Industry Adoption of the Internet of Things:
A Constrained Application Protocol Survey

Christian Lerche
Universitidt Rostock, Germany
Email: christian.lerche @uni-rostock.de

Abstract—The Constrained Application Protocol (CoAP) has
been designed for RESTful machine-to-machine communication,
thereby enabling an Internet of Things. CoAP is based on the
principles of the Web, but takes the limited resources of tiny
embedded devices such as wireless sensor nodes into account.
Despite being relatively new and only about to become an
IETF Internet Standard, several implementations of the protocol
already exist—each with its own background and supported
set of features. In this paper, we give an overview of current
CoAP implementations and discuss the results of the first formal
interoperability meeting, organized by the European Telecommu-
nications Standards Institute (ETSI) in March 2012. We note that,
despite the young age of the protocol, interoperability between
the participating implementations is very high, although the non-
essential parts of the protocol currently receive significantly less
coverage and exhibit slightly more interoperability problems.

I. INTRODUCTION

The vision of an Internet of Things is turning into a reality
with tiny embedded devices that are directly connected to
the Internet over IP. The Internet Engineering Task Force
(IETF) has been standardizing several protocols to incorporate
resource-constrained devices that are very limited in energy,
memory, computational power, and bandwidth: 6LoWPAN
[11] to adapt IPv6 to low-power, lossy networks (LLNs), RPL
[24] to route over the fluctuating links, and compression to
optimize higher protocol layers [1]. The emerging Constrained
Application Protocol (CoAP) [20] is completing this stack
to have a fully standardized protocol suite. This makes the
IP-based IoT interesting for industrial application: industry
standards bodies such as ETSI M2M! and the IPSO Alliance?
adopted the light-weight RESTful protocol to achieve global
interoperability for networked embedded systems.

When the idea of an Internet of Things came up, everyday
objects were at first interconnected through their virtual repre-
sentations using barcodes and later RFID. Later, application-
level gateways where used to bridge between different com-
munication solutions for embedded systems. Then came com-
pact implementations of IP [4], [10] for resource-constrained
devices and things could be accessed directly over IP. The
standardization work of the IETF only reached up to the
transport layer, though. So projects continued to implement
custom application protocols over UDP, with the result that
6LoWPAN devices were not interoperable.

Uhttp://www.etsi.org/website/technologies/m2m.aspx
Zhttp://www.ipso-alliance.org

Klaus Hartke
Universitdt Bremen TZI, Germany
Email: hartke @tzi.de

Matthias Kovatsch
Institute for Pervasive Computing
ETH Ziirich, Switzerland
Email: kovatsch@inf.ethz.ch

A prominent candidate to change the situation at the applica-
tion layer is HTTP. The Web protocol is very scalable, robust,
and virtually ubiquitous, being the de facto application layer
of the Internet. However, the performance of TCP in LLNs
is up to five times worse than UDP [10]. TCP also requires
a comparatively large amount of memory per connection.
General-purpose 6LoWPAN implementations are thus not very
efficient in combination with HTTP. There were HTTP imple-
mentations over UDP, such as HTTPU known from UPnP [22]
or the EBHTTP draft [21], but none were adopted in a larger
scale. Once the embedded TCP/IP suites mature, cross-layer
optimization might become an option to countervail HTTP
performance for low-power networks. Smews [5], for instance,
achieves reasonable performance with up to 256 parallel HTTP
connections.

Another candidate is CoAP, an application-layer protocol
similar to HTTP, but specifically designed for constrained
nodes and networks. Unlike previous attempts, CoAP does
not try to compress HTTP, but is a new protocol based on
the same architectural principles of REST [7]. This means
that it has a few limitations compared to HTTP, but also
that it does not inherit all design decisions and thus can
be designed to better address the requirements of embedded
devices. In particular, CoAP also exceeds the capabilities
of HTTP in regard to machine-to-machine communication
(M2M), for instance, through its support for push notifications
and IP multicast.

Having two RESTful protocols to cover the full spectrum
of device types, the IPSO Alliance has started the next step
for device interoperability in commercial products. The so-
called “IPSO Profile” defines a standard resource structure
for embedded Web servers. It uses Web Linking [16] and the
CoRE Link Format [19] to define resource types with well-
known functionality and content types. At the time of writing,
it covers device and location information (e.g., manufacturer,
battery level, and coordinates), messaging for status updates
and alarms, general purpose I/O, power and light control, and
generic sensors. For the latter, the profile adopts the Unified
Code for Units of Measure (UCUM) specification®, which
provides unique string identifiers for physical units (e.g., W
for Watt or Cel for degree Celsius) including prefixes (e.g.,
M for mega).

3http://unitsofmeasure.org

In this paper, we present a survey on the current state of
the art of lightweight REST implementations with insights
on the first formal interoperability event for CoAP. First, we
give a brief introduction to CoAP in Section II. The survey
in Section III gives an overview of CoAP’s early industry
adoption as well as available open-source implementations. We
also analyze the outcome of the ETSI Plugtest held in Paris,
France in March 2012. Our results in Section IV go beyond the
information in the official ETSI report [6], as they distinguish
between different implementations and not just companies, and
are discussed from a developer’s point of view. Finally, we
summarize our experience and give take-away points in our
conclusion in Section V.

II. CONSTRAINED APPLICATION PROTOCOL

The Constrained Application Protocol (CoAP) is the result
of the work of the “Constrained RESTful Environments”
(CoRE) working group at the IETFE. It is an application-
layer protocol that aims to enable RESTful interactions like
HTTP, while being more suitable for the low bandwidth
and implementation limitations of highly resource-constrained
devices and networks.

CoAP consists of two sub-layers: a messaging layer and
a request/response layer. The messaging layer adds a thin
control layer on top of UDP that provides duplicate detection
and, if desired, reliable delivery of messages based on a
simple stop-and-wait retransmission with exponential back-
off. The request/response layer enables RESTful interaction
through uniform interfaces addressed by URIs, well-known
methods such as GET, PUT, POST and DELETE, and the
transfer of self-describing representations of the addressed
information (resources). To be more light-weight than HTTP,
CoAP supports only a constrained subset of HTTP’s features
and uses a compact, binary encoding that was designed with
serialization and parsing on small devices in mind.

In addition to this core functionality, CoAP provides the
following features:

1) Resource observation: CoAP enables clients to “ob-
serve” resources for state changes through a simple pub-
lish/subscribe mechanism [9]. The server keeps track of in-
terested clients and pushes a resource representation to each
client whenever the observed resource changes. The mech-
anism follows a best-effort approach and aims to guarantee
eventual consistency of the state observed by the client and
the actual resource state.

2) Block-wise transfers: When resource representations
become larger than can be comfortably transported in one
datagram, CoAP provides a mechanism to send them in a
block-wise fashion [3]. This enables, e.g., firmware updates
without resorting to an alternate protocol to transfer large
data to or from devices. Block-wise transfers also enable the
incremental generation of large representations on the fly,
which is beneficial for devices which can only process a
limited amount of data at a time.

3) Group communication: CoAP is intended to provide
group communication based on IP multicast. However, only
some aspects of this feature have been specified so far. [18]

4) Resource discovery: For the discovery of resources that
a server provides, CoAP makes use of a well-known URI
path /.well-known/core following RFC 5785 [17]. The
resources are described in the CoRE Link Format [19] which is
based on Web Linking [16]. It defines additional link attributes
for a semantic resource type (“rt”), interface usage (“if”),
content format (“ct”), and the maximum expected size (“sz”)
of a resource. The list of resources can be filtered.

III. SURVEY OF COAP IMPLEMENTATIONS

We conducted a survey among participants of the first
formal CoAP interoperability event organized by the Eu-
ropean Telecommunications Standards Institute (ETSI) [6]
and the IPSO Interop Event, both held in Paris, France
between March and April 2012. The events were attended
by several international companies and research institutions
of which 15 participated in our survey. Table I summarizes
the questionnaires in which we asked about basic data such as
programming language and supported platforms, but also the
targeted application domain.

A. Covered Device Classes and Domains

The goal of CoAP is to provide RESTful interaction for
“resource-constrained devices.” To better describe this rather
fuzzy term, the IETF “Light-Weight Implementation Guid-
ance” (LWIG) working group defined two classes of low-end
devices [2]:

e Class 1: ~10 kB of data and ~100 kB of code

e Class 2: ~50 kB of data and ~250 kB of code

(The computational power is unspecified, as it is secondary
to protocol implementation considerations with current chips.)
Depending on the running application, the processors usually
vary between 8-bit microcontrollers and low-power ARM
cores such as the Cortex-M0. However, the full ecosystem
of CoAP nodes typically encompasses not only constrained
devices, but also higher-end nodes in various roles.

In the survey, we identified the following roles (from large
to small):

o Often, CoAP-based applications are built around back-
end systems that are mostly implemented in Java or C++
and run on a resource-rich machines.

o Mobile devices such as smartphones and tablets are
mostly used as user agents to commission and manage
the nodes in the network.

o Some vendors specialize in the implementation of proxies
that bridge the gap between the CoAP and the HTTP
world. These proxies run on embedded (but still power-
ful) systems such as routers and access points.

o Actual “things” start with non-constrained embedded de-
vices, which are part of industrial machines, for instance,
for factory automation.

o Class 1 and 2 devices are used for sensors and simple
actuators. These are mainly programmed in C.

TABLE I
COAP IMPLEMENTATIONS

Company / Implementation License Language Platform
Consorzio Ferrara Ricerche NesC / C TinyOS Own “SiGLoWPAN” IPv6/6LoWPAN stack for Class 1
devices
ETH Ziirich “Californium” 3-clause BSD Java JVM Framework for unconstrained devices; provides client,
server, and proxy stubs
ETH Ziirich “Copper” 3-clause BSD JavaScript Firefox Management and testing tool as a browser extension; focus
on user interaction
ETH Ziirich “Erbium” 3-clause BSD C Contiki Class 1 devices such as sensor nodes
Hitachi C Embedded Chipset vendor platform for Class 2 and larger; server-only
Linux implementation for embedded sensor devices
IBBT C++ Click Mod- Framework for unconstrained devices; can be configured as
ular Router client, server, or proxy and can also take the role of a border
router
Intecs Commercial C++ POSIX Back-end systems; embedded proxies
KoanLogic “evcoap” 2-clause BSD C Linux General purpose protocol implementation
NXP Visual C Windows Application-layer gateway to JenNet-IP devices
XP
Patavina Technologies Commercial C++ proprietary Wired and wireless embedded devices and sensor nodes;
working on a port to uC/OS by Micrium
Sensinode “NanoService Device Library” Commercial C OS-independent library for Class 1 and 2 devices
Sensinode “NanoService Device Library” Commercial Java VM Protocol implementation for unconstrained devices; for em-
bedded PCs, smartphones/tablets, and back-end systems
Universitdt Bremen TZI “libcoap” GPLvV2 and C POSIX and General purpose library for Class 1 and 2 devices and up
2-clause BSD Contiki
Universitdt Bremen TZI “CoapBlip” BSD-style C TinyOS TinyOS-port of “libcoap”; runs on Class 1 devices
Universitit Bremen TZI “Bonsai” C# NET Protocol implementation for unconstrained devices; mainly
for the verification of specifications
Universitit Bremen TZI “coap.me” Ruby Back-end systems; a testing tool at http://coap.me provides
an HTTP front-end to crawl CoAP servers, and a CoAP
server for interoperability testing
Universitidt Rostock “jCoAP” Apache 2.0 Java JVM Protocol implementation for unconstrained devices; also
targets mobile and embedded platforms
Watteco C Contiki Class 1 devices; based on “Erbium” to provide a CoAP
interface for different sensors and actuator products
(Anonymized) C UNIX Client-only implementation for embedded devices
(Anonymized) Java JVM Protocol implementation for mobile and embedded devices

Most of the participants in the CoAP interoperability test
provide application-independent stack implementations and
services. Sensinode, for instance, offers everything from de-
vice libraries to Cloud services. Besides that, there are hard-
ware vendors like Watteco who are evaluating CoAP for
their sensing and actuation modules (e.g., COo, illuminance,
humidity, electical power consumption, etc.) which come with
different physical layers (e.g., RF 2.4 GHz, RF 868 MHz, or
Powerline). Other vendors are extending their solutions, such
as home and building automation systems, with CoAP. For
example, NXP is building an application-level gateway that
connects their SNAP devices based on JenNet-IP and SNMP
(e.g., light bulbs) to the Internet using CoAP. The academic
participants were mainly from the Wireless Sensor Networks
and Web of Things research communities.

B. Open-Source Implementations

Just as vendors found different niches for which they pro-
vide their solutions, the available open-source implementations
also follow different goals. This paper gives guidance on which

implementations appear to be useful for what kind of projects.
We focus on the implementations that were present at the ETSI
event and are regularly updated to the latest draft versions.
Additional projects can be found in the survey by Villaverde
et al. [23]. We note, however, that their list of available CoAP
implementations includes information that is partly inaccurate.

1) Californium: Californium* [14] is a CoAP framework
for Java developers. It supports the observation of resources
and block-wise transfer of data. The framework automatically
generates the CoRE Link Format for its resources, allows
filtering for /.well-known/core, and can parse the link-
format into stub objects for resource discovery.

The goal of Californium is to provide an API that allows
the creation of clients and servers with minimal effort and
knowledge about CoAP by developers. Being feature-rich, the
framework has comparatively high memory requirements and
is used best for back-end systems. The main deficiency is
that there is no multi-threading support by the framework and

“https://github.com/mkovatsc/Californium

concurrency has to be managed by the resource handler imple-
mentations. At the time of writing there was an experimental
branch, though, which adds a multi-threaded design together
with cross-protocol proxy functionality.

2) jCoAP: jCoAP’ is a Java implementation for non-
constrained devices and embedded systems such as Java-
based smartphones and mobile devices (e.g., Android). It also
includes a CoAP-to-HTTP and HTTP-to-CoAP proxy imple-
mentation which can perform protocol translations between
the two protocols. This allows HTTP user agents (such as Web
browsers) to access resources on CoAP servers, and conversely
CoAP clients to access HTTP resources. As a result, clients
can access resources over both protocols without the need to
implement them at the same time.

3) Erbium: Contiki’s Erbium REST Engine® [13] mostly
avoids CoAP-specific calls in the application code. It provides
a REST-centric API to define resource handlers, access the
header options, and process the payload. Erbium is set up
to enable replacing CoAP with HTTP by simply linking a
different module. At the time of writing, there is no HTTP
engine available, though.

Contiki’ is a light-weight operating system from the wire-
less sensor network community, so Erbium is well-suited
for Class 1 devices with a variety of supported platforms.
All of CoAP’s features are implemented, although resource
observation only is provided on the server side; an easy-to-
use client API for it is still missing.

4) libcoap: libcoap® [15] is a library for CoAP message
parsing, serialization, and transmission. It is very flexible and
portable and has been ported to different embedded system
architectures, in particular the operating systems Contiki and
TinyOS. However, libcoap requires more boilerplate code than
Erbium to implement clients and servers. Support for the
TinyOS blip-rpl stack is provided by CoapBlip.

TinyOS'? is an operating system for Class 1 devices using
a specialized C dialect called NesC. The language uses a
components and wiring concept that is reminescent of VHDL.
Thus, CoapBlip is recommended for developers that already
have experience with TinyOS or want to reuse other projects
from the wireless sensor network community around TinyOS.

5) evcoap: evcoap'! is another general-purpose library sup-
porting the full feature set. Its event handling machinery is
based on libevent'? version 2.0.

Unlike the previous implementations, evcoap’s background
lies in embedded Web servers rather than wireless sensor net-
works. It is mainly used to explore experimental mechanisms
for the CoAP protocol suite, for example, the Subscribe and
Monitor options [8] that target sleepy nodes with a different

Shttp://code.google.com/p/jcoap/

Ohttp://contiki.git.sourceforge.net/

"http://www.contiki-os.org/

8http://libcoap.sourceforge.net/
“http://www.comnets.uni-bremen.de/~mab/git/tinyos-main.git
1Ohttp://www.tinyos.net/
https://github.com/koanlogic/webthings/tree/master/bridge/sw/lib/evcoap
2http://libevent.org/

radio duty cycling model: In wireless sensor networks, duty-
cycled nodes are virtually always on, with extremely short
channel checks at a few Hertz to allow for idle duty cycles
way below one percent. Sleepy nodes turn off their radios
entirely for longer periods in the order of hours and hence
have to be treated differently.

6) Copper: Copper'® [12] is a Firefox add-on written in
JavaScript. It only implements the client side, but provides a
graphical user interface (GUI) for all CoAP features including
resource observation and the block-wise transfer of data.
Copper also provides renderers for a number of content types
such as JSON or the CoRE Link Format. This makes it a useful
testing tool for application as well as protocol development.

IV. RESULTS OF THE ETSI PLUGTEST
A. ETSI Plugtests

The European Telecommunications Standards Institute
(ETSI) is a non-profit standards organisation. It organizes a
series of events called ETSI Plugtests to enable interoperability
of telecommunication technologies in a multi-vendor, multi-
network or multi-service environment. The first IoT CoAP
Plugtest meeting was held in conjunction with the IETF #83
Meeting in Paris, 24-25 March 2012. Most companies and
universities listed in Table I participated in this event.

B. Setup of the CoAP Plugtest

The Plugtest was driven by a test specification [6] which
defined the test cases to be performed as well as the test
environment.

The test specification defined 16 mandatory test cases and
a further 11 optional test cases. Each test case was to be
performed by pairs of one CoAP client and one CoAP server
of different vendors. The mandatory tests covered the CoAP
core specification [20] including basic operations on resources,
separate responses, header option processing and retransmis-
sions in lossy networks. The optional tests covered resource
observation [9], block-wise transfers [3], and the CoRE Link
Format [19]. Table II provides an overview of all tests defined
by the test specification.

The result of each test performed was recorded after each
session in a database. The possible results were as follows:

o the test passed,

o the test failed,

o the test was not applicable (for example, because the
feature was not implemented), or

o the time for testing ran out.

Participants brought their own devices of various sizes.
They were connected to a single LAN, which provided the
environment for most test cases. For test cases concerning
operations in a lossy context, a lossy gateway was provided to
emulate a lossy link by randomly dropping packets according
to a configurable rate (around 80% during the tests).

Bhttps://github.com/mkovatsc/Copper

TABLE I

TEST CASES
TestID Description passed/
failed

Mandatory 2586/163

CORE_01 Perform GET transaction (CON mode) 176/8

CORE_02 Perform POST transaction (CON mode) 176/7

CORE_03 Perform PUT transaction (CON mode) 17517

CORE_04 Perform DELETE transaction (CON mode) 180/3

CORE_05 Perform GET transaction (NON mode) 174/9

CORE_06 Perform POST transaction (NON mode) 167/16

CORE_07 Perform PUT transaction (NON mode) 169/14

CORE_08 Perform DELETE transaction (NON mode) 172/10

CORE_09 Perform GET transaction with delayed re- 151/27
sponse (CON mode, no piggyback)

CORE_10 Handle request containing Token option 167/5

CORE_11 Handle request not containing Token option 181/0

CORE_12 Handle request containing several Uri-Path op- 170/5
tions

CORE_13 Handle request containing several Uri-Query 152/11
options

CORE_14 Interoperate in lossy context (CON mode, pig- 119/3
gybacked response)

CORE_15 Interoperate in lossy context (CON mode, de- 98/19
layed response)

CORE_16 Perform GET transaction with delayed re- 159/19
sponse (NON mode)

Optional 266/26

LINK_O1 Access to well-known interface for resource 39/2
discovery

LINK_02 Use filtered requests for limiting discovery 32/4
results

BLOCK_01 Handle GET blockwise transfer for a large 34/2
resource (early negotiation)

BLOCK_02 Handle GET blockwise transfer for a large 33/2
resource (late negotiation)

BLOCK_03 Handle PUT blockwise transfer for a large 15/6
resource

BLOCK_04 Handle POST blockwise transfer for a large 15/6
resource

OBS_01 Handle resource observation 25/0

OBS_02 Stop resource observation 23/2

OBS_03 Client detection of deregistration (Max-Age) 13/0

OBS_04 Server detection of deregistration (client OFF) 19/2

OBS_05 Server detection of deregistration (explicit 18/0

RST)

C. Plugtest Results

From the Plugtest result database, we identified 18 CoAP
server implementations and 16 client implementations. This
means there were 288 possible client-server combinations. As
many libraries support both client and server implementations,
this includes self-tests which were not included in the testing
schedule of the Plugtest meeting. Some participants provided
their self-test results, though. Beyond this, also tests between
different implementations from the same company were not
considered by the schedule. Furthermore, some tests were
performed several times. We assume that some issues were

mpassed mfailed moutoftime mnotapplicable

CORE_01
CORE_02
CORE_03
CORE_04
CORE_05
CORE_06
CORE_07
CORE_08
CORE_09
CORE_10
CORE_11
CORE_12
CORE_13
CORE_14
CORE_15
CORE_16
LINK_01
LINK_02
BLOCK_01
BLOCK_02
BLOCK_03
BLOCK_04
OBS_01
OBS_02
OBS_03
OBS_04
OBS_05

0 50 100

Number of Tests

150 200

Fig. 1. CoAP Plugtest Results

found and fixed immediately during the Plugtest; for our
evaluation, we ignore all results except for the most recent
ones.

In total, 3406 Tests were made during the Plugtest. 365 of
them had the result “not applicable” or “out of time”. These
are ignored in the following evaluation, resulting in a number
of considered tests of 3041.

Figure 1 shows all test results in detail; Figure 2 provides
a summary of the results. As can be seen, in most cases more
than 90% of the tests performed did pass. This means that
a high interoperability is given. But it can also be seen that
the mandatory test cases were performed much more often
than the optional ones. On average, mandatory test cases were
performed 171 times, while optional test cases were performed
only 27 times. Assuming that the optional tests were not per-
formed because the respective feature were not implemented,
it can be concluded that fewer CoAP implementations support
optional features. However, if they are implemented, a high
interoperability is given here as well.

passed m failed
1 \ \ \ \
Core 94% 6%
f | | | |
Link 92% 8%
f | | | |
Block 86% 14%
f | | | |
Obs. | | 96% | | 4%
0% 26% 46% 66% 86% 100%

Fig. 2. CoAP Plugtest Results Summary

D. Lessons learned

As might be expected, the test case with the highest suc-
cess rate is a simple GET request without a Token option
(CORE_11). This test never failed. The mandatory test that
performed worst is a separate response in a lossy context
(CORE_15). However, this test case still yielded a high inter-
operability with 84% of the tests performed being successful.

With only 71% of the tests performed being successful,
the test cases BLOCK_03 and BLOCK_04 are those with the
overall worst outcome compared to the other test cases. Both
of these test cases involving the block-wise transfer of data
from a client to a server.

Summing up, it can be stated that a very high interoperabil-
ity between current CoAP implementations is given. Except
for the two test cases involving the block-wise transfer of
data from clients to servers, all test cases passed with more
than 80% of the tests performed being successful. This implies
that the current draft specification is quite clear and without
ambiguity.

V. CONCLUSION

In this paper we gave an overview of current CoAP imple-
mentations. Although CoAP is a very new protocol, over 20
different implementations in various programming languages
are known for devices ranging from resource-constrained
devices such as wireless sensor nodes up to smartphones and
servers. This implies that CoAP is going to be used in many
different applications and domains.

Nearly all of the implementations were present at the first
Plugtest meeting organised by ETSI in March 2012. At the
Plugtest 18 server and 16 client implementations were tested
against each other in 27 different test cases. As a result of the
Plugtest evaluation, it can be stated that a high interoperability
between current implementations is given. Most tests passed
with more than 90%. This also implies a good implementabil-
ity of the CoAP specification.

However, only a few implementations currently support
optional features. But it can be assumed that this is due to the
novelty of the specification and many implementations will
support optional features in near future.

ACKNOWLEDGMENT

The authors would like to thank the organizers from ETSI
and the Plugtest attendees who participated in our survey and
made the test results available.

REFERENCES

[1] C. Bormann. 6LoWPAN Generic Compression of Headers and Header-
like Payloads. draft-bormann-6lowpan-ghc-04, 2012.
[2] C. Bormann. Guidance for Light-Weight Implementations of the Internet
Protocol Suite. draft-bormann-lwig-guidance-01, 2012.
[3] C. Bormann and Z. Shelby. Blockwise transfers in CoAP. draft-ietf-
core-block-08, 2012.
[4] A. Dunkels. Full TCP/IP for 8-bit Architectures. In Proc. MobiSys, San
Francisco, CA, USA, 2003.
[5] S. Duquennoy, G. Grimaud, and J.-J. Vandewalle. Smews: Smart and
Mobile Embedded Web Server. In Proc. CISIS, Fukuoka, Japan, 2009.
[6] ETSI. 1st CoAP Plugtest. Technical Report CTI Plugtest Report 1.1.1
(2012-03), ETSI, 2012.
[7]1 R. T. Fielding and R. N. Taylor. Principled Design of the Modern Web
Architecture. Trans. Internet Technology, 2(2):115-150, 2002.
[8] T. Fossati, P. Giacomin, and S. Loreto. Publish and Monitor Options
for CoAP. draft-fossati-core-publish-monitor-options-01, 2012.
[9] K. Hartke. Observing Resources in CoAP. draft-ietf-core-observe-05,
2012.
[10] J. Hui and D. Culler. IP is Dead, Long Live IP for Wireless Sensor
Networks. In Proc. SenSys, Raleigh, NC, USA, 2008.
[11] J. Hui and P. Thubert. Compression Format for IPv6 Datagrams over
IEEE 802.15.4-Based Networks. RFC6282, 2011.
M. Kovatsch. Demo Abstract: Human—CoAP Interaction with Copper.
In Proc. DCOSS, Barcelona, Spain, 2011.
M. Kovatsch, S. Duquennoy, and A. Dunkels. A Low-Power CoAP for
Contiki. In Proc. MASS, Valencia, Spain, 2011.
M. Kovatsch, S. Mayer, and B. Ostermaier. Moving Application Logic
from the Firmware to the Cloud: Towards the Thin Server Architecture
for the Internet of Things. In Proc. IMIS, Palermo, Italy, 2012.
K. Kuladinithi, O. Bergmann, T. Potsch, M. Becker, and C. Gorg.
Implementation of CoAP and its Application in Transport Logistics.
In Proc.IP+SN, Chicago, IL, USA, 2011.
[16] M. Nottingham. Web Linking. RFC5988, 2010.
[17] M. Nottingham and E. Hammer-Lahav. Defining Well-Known Uniform
Resource Identifiers (URIs). RFC5785, 2010.
A. Rahman and E. Dijk. Group Communication for CoAP. draft-ietf-
core-groupcomm-01, 2012.
[19] Z. Shelby. CoRE Link Format. draft-ietf-core-link-format-11, 2012.
[20] Z. Shelby, K. Hartke, C. Bormann, and B. Frank. Constrained Applica-
tion Protocol (CoAP). draft-ietf-core-coap-09, 2012.
G. Tolle. Embedded Binary HTTP (EBHTTP). draft-tolle-core-ebhttp-
00, 2010.
UPnP Forum. UPnP Device Architecture 1.0. Document Revision Date
15 October 2008.
B. Villaverde, D. Pesch, R. Alberola, S. Fedor, and M. Boubekeur.
Constrained application protocol for low power embedded networks:
A survey. In Proc. IMIS, Palermo, Italy, 2012.
T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. P. Vasseur, and R. Alexander. RPL: IPv6 Routing Protocol
for Low-Power and Lossy Networks. RFC6550, 2012.

[12]
[13]

[14]

[15]

(18]

[21]
[22]

[23]

[24]

