the dis-
tances between p and q are relatively small. In all the examples,
the Poisson’s ratios are taken to be vI = vM = 0.3.

4.1. One-point computing

Instead of using Eqs. (8) and (9) by Gauss quadrature to evalu-
ate the domain integrals in Eqs. (1) and (2) and considering the
properties of kernel functions explained in [24], the efficiency of
the algorithm can be further improved by introducing the tech-
nique of one-point computing under certain appropriate condi-
tions as follows:Z

XI

r�ijk dX � VIr�ijk ð15Þ

Z
XI

r�ijkl dX � VIr�ijkl ð16Þ

where VI stands for the volume of XI and O�ijkl ¼ 0 in Eq. (9) for
p 2 X n ðXI [CIÞ (the source point p is outside the XI). The integral
values and the absolute errors as a function of relative distance, r/
(2r0), are compared in Figs. 3 and 4, respectively, using the two
computing methods, one-point computing and Gauss quadrature,
over a spheroidal domain with a radius r0, where r represents the
distance from p to the center of the spheroidal domain. It is evident
from both Figs. 3 and 4 that the one-point computing can achieve
acceptable accuracy if the distances, r/(2r0), are relatively large,
which is the most cases when p is outside the current XI since
the difference in the integral values between the two methods be-
comes negligibly small with the increase of the relative distance,
r/(2r0). In the present work, r/(2r0) = 5 serves as the criterion to
switch the methods between one-point computing and Gauss quad-
rature around closed interfaces.

4.2. Stress distributions in a cube with a single particle

In order to assess the model with the eigenstrain formulation,
the stresses across the interface of a single particle in the RVE as
shown in Fig. 5 are computed using the present algorithm
and compared with the exact solutions for a spheroidal particle
and with the numerical solutions for ellipsoidal particles using
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conventional BEM with sub-domain techniques. As shown in Fig. 5,
a, b and c are three half radii of the ellipsoidal particle, which is
placed at the center of the cube. In the present work, the shape
of the ellipsoidal particle is chosen as oblate (a = b > c) or prolate
(a = b < c). However, for the spheroidal particle, a = b = c = r0. Define
the equivalent radius r0 for ellipsoidal particles as

r0 ¼
ffiffiffiffiffiffiffiffi
abc3
p

ð17Þ

for the purpose of comparing the relative sizes of different particles
with the RVE. r0/l = 0.001 is used in the computation, where l stands
for the side length of the cube RVE. The stresses are computed
across the interface of the particle along the n1 axis as shown
Fig. 2c, where n1kx1 in Fig. 5. On the interface, n1/a = 1. To show
the stress behavior when the computing point is very close to the
interface, the technique of distance transformation [25] is utilized

to handle the nearly singularity of integral kernels. The stresses very
close to the interface are evaluated at the locations n1/a = 0.998 and
n1/a = 1.002, respectively.

The effect of particle stiffness on stress distribution is studied
by computing the stresses across the interface of a soft and a hard
particle in single tension in x3 direction with unit traction load
r33 = 1, compared in Figs. 6 and 7, respectively, and the stresses
of a soft particle in pure shear with unit shear load r23 = r32 = 1
are presented in Fig. 8 for the sake of comparison. It can be seen

Table 1
Comparison of the degrees of freedom and CPU times for the two algorithms.

NI Degree of freedom CPU time (s)

BEM Eigenstrain BEM Eigenstrain

1 1362 492 154 12.7
2 2232 492 283 14.8
4 3972 492 1223 16.6
8 7452 492 11,348 20.4
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from the three figures that the stresses are constant inside the par-
ticle as expected. It is found that the computed tangential stresses
in tension and the shear stress in shear load all have a jump across
the interface using the traditional BEM with the sub-domain tech-
nique computed on the interface, or more definitely, at the two
corresponding places in boundaries of the two sub-domains. How-
ever, these computed stress components using the eigenstrain for-
mulation show almost exactly the same behavior. It is interesting
to see from Figs. 6–8 that the stress components which have jumps

on the interface computed using the eigenstrain formulation take
just the average values of the two sides, the particle and the
matrix.

Nevertheless, it is observed that the stress components which
have jumps computed with the present algorithm at the places
in the matrix very close to the interface have tiny differences from
those just on the interface computed with the sub-domain method.
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Fig. 18. Poisson’s ratio of the RVE as a function of equivalent particle size, r0/s.
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Fig. 19. Young’s modulus of the RVE as a function of aspect ratio, c/a.
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Fig. 20. Shear modulus of the RVE as a function of aspect ratio, c/a.
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Fig. 21. Poisson’s ratio of the RVE as a function of aspect ratio, c/a.
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Fig. 22. Stress distributions across the interface of a soft spheroidal particle placed
at the center of the RVE with various values of r0/s.
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Fig. 23. Stress distributions across the interface of a hard spheroidal particle placed
at the center of the RVE with various values of r0/s.
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Fig. 9 gives the comparison of stresses in both the spheroidal par-
ticle and the matrix as a function of the modulus ratio, EI/EM, in tri-
axial tension load r11 = r22 = r33 = 1 with the exact solutions [14].
The stresses in the matrix are computed at the place n1/r0 = 1.002,
very close to the interface. The computed results show the validity
and accuracy of the present algorithm.

4.3. Stress distributions in a cube with multiple empty holes

In order to check the model further with the eigenstrain formu-
lation, the stress distributions in the matrix of the RVE with NI = 8
spheroidal empty holes are computed using the present algorithm
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Fig. 24. Stress distributions across the interface of a soft ellipsoidal particle placed
at the center of the RVE with various aspect ratios c/a.
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Fig. 25. Stress distributions across the interface of a hard ellipsoidal particle placed
at the center of the RVE with various aspect ratios, c/a.
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Fig. 26. Required number of iterations of the algorithm in tension with respect to
the modulus ratio, EI/EM.
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Fig. 28. Required number of iterations of the algorithm in tension with respect to
the equivalent particle size, r0/s, with hard particles.
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Fig. 29. Required number of iterations of the algorithm in tension with respect to
the equivalent particle size, r0/s, with soft particles.
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and compared with the numerical solutions using the conventional
BEM. In the computation, the RVE used is loaded with unit load in
either single tension or pure shear. The equivalent particle or hole
size, r0/s, is defined dimensionlessly by the ratio of the equivalent
radius and the half spacing between particles, as shown in Fig. 10.
The equivalent size is set as r0/s = 0.4 in this example for the RVE
with 8 holes.

The stresses are computed along a quarter arc with the radius
r = 1.1r0 outside a hole in the matrix of the RVE while the local
coordinate n1 (Fig. 1a and c, nk//xk, k = 1,2,3) is kept constant, as
shown in Figs. 11 and 12, respectively, under single tension and
pure shear. It is shown from Figs. 11 and 12 that the computed re-
sults with the proposed algorithm using the eigenstrain formula-
tion are in well agreement with those of the conventional BEM.
As the degree of freedom increases very fast with the number of
particles, the computing program using the BEM does not work
on the present desktop computer (Intel Pentium Dual CPU,
1.60GNz), the comparison between the two algorithms cannot be
performed for the RVE containing more particles. However, there
is no such limitation for the proposed algorithm using the eigen-
strain formulation.

The degree of freedom and CPU time of the two algorithms, the
eigenstrain formulation and the BEM, are listed in Table 1 by run-
ning the two programs on the desktop computer under the tension
load, showing the sharp differences in efficiency. For the BEM, the
most part of the CPU time is spent for solving the system matrix,
the degree of which increases very fast with the number of parti-

cles. The increase of the CPU time follows a geometrical series. In
comparison, the number of degree of freedom for the eigenstrain
formulation remains constant. The finite CPU time increased is
spent only in the iteration, showing the high efficiency of the pro-
posed algorithm, especially for the 3D problem.

4.4. Overall properties

In the computation, the RVE used is loaded with unit load in
either single tension or pure shear. The results for the overall prop-
erties of the RVE with triply periodically spaced spheroidal parti-
cles as a function of the total particle number, NI, are shown in
Fig. 13, where the equivalent sizes, r0/s, are kept constant, which
means that the volume fraction of particles in the RVE remains
constant. In this case, the overall properties are isotropic. It can
be seen that the values of the computed overall properties become
stable when NI P 1000, showing that the boundary effect can be
neglected, so that NI = 1000 is chosen in the following examples.

The Young’s modulus, shear modulus and Poisson’s ratio of the
RVE as a function of the modulus ratio, EI/EM, are presented in
Figs. 14–16 with NI = 1000, where c/a is the aspect ratio of parti-
cles. If c/a = 1 the particles are spheroidal and the overall properties
become isotropic. It should be pointed out that EI/EM = 10�3 be-
haves almost like holes whereas EI/EM = 103 corresponds to rigid
particles in the matrix. It can be seen from Figs. 14 and 15 that
for either Young’s or shear moduli, the most effective range of
the modulus ratio to the overall properties is between EI/EM = 0.1
and EI/EM = 10, while the stagnancy of the properties can be ob-
served when EI/EM is very small or very large, similar to observa-
tions in the two-dimensional case [21]. However, the Poisson’s
ratio behaves in a very complex relationship with the modulus ra-
tio, EI/EM, as shown in Fig. 16.

The study of the effect of equivalent particle size on the overall
properties of the RVE, the Young’s moduli and the Poisson’s ratios
of the RVE are presented in Figs. 17 and 18, respectively, as a func-
tion of equivalent particle size r0/s. The two figures show mono-
tonic variations as expected since the equivalent particle size
corresponds directly to the volume fraction of particles in the
RVE. With the increase of r0/s, the Young’s modulus of the RVE de-
creases with soft particles but increases with hard particles. How-
ever, the Poisson’s ratio of the RVE shows diverse behaviors with
r0/s, as shown in Fig. 18.

Figs. 19–21 show the effects of aspect ratio, c/a, on Young’s
modulus, the shear modulus and Poisson’s ratio of the RVE when
the equivalent particle size, r0/s, is kept constant. It is seen from
Figs. 19 and 20 that the value of E33 increases monotonically with
an increase in the value of the aspect ratio for the RVE with both
hard and soft particles. It is interpreted that with the increase of
the aspect ratio, c/a, the strengthening effect increases for hard
particles but the weakening effect decreases for soft particles. In
contrary, the value of E11 shows exactly the opposite behavior.
The values of the shear moduli, l31 and l12, behave very similarly
to those of E33 and E11, respectively, owing to the similar effects. It
is evident from Fig. 21, however, that the values of the Poisson’s ra-
tio again behave in a more complex fashion with the increase of
the aspect ratio, c/a.

4.5. Stress distributions of a cube with multiple particles

The stress distribution for a RVE with a single particle was stud-
ied in Section 4.2. This section presents an investigation of the
stress distributions of a cube with multiple particles. The stress
distribution across the interface of the particle at the center of
the RVE with a total particle number NI = 125 (Fig. 2a) under
single tension of unit load r33 = 1 is presented in Figs. 22 and 23,
respectively, for soft and hard spheroidal particles with various
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Fig. 30. Required number of iterations of the algorithm with respect to the aspect
ratio, c/a.

101 102 103 104
101

102

103

104 c/a=1.0, r0/s=0.4, EI/EM=10
c/a=1.0, r0/s=0.7, EI/EM=10
c/a=0.3, r0/s=0.5, EI/EM=0.01

Total particle number, NI

C
PU

 T
im

e 
(s

)

Fig. 31. CPU time of the algorithm as a function of total particle number, NI.
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equivalent particle sizes, r0/s. The stresses are computed across the
interfaces of the particle along the n1 axis as shown in Fig. 2c where
n1kx1 in Fig. 5. On various interfaces there are n1/s = r0/s. The
stresses very close to the interfaces are evaluated at n1/s =
(1 ± 0.002) � r0/s and all stresses take peak values at the sides of
matrix. It can be seen from Figs. 22 and 23 that the distributions
inside the particles are consistent with the inference of constant
stresses or strains inside a particle with a simple shape by Eshelby
[1,2] when the equivalent particle sizes are relatively small.
However, the agreement becomes less consistent with that infer-
ence when the equivalent particle sizes are relatively large, for
examples, r0/s = 0.6 for soft particle in Fig. 22 and r0/s = 0.7 for hard
particle in Fig. 23, reflecting the stronger interference among
particles.

The stress distributions for soft and hard ellipsoidal particles are
presented in Figs. 24 and 25, respectively, as a function of n1/s with
various aspect ratios, c/a, while the equivalent particle sizes, r0/s, is
kept constant. The results of the computed stress distributions
show further the validity and the effectiveness of the present
algorithm.

4.6. Convergence behavior

The convergence behavior of the proposed algorithm is investi-
gated by examining the required number of iterations. Figs. 26–30
show that the number of iterations varies with a variety of factors
including the modulus ratio, the loading mode, the equivalent par-
ticle size or volume fraction and the shape of particles, which is
considered to reflect the effects on or the disturbances to the stress
states at the locations among particles. The required number of
iterations of the algorithm with respect to the modulus ratio, EI/
EM, is presented in Figs. 26 and 27, respectively, for the RVE being
in tension and pure shear. It is considered that the value of the
modulus ratio reflects the degree of mismatch between the mate-
rials of particles and matrix.

To study the effect of particle stiffness on the convergence
behavior, Figs. 28 and 29 present the required number of iterations
of the algorithm as a function of the equivalent particle size, r0/s,
for the RVE with hard and soft particles, respectively. It can be seen
that the number of iterations increases monotonically with the in-
crease of equivalent particle size, reflecting an increased distur-
bance of the particles. The required number of iterations of the
algorithm with respect to the aspect ratio, c/a, is presented in
Fig. 30, showing the effect of particle shape on the disturbances
among particles while those of spheroidal particles are in general
the smallest. Fig. 31 shows the CPU time of the algorithm as a func-
tion of total particle number, NI. It is approximately a linear func-
tion of NI. In summary, two principal factors need to be considered
that influence the convergence behavior of the present algorithm.
The first factor is the mutual disturbances of the stress states
among the particles, and the second factor is the mismatches be-
tween the particles and the matrix.

5. Conclusions

An efficient computational model and solution procedure are
presented for simulating ellipsoidal particle-reinforced composites
using the proposed three-dimensional eigenstrain formulation of
the BIE in the present study. As the unknowns appear only on
the boundary of the solution domain, the solution scale of the
problem with the present model remains fairly small in compari-
son with the conventional algorithm using the FEM or the BEM.
To further improve the efficiency of the algorithm, one point com-
puting is examined and employed in the algorithm. The results for

the overall properties and stress distributions are presented for a
RVE with single or multiple particles. The effects of various factors,
including the overall properties of particle-reinforced composites,
are examined. It is found that the tangential stresses on the inter-
face from the eigenstrain formulation simply take the average val-
ues of the two sides, the particle and the matrix. The effectiveness
and efficiency of the proposed algorithm as well as the convergent
performance of the solution procedure are assessed numerically.
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