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This paper describes a radar system that emulates the way the visual brain

observes its environment; it outperforms traditional radar and achieves

very smooth waveform switching.
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ABSTRACT | In this paper, we describe a cognitive radar (CR)

thatmimics the visual brain. Although the visual brain and radar

are different in that the visual brain does not transmit a probing

signal to the environment while the active radar greatly relies

on the probing signal it transmits to the environment, both of

them are observers of the surrounding environment. As such,

there is much that we can learn from the visual brain in building

a new generation of CRs that outperform traditional radars. In

this paper, we confine the discussion, in both analytic and

experimental terms, to CR aimed at target tracking. From a

theoretical perspective, using the posterior Cramér–Rao lower

bound (PCRLB), it is shown that a cognitive tracking radar has

the potential to improve tracking performance significantly. In

particular, computer experiments are presented, which dem-

onstrate that CR can indeed go beyond the theoretical limits of

traditional active radars (TARs) as well as fore-active radars

(FARs); the latter are radars equipped with feedback from the

receiver to the transmitter. Moreover, computer experiments

are presented to demonstrate another practical benefit result-

ing from the combined use of memory and executive attention

in CR for a target-tracking application. Specifically, it is shown

that with the provision of these two cognitive processes, the

transition in switching from one transmit waveform to another

goes forward in a smooth manner. Such a capability is beyond

that of TAR or FAR.
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(CR); fore-active radar (FAR); memory; perception–action cycle;

posterior Cramér–Rao lower bound (PCRLB); tracking; tradi-
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I . INTRODUCTION

The visual brain is a powerful parallelized information-
processing machine with a built-in capability to perform

certain tasks such as target detection (recognition) reliably

and target tracking accurately, at speeds far beyond the

capability of any traditional radar system in existence

today. Despite the many differences that exist between the

visual brain and traditional radar, they do share a common

feature: they are both observers of the outside world

(environment). Radar is an active sensor in the sense that
it transmits a probing signal to the environment and then

builds a picture of the environment via a decision-making

process based on the resulting radar returns. As an active

sensor, radar is engaged in both perceiving radar returns

and actuating the phenomenon that gives rise to the radar

returns [1]. The key question is: what can we do to learn

from the visual brain to significantly enhance the

information-processing power of a traditional radar? The
answer to this fundamental question lies in cognition,

hence the innovative idea of the cognitive radar (CR),

which was inspired by the echo-locating system of bat in
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[2] and, then, the visual brain in [3]. The reason for the
focused attention on the visual brain is the enormous

literature in neuroscience on the visual system.

To proceed from a traditional radar to CR, the first step

in this evolutionary process described in the literature may

be credited to Kershaw and Evans [4]. In that paper, a link

from the receiver to the transmitter was added, albeit in an

offline manner, thereby modifying the radar into a closed-

loop feedback control system. Hereafter, this kind of radar
is referred to as a fore-active radar (FAR).

We may thus distinguish three classes of radar as

follows.

1) Traditional active radar (TAR), which operates in a

feedforward manner; TAR may involve the use of

adaptive filtering (e.g., Kalman filtering) for

iterative state estimation in the receiver [5], as

well as adaptive beamforming for matching the
transmitted waveform to the environment [6].

2) Fore-active radar (FAR), which distinguishes itself

in using a feedback link connecting the receiver to

the transmitter; in the radar literature, such a

radar is said to be fully adaptive, in that it has

global feedback that includes the environment

within the feedback loop; and it could also involve

adaptive filtering in the receiver and adaptive
beamforming in the transmitter [7]. In control

theory, it is known that feedback facilitates

intelligence; we may therefore say that a fully

adaptive radar has limited intelligence, which

represents the first step toward cognition that is

put to practical use in the transmitter for transmit-

waveform selection [4], [7], [8] or resource

allocation [9].
3) Cognitive radar (CR), which differs from TAR as

well as FAR by virtue of the following capability:

the development of rules of behavior in a self-

organized manner through a process called learn-
ing from experience that results from continued

interactions with the environment [3].

A. Organization of the Paper
In this paper, we present a detailed study of CR that

mimics the visual brain. The paper is organized as follows.

Section II provides historical notes on human cognition,

followed by Section III, which builds on the material

covered in Section II and sets the stage for the formulation

of CR. Section IV describes Fuster’s paradigm of cognition.

With Fuster’s paradigm as the framework on which CR is

based, Section V describes the engineering perspective of
cognition. Then, in Section VI, we describe the perception–

action cycle, followed by Section VII devoted to memory.

In physical terms, the perception–action cycle and mem-

ory occupy distinct locations of their own within CR.

Sections VIII and IX are devoted to two algorithmic

mechanisms, namely attention and intelligence, respective-

ly. Section X describes a cardinal characteristic of CR,

namely the cyclic directed information-flow diagram.
Sections XI, XII, and XIII are devoted to computational

studies: the first two are aimed at demonstrating the

information-processing power of CR as a target tracker,

and the third one is aimed at the ways in which the

underlying physical characteristic of transmit waveforms

evolves as we move through different cycles of computation

under different composition of CR. The paper concludes

with summary and discussion in Section XIV.

II . HISTORICAL NOTES ON
HUMAN COGNITION

A. Large-Scale Brain Networks in Cognition
Much of what we know about brain functions has relied

on the following approach: simplistic mapping of cognitive
constructs onto brain areas. The traditional approach to

human cognition may be viewed as the modular paradigm,

in which brain areas are postulated to act as independent

processors to carry out specific functions.

However, a new paradigm is emerging in cognitive

neuroscience, which goes beyond the modular paradigm.

In this new paradigm, emphasis is placed on the following

postulate [10]:

Cojoint functions of brain areas, which work

together as a large-scale network.

In this section, we highlight some important contribu-

tions that have been made to this new way of thinking

about human cognition.

A large percentage of the information processing in the
brain is performed in the cerebral cortex and it plays a key

role in processes attributed to cognition by different

researchers. Since the 1950s, Mountcastle’s work on

characterizing the columnar organization of the cerebral

cortex has influenced research carried out in this field; he

pointed out that cortical minicolumns are the basic

functional units of cortex [11]. In 1978, based on the

uniform appearance of the cortex, he proposed that all
regions of the cortex may use a basic information-processing

algorithm to accomplish their tasks [12]. This algorithm

must be independent of the nature of the information-

bearing sensory input. In other words, all kinds of sensory

inputs (i.e., visual, audio, etc.) are coded in a standard form

and fed to this basic processing algorithm [13].

As a pioneer in computational neuroscience, Marr

followed a similar way of thinking that very few
fundamental techniques are used by the cerebral cortex

to process information for different tasks [14]. He was

interested in developing a general computational theory

for the brain based on biological evidence. However, in

later years, he just focused on vision.

Following the same way of thinking and inspired by

pioneering neuroscientists who had put a great deal of
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thoughts and efforts into exploring what the essence of
cognition is, Fuster proposed the concept of Bcognit[ for

knowledge representation in the cerebral cortex; more-

over, he proposed an abstract model for cognition based on

five fundamental building blocks, namely perception,

memory, attention, intelligence, and language [15].

Last, Sporns et al. [16] have broadened their view of the

new paradigm for the conjoint functions of brain areas by

considering the underpinnings of complex networks that
cover a wide range of disciplines, which extend from

biology to physics, and social sciences to informatics. In

particular, they have addressed the issue of how the

investigation of complex-network structures and dynamics

could contribute to our understanding of brain and

cognitive functions. To this end, they highlight a series

of recent studies of complex brain networks, and attempt

to identify information processing areas for future
experimental and theoretical inquiry.

B. Cybernetics
Cybernetics is the study of the underlying structure of a

regulatory system of interest, building primarily on

information theory, control theory, and systems theory.

For cybernetics to be applicable to a regulatory system, the

system must reside inside a closed feedback loop, described
as follows:

Whenever the system acts on the environment in

which it operates, the action taken by the system

produces some change in the environment and that

environmental change is fed back to the system in

the form of information, whereafter the system is

enabled to change its own behavior in a
corresponding manner, and the cycle goes on.

This causal cyclic relationship between a regulatory

system and its environment is a cardinal characteristic of

cybernetics.

In the classic book entitled Cybernetics that was published

in 1948, Wiener defined cybernetics as the study of control

and communication in the animal and the machine [17].
Moreover, Wiener was an influential advocate of automation
[18], the essence of which featured prominently in his second

book entitled The Human Use of Human Beings, which was

published in 1950. Needless to say, Wiener was a towering

figure, widely considered to be the founding thinker of

cybernetics, developed after the World War II.

To go on, McCulloch, neuropsychologist, and Pitts,

mathematician, also contributed to the early development
of cybernetics in their own pioneering ways. In their

classic 1943 paper entitled BA logical calculus of the ideas

immanent in nervous activity,[ they made five assump-

tions on the operation of neurons in the brain: the

assumptions led to the formulation of a neural model

widely known as the McCulloch–Pitts neuron [19], which is

a binary device with a fixed threshold. As such, the neuron

can only reside in one of two possible states. In particular,
depending on the activities of its synapses, the neuron is

either active or inactive; a synapse is a neurobiological link

that connects one neuron to another. It can be justifiably

said that the era of artificial neural networks started with

the invention of the McCulloch–Pitts neuron.

Moving on to the last pioneering contribution that was

made to the early development of cybernetics, we look to

Walter for the construction of some of the first autonomous,
adaptive robots, which are vividly described in his 1953

book on The Living Brain [20]. Walter had a passionate

interest in brains as biological systems that have evolved

through learning from the consequences of their own goal-

directed actions, thereby resulting in complex behavior. In

particular, he used this interest to build adaptive robots by

incorporating into their design two cognitive functions:

one being the formulation of a goal, and the other seeking
the goal through a scanning mechanism. The end result of

these endeavors was robots, namely tortoises, that would

appear to simulate the most basic characteristics of animal

and human behavior.

C. Artificial Neural Networks
The ability to learn from continuous interactions with

the environment (world) is a distinctive characteristic of

the brain. To model how the learning process can be

mimicked artificially, a commonly used procedure is to

train an artificial neural network,1 made up of a set of
computational units called neurons.

The input–output behavior of a neuron, denoted by k,

in the network is mathematically described as follows:

uk ¼
Xm

i¼1

wkixi

yk ¼�ðuk þ bkÞ

where wki is an adjustable weight that connects node i to node

k in the neural network, m is the number of weights, xi is the
input, uk is an intermediate output, bk is an adjustable bias,

�ð�Þ is a prescribed nonlinear function (e.g., sigmoid or

hyperbolic tangent), and yk is the overall output of the neuron.

Given a neural network, we may model the learning

process algorithmically by using a supervised or unsuper-

vised procedure as follows [22].

1) Supervised Learning or Learning With a Teacher: In
conceptual terms, we may think of the teacher as having

knowledge of the environment, with that knowledge being

represented by a set of input–output examples. The

environment is, however, unknown to the neural network.

1The handbook, edited by Arbib [21], provides the place occupied by
neural networks, including their artificial counterparts, in the context of
brain theory.
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Suppose now that the teacher and the neural network are
both exposed to a training vector, i.e., examples, drawn

from the environment. By virtue of built-in knowledge, the

teacher is able to provide the neural network with a

desired response for that training vector; the desired

response represents the optimum response to the training

vector. The network parameters (i.e., weights of neurons

in the network) are adjusted under the combined influence

of the training vector, and an error signal defined as the
difference between the desired response and the actual

response of the network. Using an algorithm (e.g., the

backpropagation algorithm), the network parameters are

adjusted iteratively on an example-by-example basis until

the neural network emulates the teacher accurately

enough, at which point the training process is stopped.

In effect, the environmental knowledge is transferred to

the neural network through the training process and
stored in the network’s weights (parameters), represent-

ing long-term memory. When this condition is reached, we

may then dispense with the teacher, thereby permitting

the neural network to represent the environment com-

pletely by itself.

2) Self-Organized Learning: In this second form of

learning, the requirement is for a neural network to
discover significant features (patterns) of input data

through the use of unlabeled examples. In other words,

the neural network learns from the unlabeled examples

without a teacher. To this end, we look to an unsupervised
learning algorithm that is supplied with a set of rules of local
behavior, where the term local means that the adjustments

applied to the network’s weights (parameters) are confined

to the immediate local neighborhood of a particular
neuron, and so it goes on. In such a scenario, the learning

process tends to follow a neurobiological structure,

recognizing that network organization is fundamental to

the brain. It is here, we look to Hebb’s postulate of learning,

so called in honor of the psychologist Hebb [23]. In signal-

processing terms, the postulate may be stated as follows.

1) If two neurons on either side of a synapse

(connecting link) are activated simultaneously
(i.e., synchronously), then the strength of that

synapse is selectively increased.

2) If, on the other hand, the two neurons on either

side of a synapse are activated asynchronously,

then the synapse is selectively weakened or

eliminated altogether.

Such a synapse is commonly called a Hebbian synapse.

What is remarkable is the fact that through synaptic
amplification in accordance with Hebb’s postulate of

learning, together with two other principles of self-

organization:

• cooperation between the neurons of a neural

network, and

• structural information contained in the input data

that is prerequisite to self-organized learning,

the neural network is enabled to extract the important
features that characterize the input data, and do so without

any form of supervision.

The important point to take from this brief discussion
on learning using artificial neural networks is summed up

as follows.

• For a neural network to learn in a supervised

manner, the environment, from which the input–

output examples are drawn, should be essentially

stationary.

• On the other hand, a neural network, designed in a

self-organized manner by exploiting Hebb’s postu-
late of learning, has the built-in capability to adapt
to statistical variations in the environment, pro-

vided that the rate of those statistical variations is

slow compared to the rate at which the self-

organized learning process is accomplished.

The brief exposé of artificial neural networks, just

presented, is an integral part of cognitive science, which is

an interdisciplinary subject devoted to the study of the
mind and the many processes involved in it.

To summarize this section, particularly, large-scale

brain networks, and cybernetics, there are many divergent

views on how human cognition is described in the

literature, which should not be surprising. This divergence

makes the task of picking a basis rooted in human

cognition for the study of CR that much more challenging.

III . WHERE DO WE GO FROM HERE?

At this juncture in the paper, it is instructive that we

reflect back on the many points made in Section I and the
lessons learned from Section II.

In Section I, we stressed the somewhat loose analogy

between the visual brain and radar, hence the emphasis on

learning from the visual brain to establish the basis for a new

generation of radars, namely the cognitive radar, that goes

beyond their traditional counterparts. With cognition as the

driving force, we may look to neuroscience or cybernetics for

the way in which the idea of cognition can be implemented.
The logical source is neuroscience for the simple reason that

CR so based can also account for relevant aspects in

cybernetics, which is rationalized as follows. A cardinal

characteristic of cognitive neuroscience is the perception–

action cycle, which is, in fact, another way of describing the

causal cyclic relationship that exists between a regulatory

system and its environment in cybernetics.

Before going any further, it is equally instructive to
describe the kind of CR that we have in mind. In this

context, it can be argued that an adaptive control system, as

we know it today, may well embody perception, attention,

and intelligence. However, such a system lacks memory,

which is known in neuroscience to play a critical function

in cognition. It follows, therefore, for a radar system to be

cognitive in the true sense of the word, it must embody all
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the four functional blocks of cognition: perception–action
cycle, memory, attention, and intelligence.

Moreover, the kind of CR we have in mind is one

that goes along with the new paradigm in cognitive

neuroscience, where emphasis is placed on cojoint

functions working together under a single umbrella. To

satisfy this requirement, we have opted for Fuster’s vision

on cognition as described in his book, entitled Cortex and
Mind: Unifying Cognition [15], as the framework for reasons
that will be discussed in Sections IV and V. At this stage in

the paper, it suffices to say that the formulation of the CR

theory, based on Fuster’s paradigm, is validated by solid,

ground-breaking results presented in the latter part of the

paper. Accordingly, when we speak of CR, we have Fuster’s

paradigm in mind. Naturally, with Fuster’s paradigm being

rooted in neuroscience and CR being aimed at the

engineering communities, we may describe CR, presented
herein, as a brain-inspired engineering system.

IV. FUSTER’S PARADIGM
OF COGNITION

First and foremost, this paper on CR is aimed at the

engineering community, with the objective being that of

describing an orderly way, according to which CR can be
practically built. Moreover, with the objective also being

that of mimicking the visual brain, it is important that we

have an orderly structured framework, rooted in neurosci-

ence, which satisfies the engineering need just mentioned.

In this paper, aimed for a single tracking radar, the

current design focuses on the four most relevant underlying

fundamental building blocks described by Fuster [15]:

1) perception–action cycle, which involves the prop-
agation of feedback information about the envi-

ronment from the receiver to the transmitter on a

cyclic basis;

2) memory, part of which resides in the receiver and

the other part resides in the transmitter, with

these two parts being reciprocally coupled

together; the learning process in CR is largely

carried out in the memory;
3) attention, which is algorithmic in nature, with one

part operating in the receiver and the other part

operating in the transmitter;

4) intelligence, which is also algorithmic in nature but

distributed throughout the radar system.

According to Fuster, memory is driven by the

perception–action cycle; attention is memory driven;

and intelligence builds on all three of them. It will be
explained later that different building blocks of cognition

are distributed in the system. Some of them such as

perception–action cycle and memory involve physical

elements. Others such as attention and intelligence do not

occupy distinct physical spaces of their own. Rather,

attention and intelligence manifest themselves algorith-

mically through interactions with memory and perception

in a distributed manner. This is in agreement with the
distributed processing in the brain [24], [25]. As

mentioned before, in the neuroscience community,

recently, there has been a shift of opinion in favor of

associating cognition with dynamic interactions of distrib-

uted brain areas operating in large-scale networks rather

than associating cognitive functions to particular brain

areas [10].

Also, the concept of neural reuse has been introduced,
in which it is justifiably argued that different brain areas

can be redeployed and reused by different networks for

different purposes [26].

V. ENGINEERING PERSPECTIVE
OF COGNITION

For its formulation, Fuster’s paradigm, rooted in cognitive
neuroscience, has relied on innovative conceptualization

of ideas, supported by detailed experimentations. With this

paradigm as the frame of reference for CR, it is therefore

not surprising to find that certain functional blocks of CR,

namely memory and attention tend to be largely concep-

tualized at this early stage of the development of CR.

By building on the following concepts that are well

developed in the engineering literature, we now have a
strong basis for describing the perception–action cycle,

which represents the first cardinal characteristic of CR:

• first, the Bayesian paradigm for probabilistic

modeling of perceiving the radar environment in

the receiver;

• second, Bellman’s dynamic programming for the

transmitter to optimally control the receiver via

the radar environment;
• third, information theory for mathematical de-

scription of the link connecting the receiver to the

transmitter.

Nevertheless, as already mentioned, research into

cognition is in its early stages of development, be that in

mathematical terms or practical applications. As such,

there is much to be done on the following two topics:

• first, the important role that memory, and
therefore learning, plays in the mathematical

modeling and design of CR;

• second, a rigorous mathematical theory of CR,

viewed as a complex system of systems.

Needless to say, both of theses two topics are beyond the

scope of the paper.

Elaborating further on the Bayesian paradigm, there

are two aspects of the paradigm that impact radar theory
and design in a generic sense [27], [28]:

• hypothesis testing, which is basic to target

detection;

• estimation theory, which is basic to target tracking.

Both of these processes are performed in the receiver. Owing

to space limitation, the scope of the paper is confined to

target tracking. Here again, when we speak of target tracking
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in the context of the radar literature, we usually think of
multiple-target tracking. However, the primary objective of

this paper being that of demonstrating how cognition can be

explained in improving radar performance and given space

limitation as another constraint, the study of CR will be

restricted to single-target tracking.

The following four sections describe the fundamental

building blocks of cognition.

VI. PERCEPTION–ACTION CYCLE

Fig. 1 shows the block diagram of CR, with the perception–

action cycle and memory occupying their distinctive places

within the radar system [3]. As mentioned previously, both

attention and intelligence are algorithmic mechanizations
that are driven by the perception–action cycle and

memory. Through waveform adaptation, which is per-

formed in the perception–action cycle, CR gains control

over certain aspects of the sensing process. Therefore, the

perception–action cycle ties together estimation (through

sensing) and control. Hence, cognition equips a radar with

controlled-sensing ability to counteract the effect of

nuisances (e.g., clutter) [29].
Perception, performed in the receiver, operates on

measurements (i.e., radar returns) from unknown target

with a dual objective: reliable detection of the target and

tracking its behavior across time. As mentioned previously,

herein we focus on target tracking, which is treated as a

state-estimation problem under a Bayesian framework [2].

When the radar environment is nonlinear, we resort to an

approximate form of Bayesian filtering [27].

To address the tracking problem, the traditional approach
is to start with a state–space model that consists of a pair of

equations: the system equation describes evolution of the

state across time with system noise as the driving force, and

the measurement equation describes dependence of the

measurements on the state corrupted by measurement noise.

Typically, but not always, the state–space model is nonlinear,

which requires approximating the optimal Bayesian filter in

some sense. Hereafter, we look to an approximate Bayesian
filter to perform perception of the environment, which is

naturally performed in the receiver.

The perception–action cycle requires that the receiver be

linked to the transmitter. In a monostatic radar, where the

receiver and the transmitter are collocated, such a require-

ment is relatively straightforward to handle. Accordingly, the

receiver is also responsible for computing feedback informa-
tion about the radar environment and then supplying it to the
transmitter for action in the environment. With state

estimation playing the role of perception in mathematical

terms, it is logical to formulate the feedback information

using the state-estimation error vector.

Next, turning to the transmitter, its function is to

control the receiver indirectly through illumination of the

environment. Here again, with optimal control in mind,

we may look to Bellman’s dynamic programming as the
method of choice [2]. However, when dimensionality of

the state space, action space, measurement space, or

combination thereof, is high, which is typically the case in

difficult tracking problems, we have to resort to approx-
imate dynamic programming for mitigating the curse-of-

dimensionality problem [8].

Fig. 1. Block diagram of CR with memory.
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Thus, in light of what we have just described, the
perception–action cycle embodies four functional blocks:

approximate Bayesian filter for environmental perception

in the receiver, linkage for feedback information from the

receiver to the transmitter, approximate dynamic program-

ming for receiver-control performed in the transmitter

and, finally, the state–space model of the radar environ-

ment. The perception–action cycle may, therefore, be

viewed as a closed-loop feedback control system, which, in
physical terms, is clearly visible in Fig. 1. In computational

terms, we thus say:

The function of the perception–action cycle is to

produce information gain about the radar environ-

ment by processing the received signal (radar

returns), with magnitude of the gain progressively

increasing from one cycle to the next.

A. Bayesian Filtering for Optimal Perception
in the Receiver

Following the traditional procedure used in the

analytic study of a radar system, we proceed on the basis

of a baseband model developed for describing the

transmission of a radar signal across the environment

[4], [8]. The idea behind baseband modeling is that the

transmitted and received signals are represented by the
complex envelopes of their actual radio-frequency (RF)

forms. Most importantly, baseband modeling dispenses

with the carrier frequency without incurring loss of

information; in so doing, mathematical analysis of radar

signal is simplified considerably.

In the rest of this section, we denote the cycle at the

receiver in discrete time k, corresponding to the waveform

Qk�1, which was transmitted at cycle k� 1.
Recognizing that in a real-life situation the radar

environment operates in continuous time, the system
equation of the state–space model is described by [30]

dxðtÞ ¼ f xðtÞ; tð Þ dtþ
ffiffiffiffiffi
Q

p
dBðtÞ (1)

where xðtÞ 2 RNx denotes state of the system at contin-

uous time t; BðtÞ 2 RNx denotes the standard Brownian

motion with increment dBðtÞ that is independent of xðtÞ
and it plays the same role as system noise;

f : RNx � R ! RNx is a known nonlinear function with

appropriate regularity properties; and Q 2 RNx�Nx is
called the diffusion matrix. It is also assumed that the

initial conditions and noise processes are statistically

independent.

To discretize the stochastic differential equation (1) in

an efficient manner, we may use the Itô–Taylor expansion.

This expansion of higher order is theoretically more

accurate than that of lower order [31]. Hereafter, the

Itô–Taylor expansion of order 1.5 is chosen because of
its most effective approximation capability.

Turning next to the measurement equation, it is

generally described in discrete time k. Thus, dependence

of the measurement vector zk on the state xk is expressed

in the discrete form

zk ¼ hðxkÞ þwkðQk�1Þ (2)

where the vector wkðQk�1Þ denotes the measurement noise
that acts as the driving force. It is in the dependence of this

noise on the waveform-parameter vector Qk�1 generated at

time k� 1 that the transmitter controls accuracy of the

state estimation in the receiver at time k, yielding the

measurement zk.2

Examination of the system noise in (1) and measure-

ment noise in (2) reveals an important physical fact in

modeling the radar environment:

Evolution of the target’s state across time is

governed by the target’s dynamics itself, indepen-

dent of the radar system; the radar interacts with the

target only when the measurement system is

switched on.

Application of the state–space model described in (1)
and (2) hinges on three basic assumptions:

1) the nonlinear vectorial functions fð�Þ and hð�Þ in

(1) and (2) are both smooth and otherwise

arbitrary;

2) the system noise and measurement noise are zero-

mean Gaussian distributed and statistically inde-

pendent of each other;

3) the covariance matrix of system noise is known.
Examining (1) and (2), we immediately see that the state

xk is hidden from the receiver, and the challenge for the

receiver is therefore to exploit dependence of the

measurement vector on the state to compute an estimate

of the state and do so in a sequential and online manner.

Before proceeding further, two other points deserve

particular attention.
1) Mathematical description of the perception–

action cycle proceeds with perception of the

environment by the receiver before action is taken

by the transmitter; in other words, we have the

2Building on the model proposed in [4], the measurement noise in (2)
was considered as a function of the transmitted waveform parameters.
However, in practice, the measurement noise is also affected by other
factors such as calibration residues and system nonlinearities, which are
not directly dependent on the transmitted waveform. In other words, the
measurement noise consists of two terms; one is controllable by the
transmitted waveform and the other one is not. For a concise treatment of
the concept of CR, part of the measurement noise that is independent of
the transmitted waveform has been neglected in this paper. Analysis based
on (2) provides the ideal situation which can represent a benchmark for
more practical situations that can be elaborated on in future studies.
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pair ðQk�1; zkÞ, where zk is the measurement made
at the receiver at time k in response to the

transmit-waveform parameter vector Qk�1.

2) The transmit waveform, generated at time k� 1,

is obtained by combining linear frequency-

modulated (LFM) waveform pulse with Gaussian

amplitude modulation [4], [32]. The transmit-

waveform parameter vector is defined as

Qk�1 ¼ ½�k�1 bk�1�T , where � and b denote the
duration of the Gaussian envelope for the LFM

chirp transmit signal and the chirp rate of the

LFM pulse, respectively; the superscript T
denotes matrix transposition.

The Bayesian filter is known to be optimal, at least in

conceptual terms [33]. Unfortunately, when the state–

space model is nonlinear as it is in (1) and (2), the Bayesian

filter is no longer computationally feasible, hence the
practical need for its approximation. To do this approxi-

mation under the Gaussian assumption, there are three

possible continuous-discrete approaches, based on the

following:

• extended Kalman filter;

• unscented Kalman filter;

• cubature Kalman filter.

In [34], these three approaches have been compared for a
relatively difficult tracking problem that involves a corner
turn, and therein it is demonstrated that the continuous-

discrete cubature Kalman filter (CD-CKF) outperforms the

other two approaches. Accordingly, we have chosen to

work with the CD-CKF as the tool for perception of the

environment in the receiver.

Under the Gaussian assumption, the Bayesian filter

reduces to the problem of how to compute moment

integrals whose integrands have the following form:

nonlinear function� Gaussian: (3)

To numerically compute such integrals, we consider the

cubature rule of third degree. Following the analysis
described in [34], based on this cubature rule, two steps

involved in each recursion of the CD-CKF are as follows.

1) Time update, which focuses on computing the

estimate of the state and associated covariance for

consecutive steps, until we end up with the time

update (x̂m
kjk and Pm

kjk), respectively, where m is the

number of time-update iterations per sampling

interval. These estimates are then used to compute
the predicted state and associated covariance,

denoted by x̂m
kjk�1 and Pm

kjk�1, respectively.

2) Measurement update, which, for every new mea-

surement zk, propagates the cubature points to

predict the one-step prediction of the measure-

ment and associated covariance, denoted by ẑkjk�1

and Pzz;kjk�1, respectively. Also, the cross covari-

ance between the state and the measurement,
denoted by Pxz;kjk�1, is computed. Next, the new

measurement zk is incorporated into the mea-

surement update of the state and its covariance,

yielding the filtered estimate of the state x̂kjk and

its covariance Pkjk.

Finally, the Kalman gain Gk is computed, which is

defined by

Gk ¼ Pxz;kjk�1P
�1
zz;kjk�1 (4)

which has been singled out because of its relevance to what

follows. In particular, examining the formulas derived in

[34] for the CD-CKF algorithm, we find that with the

exception of Pzz;kjk�1, all the estimates and covariances,

described under the time update and measurement update,
are independent of the transmit-waveform vector Qk�1. To

be more specific, we find that the expression for Pzz;kjk�1

has the following format, expressed in words:

Pzz;kjk�1 ¼
sum of two terms

independent of Qk�1

� �

þ
covariance matrix of

measurement noise RkðQk�1Þ

� �
: (5)

For reasons that will become apparent in Section VI-D on

dynamic programming, (5) plays a key role in the

perception–action cycle.

B. Shannon’s Entropy Versus Fisher Information
Discussion of perception, involving state estimation,

would be incomplete without incorporating a theoretical

limit on its estimate. To pave the way for this theoretical

limit in Section VI-C, it is informative that we briefly
review the two notions: Shannon’s entropy and Fisher
information.

Entropy is a measure of our uncertainty about an event

in Shannon’s information theory. Specifically, the entropy

of a discrete random vector X with alphabet X is defined

as follows [35]:

HðXÞ ¼ �
X
x2X

pðxÞ log pðxÞ: (6)

It can also be interpreted as the expected value of the term

1= log pðxÞ

HðXÞ ¼ E
1

log pðxÞ

� �
(7)
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where E is the expectation operator and pðxÞ is the
probability density function (pdf) of X.

As mentioned previously, relevant portion of the

measurement can be interpreted as information. In this

line of thinking, a summary of the amount of information

with regard to the variables of interest is provided by the

Fisher information matrix [36]. To be more specific, the

Fisher information plays two basic roles:

1) it is a measure of the ability to estimate a quantity
of interest;

2) it is a measure of the state of disorder in a system

or a phenomenon of interest.

The first role implies that the Fisher information matrix

has a close connection to the estimation-error covariance

matrix and can be used to calculate the confidence region

of estimates. The second role implies that the Fisher

information has a close connection to Shannon’s entropy.

Elements of the Fisher information matrix at time k are

defined by [36]

J
ij
k ¼ E rxi

log pðXk;ZkÞrT
xj

log pðXk;ZkÞ
h i

(8)

where Xk ¼ fx0; . . . ;xkg and Zk ¼ fz0; . . . ; zkg; the Xk,
denoting a set here, should not be confused with the

random variable X. The definition in (8) is based on the

outer product of the gradient of log p with itself, where

the gradient is denoted byrx in the equation. There is also

an equivalent definition based on the second derivative of

the logarithm on the right-hand side of (8), yielding

J
ij
k ¼ �E

@2 log pðXk;ZkÞ
@xi@xj

� �
: (9)

The definitions of Shannon’s entropy H and Fisher

information J show that both are functions of the

corresponding pdf. The connection between these two

information measures is revealed by examining the way
that they are affected by the shape of the pdf. A relatively

broad and flat pdf, which is associated with lack of

predictability and high entropy, has small gradient

contents and, in effect therefore, low Fisher information.

On the other hand, if the pdf is relatively narrow and has

sharp slopes around a specific value of x, which is

associated with bias toward that particular value of x and

low entropy, it has large gradient contents and therefore
high Fisher information. In summary, there is a duality

between Shannon’s entropy and Fisher information.

However, a closer look at their mathematical definitions

reveals an important difference [1].

• A rearrangement of the tuples fxi; pðxiÞg may

change the shape of the pdf curve significantly but

it does not affect the value of the summation in (6)

because the summation can be calculated in any
order. Since H is not affected by local changes in

the pdf curve, it can be considered as a global

measure of the behavior of the corresponding pdf.

• On the other hand, such a rearrangement of points

changes the slope and therefore gradient of the pdf

curve, which, in turn, changes the Fisher informa-

tion significantly. Hence, the Fisher information is

sensitive to local rearrangement of points and can
be considered as a local measure of the behavior of

the corresponding pdf.

Both entropy (as a global measure of smoothness in the

pdf) and Fisher information (as a local measure of

smoothness in the pdf) can be used in a variational

principle to infer about the pdf that describes the

phenomenon under consideration. However, the local

measure may be preferred in general [1]. This leads to
another performance metric that is used in simulations to

compare different radar configurations, which is discussed

in Section VI-C.

C. Posterior Cramér–Rao Lower Bound (PCRLB)
To assess the performance of an estimator, a lower

bound is always desirable. Such a bound is a measure of

performance limitation that determines if the design

criterion is realistic and implementable or not. The

Cramér–Rao lower bound (CRLB) is a lower bound that

represents the lowest possible mean-square error (MSE) in
the estimation of deterministic parameters for all unbiased

estimators. It can be calculated as the inverse of the Fisher

information matrix. For random variables, a similar version

of the CRLB, namely the PCRLB, was derived in [37], as

shown by

Pkjk ¼ E ðxk � x̂kÞðxk � x̂kÞT
� �

� J�1
k (10)

which is also referred to as the Bayesian CRLB [38], [39].

To calculate it in an online manner, an iterative version of

the PCRLB for nonlinear filtering using state–space

models was proposed in [40], where the posterior

information matrix of the hidden state is decomposed for

each discrete-time instant by virtue of the factorization of
the joint pdf of the state variables. In this way, an iterative

structure is obtained for evolution of the information

matrix. For a nonlinear system with the following state–

space model:

xkþ1 ¼ f kðxkÞ þ Nk (11)

zk ¼hkðxkÞ þwk (12)

the sequence of posterior information matrices fJkg for

estimating state vectors fxkg was calculated in [40] as
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follows:

Jkþ1 ¼ D22
k �D21

k Jk þD11
k

	 
�1
D12

k (13)

where

D11
k ¼E rxk

fkðxkÞQ�1
k rT

xk
fkðxkÞ

h i
(14)

D12
k ¼ � E rxk

fkðxkÞ½ �Q�1
k (15)

D21
k ¼ D12

k

� �T
(16)

D22
k ¼E rxkþ1

hkþ1ðxkþ1ÞR�1
kþ1rT

xkþ1
hkþ1ðxkþ1Þ

h i
þQ�1

k : (17)

The Qk and Rk are the process and measurement noise

covariance matrices, respectively.
As will be described in Section VI-D, CR manipulates

the measurement noise covariance matrix Rkþ1 by

adapting the waveform parameters in a way that the

covariance is reduced iteratively. In the above formulas,

the measurement noise covariance matrix only appears in

(17). For the linearized measurement equation

zk ¼ Hkxk þwk (18)

which is beneficial for illustrative purposes, (17) is

reduced to

D22
k ¼ Q�1

k þHT
kþ1R

�1
kþ1Hkþ1: (19)

If the elements of Rkþ1 reduce to small values, elements of

R�1
kþ1 will have large values, and elements of D22

k ,
therefore, will also have large values. Then, according to

(13), elements of Jkþ1 and J�1
kþ1 will, respectively, have

large and small values. CR iteratively reduces the lower

bound by manipulating Rkþ1. Theoretically speaking, as

the elements of Rkþ1 reduce iteratively and go toward

zero, the measurement noise is gradually eliminated from

the measurement equation and the measurements will

contain only useful information about the hidden state.
Then, the radar will be able to provide accurate estimates

of the state. In other words, in theory, CR would be

capable of pushing the PCRLB down to zero, which will be

confirmed by computer experiments later on. However,

implementing such a system in practice would be very

challenging.

Section VI-D discusses the sensitivity analysis.

D. Sensitivity Analysis
The derivation of the approximate Bayesian filter is

based on the assumption that the system model and noise

statistics are known. In practice, it is quite likely that the

true distributions deviate from the assumed nominal ones.

Therefore, it would be desirable to modify the filter in a

way that it is to some extent desensitized with respect to

modeling errors and implementation approximations.

Since there is no free lunch, this robustification may
deteriorate the performance of the filter [5], [41].

According to Huber and Ronchetti [42], an algorithm is

said to be robust when its performance is not impaired by

small deviations of the actual pdf from the pdf of the

assumed model. In other words, a robust algorithm’s

performance must be acceptable for a range of possible

deviations from the nominal model [43].

There are two approaches to design filters that are able
to deal with the problem of not knowing the true

distribution.

• Stochastic approach, in which a risk-sensitive formu-

lation of the nonlinear filter is considered. Rather

than minimizing the MSE, the risk-sensitive filter

minimizes the mean-exponential-square error. An

error bound can be obtained for the risk-sensitive

filter, which consists of two terms that are
respectively associated with the good performance

under nominal conditions and acceptable perfor-

mance under perturbed conditions. The second

term determines the range of permissible deviations

from the nominal model. Compared to the optimal

Bayesian filter, the risk-sensitive filter will have a

performance which may be slightly worse under

nominal conditions but deteriorates slower under
perturbed conditions [44].

• Deterministic approach, in which the min–max
technique is used to achieve optimal performance

under the worst case condition. In this case, an

error bound can be obtained in terms of distur-

bance energy [45].

Another comment is in order, regarding the heavy-tail

distributions. In Kalman-filter-based estimators, due to
the Gaussian assumption, neither prior nor likelihood

dominates the other one because they have similar tails.

Therefore, the posterior will be a compromise between

the prior and the likelihood. If one of them has a heavier

tail (i.e., it is weaker), then the posterior converges to the

stronger distribution that has a lighter tail, be it the prior

or the likelihood. In this context, when the innovation

term is large or there is a large difference between the actual
measurement and its predicted value, convergence of the

posterior to the prior or the likelihood will have two different

meanings. Convergence to the prior means that the filter

somehow considers the new measurement as an outlier and

has the tendency to ignore it. On the other hand, convergence

to the likelihood can be interpreted as acknowledgement of a

shift in structure [46]. In the formulation of the risk-sensitive
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filter, cost function is a weighted summation of two terms: an
accumulated error cost up to instant k� 1 and the error cost

at time k, where each one of these terms is multiplied by a risk

parameter. Therefore, the risk-sensitive filter will be able to

handle the situation of occurrence of a large innovation

delicately. Moreover, in such a situation, entropy as a global

measure of the behavior of the corresponding pdf will help the

perceptual associative memory to decide whether a change of

the model structure is necessary. Modifying the perceptor
according to the risk-sensitive formulation is a topic for future

research.

Now that the receiver is covered thoroughly, the

controller structure in the transmitter is investigated next.

E. Dynamic Programming for Control
in the Transmitter

Previously, we remarked that the measurement noise

covariance in the measurement equation (2) depends only

on the transmitted waveform parameter vector Q¼½�; b�,
which applies to LFM waveform pulse combined with
Gaussian amplitude modulation. Hence, if the waveform

parameters are selected optimally, any action taken by the

transmitter will result in an optimal control of the receiver

via the environment; in other words, the receiver is under

control of the transmitter. With this point in mind, we may

now address algorithmic formulation for waveform selec-

tion in the transmitter.

Before proceeding further, however, one important
remark deserves particular attention: the state of the target

is hidden from the receiver. This fact, in turn, poses a

practical problem in the following sense: the formulation

of Bellman’s dynamic programming demands not only that

the environment be Markovian but also that the controller

have perfect knowledge of the state. In reality, however,

the transmitter of a radar tracker has an imperfect estimate

of the state reported to it by the receiver. Accordingly, we
are faced with an imperfect state-information problem. To

resolve this problem, we follow [47] by introducing a new

information state vector defined by [8]

Ik ¼� ðZk;0k�1Þ; with I0 ¼ z0 (20)

where

Zk ¼ ½z0 z1 � � � zk� (21)

0k�1 ¼ ½Q0 � � � Qk�1�: (22)

From these three equations, we readily obtain the

recursion

Ik ¼ ðIk�1; zk; Qk�1Þ (23)

which may be viewed as the state evolution of a new
dynamic system with perfect state information, and

therefore amenable to dynamic programming. According

to (23), we may now say:

• Ik�1 is the old value of the state;

• Qk�1 is the waveform parameter vector computed

at time k� 1, and on which the receiver operates at

time k;

• the current measurement zk is viewed as a random
disturbance resulting from the control decision

Qk�1.

At any cycle time k, the waveform-selection algorithm

seeks to find the set of best waveform parameters by

minimizing a cost-to-go function for a rolling horizon of

L steps, that is, to minimize the cost incurred in steps

k : kþ L� 1. Denoting the control policy for the next

L steps by �k ¼ f�k; . . . ; �kþL�1g with the policy function
�ðIkÞ ¼ Qk 2 Pkþ1 mapping the information vector into a

selection in the waveform library Pkþ1, we wish to find a

control policy �k at time k corresponding to the solution of

the following minimization [4], [8]:

min
�k

E
XkþL�1

i¼k

gðQkÞ
" #

(24)

where L is the number of time steps looking ahead, and the

cost-to-go function gðQkÞ is defined in terms of the

posterior expected state-estimation error Ekþ1jkþ1 that is

dependent on Qk. The posterior covariance of the state (the

updated filtered state-error covariance matrix), namely

Pkþ1jkþ1ðQkÞ, is implicitly included under the summation
in formulating the cost-to-go function; the cost function

gð�Þ inside the summation in (24) is the Fisher information

metric defined by the trace of Pkþ1jkþ1ðQkÞ. The Qk is the

Bunknown[ to be computed for the perception–action

cycle to continue on.

With optimal control being the essence of dynamic

programming, we have to address the following question:

How do we optimize the cost function gðQkÞ with

respect to the Bunknown[ transmit-waveform vector

Qk in a computationally feasible manner?

To answer this question, we first note that the feedback

information computed in the receiver, to be passed onto

the transmitter, is defined by the one-step prediction

covariance Pkþ1jk. The desired posterior (smoothed)
covariance Pkþ1jkþ1 is related to Pkþ1jk by the Riccati
equation, as follows [8], [34]:

Pkþ1jkþ1 ¼ Pkþ1jk �Gkþ1Pzz;kþ1jkG
T
kþ1: (25)
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The product term Gkþ1Pzz;kþ1jkG
T
kþ1 may be expressed as

follows, using (4):

Gkþ1Pzz;kþ1jkG
T
kþ1 ¼ Pxz;kþ1jkP

�1
zz;kþ1jkPxz;kþ1jk (26)

where we have made use of the symmetric property of the

covariance matrices on the right-hand side of (26). Now,

we make two important observations.

• The cross covariance Pxz;kþ1jk is independent of Qk.

• On the other hand, the measurement covariance

Pzz;kþ1jk is dependent on Qk, with the dependence

being solely limited to the measurement noise

covariance RðQkÞ.
We are, therefore, fortunate to find that the optimization is

feasible in an online manner because Qk shows up only in

RðQkÞ; this idea was first described in [4].

In a physical context, the state–space model of CR is an

infinite-dimensional continuous-valued space. Moreover,

the dimension of the model grows exponentially with depth

of the optimization horizon L. Specifically, at each step of

the dynamic programming algorithm, we need to examine
an infinite number of possibilities such that the perfect

state-information vector Ik can evolve to a new value on the

next time step. To simplify this very burdensome compu-

tation, we apply an approximation technique, namely the

cubature rule of third degree, to the expectation involved in

defining the cost function gðQkÞ; see [8] for details. The net

result of doing all this is an approximation form of dynamic

programming, which is computationally feasible so long as
the optimization horizon L is kept not too large.

VII. MEMORY

Next, we turn to the requirement that CR has to learn from

the experience gained through continued interactions with

the radar environment [2], [3]. This requirement is

satisfied by equipping the radar with a memory system,

one part of which resides in the receiver, another part

resides in the transmitter, and the two of them are
reciprocally coupled in the manner described in Fig. 1.

These three kinds of memory are discussed in what

follows, one by one.

A. Perceptual Memory
The part of memory that resides in the receiver is called

perceptual memory. It would be desirable for the perceptual

memory to have a multiscale structure. The idea behind
this kind of structure is referred to in the neural network

literature as features of features [48]. Basically, through a

learning process, the first layer of the perceptual memory

extracts the important features that characterize the

incoming measurement vector zk received at cycle k.

Naturally, these features act as the input to the second

layer of the perceptual memory, which, in turn, goes on to

extract the features of features that characterize the

original measurement zk, and so on for the third layer of

perceptual memory.
The idea of features of features, as just described, is

simply a learning process that goes on in an associative
memory of the heterogeneous kind [22], [49]–[51]. To

elaborate, consider the diagram depicted in Fig. 2, where

we have a measurement space at the input end of an

associative memory and a system-model library at the output

end; this library consists of a grid of points, each one of which

represents a different set of values of the nonlinearity
(responsible for transition from one state to another) and

covariance of the system noise. Basically, the associative

memory acts as a correlator between the measurement space

at the one end and the system-model space at the other end

for the purpose of matching each point in the system-model

space to a corresponding point in the measurement space.

B. Executive Memory
The part of the memory that resides in the transmitter

is called the executive memory, whose structural composi-

tion follows a similar format to that of the perceptual
memory, with the following basic difference:

Whereas the perceptual memory sees the radar

environment through the measurement vector

directly, the executive memory sees the radar

environment indirectly through the feedback infor-

mation about the environment supplied to the

transmitter by the receiver.

Note also that the executive memory is reciprocally

coupled to another library called the transmit-waveform
library. Each grid point in this second library represents a

different combination of chirp rate of the LFM signal and

duration of its Gaussian envelope: two parameters that

define the transmit-waveform vector Q. The executive

Fig. 2. Perceptual memory as a heterogeneous associative memory.
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memory operates in a manner similar to the perceptual
memory except for the following difference: the matching

(correlation) process involves the feedback information

rather than the measurement vector. Equally well, except

for differences in terminology, Fig. 2 also applies to the

executive memory, representing another example of

associative memory.

C. Working Memory
In order to exploit the full capability available in having

the perceptual memory and executive memory, it is

desirable to have them reciprocally coupled together.

This reciprocal coupling is achieved by means of the

working memory, as shown in Fig. 1. The working memory

is a dedicated memory with limited capacity that provides

an interface between perception and action by linking the

perceptual and executive memories together. Unlike the
perceptual and executive memories that are long-term

memories, working memory has a short-term nature, and it

is therefore used for temporary information storage [52].

In the memory viewed as a whole, we thus have an

integrated system that enables all the information-

processing steps performed in each cycle of the perception–

action cycle mechanism to proceed in a synchronized
(coherent) fashion across time. This self-organized temporal
behavior is another cardinal characteristic of CR.

Having described the composition of memory, we may

now go on to describe its function as follows:

The function of working memory in CR is to

predict the consequences of actions taken by the

radar’s receiver, transmitter or both.

In CR, the working memory consists of a neural network

of the heterogeneous associative kind [22], [49]–[51]. For

example, suppose that in a particular cycle in the perception–

action cycle, the perceptual memory picked a grid point in

the system-model library that is incorrectly matched to the

measurement vector at the receiver input. In such a situation,

the working memory corrects that action on the next cycle. A

similar statement applies when a point in the transmit-
waveform library is incorrectly picked in the transmitter.

D. Guidelines for Designing the Memory
As pointed out previously in this section, the use of

multiscale memory is a highly desirable design require-

ment for the CR tracker to perform its assigned task

exceptionally well. In other words, hierarchical depth
should be built into the design of memory [53].

There are various ways in which this requirement can

be satisfied; the most elegant of them all is based on the

encoding–decoding principle [27]. According to this princi-

ple, the memory is composed of two components:

• multiscale encoder, the function of which is to map
the incoming measurement vector onto an abstract

feature that is easy to understand;

• multiscale decoder, which operates on the features
produced by the encoder to reconstruct the

original measurement vector as closely as possible.

The simplest way of constructing the encoder–decoder

is to use a multilayer perceptron, called the replicator or

auto-encoder [22].

1) Design of the Perceptual and Executive Memories: A

block diagram of the complete memory system is
represented by Fig. 3, which embodies the perceptual

memory (on the right), the executive memory (on the left),

and the working memory (in the middle). Both the

perceptual memory and the executive memory have

multiple hidden layers. In the following, we will start

from the design of the multiscale perceptual memory.

As already mentioned, a replicator neural network is a

simple choice of implementing the multiscale memory
[54]. The replicator neural network described in [54] is a

special kind of multilayer perceptron network with three

hidden layers, each of which follows a strict structural

configuration. Therefore, the backpropagation algorithm is

applicable as the training procedure [22]. The input layer

of source nodes and the output layer of neurons have the

same size. However, in going up through the encoder, the

size of the hidden layers gets progressively smaller until we
get to the Bbottleneck[ at hidden layer 3. Then, with hidden

layer 3 common to the encoder and the decoder, we see that

the two of them form a symmetric pair with respect to each

other. Likewise, the activation functions of neurons differ

from layer to layer, summarized as follows [54].

• For the second and fourth hidden layers, the

activation functions are defined by the hyperbolic

tangent function

’ð2Þð�Þ ¼ ’ð4Þð�Þ ¼ tanhð�Þ (27)

with � as the input to a neuron in a particular

layer.

• For the output (fifth) layer, we use a linear
activation function defined by

’ð5Þð�Þ ¼ �: (28)

• The activation function for neurons in the middle

(third) layer is defined as follows:

’ð3Þð�Þ ¼ 1

2

þ 1

2ðN � 1Þ
XN

j¼1

tanh a � � j

N

� �� �
(29)

Haykin et al. : Cognitive Radar: Step Toward Bridging the Gap Between Neuroscience and Engineering

3114 Proceedings of the IEEE | Vol. 100, No. 11, November 2012



which describes a smooth staircase activation func-

tion with N treadles, thereby quantizing the vector of

the third-layer outputs into K ¼ Nn grid points, with

n as the number of neurons of this third layer.

Note that in Fig. 3, aggregation of the encoder, the

decoder, and the bottleneck layer is a complete represen-

tation of the replicator network. Training of the replicator

network is carried out in an unsupervised manner, because
the measurement vector is applied to both the input layer

and the output layer, where, in the latter case, the

measurement vector takes on the role of desired response.

The overall effect of the unsupervised training procedure

can be rationalized in two ways. On the one hand, the signals

that flow from the input layer to the middle (bottleneck)

layer can be regarded as a process of data compression, i.e.,

data encoding. On the other hand, the signals that flow from
the middle layer to the output layer represent a process of

data decompression, i.e., data decoding.

When the training of the replicator network is finished,

the decoder part of the replicator network, shown shaded

in Fig. 3, is no longer needed, as there is no longer a

requirement for decoding. To this end, we purposely

isolate the decoder from the network and connect the

bottleneck layer (i.e., the third layer) to a new output layer

which has the same dimensionality of the system model.

We thus have a hybrid neural network with the first part

being the encoder of the replicator network and the second

part being only a single output layer. To train this hybrid
neural network as a whole, we fix the weights in the

encoder and train the output weights by using the system

model extracted from the library as the teacher signal.

Algorithmically, we use supervised training based on the

least-mean-square (LMS) algorithm, described in [56]

ŵoðkþ 1Þ ¼ ŵoðkÞ þ �xðkÞeðkÞ (30)

where � is the learning-rate parameter and eðkÞ is the error

signal, defined by the difference between an ideal (teacher)

Fig. 3. Block diagram of the memory system, embodying perceptual memory, executive memory, and working memory.

Haykin et al.: Cognitive Radar: Step Toward Bridging the Gap Between Neuroscience and Engineering

Vol. 100, No. 11, November 2012 | Proceedings of the IEEE 3115



signal dðkÞ in the system-model library and output of the
encoder in the replicator network, i.e., eðkÞ ¼ dðkÞ � d̂ðkÞ.
The net result of the computations described herein is

extraction of those important features that characterize the

radar environment.

At this point, we have finished training the perceptual

memory and it can be switched to running mode with all

the weights fixed. One last note we need to mention is that

the input layer of the perceptual memory has a bias input.
It is of no practical use at the training stage. As such, it is

set as 1 temporarily. However, it will be connected to the

working memory at the running stage.

Design of the executive memory follows a strategy

similar to that described above for the perceptual memory.

It is worthwhile here to emphasize the following points:

• another replicator network is first constructed and

its decoder is isolated at a later stage;
• a new output layer is connected to the encoder to

construct another hybrid neural network;

• the desired transmit waveform obtained from the

transmit-waveform library is selected as the teacher

signal to train this second hybrid neural network;

• the bias input of the executive memory is also set

as 1 at the training stage and connected to working

memory at the running stage.

2) Design of the Working Memory: As described previously

in this section, the function of working memory is to

reciprocally couple the transmitter and the receiver in order

to synchronize their operations. As such, the design of

working memory should take into consideration the infor-

mation extracted by both the perceptual memory and the

executive memory, as depicted by the middle part of Fig. 3.
Let the output vectors of hidden layer #3, i.e., the

bottleneck layer, of the perceptual memory and the

executive memory be opðkÞ 2 RLp�1 and oeðkÞ 2 RLe�1,

respectively. To compute the output weights, we collect

the features extracted by the bottleneck layer into a matrix

Op ¼ opð1Þ;opð2Þ; . . . ;opðMÞ
� �

(31)

Oe ¼ oeð1Þ;oeð2Þ; . . . ;oeðMÞ½ � (32)

where M is the number of training data sets.

If we can obtain the correlation matrix of Op, denoted

by rpp 2 RLp�Lp and the cross-correlation vector between

Op and Oe denoted by rpe 2 RLp�Le , we may then use the
least squares solution of the weights from perceptual

memory to executive memory, as shown by

wpe ¼ r�1
pp rpe (33)

which is the solution to the Wiener–Hopf equation [56].

Similarly, we can obtain the Wiener solution of weights
from the executive memory to the perceptual memory,

expressed by

wep ¼ r�1
ee rep: (34)

When the training of the working memory is finished,

the two sets of weights, i.e., wpe and wep, are fixed,

respectively. Then, the system is switched to the running

mode. For any unknown output produced by the percep-

tual memory at hidden layer #3, it will correspondingly

induce an output at the same hidden layer of the executive

memory by going through the working memory from the

receiver to the transmitter. In this scenario, the dimension
of the output from the working memory is in accordance

with the bottleneck layer of the executive memory. The

Euclidian distance between them represents the mis-

match, if any, between the perceptual memory and the

executive memory, to which we refer as the perceptual
consequence. To synchronize the executive memory to the

perceptual memory, this Euclidian distance is applied to

the executive memory as a bias input.
In the same manner, we can go through the working

memory from the transmitter to the receiver. Here, the

Euclidian distance between the output of the working

memory and the bottleneck layer from the perceptual

memory is calculated to represent the executive conse-
quence, which is then applied to the perceptual memory as

a bias input.

The two consequences, perceptual and executive, are
used to account for the consequences of action taken in the

receiver and the transmitter, if and when they are required

in the operating mode.

Remark: The current design of the memory elements is

based on artificial neural networks, which heavily rely on

heuristics. For instance, choosing the training data set is a

critical design factor. On the one hand, training data set

must be rich enough to excite all dynamic modes of the
system whose behavior is going to be learned by the neural

network; on the other hand, there must be a tradeoff

between training and generalization ability of the network.

In other words, neural networks should not be overtrained

in order to be able to handle slightly different situations.

Cross validation is one of the techniques that can be used

for this purpose [22], [57]. Since some system designers

may be bothered by heuristics, the systematic design of
memory elements as part of a rigorous mathematical

theory of CR is suggested as a future research topic.

VIII . ATTENTION

Examining the block diagram of Fig. 1, we see that both the

perception–action cycle and the memory occupy distinct

physical places of their own within CR. However, this is not
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so when it comes to attention. Rather, memory-based

attention manifests itself in the receiver and the transmit-

ter of CR through algorithmic mechanisms. We thus have
perceptual attention in the receiver and executive attention
in the transmitter.

In a tracking problem that is the issue of interest in this

paper, the so-called explore–exploit strategy plays a key role

in formulating an algorithm for the executive attention.

From the discussion presented on the executive memory,

we recall that a particular grid point in the transmit-

waveform library is selected to closely match the feedback
information on the preceding cycle. Then, for the current

cycle in the perception–action cycle, we may therefore

look to that particular point as a center point to expand on.

Specifically, we look to the subset of grid points in the

transmit-waveform library that lie in the immediate

neighborhood of the center point, as illustrated in Fig. 4.

In other words, the computational effort involved in a

global search of the entire library is replaced with a local
search based on a small cluster of grid points. Typically,

with changes in the execution of explore–exploit strategy

being relatively slow from one cycle to the next, we expect

that evolution of the local search to be correspondingly

smooth.3

An important point to note here is that it is the

explore–exploit strategy that makes the inclusion of

attention in CR a much needed process. Simply put, if
we are to adopt a global search in designing CR, there is no

need for attention; the end result of this adoption could be
a highly demanding computational complexity.

Attention has yet another key role to play in CR. Adding

executive attention to the radar imposes temporal stability

on the time rate of change in the transmit waveform. In

other words, the executive attention implements a version

of the principle of minimum disturbance [55], [56]. In a

sense, by adding memory and attention to radar, the system

more closely mimics the visual brain. Evidence has been
found by neuroscientists that in the visual system, each

cell’s response is normalized by the integrated activity of its

neighboring neurons. In a related context in [57], it was

shown that the entropy of the response distribution can be

decreased by such a gain-control mechanism through

reducing neuron-response variability both within and

between scenes. In Section XIII, it will be demonstrated

by computer experiments that the principle of minimum
disturbance, manifested by executive attention in CR, will

lead to a smoother waveform evolution through time,

which is of practical benefit to the transmitter.4

IX. INTELLIGENCE

As with attention, intelligence does not occupy a distinct

physical space of its own in CR. Rather, intelligence also

manifests itself through an algorithmic mechanism that is

driven by the combination of attention, memory, and the

perception–action cycle. With this kind of a structure, it is
therefore not surprising to find that intelligence is the

most powerful of all the four principles of cognition under

Fuster’s paradigm of cognition.

With the localized cluster of grid points in the

transmit-waveform library provided by the executive

attentional mechanism, as pictured in Fig. 4, it is now

the function of the controller in the transmitter to do the

following:

Find the Bbest[ waveform Qk among the localized

cluster of transmit waveforms for which the cost

function gðQkÞ is minimized.

For the special case of L ¼ 1, solving this optimization

problem can be computationally much simpler than that of

(24), depending on how large the transmit waveform
library is. The above statement can be expanded to account

for L > 1, if so desired.

We thus have two contrasting strategies for building

the controller:

1) global search of the grid points in the transmit-

waveform library, whereby executive attention is

bypassed but global optimization for waveform

Fig. 4. Illustrating the explore–exploit strategy performed by the

attentional mechanism: the darkened grid point was selected on the

preceding cycle; together with the surrounding eight grid points

(picked at the current cycle) they constitute the localized cluster

to be passed onto the controller.

3In a real-world application of radar, we have to consider the issue of
target detection. It is here where perceptual attention, implemented using
the explore–exploit strategy comes into play. In this paper, however,
target tracking has been the issue of interest, with the premise that a
target has been detected, ready for tracking. In this limited objective,
there is no need for perceptual attention.

4The practical importance of a smooth transition of the transmitted
waveform from one cycle to the next is that it prolongs the life of the
microwave device (i.e., magnetron, klystron, or traveling-wave tube) in
the radar transmitter.
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selection is guaranteed at the expense of increased
computational complexity;

2) local search of the grid points using the explore–

exploit strategy, whereby executive attention

comes into play, resulting in a suboptimal

selection of the transmit waveform and therefore

a somewhat degraded tracking accuracy. But the

practical benefit gained in using the local search is

the conservation of computational resources.
What we have just described here is a tradeoff between

conservation of computational resources and target

tracking accuracy, which is a perfect example of the no-
free-lunch theorem [59].

Moreover, examining the block diagram of Fig. 1, there

may be an abundance of local and global feedback loops,

depending on how many layers are built into the memory.

Feedback, if used properly, may enhance the information-
processing power of the controller by reducing the effect of

uncertainties and disturbances. In other words, feedback is

the facilitator of intelligence, improving performance of

the controller.

For functionality, we may therefore make the following

statement:

The function of intelligence, distributed through-
out CR, is to enable the controller in the transmitter

to pick a transmit-waveform vector Q, so as to

exercise control over the receiver in a robust manner

in the face of environmental uncertainties and

disturbances.

The more that such a choice reduces the feedback

information on a cycle-by-cycle basis, the closer the state
estimator in the receiver assumes a deterministic form,

which, in turn, means that CR, as a whole, is robust.

Table 1 presents a summary of the cognitive processes

used in CR.

X. CYCLIC DIRECTED
INFORMATION FLOW

At this point in the discussion, in light of what we have
already learned about perception of the radar environment

in the receiver and action in the transmitter, it is

instructive that we formulate a cyclic directed information
flow graph, as depicted in Fig. 5 for CR of Fig. 1 in its most

generic form. Examination of this figure reveals two

fundamental transmission paths, one being perceptual
pathway (i.e., feedforward) and the other executive pathway
(i.e., feedback).

A. Perceptual Pathway
The perceptual pathway in Fig. 5 embodies the

dynamics of the perception–action cycle in the receiver

influenced by the perceptual memory. It begins with the

measurement zk at the receiver input, initiating the

following sequence of computations at time k:

• filtered estimation of the state xk, denoted by x̂kjk,

and associated error covariance Pkjk, followed by

• predicted estimation of the future state xkþ1,
denoted by x̂kþ1jk, and finally

• covariance of the prediction error vector Ekþ1jk,

denoted by Pkþ1jk.

The perceptual pathway, based on an approximate

Bayesian filter (e.g., the CD-CKF) in the receiver, is depicted

on the right-hand side of Fig. 5. Basically, this pathway of

directed information flow describes the perceptual dynamics
of the receiver.

B. Executive Pathway
The executive pathway in Fig. 5 embodies the action

part of the perception–action cycle in the transmitter,

influenced by the executive memory. It begins with the

feedback information Pkþ1jk at the transmitter input

delivered by the receiver, which initiates the following

sequence of computations that look into the future by

one cycle:

• formulation of the cost-to-go function gðQkÞ,
defined in terms of the posterior expected state-
estimation error Ekþ1jkþ1 that depends on the Bto be

updated[ parameter vector Qk, followed by

• optimization of the cost-to-go function, yielding

the unknown Qk, and finally

• setting the stage for a repeat of the next

perception–action cycle.

The cost-to-go function provides the transmitter with a

measure of how well the receiver is doing its job in
extracting information about the environment from the

radar returns.

Recognizing that dependence of the covariance

Pzz;kjk�1 on Qk�1 in (5) shows up in one place only,

namely the measurement noise covariance RkðQk�1Þ, in a

corresponding way, we find that dependence of the cost

function gðQkÞ on the unknown Qk shows up only in the

Table 1 Summary of Cognitive Processes
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updated noise covariance RkðQkÞ. Accordingly, the opti-

mization described in (24) is perfectly feasible in an online

manner.

The executive pathway, centered on dynamic program-

ming in the transmitter, is depicted on the left-hand side of

Fig. 5. This path describes the executive dynamics of the

transmitter, a primary function of which is to compute the
Bnew[ waveform-parameter vector Qk for use at the next

cycle.

C. How Can We Build on the Directed Information
Flow Graph to Better Understand the Role of
Memory in Cognition?

First and foremost, Fig. 5 teaches us how the

perception–action cycle in CR progresses from one cycle

to the next, highlighting the mathematical roles played by

the Bayesian filter for perception of the environment

carried out in the receiver, feedback information from the
receiver to the transmitter, and Bellman’s dynamic

programming aimed at actuation in the radar environment.

From control theory, we may go on to make the statement:

The amount of information contained in the

posterior expected estimation error is progressively

reduced from one cycle to the next by virtue of the

feedback embodied in perception–action cycle

acting alone.

The next not-so-obvious issue to explain is: how does

perceptual memory come into play to further improve the

radar performance? To answer this question, we remind

ourselves of the role of perceptual memory in cognition.
To this end, we say that this role is trying to find the

particular element in the system-model library that is

the closest match to every new measurement vector zk,

for all k. In so doing, the Bayesian filter in the receiver

becomes equipped with the right description of the state–

space model for every measurement vector; consequently,

a further reduction in the estimation error is brought into

play on each cycle and target-tracking accuracy is thereby
improved further.

Turning next to the transmitter: how does the

executive memory help us to improve radar performance?

Here again, the improvement is attributed to a matching

process, albeit differently. To be specific, the function of

the executive memory is to select that particular element

in the transmit-waveform library that is the closest match

to the feedback information. This feedback information
provides an indirect means for the transmitter to sense the

environment via the receiver. Hence, by selecting the right

Fig. 5. The basic cycle of directed information flow graph in its most generic form. The symbol Z�1 represents bank of unit-time delays.
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transmit waveform to match the feedback information for
every measurement vector zk, the transmitter is matched

adaptively to the radar environment.

This process, matching the transmitted waveform to

the radar environment on a cycle-by-cycle basis in CR, is

the very essence of what Gjessing described in his classic

book, entitled Target Adaptive Matched Illumination Radar
over 25 years ago [6]. Gjessing stated that there is usually

enough information available about most of the targets that
a radar will face regarding their size, shape, rigidity,

surface material composition, and motion pattern. If the

radar exploits this prior information about the target, it can

detect and identify the target faster, which is what CR

provides.

Finally, turning to working memory: what is its role in

the cognitive process? Referring back to Fig. 1, we see that

the working memory is reciprocally coupled to the
executive memory on the left and reciprocally coupled to

the perceptual memory on the right. The net result of this

reciprocal coupling is that CR assumes the role of a

synchronous information-processing machine, which is

beyond the capability of TAR or FAR, with all the practical

benefits that resulted from this synchrony.

XI. EXPERIMENTAL GROUNDWORK

The stage is now set for an experimental study of CR and

comparison of it to other related radar configurations. To

this end, we consider an air-traffic-control problem, the

objective of which is to track the trajectory of an aircraft

that executes a maneuver at (nearly) constant speed and

turn rate in free space. We are interested in this problem

because:
1) air traffic control is important for both military

and civilian applications;

2) CR performs well for a tracking problem with

continuous system equation and discrete mea-

surement equation.

In [34], this tracking scenario was used to compare

the performance of three different estimators: the

continuous-discrete versions of the extended Kalman
filter, the unscented Kalman filter, and the cubature

Kalman filter. Therein, it was shown that the continuous-

discrete cubature Kalman filter (CD-CKF) outperforms

the other two by wide margins, hence its adoption as the

candidate for state estimation in additive white Gaussian

noise for our experimental study. The objective of the

study is to show how the tracking accuracy is improved

by embedding cognition of varying complexity into
the FAR.

The Appendix summarizes the important parameters

and other related matters pertaining to the simulation.

A. State–Space Model
In the aviation language, the scenario considered in

this study is commonly referred to as tracking of a target

with (nearly) coordinated turn [5]. In this scenario, motion
in the horizontal plane and motion in the vertical plane are

assumed to be decoupled. Hence, we can write the

coordinated turn in a 3-D space, subject to fairly small

noise modeled by independent Brownian motions, as

shown in (1).

The 7-D state vector of the aircraft is described as

follows:

x ¼ ½�; _�; �; _�; 	; _	; !�T (35)

with �, �, and 	 denoting positions and _�, _�, and _	 denoting

velocities in the x, y, and z Cartesian coordinates,

respectively. The parameter ! denotes the turn rate; the

time evolution of the state is governed by the nonlinear
function

fðxÞ ¼ ½ _�;�! _�; _�; ! _�; _	; 0; 0�T:

The noise term is defined as

BðtÞ ¼ 
1ðtÞ; 
2ðtÞ; . . . ; 
7ðtÞ½ �T (36)

with 
iðtÞ, i ¼ 1; 2; . . . ; 7, being all mutually indepen-

dent standard Brownian motions, which account for
unpredictable modeling errors; and finally, the diffusion

matrix is

Q ¼ diag 0; �2
1 ; 0; �2

1 ; 0; �2
1 ; �

2
2

� �	 

:

It is assumed that the radar is located at the origin and

equipped to measure the range � and azimuth angle  with

a measurement sampling time T. Hence, the measurement

equation can be written as

�k

k

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

k þ �2
k þ 	2

k

p
tan�1 �k

�k

� �2
4

3
5þwk

where the measurement noise is Gaussian wk � Nð0;RkÞ
with Rk ¼ diagð½�2

�; �
2
�Þ.

To simulate the target trajectory, we use �1 ¼
ffiffiffiffiffiffiffi
0:5
p

;

�2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
5e� 7
p

; �� ¼ 50 m; � ¼ 0.001�; and the initial

state is x0 ¼ [10 km, 100 m/s, 10 km, 150 m/s, 5 km,

0 ms�1, 30 �/s]T . Fig. 6 shows the ideal trajectory of the

target for these parameters.

We use the notation x
j
k to denote xðtÞ at time

t ¼ tk þ j�, where 1 	 j 	 m and � ¼ T=m with m being
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an integer. Applying the Itô–Taylor expansion of order 1.5
to (1), we get the stochastic difference equation

x
ðjþ1Þ
k ¼ f d x

j
k

� �
þ

ffiffiffiffiffi
Q

p
Wþ Lf x

j
k

� �� �
Y (37)

where

f dðxÞ ¼

�þ�_���2! _�=2
_���! _� ��2!2 _�=2

� þ� _� þ�2! _�=2
_� þ�! _���2!2 _�=2

	 þ� _	
_	
!

2
666666664

3
777777775

and

LfðxÞ ¼

0 �1 0 0 0 0 0
0 0 0 ��1! 0 0 ��2 _�
0 0 0 �1 0 0 0

0 �1! 0 0 0 0 ��2 _�
0 0 0 0 0 �1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

2
666666664

3
777777775
:

To generate independent trajectories, we use m ¼ 1000

time-steps/sampling interval.

B. Construction of the Two Libraries
The experimental results presented in this section are

based on simulating an X-band radar with carrier

frequency fc ¼ 10.4 GHz. We use LFM with both upsweep
and down-sweep chirps, which constitute the waveform

library as follows:

P ¼ � 2 ½10e� 6; 100e� 6�;f
b 2 ½�100e9;�10e9� [ ½10e9; 100e9�g (38)

with grid step sizes �� ¼ 10e� 6 and �b ¼ 10e9. The
assumed waveform is the LFM pulse combined with

Gaussian amplitude modulation. The sampling frequency

is set to fs ¼ 400 Hz and the update frequency of the

cognitive tracking algorithm is set to 20 Hz. This completes

the design of the waveform library block in Fig. 1.

To design the system-model library block in Fig. 1,

we gather together all the unknown parameters in (37).

A careful examination of (37) reveals that we need to
gather only three parameters �1, �2, and !, where the

first two represent the modeling error for velocity, and

the last one represents the corner turn. The direct

benefit we can gain from this operation is the reduced

dimensionality of the system-model library from seven

to three.

C. Performance Metric
We use the ensemble-averaged root-mean-square error

(RMSE) as the metric to evaluate the performance of TAR,

FAR, and CR with one layer of memory, as well as

Fig. 6. Target trajectory, experiencing a corner turn.
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multiscale memory. The ensemble-averaged RMSE for the
range is defined by

@pðkÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

n¼1

�n
k � �̂

n
k

	 
2þ �n
k��̂n

k

	 
2þ 	n
k�	̂

n

k

� �2
� �vuut

where ð�n
k; �

n
k ; 	

n
k Þð�̂

n
k; �̂

n
k; 	̂

n

kÞ are, respectively, the true and

estimated positions at time index k in the nth Monte Carlo

run. In a similar manner, we may also define the ensemble-

averaged RMSE for velocity, denoted by @vðkÞ.

XII. EXPERIMENTAL RESULTS:
THEORETICAL CONSIDERATIONS

This section presents two sets of simulation results,

namely the PCRLB and tracking accuracy. The simulations

are performed for three different radar configurations:

TAR, FAR, and CR, where the cognitive building blocks are

added to the radar one after another in the following order:

perception–action cycle, memory, and attention. Although

the proposed successive addition of elements of cognition

is a logical approach, trying other possible combinations
would be insightful for understanding the relative value of

each element. For instance, in the proposed structure,

attention is memory driven but it can be tested in isolation

without the memory elements. In that case, we will have a

fully adaptive radar equipped with attention. However, in

order to have a radar system, which is truly cognitive, all of

the cognitive building blocks must be in use.

A. PCRLB
To have an appreciation of the lower bound, Fig. 7(a)

and (b) plots the square root of the PCRLB and the

standard deviation of the estimation error versus time for

range and range rate estimates, respectively. It confirms

the theoretical prediction that, by adding the cognitive

building blocks one after another to the radar, the bound

has been pushed lower and lower. The initial transients in
the square root of the PCRLB are mainly due to the fact

that the perceptual associative memory initially experi-

ences a moment of indecision [60] about the system model

and noise characteristics, and it takes a few iterations until

it settles. The following is obvious from Fig. 7(a) and (b).

1) The standard deviation of the estimation error

achieved by different members of the CR family

are lower than the square root of the PCRLB of
TAR. It means that all members of the CR family

have been able to go beyond what a traditional

radar can ever potentially achieve and provide a

level of accuracy, which is better than the

theoretical limit imposed on a traditional radar.

2) Increasing the degree of cognitivity of the radar

improves its performance. As shown in Fig. 7(a)

and (b), CR with multiscale memory (CRm)
performs better than CR with one layer of

memory (CR1), which, in turn, performs better

than FAR that uses only feedback. The fully CR

with memory and attention (CRa) performs

better than CR with one layer of memory but

slightly worse than CR with multiscale memory.

Hence, it settles for suboptimality by slightly

sacrificing performance for conserving computa-
tional resources.

3) These figures demonstrate that although the

theoretical PCRLB is close to zero and the

estimation error variance was quite improved by

cognitizing the radar, the error variance does not

meet the lower bound. This is reasonable because

of issues related to design and implementation of

some components such as memory. However, it
leaves a wide margin for researchers interested in

CR to improve on.

B. Tracking Accuracy
The performance of the cognitive tracker can be best

illustrated by the RMSE and bias of the estimates. Fig. 8(a)

and (b) depicts the ensemble-averaged RMSE curve of the

range and range rate, i.e., @p and @v, respectively. Biases of
the range and range-rate estimates are shown in Fig. 9(a)

and (b). Examination of the results presented in these two

figures leads us to the following observations.

1) As the fundamental building blocks of cognition

are added to the radar one by one, the radar

becomes more and more sophisticated, starting

from TAR, FAR, to CR with single memory and

then a multiscale memory, thereby resulting in
better and better system performance. To elabo-

rate on our claim, inclusion of the perception–

action cycle decreases the RMSE significantly. The

inclusion of memory into CR further pushes the

RMSE curve to a much lower level.

2) With increased memory scale, two comments

have to be made. First, the accuracy of CR is also

enhanced. The accumulative RMSE for range and
range rate is summarized in Table 2. From the

results presented in this table, we see that CR

system with multiscale memory can achieve an

accuracy of 0.47 m for range and 3.30 m/s for

range rate, which are far beyond the reach of

traditional radar systems. Second, the computa-

tion is dramatically reduced. In [8], the complex-

ity of the waveform selection part is shown to be
in the order of OððNgÞLÞ, where Ng is the size of

the waveform library and L is the length of

horizon of dynamic programming. It is obvious

that when the explore–exploit strategy is used,

searching of the waveform library is constrained

to the local neighborhood of current waveform,

which then greatly reduces the computational
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complexity at the cost of a reduction in tracking

performance. In Table 2, it is not difficult to

see that the accuracy of CR with multiscale

memory and attention is reduced to 0.69 m for

range and 3.53 m/s, validating the no-free-lunch
theorem.

Based on the results presented in Table 2, we make two

more observations.

1) For range estimation, in going from TAR to FAR,

we have an order of magnitude improvement;

then in going from FAR to CR with one level of

memory, we have another order of magnitude

improvement; and in going onto CR with multi-
scale memory, we have a further improvement of

18.97%. However, with the addition of attention

to CR, the range accuracy is dropped by 0.22 m

but computational complexity is reduced.

2) For range-rate estimation, the improvements

achieved through the use of memory are much
more profound. Specifically, in going from TAR to

FAR, we have improved the accuracy by about

73.78%; then in going from FAR to CR with one

level of memory, we have another improvement of

about 68.56%; and in going onto CR with multi-

scale memory, we have a further improvement of

almost 21.62%. Here again, with the addition of

attention to CR, the range-rate accuracy is reduced
by 0.23 m/s.

Fig. 7. Square root of PCRLB versus standard deviation for (a) range and (b) range-rate estimation errors.
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A question of interest is: how, in physical terms, do we

explain the ground-breaking results reported on CR in
Fig. 8(a) and (b)? The answer to this important question is

partly contributed to the provision of two libraries in CR,

depicted in Fig. 1, namely the system-model library in the

receiver and the transmit-waveform library in the trans-

mitter. These two libraries may be viewed as prior
information, or knowledge to be more precise. As explained

in Section X, availability of the system-model library

enables the receiver to select the system model that best
matches every new measurement on a cycle-by-cycle basis,

via the perceptual memory. Similarly, availability of the

transmit-waveform library enables the transmitter to select

the particular transmit waveform that adaptively matches

the environment in the best manner possible.

In a way, by virtue of the feedback link from the

receiver to the transmitter, FAR can avail itself of a

transmit-waveform library, and thereby adaptively match

the environment for every new measurement on a cycle-
by-cycle basis. However, FAR does not have memory and

therefore lacks the capability available to CR over FAR, as

reported in Fig. 8(a) and (b).

Finally, turning to TAR, it has no prior information

about the environment, be it in the receiver or the

transmitter, hence its inferior tracking performance

compared to FAR, again as reported in Fig. 8(a) and (b).

Fig. 9. Bias of (a) range and (b) range-rate estimates for TAR, FAR,

CR with one layer of memory (CR1), CR with multiscale memory (CRm),

and CRm with executive attention (CRa).

Table 2 Accumulative RMSE for Range and Range Rate

Fig. 8. RMSE of (a) range and (b) range-rate estimates for TAR, FAR,

CR with one layer of memory (CR1), CR with multiscale memory (CRm),

and CRm with executive attention (CRa).
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XIII . EXPERIMENTAL RESULTS:
PRACTICAL CONSIDERATIONS

Previously, in Section VIII, we have pointed out that
attention improves temporal stability of the time rate of

change in the transmit waveform. With this point in mind,

we now try to provide insight into the behavior of different

radar configurations. Specifically, in Fig. 10, the waveform

transitions for chirp rates are plotted for different

scenarios. In order to study the waveform transition

from an optimization point of view, we randomly choose

reference time steps and plot their corresponding error
surfaces, with Figs. 11–14 depicting the error surfaces

corresponding to FAR, CR with one layer of memory, CR

with multiscale memory, and CR with multiscale memory

and attention (CRa). The highly revealing results depicted

in these figures lead to the following conclusions.

1) In FAR, the controller’s decision for choosing the

optimal transmit waveform switches between two

sets of waveform parameters. As time passes, the
controller is not able to settle on one waveform

and keeps switching between the two, and

therefore, shows a bistable behavioral pattern

(Fig. 10). As shown in Fig. 11, there are two local

minima on the error-performance surface, which

correspond to these two sets of waveform parame-

ters. At different instants, the controller, seeking

the minimum of the error surface, will end up in
one of these two points. It will be easier to locate

the minimum of the error-performance surface

by looking at the contours on the waveform-

parameter plane (horizontal plane) rather than

the 3-D surface.

2) In CR with memory (both single layer and

multiscale), the controller switches between two

sets of waveform parameters for a while and then
settles down on only a single one. In other words,

Fig. 10. Chirp-rate selection for FAR, CR with one layer of memory

(CR1), CR with multiscale memory (CRm), and CRm with executive

attention (CRa).

Fig. 11. Error surface at different time steps for FAR.
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it shows a monostable behavioral pattern

(Fig. 10). The corresponding error-performance

surfaces are shown in Figs. 12 and 13. The location

of the minimum point of the error-performance
surface can be easily recognized from error

contours on the waveform-parameter plane.

3) In CR with memory and attention, we observe a

dramatic result: although the performance of CR

with attention degrades slightly, the waveform has a

much smoother transition, which in practical cases
is an advantageous factor for the radar transmitter

(Fig. 10). Furthermore, when CR is equipped with

Fig. 12. Error surface at different time steps for CR with one-layer of memory.

Fig. 13. Error surface at different time steps for CR with multiscale memory.
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executive attention, the (sub)optimal waveform has

been selected locally, which means the saving of

computational resources. Here again, the combina-

tion of these two factors validates the no-free-lunch

theorem. Since the optimal waveform is selected

based on a local search among the neighbors of the

current grid point, the 3-D error-performance
surface in Fig. 14 shows a pattern with multiple-

local minima, prompting us to make the following

statement:

Each one of these local minima coincides

with one of the neighbors of the current grid

point and the best one among them is chosen

as the next grid point.

Although intelligence in CR, empowered by the

perception–action cycle, memory, and attention, makes a

difference in tracking accuracy, it is in the attainment of a

smooth transition of the transmit waveform from one cycle to

the next where CR distinguishes itself from TARs and FARs.

XIV. CONCLUDING REMARKS

In this paper, inspired by the visual brain, we have proposed a

novel way of building cognitively controlled sensing into

radar systems. CR is built around a perception–action cycle,

which is the first stage to cognition. While the perception

part is based on a Bayesian filter and therefore seeks Bayesian

optimality, the action part is based on an optimal controller

in the sense of Bellman’s dynamic programming. By adding

memory and attention to the perception–action cycle, the

radar system is enabled to reach a level of performance under

a wide range of environmental conditions that can be

interpreted as showing intelligent behavior in the true sense

of the word. Different building blocks of such a radar system

were discussed in detail and guidelines for designing each
building block were proposed. Theoretical results suggest

that the proposed structure for CR has the potential to

significantly improve the tracking performance of current

radar systems. Computer experiments show that CR can

indeed go beyond the theoretical limits of traditional radars.

Moreover, the experimentally demonstrated benefit,

gained from the combined use of memory and executive

attention in CR for target tracking, is the smooth manner in
which the controller selects the transmit waveform from the

transmitter’s library as the radar progresses in moving forward

from one cycle to the next, mimicking what goes on in the

visual brain. This new capability of practical importance,

enabled by cognition, is beyond that of TAR or FAR.

In dynamic terms, we may describe the attributes of

memory in CR as follows:

• memory is predictive, predicting the consequence
of action;

• executive attention, driven by memory, smooths

out the transition of transmit waveform from one

cycle to the next.

In mathematical terms, it would be fair to say that we

now have a strong basis for the perception–action cycle.

However, recognizing that in an overall sense, CR is in its

Fig. 14. Error surface at different time steps for CR with executive attention.
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early stages of development, there is much to be done in
other areas that require further research. To be specific,

we may mention three specific areas:

1) the important role that memory plays in modeling

and design of CR;

2) an equally important role that learning through

interaction with the environment plays in im-

proving the performance of CR on the fly;

3) a rigorous mathematical theory of CR, viewed as a
complex system of systems.

All three areas were beyond the scope of this paper.

Among the four functional building blocks of cognition

under Fuster’s paradigm, we have singled out memory for

more detailed research because it is the block that brings

CR that much closer to the visual brain.

Also, there is room for extending the proposed

framework to consider scenarios, which include the
presence of clutter in the radar returns, the probability

of target detection, and the presence of more than one

target in the area of interest as in a multitarget tracking

case.

One final comment is in order. A bat can pursue and

capture its target with a facility and success rate that would

be the envy of a radar engineer [2]. In [61], the time–

frequency representation of the bat sonar signal is
provided in the four phases of action, which are hunting,

approach, pursuit, and capture of a prey. The ability of

bat’s small brain, about the size of a plum, to adaptively

change the transmitted waveform parameters to its actual

need is fascinating. In the design of radar systems, it would

be of interest to take further steps toward mimicking

mother nature by refining Fuster’s paradigm of cognition

to account for bat’s four phases of action. h

APPENDIX
SUMMARY OF IMPORTANT
PARAMETERS AND OTHER RELATED
MATTERS OF THE SIMULATION

It is assumed that the radar is located 100 m above the

ground and simulation results are based on 50 Monte

Carlo runs of the experiment.

A. Track Initialization
In CD-CKF, the dimensionality of the state vector was

chosen to be 7. To initialize the CD-CKF algorithm, the

initial state density was assumed to be Gaussian. There-

fore, the two-point differencing method was adopted [5],
where the first two measurements were used to estimate

the states’ statistics. PCRLB was initialized, based on an

initial guess made by the perceptual associative memory

about a model and the initial state estimate.

B. Memory
The multiscale memory is designed using a replicator

network. For the perceptual memory, the replicator

network is made up of an input layer of source nodes,

three hidden layers, and an output layer, whose sizes are

20, 10, 5, 10, and 20, respectively.
The weights of the replicator network were initialized

as uniformly distributed small numbers on the interval of

(�0.125, 0.125). The learning rate was linearly annealed

on the region of [10�1, 10�5]. To train the replicator

network, a number of 600 training data sets were selected

and the number of epochs was set as 100.

When training of the replicator network is done, the

decoder is no longer needed and a new output layer of size 2
was connected to the encoder. The LMS algorithm was

adopted to train the weights between the encoder and this

new output layer. The learning rate was defined as

� ¼ 0:1. Furthermore, the number of epochs was also set

as 100. However, for every epoch, if the MSE was found to

be lower than the predefined threshold of 10�10, the

algorithm was terminated.

Likewise, the executive memory has exactly the same
configuration and follows the same training procedure. As

for the bias input used in the replicator networks for both

the perceptual memory and the executive memory, it was

fixed at 1 during the training stage. The working memory is

responsible for the bias input at the running stage.

Furthermore, the working memory reciprocally cou-

ples the perceptual memory and the executive memory by

connecting their bottleneck layers together. To train the
working memory, 2000 data sets were collected from

bottleneck layers for both the perceptual memory and the

executive memory.
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