
Efficient Fuzzy Type-Ahead Search
in XML Data

Jianhua Feng, Senior Member, IEEE, and Guoliang Li, Member, IEEE

Abstract—In a traditional keyword-search system over XML data, a user composes a keyword query, submits it to the system, and

retrieves relevant answers. In the case where the user has limited knowledge about the data, often the user feels “left in the dark” when

issuing queries, and has to use a try-and-see approach for finding information. In this paper, we study fuzzy type-ahead search in XML

data, a new information-access paradigm in which the system searches XML data on the fly as the user types in query keywords. It

allows users to explore data as they type, even in the presence of minor errors of their keywords. Our proposed method has the

following features: 1) Search as you type: It extends Autocomplete by supporting queries with multiple keywords in XML data.

2) Fuzzy: It can find high-quality answers that have keywords matching query keywords approximately. 3) Efficient: Our effective index

structures and searching algorithms can achieve a very high interactive speed. We study research challenges in this new search

framework. We propose effective index structures and top-k algorithms to achieve a high interactive speed. We examine effective

ranking functions and early termination techniques to progressively identify the top-k relevant answers. We have implemented our

method on real data sets, and the experimental results show that our method achieves high search efficiency and result quality.

Index Terms—XML, keyword search, type-ahead search, fuzzy search.

Ç

1 INTRODUCTION

TRADITIONALmethods use query languages such as XPath
and XQuery to query XML data. These methods are

powerful but unfriendly to nonexpert users. First, these
query languages are hard to comprehend for nondatabase
users. For example, XQuery is fairly complicated to grasp.
Second, these languages require the queries to be posed
against the underlying, sometimes complex, database
schemas. Fortunately, keyword search is proposed as an
alternative means for querying XML data, which is simple
and yet familiar to most Internet users as it only requires the
input of keywords. Keyword search is a widely accepted
search paradigm for querying document systems and the
World Wide Web. Recently, the database research commu-
nity has been studying challenges related to keyword
search in XML data [19], [12], [37], [54], [49], [32], [40],
[55], [35]. One important advantage of keyword search is
that it enables users to search information without knowing
a complex query language such as XPath or XQuery, or
having prior knowledge about the structure of the under-
lying data.

In a traditional keyword-search system over XML data, a
user composes a query, submits it to the system, and
retrieves relevant answers from XML data. This informa-
tion-access paradigm requires the user to have certain
knowledge about the structure and content of the underlying
data repository. In the case where the user has limited
knowledge about the data, often the user feels “left in the

dark” when issuing queries, and has to use a try-and-see
approach for finding information. He tries a few possible
keywords, goes through the returned results, modifies the
keywords, and reissues a new query. He needs to repeat this
step multiple times to find the information, if lucky enough.
This search interface is neither efficient nor user friendly.
Many systems are introducing various features to solve this
problem. One of the commonly used methods is Autocom-
plete, which predicts a word or phrase that the user may type
in based on the partial string the user has typed. More and
morewebsites support this feature. As an example, almost all
the major search engines nowadays automatically suggest
possible keyword queries as a user types in partial keywords.
Both Google Finance (http://finance.google.com/) and
Yahoo! Finance (http://finance.yahoo.com/) support
searching for stock information interactively as users type
in keywords.

One limitation of Autocomplete is that the system treats a
query with multiple keywords as a single string; thus, it does
not allow these keywords to appear at different places. For
instance, consider the search box on Apple.com, which
allows Autocomplete search on Apple products. Although a
keyword query “iphone” can find a record “iphone has

some great new features,” a query with keywords
“iphone features” cannot find this record (as of February
2010), because these two keywords appear at different places
in the answer.

To address this problem, Bast and Weber [6], [7]
proposed CompleteSearch in textual documents, which
can find relevant answers by allowing query keywords
appear at any places in the answer. However, Complete-
Search does not support approximate search, that is it
cannot allow minor errors between query keywords and
answers. Recently, we studied fuzzy type-ahead search in
textual documents [27]. It allows users to explore data as
they type, even in the presence of minor errors of their input
keywords. Type-ahead search can provide users instant

882 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 5, MAY 2012

. The authors are with the Department of Computer Science, Tsinghua
National Laboratory for Information Science and Technology (TNList),
Tsinghua University, Room 10-204, East Main Building, Beijing 100084,
China. E-mail: {fengjh, liguoliang}@tsinghua.edu.cn.

Manuscript received 20 Feb. 2010; revised 16 July 2010; accepted 25 Sept.
2010; published online 21 Dec. 2010.
Recommended for acceptance by Q. Li.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2010-02-0103.

1041-4347/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

feedback as users type in keywords, and it does not require
users to type in complete keywords. Type-ahead search can
help users browse the data, save users typing effort, and
efficiently find the information. We also studied type-ahead
search in relational databases [34]. However, existing
methods cannot search XML data in a type-ahead search
manner, and it is not trivial to extend existing techniques to
support fuzzy type-ahead search in XML data. This is
because XML contains parent-child relationships, and we
need to identify relevant XML subtrees that capture such
structural relationships from XML data to answer keyword
queries, instead of single documents.

In this paper, we propose TASX (pronounced “task”), a
fuzzy type-ahead search method in XML data. TASX searches
the XML data on the fly as users type in query keywords,
even in the presence of minor errors of their keywords.
TASX provides a friendly interface for users to explore XML
data, and can significantly save users typing effort. In this
paper, we study research challenges that arise naturally in
this computing paradigm. The main challenge is search
efficiency. Each query with multiple keywords needs to be
answered efficiently. To make search really interactive, for
each keystroke on the client browser, from the time the user
presses the key to the time the results computed from the
server are displayed on the browser, the delay should be as
small as possible. An interactive speed requires this delay
should be within milliseconds. Notice that this time
includes the network transfer delay, execution time on the
server, and the time for the browser to execute its Java-
Script. This low-running-time requirement is especially
challenging when the backend repository has a large
amount of data. To achieve our goal, we propose effective
index structures and algorithms to answer keyword queries
in XML data. We examine effective ranking functions and
early termination techniques to progressively identify top-k
answers. To the best of our knowledge, this is the first paper
to study fuzzy type-ahead search in XML data. To
summarize, we make the following contributions:

. We formalize the problem of fuzzy type-ahead
search in XML data.

. We propose effective index structures and efficient
algorithms to achieve a high interactive speed for
fuzzy type-ahead search in XML data.

. We develop ranking functions and early termination
techniques to progressively and efficiently identify
the top-k relevant answers.

. We have conducted an extensive experimental
study. The results show that our method achieves
high search efficiency and result quality.

The remainder of this paper is organized as follows:
Section 2 gives the preliminaries. We formalize the problem
of fuzzy type-ahead search in XML data in Section 3 and
propose a lowest common ancestor (LCA)-based method in
Section 4. Section 5 introduces a progressive search
method. Extensive experimental evaluations are provided
in Section 6. We review related work in Section 7 and
conclude in Section 8.

2 PRELIMINARIES

2.1 Notations

An XML document can be modeled as a rooted and labeled
tree. A node v in the tree corresponds to an element in the
XML document and has a label. For two nodes u and v, we
use “u � v” (“u � v,” respectively) to denote that node u is
an ancestor (descendant, respectively) of node v. We use
“u � v” to denote that u � v or u ¼ v. For example, consider
the XML document in Fig. 1, we have paper (node 5) �
author (node 7) and paper (node 12) � conf (node 2).

A keyword query consists of a set of keywords
fk1; k2; . . . ; k‘g. For each keyword ki, we call the nodes in
the tree that contain the keyword the content nodes for ki.
The ancestor nodes1 of the content nodes are called the
quasi-content nodes of the keyword. For example, consider
the XML document in Fig. 1, title (node 16) is a content
node for keyword “DB,” and conf (node 2) is a quasi-
content node of keyword “DB.”

2.2 Keyword Search in XML Data

In the literature, there aredifferentways todefine the answers
to a keyword query on anXMLdocument. A commonly used

FENG AND LI: EFFICIENT FUZZY TYPE-AHEAD SEARCH IN XML DATA 883

Fig. 1. An XML document.

1. A node is not an ancestor nor a descendant of itself.

one is based on the notion of lowest common ancestor [20].
Given an XML documentD and its XML nodes v1; v2; . . . ; vm,
we say a node u in the document is the lowest common
ancestor of these nodes if 8 1 � i � m, u � vi, and there does
not exist another node u0 such that u � u0 and u0 � vi.

Intuitively, each LCA of the keyword query is the LCA of
a set of content nodes corresponding to all the keywords in
the query.Many algorithms for XML keyword search use the
notion of LCA or its variants [19], [12], [37], [54], [49], [32],
[40], [55]. For a keyword query, the LCA-based algorithm
first retrieves content nodes in XML data that contain the
input keywords using inverted indices. It then identifies the
LCAs of the content nodes, and takes the subtrees rooted at
the LCAs as the answer to the query. For example, a
bibliography XML document is shown in Fig. 1. Suppose a
user issues a keyword query “DB Tom.” The content nodes of
“DB” and “Tom” are {13,16} and {14,17}, respectively.
Nodes 2, 12, and 15 are LCAs of the keyword query. Notice
that node 2 is the LCA of nodes 13 and 17. Evidently, node 2
is less relevant to the query than nodes 12 and 15, as nodes
13 and 17 correspond to values of different papers.

To address this limitation of using LCAs as query
answers, many methods have been proposed [12], [25], [37],
[11], [23], [48], [38] to improve search efficiency and result
quality. Guo et al. [19] and Xu and Papakonstantinou [55]
proposed exclusive lowest common ancestor (ELCA). Given a
keyword query Q ¼ fk1; k2; . . . ; k‘g and an XML document
D, u 2 D is called an ELCA of Q, if and only if there exists
nodes v1 2 Ik1 ; v2 2 Ik2 ; . . . ; v‘ 2 Ik‘ such that u is the LCA
of v1; v2; . . . ; v‘, and for every vi, the descendants of u on the
path from u to vi are not LCAs of Q nor ancestors of any
LCA of Q.

An LCA is an ELCA if it is still an LCA after excluding its
LCA descendants. For example, the ELCAs to the keyword
query “DB Tom” on the data in Fig. 1 are nodes 12 and 15.
Node 2 is not an ELCA as it is not an LCA after excluding
nodes 12 and 15. Xu and Papakonstantinou [55] proposed a
binary-search-based method to efficiently identify ELCAs.

3 PROBLEM FORMULATION OF FUZZY TYPE-AHEAD

SEARCH IN XML DATA

In this section, we introduce the overview of fuzzy type-
ahead search in XML data and formalize the problem.

3.1 Overview

We first introduce how TASX works for queries with
multiple keywords in XML data, by allowing minor errors
of query keywords and inconsistencies in the data itself.
Assume there is an underlying XML document that resides
on a server. A user accesses and searches the data through a
web browser. Each keystroke that the user types invokes a
query, which includes the current string the user has typed
in. The browser sends the query to the server, which
computes and returns to the user the best answers ranked
by their relevancy to the query.

The server first tokenizes the query string into several
keywords using delimiters such as the space character. The
keywords are assumed as partial keywords, as the user may
have not finished typing the complete keywords. For the
partial keywords, we would like to know the possible words
the user intends to type. However, given the limited

information, we can only identify a set of complete words
in the data set which have similar prefixes with the partial
keywords. This set of complete words are called the predicted
words.Weuse edit distance to quantify the similarity between
two words. The edit distance between two words s1 and s2,
denoted by edðs1; s2Þ, is the minimum number of edit
operations (i.e., insertion, deletion, and substitution) of single
characters needed to transform the first one to the second. For
example, edðmics;micesÞ ¼ 1 and edðmics;michÞ ¼ 1. For
instance, given a partial keyword “mics,” its predicted
words could be “mices,” “mich,” “michal,” etc.

Then, the server identifies the relevant subtrees in XML
data that contain the predicted words for every input
keyword. We can use any existing semantics to identify the
answer based on the predictedwords, such as ELCA [19].We
call these relevant subtrees the predicted answers of the query.
For example, consider the XMLdocument in Fig. 1. Assume a
user types in a keyword query “db mics.” The predicted
word of “db” is “db.” The predicted words of “mics” are
“mices” and “mich.” The subtree rooted at node 12 is the
predicted answer of “db mices.” The subtree rooted at node
15 is the predicted answer of “dbmich.” Thus, TASX can save
users time and efforts, since they can find the answers even if
they have not finished typing all the complete keywords or
typing keywords with minor errors.

3.2 Problem Formulation

We formalize the problem of fuzzy type-ahead search in
XML data as follows:

Definition 1 (FUZZY TYPE-AHEAD SEARCH IN XML
DATA). Given an XML document D, a keyword query
Q ¼ fk1; k2; . . . ; k‘g, and an edit-distance threshold � . Let the
predicted-word set be Wki ¼ fwjw is a tokenized word in D
and there exists a prefix of w, k0i, edðki; k0iÞ � �}. Let the
predicted-answer set be RQ ¼ frjr is a keyword-search result
of query fw1 2 Wk1 ; w2 2 Wk2 ; . . . ; w‘ 2 Wk‘gg. For the key-
stroke that invokes Q, we return the top-k answers in RQ for a
given value k, ranked by their relevancy to Q.

We treat the data and query string as lowercase strings.
We will focus on how to efficiently find the predicted
answers, among which we can find the best top-k relevant
answers using a ranking function.

There are two challenges to support fuzzy type-ahead
search in XML data. The first one is how to interactively and
efficiently identify the predicted words that have prefixes
similar to the input partial keyword after each keystroke
from the user. The second one is how to progressively and
effectively compute the top-k predicted answers of a query
with multiple keywords, especially when there are many
predicted words. We introduce effective index structures
and incremental computing algorithms to address the first
challenge (Section 4). We devise effective ranking functions,
early termination techniques, efficient algorithms, and
forward-index structures to address the second challenge
(Section 5).

4 LCA-BASED FUZZY TYPE-AHEAD SEARCH

This section proposes an LCA-based fuzzy type-ahead
search method. We use the semantics of ELCA [55] to
identify relevant answers on top of predicted words.

884 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 5, MAY 2012

4.1 Index Structures

We use a trie structure to index the words in the underlying

XML data. Each word w corresponds to a unique path from

the root of the trie to a leaf node. Each node on the path has

a label of a character in w. For each leaf node, we store an

inverted list of IDs of XML elements that contain the word

of the leaf node. For instance, consider the XML document

in Fig. 1. The trie structure for the tokenized words is shown

in Fig. 2. The word “mich” has a node ID of 10. Its inverted

list includes XML elements 18 and 26.

4.2 Answering Queries with a Single Keyword

We first study how to answer a query with a single

keyword using the trie structure. Each keystroke that a user

types invokes a query of the current string, and the client

browser sends the query string to the server.

4.2.1 Exact Search

We first consider the case of exact search. One naive way to

process such a query on the server is to answer the query

from scratch as follows: we first find the trie node

corresponding to this keyword by traversing the trie from

the root. Then, we locate the leaf descendants of this node,

and retrieve the corresponding predicted words and the

predicted XML elements on the inverted lists.
For example, suppose a user types in query string “mich”

letter by letter. When the user types in the character “m,” the

client sends the query “m” to the server. The server finds the

trie node corresponding to this keyword (node 5). Then, it

locates the leaf descendants of node 5 (nodes 9 and 10), and

retrieves the corresponding predicted words (“mices” and

“mich”) and the predicted XML elements (elements 14, 18,

and 26). When the user types in the character “i,” the client

sends a query string “mi” to the server. The server answers

the query from scratch as follows: it first finds node 6 for this

string, then locates the leaf descendants of node 6 (nodes 9

and 10). It retrieves the corresponding predicted words

(“mices” and “mich”). Other queries invoked by key-

strokes are processed in a similar way. One limitation of this

method is that it involves a lot of recomputation without

using the results of earlier queries.

We can use a caching-based method to incrementally
find the trie node for the input keyword. We maintain a
session for each user. Each session keeps the keywords that
the user has typed in the past and the corresponding trie
node. We use a hashtable to maintain such information.
When a session times out, the kept information will be
deleted. The goal of keeping the information is to use it
answer subsequent queries incrementally as follows:
assume a user has typed in a query string c1c2 . . . cx letter
by letter. Let pi ¼ c1c2 . . . ci be a prefix query (1 � i � x).
Suppose ni is the trie node corresponding to pi. After the
user types in a prefix query pi, we store node ni for pi. For
each keystroke the user types, for simplicity, we first
assume that the user types in a new character cxþ1 at the end
of the previous query string and submit a new query
pxþ1 ¼ c1c2 . . . cxcxþ1. To incrementally answer the new
query, we first check whether node nx that has been kept
for px has a child with a label of cxþ1. If so, we locate the leaf
descendants of node nxþ1, and retrieve the corresponding
predicted words. Otherwise, there is no word that has a
prefix of pxþ1, and we can just return an empty answer.

For example, suppose a user has typed in “mic.” After
this query is submitted and processed, the server has stored
node 5 for the prefix query “m,” node 6 for the prefix query
“mi,” and node 7 for “mic.” If the user types in “h” after
“mic,” we check whether node 7 kept for “mic” has a child
with label “h.” Here, we find node 10, and retrieve the
corresponding predicted word “mich.”

In general, the user may modify the previous query
string arbitrarily, or copy and paste a completely different
string. In this case, for the new query string, among all the
keywords typed by the user, we identify the cached
keyword that has the longest prefix with the new query.
Then, we use this prefix to incrementally answer the new
query, by inserting the characters after the longest prefix of
the new query one by one.

4.2.2 Fuzzy Search

Obviously, for exact search, given a partial keyword, there
exists at most one trie node for the keyword. We retrieve the
leaf descendants of this trie node as the predicted words.
However, for fuzzy search, there could be multiple trie
nodes that are similar to the partial keyword within a given
edit-distance threshold, called active nodes. For example,
both nodes “mices” and “mich” on the trie in Fig. 2 are
active nodes for “mics.”

We can incrementally compute active nodes as follows:
given a partial query px ¼ c1c2 . . . cx, suppose we have
computed the active-node sets of px, Apx . Then, for a new
query pxþ1 ¼ c1c2 . . . cxcxþ1, we use Apx to compute Apxþ1

as
follows: for any active node n 2 Apx , its descendants could
be similar to pxþ1, we consider three edit operations of
insertion, deletion, and substitution to compute active
nodes under node n and put them into Apxþ1

[27]. Given a
null string �, we initialize A� ¼ fnj the level of node n is no
larger than � (the level of the root is 0)}. Accordingly, we can
incrementally compute Apxþ1

based on Apx [27]. To facilitate
incremental computation, for each user, we use a session to
maintain active nodes of each keyword using a hashtable.

Thus, given a partial keyword px, we first compute its
active-node set Apx . Then, for each active node n 2 Apx , we

FENG AND LI: EFFICIENT FUZZY TYPE-AHEAD SEARCH IN XML DATA 885

Fig. 2. The trie on top of words in Fig. 1 (a part of words).

retrieve inverted lists of n’s leaf descendants and compute
the union of such inverted lists, denoted as Un. Finally, we
compute the union of Un for n 2 Apx , denoted as Upx , i.e.,
Upx ¼

S
n2Apx

Un. We call Upx the union list of px. Obviously,
Uki is exactly the set of XML elements that have prefixes
similar to ki.

Example 1. Consider the trie structure in Fig. 2 and suppose
the given edit-distance threshold � ¼ 1. Assume a user
types in a partial keyword “mics” letter by letter. We
compute active-node sets as follows: first, we initialize
A� ¼ f�ð0Þ; dð1Þ; ið1Þ;mð1Þ; tð1Þ; xð1Þg, where the number
in the parenthesis denotes the edit distance between the
active node and the partial keyword. Then, we incre-
mentally compute Am ¼ f�ð1Þ; dð1Þ; ið1Þ;mð0Þ;mið1Þ;
tð1Þ; xð1Þ; xmð1Þg, Ami ¼ fmð1Þ;mið0Þ;micð1Þg, Amic ¼
fmið1Þ;micð0Þ, miceð1Þ;michð1Þg, and Amics ¼ fmicð1Þ;
micesð1Þ;michð1Þg. We traverse the subtrees of active
nodes 7, 9, and 10, get predicted words “mices” and
“mich,” compute Umices ¼ f14g, Umich ¼ f18; 26g, and get
the union list Umics ¼ f14; 18; 26g.

4.3 Answering Queries with Multiple Keywords

Now, we consider how to do fuzzy type-ahead search in the
case of a query with multiple keywords. For a keystroke
that invokes a query, we first tokenize the query string into
keywords, k1; k2; . . . ; k‘. For each keyword ki (1 � i � ‘), we
compute its corresponding active nodes, and for each such
active node, we retrieve its leaf descendants and corre-
sponding inverted lists. Then, we compute union list Uki for
every ki as discussed in Section 4.2.2 Finally, we compute
the predicted answers on top of lists Uk1 ; Uk2 ; . . . ; Uk‘ .

We use the semantics of ELCA [55] to compute the
corresponding answers. We use the binary-search-based
method to compute ELCAs [55]. We will introduce an
effective ranking function in considering fuzzy search in
Section 5.2.

Example 2. Consider the trie structure in Fig. 2 and suppose
the given edit-distance threshold � ¼ 1. Assume a user
types in a query “db mics” letter by letter. As the user
types in the keyword “db,” for each keystroke, we
incrementally answer the query as discussed before.
We identify predicted word “db” and compute the union
list Udb ¼ f13; 16g. When the user types in “db mics,”
we find the active nodes fmicð7Þ;micesð9Þ;michð10Þg,
identify the predicted words of the active nodes,
“mices” and “mich,” and compute the union list
Umics ¼ f14; 18; 26g. Then, we compute the ELCAs on
top of the two union lists Udb and Umics, get the ELCAs
(XML elements 12 and 15), and return the subtrees
rooted at the two ELCAs. Accordingly, we can incre-
mentally answer the keyword query “db mics.”

5 PROGRESSIVE AND EFFECTIVE TOP-K FUZZY
TYPE-AHEAD SEARCH

The LCA-based fuzzy type-ahead search algorithm in XML
data has two main limitations. First, they use the “AND”

semantics between input keywords of a query, and ignore
the answers that contain some of the query keywords (but
not all the keywords). For example, suppose a user types in
a keyword query “DB IR Tom” on the XML document in
Fig. 1. The ELCAs to the query are nodes 15 and 5.
Although node 12 does not have leaf nodes corresponding
to all the three keywords, it might still be more relevant
than node 5 that contains many irrelevant papers. Second,
in order to compute the best results to a query, existing
methods need find candidates first before ranking them,
and this approach is not efficient for computing the best
answers. A more efficient algorithm might be able to find
the best answers without generating all candidates.

To address these limitations, we develop novel ranking
techniques and efficient search algorithms. In our approach,
each node on the XML tree could be potentially relevant to a
keyword query, and we use a ranking function to decide the
best answers to the query. For each leaf node in the trie, we
index not only the content nodes for the keyword of the leaf
node, but also those quasi-content nodes whose descen-
dants contain the keyword. For instance, consider the XML
document in Fig. 1. For the keyword “DB,” we index nodes
13, 16, 12, 15, 9, 2, 8, 1, and 5 for this keyword as shown in
Fig. 3. For the keyword “IR,” we index nodes 6, 16, 24, 5, 15,
23, 2, 20, and 1. For the keyword “Tom,” we index nodes 14,
17, 12, 15, 9, 2, 8, 1, and 5. The nodes are sorted by their
relevance to the keyword (we will discuss how to evaluate
relevance of nodes to a keyword in Section 5.2.1). Fig. 3
gives the extended trie structure.

For instance, assume a user types in a keyword query “DB
IR Tom.” We use the extended trie structure to find nodes 15
and 12 as the top-2 relevant nodes. We propose minimal-cost
trees (MCTs) to construct the answers rooted at nodes 15 and
12 (Section 5.1). We develop effective ranking techniques to
rank XML elements on the inverted lists in the extended trie
structure (Section 5.2). We can employ threshold-based
algorithms [15] to progressively and efficiently identify the
top-k relevant answers (Section 5.3). Moreover, our ap-
proach automatically supports the “OR” semantics.

5.1 Minimal-Cost Tree

In this section, we introduce a new framework to find
relevant answers to a keyword query over an XML

886 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 5, MAY 2012

Fig. 3. The extended trie on top of words in Fig. 1 (a part of words).

2. Note that if the user only modifies ki, we only need to compute Uki , as
8j 6¼ i, Ukj has been cached.

document. In the framework, each node on the XML tree is
potentially relevant to the query with different scores. For
each node, we define its corresponding answer to the query
as its subtree with paths to nodes that include the query
keywords. This subtree is called the “minimal-cost tree” for
this node. Different nodes correspond to different answers to
the query, andwewill study how to quantify the relevance of
each answer to the query for ranking (Section 5.2).

Consider an XML document D, a keyword ki, and a
content node or quasi-content node for ki, n. Let P denote a
subset of n’s descendant nodes which are content nodes of
ki. p 2 P is a pivotal node for ki and n, if node p has the
minimal distance to node n among all nodes in P . The path
from node n to a pivotal node is called the pivotal path of this
pivotal node.3 For example, consider the XML document in
Fig. 1. Given a keyword “DB,” node 9 is a quasi-content
node for “DB.” Node 13 is a pivotal node for node 9 and
keyword “DB,” and the path n9 ! n12 ! n13 is the
corresponding pivotal path, where n9; n12; n13 denote nodes
9, 12, and 13, respectively. Intuitively, a pivotal node for
node n and ki is much more relevant to node n for ki than
other content nods. Thus, given a node n and a keyword
query Q, we combine all pivotal paths as an answer of
query Q. Now, we give a formal definition.

Given a keyword query, each node n in the XML
document is potentially relevant to the query. We introduce
the notion of minimal-cost tree rooted at node n to define the
answer to the query.

Definition 2 (MINIMAL-COST TREES). Given an XML
document D, a node n in D, and a keyword query Q ¼ fk1;
k2; . . . ; k‘}, a minimal-cost tree of query Q and node n is the
subtree rooted at n, and for each keyword ki 2 Q, if node n is a
quasi-content node of ki, the subtree includes the pivotal paths
for ki and node n.

To answer a keyword query, we first identify the
predicted words for each input keyword. Then, we
construct the minimal-cost tree for every node in the XML
tree based on the predicted words, and return the best ones
with the highest scores. Later, we will discuss how to rank a
minimal-cost tree in Section 5.2, and give progressive and
efficient search algorithms in Section 5.3. Here to better
understand our method, we give an example to show how
to construct a minimal-cost tree as below.

Example 3. Consider the XML document in Fig. 1 and given
a keyword query Q ¼ fDB; Tom; WWWg. Nodes 3, 13, 14, 16,
and 17 are content nodes of the three keywords; nodes 1,
2, 5, 8, 9, 12, and 15 are their quasi-content nodes. Node 3
is the pivotal node for node 2 and “WWW.” Node 16 is the
pivotal node for node 2 and “DB.” Node 17 is the pivotal
node for node 2 and “Tom.” The MCT of node 2 is the
subtree rooted at node 2, which contains the paths:
n2 ! n3, n2 ! n15 ! n16, and n2 ! n15 ! n17.

The main advantage of this definition is that, even if a
node does not have descendant nodes that include all the
keywords in the query, this node could still be considered
as a potential answer. In other words, this definition is

relaxing the assumption in existing semantics that all the
query keywords need to appear in the descendants of an
answer node. As we will see in the next section, this
definition still allows us to do effective indexing to answer
queries efficiently.

5.2 Ranking Minimal-Cost Trees

In this section, we discuss how to rank a minimal-cost tree.
We first introduce a ranking function for exact search in
Section 5.2.1 and then extend the ranking function to
support fuzzy search in Section 5.2.2.

5.2.1 Ranking for Exact Search

To rank a minimal-cost tree, we first evaluate the relevance
between the root node and each input keyword, and then
combine these relevance scores for every input keyword as
the overall score of the minimal-cost tree. We propose two
ranking functions to compute the relevance score between
the root note n to an input keyword ki. The first one
considers the case that n contains ki. The second one
considers the case that n does not contain ki but has a
descendant containing ki.

Our first ranking method models each node n as a

document that includes the terms contained in the tag name

or text values (#PCDATA) of n. We can then use the idea of

TF/IDF in IR literature to score the relevance of node n to a

keyword. Given an XML document D, a node n 2 D, and a

keyword ki contained in n, we denote tfðki; nÞ as the number

of occurrences of ki in the subtree rooted at n, idfðkiÞ as the
inverse document frequency of ki (i.e., the ratio of the number

of nodes in the XML document to the number of nodes that

contain ki), and ntlðnÞ as the normalized term length of n, i.e.,

ntlðnÞ ¼ jnj
jnmax j , where jnj denotes the number of terms

contained in n and nmax denotes the node with the maximal

number of terms.
If n contains ki, we use existing ranking methods [40] to

compute the relevance of node n to keyword ki:

SCORE1ðn; kiÞ ¼
ln
�
1þ tfðki; nÞ

� � ln�idfðkiÞ
�

ð1� sÞ þ s � ntlðnÞ : ð1Þ

In the formula, s is a constant, which is widely studied
in the information-retrieval community and usually set to
0.2 [39].

Example 4. Consider the XML document in Fig. 1 and a
query Q ¼ fXML; IR; Tohng. For node 24, we have

SCORE1ðn24; XMLÞ ¼ lnð1þ 1Þ � lnð28=3Þ
0:2þ 0:8

¼ 1:55

and SCORE1ðn24; IRÞ ¼ lnð1þ1Þ�lnð28=4Þ
0:2þ0:8 ¼ 1:35. For node 25,

we have

SCORE1ðn25; TohnÞ ¼ lnð1þ 1Þ � lnð28=3Þ
0:2þ 0:8

¼ 1:55:

However, if n does not contain ki, the first ranking
function cannot quantify the relevancy between node n and
keyword ki. To address this issue, we extend the first
ranking function and propose the second ranking function.
Given a keyword kj, a quasi-content node n for kj, suppose
p is the pivotal node for n and kj. The distance between n

FENG AND LI: EFFICIENT FUZZY TYPE-AHEAD SEARCH IN XML DATA 887

3. In general, there can be more than one pivotal nodes for ki and n.

and p can indicate how relevant the node n is to keyword kj.
The smaller the distance between n and p, the larger
relevancy score between n and kj should be. Based on this
observation, we proposed the second ranking function to
compute the relevance between n and kj as follows:

SCORE2ðn; kjÞ ¼
X

p2P
��ðn;pÞ � SCORE1ðp; kjÞ; ð2Þ

where P is the set of pivotal nodes for n and kj, � is a
damping factor between 0 and 1, and �ðn; pÞ denotes the
distance between node n and node p. As the distance
between n and p increases, n becomes less relevant to kj. As a
tradeoff, our experiments suggested that a good value for �
is 0.8, and our method achieves the best performance at this
point. This is because it will degrade the importance of
ancestor nodes for a smaller � and thus may miss mean-
ingful and relevant results; on the contrary, it will involve
some duplicates and less important results for a larger �.

Based on the two ranking functions, given a query Q ¼
fk1; k2; . . . ; k‘g and a node n, we take the sum of the scores
of node n to every ki as the overall score of node n to Q:

SCOREðn;QÞ ¼
X‘

i¼1

SCOREðn; kiÞ; ð3Þ

where SCOREðn; kiÞ denotes the score of node n to
keyword ki. SCOREðn; kiÞ ¼ SCORE1ðn; kiÞ if n contains
ki; otherwise, SCOREðn; kiÞ ¼ SCORE2ðn; kiÞ if n has a
descendant that contains keyword ki. We give a running
example to show how to compute the score of a minimal-
cost tree.

Example 5. Recall EXAMPLE 4, given a keyword query Q ¼
{XML, IR, Tohn}, for node 23, we have

SCOREðn23; XMLÞ ¼ �1 � SCOREðn24; XMLÞ ¼ 0:8 � 1:55
¼ 1:24; SCOREðn23; IRÞ
¼ �1 � SCOREðn24; IRÞ ¼ 0:8 � 1:35
¼ 1:08; SCOREðn23; TohnÞ
¼ �1 � SCOREðn25; TohnÞ ¼ 0:8 � 1:55
¼ 1:24; SCOREðn23; QÞ ¼ 1:08þ 1:24

þ 1:24 ¼ 3:56:

5.2.2 Ranking for Fuzzy Search

Given a keyword query Q ¼ fk1; k2; . . . ; k‘g, in terms of
fuzzy search, a minimal-cost tree may not contain the exact
input keywords, but contain predicted words for each
keyword. Consider a minimal-cost tree rooted at n, suppose
the predicted words for every input keyword in the subtree
are {w1; w2; . . . ; w‘}. We propose how to quantify the
similarity between ki and wi as follows: as ki may be a
partial keyword and users may type in more letters and
complete the keyword, ki could be similar to prefixes of wi.
The prefix of wi which has the minimal edit distance to ki
among all the prefixes is called the best similar prefix for ki
and wi, denoted as ai. Intuitively, the best similar prefix of
wi could be considered to be most similar to ki. For
example, suppose ki ¼ “mics” and wi ¼ ‘‘miceslucy’’. The

best similar prefix is ai ¼ ‘‘mices’’. We use the best similar
prefix to quantify the similarity between ki and wi, and
incorporate the similarity into ranking functions in order to
support fuzzy search. Moreover, we will highlight the best
similar prefixes in the answer such as “mices” for keyword
“mics” and predicted word “miceslucy.”

Intuitively, the smaller edit distance between ki and ai,
wi is more relevant to ki. In addition, as ai is a prefix of wi,
we use jaij

jwij to quantify their similarity. Thus, we propose a
new function to quantify similarity between ki and wi:

simðki; wiÞ ¼ � � 1

1þ edðki; aiÞ2
þ ð1� �Þ � jaij

jwij ; ð4Þ

where � is a tuning parameter between 0 and 1. As the
former is more important, � is close to 1. Our experiments
suggested that a good value for � is 0.95, and our method
achieves the best performance at this point. We extend the
ranking function in (3) by incorporating this similarity
function to support fuzzy search as below

SCOREðn;QÞ ¼
X‘

i¼1

simðki; wiÞ � SCOREðn;wiÞ: ð5Þ

5.3 Progressively Finding Top-k Minimal-Cost
Trees

In this section, we propose how to progressively find the
top-k relevant minimal-cost trees. In the trie index, for each
leaf trie node, we keep the content nodes and quasi-content
nodes in the XML document as shown in Fig. 3, and
corresponding scores and pivotal paths for the keyword of
the leaf node, sorted by the relevancy to the keyword.4

Given a keyword query Q ¼ fk1; k2; . . . ; k‘g, for each
partial keyword ki, we first compute its predicted words as
discussed in Section 4. Then, we compute the union of
inverted lists of ki’s predicted words, Uki , sorted by
corresponding scores (i.e., SCOREðn;wiÞ). Then, we can
use existing threshold-based NRA algorithm [16] to
progressively and efficiently compute the top-k answers
of on top of every Uki . To better understand our method, we
give a running example to describe how to compute the top-
k answers.

Example 6. Consider the XML document in Fig. 1 and
suppose the edit-distance threshold � ¼ 1. Assume a user
types in a keyword query “db mics.” We first identify
active node 2 for “db” and active nodes 7, 8, and 10 for
“mics” as discussed in Section 4. Then, we compute the
union list of “db,” Udb ¼ f13; 16; 12; 15; 9; 2; 8; 1; 5g, and
the union list of “mics,” Umics ¼ f14; 18; 12; 26; 9; 15; 8;
23; 5; 2; 20; 1g. Next, we use the threshold-based NRA
algorithm on top of the two sorted union lists to compute
the top-k answers. Assume we want to identify top-2
answers. We get nodes 12 and 15 by accessing some
elements on the two union lists and construct minimal-
cost subtrees rooted at them to answer the query.

Notice that it is very expensive to construct the union
lists of every input keyword as there may be multiple
predicted words and many inverted lists. Instead, we can

888 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 5, MAY 2012

4. We omit the scores and pivotal paths in the figure.

generate a partial virtual list on the fly. We only use the
elements in the partial virtual list to compute the top-k
answers. The partial virtual list can avoid accessing all the
elements of inverted lists of predicted words. It only needs
to access those with higher scores, and if we have computed
the top-k answers using the partial accessed elements, we
can do an early termination and do not need to visit other
elements on the inverted lists.

For ease of presentation, we first introduce some
notations. Given a keyword query Q ¼ fk1; k2; . . . ; k‘g, for
each partial keyword ki, let Apki

¼ fpi1; pi2; . . .g denote its
active-node set. For each active node pij, let Wpij ¼
fwij1; wij2; . . .g denote its leaf-descendant set and Lpij ¼
fLij1; Lij2; . . .g denote the corresponding inverted-list set as
illustrated in Fig. 4. Let Upij ¼ [L02Lpij

L0.
For each keyword ki, consider one of ki’s predicted

words wi and the corresponding inverted list Li. For each
XML element n on list Li, we compute its score to ki:
SCOREðn; kiÞ ¼ simðki; wiÞ � SCOREðn;wiÞ. We can con-
struct a max heap for the elements on every inverted list
of ki’s predicted words where scores are computed using
this function. The top element on each max heap has the
maximal relevancy score to ki. We use the threshold-based
NRA algorithm [15] to identify the top-k answers on top of
the top elements of every max heap. When deleting the top
element, we adjust the max heap to generate the next
element with the largest score to ki. The time complexity of
constructing the max heap for ki is Oð$kiÞ [3], where $ki

denotes the number of inverted lists of ki’s predicted words.
The time complexity of deleting the top element and
adjusting the max heap is O

�
logð$kiÞ

�
. When accessing

elements in the inverted lists, we do an early termination
once we get top-k answers. Note that we only need to
construct a virtual list on the fly.

Example 7. Assume a user types in a query “sig sea.”
Suppose the predicted words and inverted lists for the
two keywords are illustrated in Fig. 5. We need not
construct the union lists for the two keywords on the fly.
Instead, we build two max heaps as illustrated in Fig. 5.
In the similarity function (4), we set � ¼ 1 for simplicity
in the running example. Consider the two predicted
words “saga” and “sogou,” the best similar prefixes for
keyword “sig” are “sag” and “sog,” respectively. For
element 1 on the inverted list of “saga,” we have
SCOREð1; sigÞ ¼ simðsig; sagÞ � SCOREð1; sagaÞ ¼ 5.
Thus, the maximal score of the first elements of “saga”
and “sogou” is 5. Similarly, we can construct the two
max heaps for the two keywords.

Then, suppose we want to compute the top-3 answers.
We first pop the top elements of the two max heaps
h8; 10i and h5; 10i, where 8 is an element and 10 is the

corresponding score, and get a threshold 20. Then, we
delete the two top elements, adjust the max heaps, and
get the next top elements h4; 9i and h6; 9i. When we have
visited elements {h8; 10i; h4; 9i; h2; 8i; h7; 7i; h3; 6i} and
{h5; 10i; h6; 9i; h3; 8i; h2; 7i; h8; 6i}, we can get the top-3
answers h8; 16i, h2; 15i, and h3; 14i.

5.4 Improvement Using Forward Index

In this section, we propose the forward index to improve
search performance. We can utilize “random access” based
on the forward index to do an early termination in the
algorithms. That is, given an XML element and an input
keyword, we can get the corresponding score of the
keyword and the element using the forward index, without
accessing inverted lists. Fagin et al. have proved that the
threshold-based algorithm using random access is optimal
over all algorithms that correctly find the top k answers
[15]. Thus, in this section, we propose a forward index to
implement random access.

Given an XML element e, we construct a trie structure to
maintain the keywords contained in the element as
discussed in Section 4.1. Each leaf node in the forward
index keeps the score of element e to the corresponding
word of the leaf node. Thus, given any partial keyword, we
can efficiently check whether e contains a word having
prefixes similar to the keyword using the forward index as
discussed in Section 5.3.5 In this way, we can use the
forward index for random access [15] and employ the TA
algorithm to progressively identify the top-k answers,
instead of using the NRA algorithm [15].

Given an XML element, if there is a large number of
keywords under the element, the forward index of this
element will be large, and it is expensive to maintain the
forward index and find similar words from the forward

FENG AND LI: EFFICIENT FUZZY TYPE-AHEAD SEARCH IN XML DATA 889

Fig. 4. Active nodes, predicted words, and corresponding inverted lists
for query Q ¼ fk1; k2; . . . ; k‘g.

Fig. 5. An example for answering query “sig sea” using the max heap.
(a) The max heap for “sig.” (b) The max heap for “sea.”

5. We can also get the corresponding score.

index. We employ a cost-based method to select forward
index for materialization. The time complexity of sorted
access is Oð1Þ and that of random access is Oð� �ANÞ,
where � is the edit-distance threshold and AN is the
number of active nodes [27]. Suppose the average number
of active nodes is A and the average inverted-list length is I.
If � �A > I, we will not maintain the forward index, since
we can only use sorted access to scan the inverted lists.

Example 8. Recall EXAMPLE 7, suppose we have built the
forward index for element 8 (in Fig. 5) as shown in Fig. 6,
where element 8 contains keywords “saad,” “search,”
“segi,” and “sigmod.” We show how to identify the
top-3 answers for query “sig sea.” When we get the
element 8 from the max heap of “sig,” we can use its
forward index to check whether it contains keywords
that have prefixes similar to “sea.” We find “search”
and get its corresponding score 6. Thus, the score of
element 8 is 10þ 6 ¼ 16. Similarly, we can get the scores
of other elements. We only need access elements {h8; 10i;
h4; 9i; h2; 8i; h7; 7i} for “sig,” and {h5; 10i; h6; 9i; h3; 8i;
h2; 7i} for “sea.” We need not access h3; 6i for “sig” and
h8; 6i for “sea.” Thus, the forward index can avoid
accessing unnecessary elements. Similarly, we can use
forward index to improve performance.

6 EXPERIMENTAL STUDY

We have implemented our method on real applications
using our proposed techniques. We employed the data sets
DBLP6 and XMark.7 The sizes of DBLP and XMark were 510
and 113 MB, respectively. We randomly selected 100 queries
for each data set and Table 1 gives some sample queries.

We implemented the hybrid algorithm of XRANK [19]
for the LCA-based method. We used the Dewey inverted
list and hash index. We implemented XRANK’s ranking
functions. We used the cache for incremental computation.
We set up a server using Apache8 and FastCgi.9 The server

was running a program implemented in C++ and compiled
with the GNU C++ compiler. We used Ajax and JavaScript
to allow the client browser to interact with the server and
display the results. We conducted the evaluation on a PC
running a Ubuntu operating system with an Intel(R)
Xeon(R) CPU X5450@3.00 GHz CPU and 4 GB RAM.

Table 2 shows the data set sizes, trie-index sizes,
forward-index sizes, and index-construction time. As
XMark contains many more distinct keywords than DBLP,
the index size on XMark is larger than that on DBLP. We
implemented cache-based algorithms. We used the cold
cache. For exact search, we cached the corresponding trie
node for each keyword; for fuzzy search, we cached similar
trie nodes of each keyword. The number of similar trie
nodes of a keyword is usually small; thus, the cache size is
not large. In our experiments, for each user, the cache size is
about 0.5 to 2 KB.

6.1 Result Quality

This section evaluates result quality of the LCA-based
method and MCT-based method. We evaluate query
results by human judgement. As XMark data set captures
more complicated structures than DBLP data set, we used
XMark data set and generated 100 keyword queries.
Answer relevance of the selected queries was judged from
discussions of researchers in our database group. As users
are usually interested in the top-k answers, we employed
the top-k precision, i.e., the ratio of the number of answers
deemed to be relevant in the first k results to k, to
compare the LCA-based method and the MCT-based
method. Table 3 shows the average top-k precision of
the selected 100 queries. We see that our MCT-based
search method achieves much higher result quality than
the LCA-based method. This is attributed to our effective
ranking functions that rank both content nodes and quasi-
content nodes and incorporate structural information into
our ranking functions.

890 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 5, MAY 2012

Fig. 6. The forward index for element 8 in Fig. 5. Element 8 contains
keywords “saad,” “search,” “segi,” and “sigmod.”

TABLE 1
The Selected Queries on DBLP Data Set

TABLE 2
Data Sets and Index Costs

6. http://dblp.uni-trier.de/xml/.
7. http://monetdb.cwi.nl/xml/.
8. http://www.apache.org/.
9. http://www.fastcgi.com/.

6.2 Server Running Time

This section evaluates the server running time. We first
compared the LCA-based method and the MCT-based
progressive search method in Section 6.2.1. Then, we
evaluated the effectiveness of using max heap and forward
index in Section 6.2.2.

6.2.1 LCA-Based Method versus MCT-Based Method

This section compares search efficiency of the LCA-based
method and the MCT-based progressive search method. We
used the 10 queries on DBLP data set as shown in Table 1.
For each query, we measured the running time on the
server to find the top-100 answers, which included the time
to find predicted words of each keyword and the time to
find the relevant subtrees of queries. We used Q10 as an
example, and the results are shown Table 4. Fig. 7 gives the
total server time for different queries.

We observe that the MCT-based search method is better
than the LCA-based method and achieves much higher
search performance in terms of both exact search and fuzzy
search. This is attributed to our effective index structures
and threshold-based computing algorithms.

6.2.2 Using Max Heap and Forward Index

This section evaluates the effectiveness of our proposed
techniques using max heap and the forward index. We
selected 1,000 queries for each data set and made some
minor errors for some keywords in the queries. Fig. 8
illustrates the experimental results.

We observe that the heap-based method outperforms the
MCT-based method. We need not construct the union lists
of every input keyword on the fly, which could be very
expensive for large numbers of predicted words. In
addition, the forward index can improve search perfor-
mance, because it can avoid accessing many unnecessary
elements on inverted lists. Notice that the search time on
XMark data set is a bit larger than that on DBLP data set.
This is because the structure of XMark data set is more
complicated than that of DBLP data set.

6.3 Round-Trip Time

Since different locations can have different network delays
to a server, we want to know whether our techniques can
support an interactive speed for users from different
locations. For this purpose, we asked several colleagues
from different countries to access our DBLP prototype server
at Tsinghua University, China, and issue the queries shown
in Table 1. The places included China, US, and Australia. For
each location, we measured the round-trip time from the
time the user typed in a letter to the time the results are
displayed on the browser. This time includes the network
delay, query-execution time on the server, and JavaScript
time on the client browser. We employed the heap-based
method and used the forward index for progressive search.
The experimental results are shown in Fig. 9.

The results show that the server running time is always
less than 1/3 of the total round-trip time. The JavaScript
program on the browser took about 40 to 60 ms. The more
data returned to the user, the more time the JavaScript
program needs to display the data. The relative low speed
was due to the fact that the JavaScript program needs to be

FENG AND LI: EFFICIENT FUZZY TYPE-AHEAD SEARCH IN XML DATA 891

TABLE 3
Top-k Precision by Human Judgement

Fig. 7. Search time (LCA versus MCT). (a) Exact search. (b) Fuzzy
search (edit-distance threshold � ¼ 2).

TABLE 4
Running Time: Finding Predicted Words and Predicted Answers

(a) Exact search. (b) Fuzzy search (edit-distance threshold � ¼ 2).

interpreted by the browser. The network delay depends on
the location of the user. For example, for the user fromChina,
the network delaywas about 40ms, which is about 1/3 of the
total round-trip time. For all the users from different
locations, the total round-trip time for a query was always
below 350 ms, and all of them experienced an indeed
interactive interface. For large-scale systems processing
queries from different countries, we can solve the possible
network-delay problem by using distributed data centers.

6.4 Scalability

This section evaluates the scalability of our algorithms. As
an example, we used the DBLP data set. We varied the
number of publications in the data set from 100K, 200K to
one million. Fig. 10 shows the elapsed time of building the
index structure, the sizes of indexes, and the average search
time for 100 queries.

We observe that our method scales very well with the
increase of the data set. In particular, the size of the trie is
sublinear with the number of records. With the increase of
the data sizes, the average search time also increased
sublinearly. This is because of two main reasons. First, the
time of finding the predicted words depends on the number
of nodes on the trie, which increases sublinearly as the data
size increases. Second, our method to incrementally
compute the predicted words and progressively identify
the predicted answers can save a lot of computation.

7 RELATED WORK

Keyword search in XML data has attracted great attention
recently. Xu and Papakonstantinou [54] proposed smallest
lowest common ancestor (SLCA) to improve search
efficiency. Sun et al. [49] studied multiway SLCA-based
keyword search to enhance search performance. Schema-
free XQuery [37] employed the idea of meaningful LCA,
and proposed a stack-based sort-merge algorithm by
considering XML structures and incorporating a new
function mlcas into XQuery. XSEarch [12] focuses on the
semantics and the ranking of the results, and extends
keyword search. It employs the semantics of meaningful
relation between XML nodes to answer keyword queries,
and two nodes are meaningfully related if they are in a

892 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 5, MAY 2012

Fig. 9. Round-trip time for different locations.

Fig. 8. Search time (using Max heap and Forward Index). (a) DBLP data
set. (b) XMark data set.

Fig. 10. Scalability on DBLP data set by varying numbers of selected publications, 100K, 200K, . . . , 1M. (a) Index size. (b) Index time. (c) Search
time.

same set, which can be given by administrators or users.
Li et al. [32] proposed valuable LCA (VLCA) to improve the
meaningfulness and completeness of answers and devised a
new efficient algorithm to identify the answers based on a
stack-based algorithm. XKeyword [25] is proposed to offer
keyword proximity search over XML documents, which
models XML documents as graphs by considering IDREFs
between XML elements. Hristidis et al. [23] proposed
grouped distance minimum connecting tree (GDMCT) to
answer keyword queries, which groups the relevant
subtrees to answer keyword queries. It first identifies the
minimum connected tree, which is a subtree with minimum
number of edges, and then groups such trees to answer
keyword queries. Shao et al. [48] studied the problem of
keyword search on XML views. XSeek [40] studied how to
infer the most relevant return nodes without elicitation of
user preferences. Liu and Chen [41] proposed to reason and
identify the most relevant answers. Huang et al. [26]
discussed how to generate snippets of XML keyword
queries. Bao et al. [5] proposed to address the ambiguous
problem of XML keyword search through studying search
for and search via nodes. Different from [35], we extended it
to support fuzzy type-ahead search in XML data.

In addition, the database research community has
recently studied the problem of keyword search in relational
databases [1], [24], [8], [22], [4], [39], [42], [43], graph
databases [28], [21], [14], and heterogenous data sources
[36]. DISCOVER-I [24], DISCOVER-II [22], BANKS-I [8],
BANKS-II [28], and DBXplorer [1] are recent systems to
answer keyword queries in relational databases. DISCOVER
and DBXplorer return the trees of tuples connected by
primary-foreign-key relationships that contain all query
keywords. DISCOVER-II extended DISCOVER to support
keyword proximity search in terms of disjunctive (OR)
semantics, different from DISCOVER which only considers
the conjunctive (AND) semantics. BANKS proposed to use
Steiner trees to answer keyword queries. It first modeled
relational data as a graph where nodes are tuples and edges
are foreign keys, and then found Steiner trees in the graph as
answers using an approximation to the Steiner tree problem,
which is proven to be an NP-hard problem. BANKS-II
improved BANKS-I by using bidirectional expansion on
graphs to find answers. He et al. [21] proposed a partition-
based method to efficiently find Steiner trees using the
BLINKS index. Ding et al. [14] proposed to use dynamic
programming for identifying Steiner trees. Dalvi et al. [13]
studied disk-based algorithms for keyword search on large
graphs, using a new concept of “supernode graph.”

More recently, Kimelfeld and Sagiv [29] discussed key-
word proximity search in relational databases from theory
viewpoint. They showed that the answer of keyword
proximity search can be enumerated in ranked order with
polynomial delay under data complexity. Golenberg et al.
[17] presented an incremental algorithm for enumerating
subtrees in an approximate order which runs with poly-
nomial delay and can find all top-k answers.Markowetz et al.
[44] studied theproblemof keyword search on relational data
streams. They proposed several optimization techniques
using mesh to answer keyword queries over streams.
Guo et al. [18] studied the problem of data topology search
on biological databases. Sayyadian et al. [47] incorporated
schema mapping into keyword search and proposed a new

method to answer keyword search across heterogenous
databases. Liu et al. [39] incorporated IR ranking techniques
to rank answers on relational data. They employed the
techniques of phrase-based and concept-based models to
improve result quality. Luo et al. [42] proposedanewranking
method that adapts state-of-the-art IR ranking functions and
principles into ranking tree-structured results composed of
joined database tuples. They incorporated the idea of skyline
to rank answers. Balmin et al. proposed Object-Rank [4] to
improve results quality by extending hub-and-authority [30]
ranking-based method. This method is effective in ranking
objects, pages, and entities, but it may cannot effectively rank
tree-structured results (e.g., Steiner trees), since it does not
consider structure compactness of an answer in its ranking
function. Richardson and Domingos [46] proposed to
combine page content and link structure to answer queries.

Tao and Yu [50] proposed to find co-occurring terms of
query keywords in addition to the answers, in order to
provide users relevant information to refine the answers.
Koutrika et al. [31] proposed data clouds over structured
data to summarize the results of keyword searches over
structured data and use them to guide users to refine
searches. Zhang et al. [57] and Felipe et al. [16] studied
keyword search on spatial databases by combining inverted
lists and R-tree indexes. Tran et al. [51] studied top-k
keyword search on RDF data using summarized RDF graph.
Qin et al. [45] studied three different semantics of
m-keyword queries, namely, connect-tree semantics, distinct
core semantics, and distinct root semantics, to answer
keyword queries in relation databases. The search efficiency
is achieved by new tuple reduction approaches that prune
unnecessary tuples in relations effectively followed by
processing the final results over the reduced relations.
Chu et al. [10] proposed to combine forms and keyword
search, and studied effective summary techniques to design
forms. Yu et al. [56] andVu et al. [52] studied keyword search
over multiple databases in P2P environment. They empha-
sized on how to select relevant database sources in P2P
environments. Chen et al. [9] gave an excellent tutorial of
keyword search in XML data and relational databases. The
recent integration of DB and IR was reported in [2], [7], [53].

Type-ahead search is a new topic to query relational
databases. Li et al. [34] studied type-ahead search in
relational databases, which allows searching on the under-
lying relational databases on the fly as users type in query
keywords. Ji et al. [27] studied fuzzy type-ahead search on a
set of tuples/documents, which can on the fly find relevant
answers by allowing minor errors between input keywords
and the underlying data. A straightforwardmethod for type-
ahead search in XML data is to first find all predicted words,
and then use existing search semantics, e.g., LCA and ELCA,
to compute relevant answers based on the predicted words.
However, this method is very time consuming for finding
top-k answers. To address this problem, we propose to
progressively find the most relevant answers. For exact
search, we propose to incrementally compute predicted
words. For fuzzy search, we use existing techniques [27] to
compute predictedwords of query keywords.We extend the
ranking functions in [34] to support fuzzy search, and
propose new index structures and efficient algorithms to
progressively find the most relevant answers.

FENG AND LI: EFFICIENT FUZZY TYPE-AHEAD SEARCH IN XML DATA 893

This paper extended the poster paper [33] by adding

efficient algorithms and ranking techniques to support

fuzzy search.

8 CONCLUSION

In this paper, we studied the problem of fuzzy type-ahead

search in XML data. We proposed effective index struc-

tures, efficient algorithms, and novel optimization techni-

ques to progressively and efficiently identify the top-k

answers. We examined the LCA-based method to inter-

actively identify the predicted answers. We have developed

a minimal-cost-tree-based search method to efficiently and

progressively identify the most relevant answers. We

proposed a heap-based method to avoid constructing union

lists on the fly. We devised a forward-index structure to

further improve search performance. We have implemented

our method, and the experimental results show that our

method achieves high search efficiency and result quality.

ACKNOWLEDGMENTS

This work was partly supported by the National Natural

Science Foundation of China under Grant No. 61003004 and

No. 60873065, the National Grand Fundamental Research

973 Program of China under Grant No. 2011CB302206,

National S&T Major Project of China under Grant No.

2011ZX01042-001-002, a project of Tsinghua University

under Grant No. 20111081073, and the “NExT Research

Center” funded by MDA, Singapore, under the Grant No.

WBS:R-252-300-001-490.

REFERENCES

[1] S. Agrawal, S. Chaudhuri, and G. Das, “Dbxplorer: A System for
Keyword-Based Search over Relational Databases,” Proc. Int’l
Conf. Data Eng. (ICDE), pp. 5-16, 2002.

[2] S. Amer-Yahia, D. Hiemstra, T. Roelleke, D. Srivastava, and G.
Weikum, “Db&ir Integration: Report on the Dagstuhl Seminar
‘Ranked Xml Querying’,” SIGMOD Record, vol. 37, no. 3, pp. 46-
49, 2008.

[3] M.D. Atkinson, J.-R. Sack, N. Santoro, and T. Strothotte, “Min-max
Heaps and Generalized Priority Queues,” Comm. ACM, vol. 29,
no. 10, pp. 996-1000, 1986.

[4] A. Balmin, V. Hristidis, and Y. Papakonstantinou, “Objectrank:
Authority-Based Keyword Search in Databases,” Proc. Int’l Conf.
Very Large Data Bases (VLDB), pp. 564-575, 2004.

[5] Z. Bao, T.W. Ling, B. Chen, and J. Lu, “Effective XML Keyword
Search with Relevance Oriented Ranking,” Proc. Int’l Conf. Data
Eng. (ICDE), 2009.

[6] H. Bast and I. Weber, “Type Less, Find More: Fast Autocomple-
tion Search with a Succinct Index,” Proc. Ann. Int’l ACM SIGIR
Conf. Research and Development in Information Retrieval (SIGIR),
pp. 364-371, 2006.

[7] H. Bast and I. Weber, “The Completesearch Engine: Interactive,
Efficient, and towards Ir&db Integration,” Proc. Biennial Conf.
Innovative Data Systems Research (CIDR), pp. 88-95, 2007.

[8] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S.
Sudarshan, “Keyword Searching and Browsing in Databases Using
Banks,” Proc. Int’l Conf. Data Eng. (ICDE), pp. 431-440, 2002.

[9] Y. Chen, W. Wang, Z. Liu, and X. Lin, “Keyword Search on
Structured and Semi-Structured Data,” Proc. ACM SIGMOD Int’l
Conf. Management of Data, pp. 1005-1010, 2009.

[10] E. Chu, A. Baid, X. Chai, A. Doan, and J.F. Naughton, “Combining
Keyword Search and Forms for Ad Hoc Querying of Databases,”
Proc. ACM SIGMOD Int’l Conf. Management of Data, pp. 349-360,
2009.

[11] S. Cohen, Y. Kanza, B. Kimelfeld, and Y. Sagiv, “Interconnection
Semantics for Keyword Search in Xml,” Proc. Int’l Conf. Information
and Knowledge Management (CIKM), pp. 389-396, 2005.

[12] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv, “Xsearch: A Semantic
Search Engine for Xml,” Proc. Int’l Conf. Very Large Data Bases
(VLDB), pp. 45-56, 2003.

[13] B.B. Dalvi, M. Kshirsagar, and S. Sudarshan, “Keyword Search on
External Memory Data Graphs,” Proc. Int’l Conf. Very Large Data
Bases (VLDB), pp. 1189-1204, 2008.

[14] B. Ding, J.X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin, “Finding
Top-k Min-Cost Connected Trees in Databases,” Proc. Int’l Conf.
Data Eng. (ICDE), pp. 836-845, 2007.

[15] R. Fagin, A. Lotem, and M. Naor, “Optimal Aggregation
Algorithms for Middleware,” Proc. ACM SIGMOD-SIGACT-
SIGART Symp. Principles of Database Systems (PODS), 2001.

[16] I.D. Felipe, V. Hristidis, and N. Rishe, “Keyword Search on Spatial
Databases,” Proc. Int’l Conf. Data Eng. (ICDE), pp. 656-665, 2008.

[17] K. Golenberg, B. Kimelfeld, and Y. Sagiv, “Keyword Proximity
Search in Complex Data Graphs,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 927-940, 2008.

[18] L. Guo, J. Shanmugasundaram, and G. Yona, “Topology Search
over Biological Databases,” Proc. Int’l Conf. Data Eng. (ICDE),
pp. 556-565, 2007.

[19] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram, “Xrank:
Ranked Keyword Search over Xml Documents,” Proc. ACM
SIGMOD Int’l Conf. Management of Data, pp. 16-27, 2003.

[20] D. Harel and R.E. Tarjan, “Fast Algorithms for Finding Nearest
Common Ancestors,” SIAM J. Computing, vol. 13, no. 2, pp. 338-
355, 1984.

[21] H. He, H. Wang, J. Yang, and P.S. Yu, “Blinks: Ranked Keyword
Searches on Graphs,” Proc. ACM SIGMOD Int’l Conf. Management
of Data, pp. 305-316, 2007.

[22] V. Hristidis, L. Gravano, and Y. Papakonstantinou, “Efficient Ir-
Style Keyword Search over Relational Databases,” Proc. Int’l Conf.
Very Large Data Bases (VLDB), pp. 850-861, 2003.

[23] V. Hristidis, N. Koudas, Y. Papakonstantinou, and D. Srivastava,
“Keyword Proximity Search in Xml Trees,” IEEE Trans. Knowledge
and Data Eng., vol. 18, no. 4, pp. 525-539, Apr. 2006.

[24] V. Hristidis and Y. Papakonstantinou, “Discover: Keyword Search
in Relational Databases,” Proc. Int’l Conf. Very Large Data Bases
(VLDB), pp. 670-681, 2002.

[25] V. Hristidis, Y. Papakonstantinou, and A. Balmin, “Keyword
Proximity Search on XML Graphs,” Proc. Int’l Conf. Data Eng.
(ICDE), pp. 367-378, 2003.

[26] Y. Huang, Z. Liu, and Y. Chen, “Query Biased Snippet Generation
in Xml Search,” Proc. ACM SIGMOD Int’l Conf. Management of
Data, pp. 315-326, 2008.

[27] S. Ji, G. Li, C. Li, and J. Feng, “Efficient Interactive Fuzzy Keyword
Search,” Proc. Int’l Conf. World Wide Web (WWW), pp. 371-380,
2009.

[28] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and
H. Karambelkar, “Bidirectional Expansion for Keyword Search on
Graph Databases,” Proc. Int’l Conf. Very Large Data Bases (VLDB),
pp. 505-516, 2005.

[29] B. Kimelfeld and Y. Sagiv, “Finding and Approximating Top-k
Answers in Keyword Proximity Search,” Proc. ACM SIGMOD-
SIGACT-SIGART Symp. Principles of Database Systems (PODS),
pp. 173-182, 2006.

[30] J.M. Kleinberg, “Authoritative Sources in a Hyperlinked Environ-
ment,” J. ACM, vol. 46, no. 5, pp. 604-632, 1999.

[31] G. Koutrika, Z.M. Zadeh, and H. Garcia-Molina, “Data Clouds:
Summarizing Keyword Search Results over Structured Data,”
Proc. Int’l Conf. Extending Database Technology: Advances in Database
Technology (EDBT), pp. 391-402, 2009.

[32] G. Li, J. Feng, J. Wang, and L. Zhou, “Effective Keyword Search
for Valuable lcas over XML Documents,” Proc. Conf. Information
and Knowledge Management (CIKM), pp. 31-40, 2007.

[33] G. Li, J. Feng, and L. Zhou, “Interactive Search in Xml Data,” Proc.
Int’l Conf. World Wide Web (WWW), pp. 1063-1064, 2009.

[34] G. Li, S. Ji, C. Li, and J. Feng, “Efficient Type-Ahead Search on
Relational Data: A Tastier Approach,” Proc. ACM SIGMOD Int’l
Conf. Management of Data, pp. 695-706, 2009.

[35] G. Li, C. Li, J. Feng, and L. Zhou, “Sail: Structure-Aware
Indexing for Effective and Progressive Top-k Keyword Search
over XML Documents,” Information Sciences, vol. 179, no. 21,
pp. 3745-3762, 2009.

894 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 5, MAY 2012

[36] G. Li, B.C. Ooi, J. Feng, J. Wang, and L. Zhou, “Ease: An Effective
3-in-1 Keyword Search Method for Unstructured, Semi-Structured
and Structured Data,” Proc. ACM SIGMOD Int’l Conf. Management
of Data, pp. 903-914, 2008.

[37] Y. Li, C. Yu, and H.V. Jagadish, “Schema-Free Xquery,” Proc. Int’l
Conf. Very Large Data Bases (VLDB), pp. 72-83, 2004.

[38] Y. Li, C. Yu, and H.V. Jagadish, “Enabling Schema-Free Xquery
with Meaningful Query Focus,” VLDB J., vol. 17, no. 3, pp. 355-
377, 2008.

[39] F. Liu, C.T. Yu, W. Meng, and A. Chowdhury, “Effective Keyword
Search in Relational Databases,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 563-574, 2006.

[40] Z. Liu and Y. Chen, “Identifying Meaningful Return Information
for Xml Keyword Search,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 329-340, 2007.

[41] Z. Liu and Y. Chen, “Reasoning and Identifying Relevant Matches
for Xml Keyword Search,” Proc. VLDB Endowment, vol. 1, no. 1,
pp. 921-932, 2008.

[42] Y. Luo, X. Lin, W. Wang, and X. Zhou, “Spark: Top-k Keyword
Query in Relational Databases,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 115-126, 2007.

[43] Y. Luo, W. Wang, and X. Lin, “Spark: A Keyword Search Engine
on Relational Databases,” Proc. Int’l Conf. Data Eng. (ICDE),
pp. 1552-1555, 2008.

[44] A. Markowetz, Y. Yang, and D. Papadias, “Keyword Search on
Relational Data Streams,” Proc. ACM SIGMOD Int’l Conf. Manage-
ment of Data, pp. 605-616, 2007.

[45] L. Qin, J.X. Yu, and L. Chang, “Keyword Search in Databases: The
Power of Rdbms,” Proc. ACM SIGMOD Int’l Conf. Management of
Data, pp. 681-694, 2009.

[46] M. Richardson and P. Domingos, “The Intelligent Surfer:
Probabilistic Combination of Link and Content Information in
Pagerank,” Proc. Neural Information Processing Systems (NIPS),
pp. 1441-1448, 2001.

[47] M. Sayyadian, H. LeKhac, A. Doan, and L. Gravano, “Efficient
Keyword Search across Heterogeneous Relational Databases,”
Proc. Int’l Conf. Data Eng. (ICDE), pp. 346-355, 2007.

[48] F. Shao, L. Guo, C. Botev, A. Bhaskar, M.M.M. Chettiar, F.Y. 0002,
and J. Shanmugasundaram, “Efficient Keyword Search over
Virtual XML Views,” Proc. Int’l Conf. Very Large Data Bases
(VLDB), pp. 1057-1068, 2007.

[49] C. Sun, C.Y. Chan, and A.K. Goenka, “Multiway Slca-Based
Keyword Search in Xml Data,” Proc. Int’l Conf. World Wide Web
(WWW), pp. 1043-1052, 2007.

[50] Y. Tao and J.X. Yu, “Finding Frequent Co-Occurring Terms in
Relational Keyword Search,” Proc. Int’l Conf. Extending Database
Technology: Advances in Database Technology (EDBT), pp. 839-850,
2009.

[51] T. Tran, H. Wang, S. Rudolph, and P. Cimiano, “Top-k
Exploration of Query Candidates for Efficient Keyword Search
on Graph-Shaped (RDF) Data,” Proc. Int’l Conf. Data Eng. (ICDE),
pp. 405-416, 2009.

[52] Q.H. Vu, B.C. Ooi, D. Papadias, and A.K.H. Tung, “A Graph
Method for Keyword-Based Selection of the Top-k Databases,”
Proc. ACM SIGMOD Int’l Conf. Management of Data, pp. 915-926,
2008.

[53] G. Weikum, “Db&ir: Both Sides Now,” Proc. ACM SIGMOD Int’l
Conf. Management of Data, pp. 25-30, 2007.

[54] Y. Xu and Y. Papakonstantinou, “Efficient Keyword Search for
Smallest Lcas in XML Databases,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 537-538, 2005.

[55] Y. Xu and Y. Papakonstantinou, “Efficient LCA Based Keyword
Search in XML Data,” Proc. Int’l Conf. Extending Database
Technology: Advances in Database Technology (EDBT), pp. 535-546,
2008.

[56] B. Yu, G. Li, K.R. Sollins, and A.K.H. Tung, “Effective Keyword-
Based Selection of Relational Databases,” Proc. ACM SIGMOD
Int’l Conf. Management of Data, pp. 139-150, 2007.

[57] D. Zhang, Y.M. Chee, A. Mondal, A.K.H. Tung, and M.
Kitsuregawa, “Keyword Search in Spatial Databases: Towards
Searching by Document,” Proc. Int’l Conf. Data Eng. (ICDE),
pp. 688-699, 2009.

Jianhua Feng received the BS, MS, and PhD
degrees in computer science and technology
from Tsinghua University. He is currently work-
ing as a professor in the Department of
Computer Science and Technology at Tsinghua
University. His main research interests include
native XML database, data mining, and keyword
search over structure and semistructure data.
He has published papers in top international
conferences and journals, such as ACM SIG-

MOD, ACM SIGKDD, VLDB, IEEE ICDE, WWW, ACM CIKM, ICDM,
SDM, VLDB Journal, IEEE Transactions on Knowledge and Data
Engineering, Data Mining and Knowledge Discovery, Information
Systems, and so on. He is a senior member of the IEEE and a senior
member of the China Computer Federation (CCF).

Guoliang Li received the PhD degree in
computer science from Tsinghua University,
Beijing, China, in 2009. Since then, he has been
working as an assistant professor in the Depart-
ment of Computer Science and Technology,
Tsinghua University. His research interests
mainly include integrating databases and infor-
mation retrieval, databases, information retrie-
val, data cleaning, and data integration. He is a
member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

FENG AND LI: EFFICIENT FUZZY TYPE-AHEAD SEARCH IN XML DATA 895

