Awareness of Road Scene Participants for Autonomous Driving

Anna Petrovskaya®, Mathias Perrollaz’, Luciano Oliveira®, Luciano Spinello™,
Rudolph Triebel T, Alexandros Makris®, John-David Yoder**, Christian Laugier*,
Urbano Nunes*, Pierre Bessiere’

*Stanford University, USA, TINRIA, France, *Coimbra University, Portugal,
**University of Frieburg, Germany, " University of Oxford, UK, ¥*Ohio Northern University, USA

October 12, 2011

Abstract

This chapter describes detection and tracking of moving
objects (DATMO) for purposes of autonomous driving.
DATMO provides awareness of road scene participants,
which is important in order to make safe driving deci-
sions and abide by the rules of the road. Three main
classes of DATMO approaches are identified and dis-
cussed. First is the traditional approach, which includes
data segmentation, data association, and filtering using
primarily Kalman filters. Recent work within this class of
approaches has focused on pattern recognition techniques.
The second class is the model based approach, which per-
forms inference directly on the sensor data without seg-
mentation and association steps. This approach utilizes
geometric object models and relies on non-parametric fil-
ters for inference. Finally, the third class is the grid based
approach, which starts by constructing a low level grid
representation of the dynamic environment. The resulting
representation is immediately useful for determining free
navigable space within the dynamic environment. Grid
construction can be followed by segmentation, associa-
tion, and filtering steps to provide object level representa-
tion of the scene. The chapter introduces main concepts,
reviews relevant sensor technologies, and provides exten-
sive references to recent work in the field. The chapter
also provides a taxonomy of DATMO applications based
on road scene environment and outlines requirements for

each application.
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1 Introduction

Autonomous driving in populated areas requires great sit-
uational awareness. The autonomous vehicle must per-
ceive not only the stationary environment, but also dy-
namic objects such as vehicles and pedestrians. For each
moving target, the autonomous vehicle needs to identify
location and velocity, so that it can predict the target’s po-
sition a few seconds later for planning purposes. Aware-
ness of moving objects includes both detection of new tar-
gets and tracking of existing targets over time. For this
reason it is often referred to as detection and tracking of
moving objects, or DATMO for short.

The need for DATMO was born with the first interest
in intelligent and autonomous vehicles in 1980s. A large
exploratory project was launched in Europe in 1986 under
the name PROMETHEUS, followed by a number of ini-
tiatives in Japan and United States (Bertozzi et al., 2000}
2006). Fueled by innovations in sensor tech-
nologies, recent DATMO advances have focused on im-
proved detection using pattern recognition techniques, in-
creased robustness using sensor fusion, and more accurate
modeling of sensors and the scene. In this chapter we give
an overview of the most prominent DATMO approaches
and relevant concepts.

The remainder of this section provides a taxonomy of
DATMO applications and gives a formal description of
the DATMO problem. Sect.Z]introduces the required con-
cepts as well as describes sensors and models. Sect. 3]
discusses inference techniques for DATMO. In particu-
lar it outlines three main classes of DATMO approaches:
traditional, model based, and grid based. Sect. E| covers
pattern recognition, and sensor fusion. The chapter con-
cludes with a discussion in Sect.

1.1 Taxonomy of DATMO Applications

Although detection of people and vehicles has received a
lot of attention in other fields, this chapter focuses on tech-
niques that satisfy the high demands of autonomous driv-
ing. To illustrate these demands, the driving applications
are roughly grouped into three categories: (1) pedestrian
zone driving, (2) freeway driving, and (3) mixed urban
driving.

In the first category, the robot operates in a pedestrian
zone, which can be crowded by bicyclists, adults, chil-
dren, and pets. The robot has to operate in close prox-
imity to these inhabitants in a safe and courteous manner.
This situation is challenging because the targets come in
all shapes and sizes, can change direction of motion un-
predictably, and can partially occlude themselves or each
other. The operational velocity has to be similar to pedes-
trian speed: 1-2m/s. Since the operational velocities are
relatively low, the required range of target detection and
tracking is relatively short: 10-20m is usually sufficient
for safe operation. On the other hand, due to close prox-
imity to targets, the robot’s reaction time has to be similar
to human reaction time, which is usually taken to be 1s.
Hence detection and tracking have to happen fast enough,



so that the entire perception-planning-control loop can be
executed at 1Hz. However, to simplify the association
stage tracking at 5-10Hz is desirable.

In the second category, the robot drives on a free-
way, which is a much more structured environment than
a pedestrian zone. The environment is populated only by
vehicles, which have to travel within lanes most of the
time. Oncoming vehicles are confined to a separate part
of the freeway, so the robot only needs to concern itself
with vehicles moving in the same direction. The mo-
tion of these vehicles is governed by non-holonomic con-
straints of vehicle dynamics and therefore is much more
predictable than motion of pedestrians. The main chal-
lenge in this environment comes from high operational
velocities: up to 35m/s. High operational velocity leads
to longer stopping distances. Thus the required range for
detection and tracking of targets is much greater than in
the first category: 100m or more. In order to plan smooth
maneuvers at high speeds, the planning loop runs at 10—
20Hz and hence tracking also needs to happen at a com-
parable rate.

The third category lies in between the first two. The
robot operates in an urban setting with mixed pedestrian
and vehicle traffic. This category combines challenges of
the first two categories. The environment is not as struc-
tured as on the freeway — vehicles and pedestrians can
cross the robot’s path in unpredictable ways. Oncoming
traffic is usually present, which doubles the effective oper-
ational velocity from the perspective of object detection.
If the speed limit is 15m/s (35mph), then an oncoming
vehicle can move with a velocity of up to 30m/s with re-
spect to the robot. Hence the detection range and tracking
frequency rate have to be almost as high as on freeways:
60-80m and 10Hz respectively. In addition, the robot has
to be able to distinguish between different types of targets:
pedestrians, bicyclists, and vehicles. These three types of
targets are governed by different traffic and dynamic laws
and hence the robot needs to treat them differently.

1.2 DATMO Problem Statement

In DATMO, an autonomous vehicle (also called robot
or ego-vehicle) navigates in a populated outdoor envi-
ronment. Sensors are mounted on the ego-vehicle itself,
which is potentially moving at high speeds. The robot is
to perceive the environment around it based on its sensors

and to detect and track all moving objects in its vicinity.
For high level decision making, the robot needs to esti-
mate pose and velocity of each moving object based on
the sensor measurements. For low level trajectory plan-
ning, the robot needs to estimate the free space for driv-
ing.

Object pose estimates (also called fracks) need to be
produced at a high enough rate to be useful for the
perception-planning-control loop, which typically runs at
1-10Hz. False negatives (i.e. missing an object) tend to
be very dangerous, whereas false positives (i.e. finding an
object when one is not there) are slightly more accept-
able. Note that for the applications in advanced driver
assistance systems (ADAS), it is the opposite.

1.2.1 Coordinate Frames

This chapter assumes that a reasonably precise pose of
the robot is always available. Further, it assumes the
use of smooth coordinates, which provide a locally con-
sistent estimate of the ego-vehicle motion. Smooth co-
ordinates should not experience sudden jumps because
jumps can greatly increase tracking uncertainty. In prac-
tice, smooth coordinates can be obtained by integrating
the ego-vehicle velocity estimates from the inertial nav-
igation system (Montemerlo et al., [2008; |[Leonard et al.,
2008). To map from smooth coordinates to globally con-
sistent GPS coordinates, one simply needs to add an off-
set, which is periodically updated to reflect the mismatch
between the smooth and GPS coordinate systems. In the
remainder of this chapter all operations are carried out in
the smooth coordinate frame, which will also be called
the world frame. The transformation from smooth to GPS
coordinates is only needed when dealing with global fea-
tures, such as the digital road map.

It is also common to use local coordinate systems,
which are tied to the robot, the sensor, or tracked objects.
These are called the robot coordinate frame, the sensor
coordinate frame, and the object coordinate frame respec-
tively.

1.2.2 Bayesian Formulation of DATMO

For a general Bayesian problem, the goal is to infer the
state S of a system (or of the world) based on a set of
measurements Z. Due to uncertainty, this information is



best captured as a probability distribution bel := p(S|Z)
called the posterior distribution or the Bayesian belief .

In a dynamic Bayesian system, the state changes over
time, which is assumed to be discretized into small (al-
though not necessarily equal) time intervals. The sys-
tem is assumed to evolve as a Markov process with un-
observed states. The goal is to estimate the belief at time
t, bel; .= p(S{Z1,...,Z;). The behavior of the system is
described via two probabilistic laws: (i) the measurement
model p(Z|S) captures how the sensor measurements are
obtained and (ii) the dynamics model p(S;|S;-1) captures
how the system evolves between time steps. Given these
two laws and measurements up to time ¢, the belief can be
computed recursively using a Bayesian filter algorithm,
which relies on the Bayesian recursion equation

belr=77P(ZtISt)fp(StISt—Dbelt-l dS;—1, ()

where 7 denotes the normalization constant.

For the DATMO problem, the system consists of a set
of moving targets T',...,TX:. The number of targets K,
changes over time as some targets leave and others en-
ter the scene. For each target, the estimated parameters
include its momentary 2D pose X; = (x;,y,6;) consist-
ing of its 2D position (x;,y;) and orientation 6, at time
t. The parameters also include each target’s forward ve-
locity v, which is typically a scalar as the objects are as-
sumed to move along vectors aligned with their orienta-
tion. Thus, the Bayesian state for a single target is usually
S = (X;,v;), although in some cases additional parame-
ters may be added to describe shape, class, or motion of
objects. The full Bayesian state consists of the states of
all the targets: S; := (S},...,S,K’). At each time step we
obtain a new sensor measurement Z;.

A graphical representation of the resulting probabilistic
model for DATMO is shown in Fig. [T} Note that during
filtering the targets are usually considered independent of
each other, although some relationships clearly exist in
reality. The independence assumption allows the prob-
lem to be split into multiple smaller sub-problems: one
per target. This reduces the effective dimensionality that
the estimation algorithms need to cope with. Relation-
ships between targets are often introduced as a set of con-
straints, which are imposed after each filtering step as we
discuss in Sect. 311
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Figure 1: Graphical representation of the probabilistic model
for DATMO. (a) For the full DATMO problem the graphical
model shows a variable number of targets. (b) For a single target,
the graphical model shows the relationships between the target’s
pose X;, forward velocity v;, and measurements Z;.

For a single target, the dependencies between the pa-
rameters are typically modeled via several probabilistic
laws: the velocity model p(v;lvi—1), the motion model
p(X:|X;-1,v;), and the measurement model p(Z;|X;). The
velocity and motion models together comprise the dy-
namics model. Measurement and dynamics models for
DATMO are discussed in Sect.



2 Sensors and Models

2.1 Sensors

The most common sensors used in DATMO approaches
are optical cameras and laser range finders, although
some systems also incorporate radar sensors. In this sub-
section, we discuss all three types of sensors, their oper-
ating characteristics, advantages, and limitations.

2.1.1 Optical Cameras

Cameras are the most popular sensors due to their low cost
and high information content. Two major camera tech-
nologies are available: charge-coupled devices (CCD)
and complementary metal oxide semiconductors (CMOS).
CCD cameras tend to have a higher output uniformity be-
cause all pixels can be devoted to capture light. In con-
trast, CMOS cameras are usually more compact and re-
quire less off-chip circuitry. An important parameter for
cameras is their field of view (FOV), which is directly de-
fined by the optics used and by the size of the sensor’s
matrix. A very narrow field of view is achieved with a
tele-lens and a very wide field of view results from us-
ing a fish-eye lens. While in the first case, far objects can
be observed at a higher resolution and nearly no line dis-
tortion, in the second case, a much larger fraction of the
environment can be observed within a single image.
Cameras are very attractive sensors because they cap-
ture high resolution images of the environment at high
frame rates, while consuming very little energy. These
sensors produce high volumes of data with high informa-
tion content. While this is an important advantage over
other sensors, high volumes of data also lead to signifi-
cant challenges in transmission and processing of the data
stream. Moreover, since cameras are not able to capture
range to objects, the data produced by cameras are more
difficult to interpret than range finder data. Cameras are
also greatly impacted by changes in lighting conditions,
shadows, and other types of ambient effects. Finally, un-
like radars and lasers, cameras do not provide useful data
after dark, when the lighting of the scene is insufficient.
In addition to ordinary monocular cameras, several
special camera types and configurations are employed.
Stereo cameras make use of two (or more) cameras for
binocular vision, which is able to produce range data in

addition to ordinary monocular images. This is a cost-
effective sensor for acquiring range data, but it can be very
sensitive to calibration errors. One popular example is
the Bumblebee camera by Point Grey. Omni-directional
cameras capture 360° view of the environment. They are
constructed either by using multiple mono cameras (e.g.
the Ladybug camera) or mirrors. The multiple camera ap-
proach leads to even greater volumes of data, whereas the
mirror approaches can lead to a loss of resolution. Infra
red cameras perceive thermal energy emitted by objects
in the environment. Although these sensors can simplify
detection of people, the signal to noise ratio is very high
and the range is limited to short distances.

2.1.2 Laser Range Finders

Figure 2: Laser range finders. From left to right: 2D laser
(Sick LMS200), multilayer 2D laser (IBEO Alasca XT), 3D
laser (Velodyne HDL-64E).

Laser range finders retrieve distances by measuring
time-of-flight of laser beam returns. Several types are
available on the market: 2D, multilayer 2D, and 3D
(Fig.[2). The principle of operation of 2D lasers is based
on a rotating mirror that deflects a beam into a plane. The
reflected beam is detected by a receiver circuit that also
computes the travelled distance using the time elapsed
from beam emission to detection. A very wide field of
view is retrieved in this manner (at least 120°), but the
scan only captures information about a 2D slice of the
world. Measurements are very precise, but sparse due to
limited angular resolution (0.25°-1°). Laser range finders
work in any lighting conditions, although direct sunlight
can cause false measurements and errors. For DATMO
applications, the 2D lasers are typically mounted horizon-
tally on the ego-vehicle. This produces scan lines parallel



to the ground. A significant challenge is to tell the differ-
ence between ground readings vs. readings obtained from
true obstacles.

Figure 3: Example of a 3D scan obtained with a Velodyne HDL-
64E scanner. See Fig. |§|f0r a picture of the scene.

Recently lasers have evolved from 2D to multilayer
2D devices, which are more suitable for driving appli-
cations. The principle of operation is similar to a stan-
dard 2D scanner, but more slices are retrieved (slices are
almost parallel 1°— 2°) by employing more beams and
more receivers. For example, IBEO Alasca sensors allow
for easy ground filtering by collecting four nearly-parallel
horizontal scan lines. Using information from all four
scan lines it is easier to tell which readings likely came
from the ground, by considering the vertical alignment of
impacts and, hence, these sensors can provide automatic
ground filtering.

Another recent innovation are 3D laser range finders,
e.g. the Velodyne HDL-64E sensor. Data are retrieved
at 5-15Hz with up to two million points per second (see
Fig.[3). Even though angular resolution is not as fine as
for a camera, this sensor has all the aforementioned ad-
vantages of a range device. This sensor has 64 lasers
aligned at different vertical angles on a cylinder rotating
around a vertical axis. On each rotation, lasers sweep the
space and a 3D point cloud is received. The first success-
ful usage of this device in the field of vehicle detection has
been presented in the DARPA Urban Challenge in 2007.
Given the rich data produced by 3D scanners, the chal-
lenge has become to process the readings in real time, as
target tracking at 10-20Hz is desirable for driving deci-

sion making.

Overall, lasers can provide data at high frame rates and
with high information content (especially 3D lasers). Un-
like cameras, lasers give range information for every data
point and can work in the dark. However, compared to
cameras, lasers are much more expensive and consume
more energy, which is required for sending out laser light
pulses. Their angular resolution is not as high as cameras
and they do not provide color information. Compared to
radar, lasers can be affected by weather conditions, such
as rain or fog.

2.1.3 Radars

Radar sensors measure distance to obstacles by sending
out radio waves and measuring either time delay or phase
shift of the reflected signals. The typical radars used
for autonomous driving applications are millimeter wave
(MMW) radars, which have started to appear on some up-
scale commercial vehicles for adaptive cruise control.

Although radar speed guns are commonly used by law
enforcement officers to detect velocity of speeding vehi-
cles, this technology is more difficult to use on an au-
tonomous platform. Radars tend to have narrow field of
view and low resolution for position measurements, al-
though they are very precise for velocity estimation. The
measured range can be corrupted by echoes from multiple
objects in the path of the wave and even by highly reflec-
tive objects outside of the FOV. Some targets get multi-
ple detections, others go undetected, and the bearing to
each target is not very accurately determined. For these
reasons, radars are often combined with vision sensors
to obtain better accuracy (Lundquist and Schon| 2008}
Richter et al.l [2008). Since static clutter and infrastruc-
ture cause echoes, it is common to filter out static returns
from radars, making these sensors better suited for high-
way rather than urban applications.

Despite all the challenges, radars perform better than
other sensors in adverse weather conditions and have
longer detection range. Hence, these sensors warrant fur-
ther evaluation for the purposes of DATMO.

2.2 Models of Sensors and Motion

Measurement models (also called sensor models or obser-
vation models) define the measurement process in proba-



bilistic terms. In other words, given a pose X; of a tracked
object, the measurement model defines the probability of
obtaining a specific set of sensor measurements Z;. Of
course, it is not possible to model the sensor operation
exactly as many unknown effects can impact the perfor-
mance of the sensor: lighting conditions, dust or fog for
example. Hence, measurement models explicitly repre-
sent some properties of the sensors and consider the un-
modeled effects as uncertainty or noise.

Measurement models in DATMO fall within a spectrum
between physical sensor models and pseudo-position
models. The first type attempts to model the physical
sensor operation directly by considering the physical phe-
nomena that occur when the sensor interacts with the
world (e.g. laser rays travel through space and get re-
flected from objects). These methods are appropriate
when the physical phenomena are easy to model (i.e. usu-
ally for range sensors rather than classical vision). Exam-
ples of physical sensor models are discussed in Sect.[2.2.1]
below.

On the opposite side of the spectrum are methods,
which derive target positions (and sometimes orientations
and velocities) from sensor data prior to the application of
the Bayesian filter. Then the probabilistic sensor model
within the Bayesian filter represents the resulting pseudo
sensor of target positions (Sect. 2.2.2).

Most sensor model approaches will use at least some
data pre-processing techniques to enhance the data. When
the resulting data are still far from the quantities to be esti-
mated, a lot of work still remains for DATMO algorithms.
The sensor data at this stage shall be called virtual sen-
sor data. Virtual sensor techniques can be very light (e.g.
apply a Gaussian blur) or they can build a qualitatively
different sensor (e.g. stereo vision). The important dis-
tinction from pseudo-position sensors, is that virtual sen-
sors are still relative sensors, in that they do not provide
direct measurements of quantities to be estimated. Virtual
sensor techniques are discussed in Sect.[2.2.3]

2.2.1 Physical Models for Range Sensors

Physical sensor models are most common for range sen-
sors. Two main types are prevalent: the proximity model
and the independent beam model. In the proximity model,
each range measurement is converted into a 3D point in
the world frame. These points are considered to be caused

A B

Figure 4: Ground readings can be determined by comparing an-
gles between consecutive readings. If A,B,C are ground read-
ings, then « is close to 0 and thus cos« is close to 1.

by objects in the environment (both static and dynamic).
The closer the points are to the surface of the objects the
more likely the measurements are, hence the name prox-
imity model. Proximity models are fast to compute, but
they discard negative information, i.e. the information that
the space the laser rays travelled through must be unoccu-
pied. This information is taken into account by the in-
dependent beam model (IB). In the IB model, ray trac-
ing is used to identify range to the closest obstacle along
each laser ray. The obtained range is compared to the
range returned by the sensor. The closer together these
range values the more likely the measurements. Both of
these models have been used with great success in SLAM,
where proximity models are often called likelihood fields.
See (Thrun et al., 2005) for more information.

2.2.2 Pseudo-Position Sensors

Most of the sensors used for DATMO provide only rel-
ative information about the targets, e.g. individual range
measurements or pixels. The quantities that need to be
estimated are positions, orientations and velocities of tar-
gets. Many DATMO approaches augment the physical
sensors with a set of algorithms (as discussed in Sect. [3.2)
to produce pseudo measurements of target positions (and
in some cases orientations and velocities). The result-
ing pseudo measurements are modeled as direct measure-
ments of target positions, corrupted by zero-mean Gaus-
sian noise.

2.2.3 Virtual Sensors

It is often useful to augment the physical sensor by a num-
ber of data pre-processing or clean-up techniques. A va-
riety of methods can be used.

For range data it is common to sub-sample the rays,



(a) actual scene

(c) after classification

(b) 3D Velodyne data

S

(d) generated 2D virtual scan

Figure 5: In (c) Velodyne data is colored by type: orange — ground, yellow — low obstacle, red — medium obstacle, green —
high obstacle. In (d) yellow lines denote the 2D virtual scan. Note the truck crossing the intersection, the cars parked on a side
of the road and the white van parked on a driveway. On the virtual scan, all of these vehicles are clearly marked as obstacles, but

ground, curbs and tree tops are ignored. Images are from (Petrovskaya and Thrun} m

readjust origin point of rays, project from 3D to 2D, and
reject outliers. It is especially important to filter out
ground readings. Fig. [5] shows an example of a virtual
sensor, where a 3D scan is converted to a 2D scan. With
multi-layer and 3D laser sensors, ground filtering can be
done based on the fact that impacts are aligned almost ver-
tically on objects. Hence, ground filtering can be achieved
by comparing relative angles between rays (see Fig. ] for
an example). When a vision sensor is available in addition
to laser, the vision sensor can be used to detect the road
surface, thus allowing to filter range data. Since lasers do
not see black obstacles very well, some approaches also
fill-in data for black objects (Fig. [f). If no readings are
obtained along a range of vertical angles in a specific di-
rection, the space must be occupied by a black obstacle.
Otherwise the rays would have hit some obstacle or the

ground.

For vision sensors, it is common to convert the image
to greyscale, apply a Gaussian blur, and reduce the image
resolution. When using stereo-vision, the pixels of the
two images are matched. Then, a distance measurement
is obtained through triangulation. With this technique, a
pair of images can be transformed into a set of tridimen-
sional points, represented in the sensor coordinate system,
or in another space like the disparity space for some spe-
cific configuration of the sensor (Labayrade et al, 2002).
Using successive images in an optical flow approach is
another way to retrieve tridimensional data from a vision
Sensor.




(a) actual appearance of the vehi- (b) the vehicle gives very few laser
cle returns

(c) virtual scan with black object (d) virtual scan without black ob-

detection ject detection

Figure 6: Detecting black vehicles in 3D range scans. White
points represent raw Velodyne data. Yellow lines represent

the generated virtual scans. Images are from (Petrovskaya and
Thun] 2009).

2.2.4 Dynamics Models

Dynamics model describes motion of an object in proba-
bilistic terms. Given a prior pose and velocity, the model
defines a probability distribution over resulting poses at
the next time step. In DATMO, it is common to assume
a constant velocity model, in which the velocity of each
tracked target stays constant for the duration of each time
interval from #—1 to ¢. At each time step ¢, the velocity in-
stantaneously evolves via addition of random noise based
on maximum allowed acceleration a,,,, and the time de-
lay At from the previous time step t— 1. More specif-
ically, Av is either sampled from a normal distribution
N(0, ayqxAt) or uniformly from [—a,,q,At, ApmaxAt].

Brownian Motion Model The simplest model of mo-
tion is Brownian motion. This model is often used for
pedestrians because people can rapidly change velocity
and direction of motion. In this model, the pose evolves
via addition of zero-mean Gaussian noise. The variance

of the noise grows with Az.

Linear Motion Model Vehicles have more predictable
motion than pedestrians due to higher inertia and non-
holonomic constraints.  Since the exact dynamics of
tracked vehicles are unknown, it is common to use the
linear motion model. In this case, the motion consists of
perturbing orientation by A8;, then moving forward ac-
cording to the current velocity by v,At, and making a final
adjustment to orientation by Aé,. Given a maximum al-
lowed turning rate d6,,,,, A8 and A6, are sampled from
a normal distribution N(0,d6,,,,At) or uniformly from
[—dOnaxAt, dOpaxAt].

Bicycle Motion Model A more refined motion model
for vehicles is the bicycle model. This model uses angular
velocity w; in addition to linear velocity v;. As before,
constant velocity model is assumed for both angular and
linear velocities. The object moves along an arc, which
is determined based on the linear and angular velocities.
The equations of motion are more complex in this case.

See (Thrun et al., 2003 Sec. 5.4) for details.

2.3 Scene Models
2.3.1 Cluster Based Models

One of the simplest and most common object models are
cluster based representations. In this case, tracked objects
are represented as clusters of observed data points or fea-
tures. Target’s pose X; represents the position of the geo-
metric mean of the cluster in the world coordinate frame.
The main drawback of this representation is that it is view-
point dependent because the geometric mean does not ac-
count for unobserved parts of the object. Once previously
unobserved parts of the object come into view, the geo-
metric mean shifts with respect to the object. This shift
is seen as motion of the target because X; moves with the
geometric mean. This leads to incorrect estimates of the
object’s pose and velocity. For example, a robot can per-
ceive a non-zero velocity for a stationary vehicle, simply
because the robot moves around it and observes it from a
different vantage point as Fig. [7]illustrates. This problem
can be addressed using geometric object models, which
are described below.
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Figure 7: The effect of vantage point shift on estimated motion
of the object. As we move to observe a different side of a sta-
tionary bus, the geometric mean of observed points shifts with
respect to the bus. (a) With cluster models, X; is tied to the ge-
ometric mean of the points. Hence, a change in vantage point
leads to phantom motion (red arrow) of the object. (b) With
geometric models, anchor point coordinates C = (C,Cy) com-
pensate for geometric mean shift, so that X; remains stationary

in world coordinates. The figure is from [Petrovskaya] (201T).

2.3.2 Geometric Models

As an alternative to clusters, objects can be represented by
geometric shapes. Rectangular boxes are most common,
although circles and ovals have also been used. Since one
size and shape does not fit all targets well, some methods
use several pre-defined shapes: one per class of objects.
For example, pedestrians could be modeled as circles, bi-
cycles as ovals, cars as rectangles, and buses as long rect-
angles. In this case object class variable is added to the
state for each target.

(a) without shape estimation (b) with shape estimation

Figure 8: Shape inference on the example of a passing bus.
Without shape estimation (a) the tracking results are poor be-
cause the geometric model does not fit the data well. Not only
is the velocity estimated incorrectly, but the track is lost entirely
when the bus is passing. With shape estimation (b) the bus is
tracked successfully and the velocity is properly estimated. Im-
ages are from (Petrovskaya and Thrun} 2009).

To obtain an even more accurate representation of ob-
jects, some approaches parameterize the shape and infer
the shape parameters. For example, objects could be mod-
eled as rectangles, for which width and length are added
to the state variables. Fig. [§]illustrates the impact of shape
inference on a real example.

When unobserved parts of an object come into view,
with a geometric model it is still possible to experience
geometric mean shifts just as for the cluster based repre-
sentations discussed above. To overcome this problem, let
X; be the pose of an anchor point, which is fixed some-
where on the object. Although the anchor point remains
fixed on the object, the robot’s belief of the anchor point
position with respect to the object’s center can change
over time (Fig. [7(b)). Initially, the robot sets the anchor
point to be the center of what it believes to be the ob-
ject’s shape and thus anchor point coordinates in the ob-
ject’s local coordinate system are C = (0,0). Assume that
the object’s local coordinate system is tied to its center
with the x-axis pointing directly forward. As the robot re-
vises its knowledge of the object’s shape, the local coor-
dinates of the anchor point need to be revised accordingly
to C = (Cy,Cy). Thus, Cy and Cy, are added to the target’s
state variables.
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2.3.3 Grid Based Models

Occupancy grids have been utilized to represent the scene
for some time (Moravec| (1988))). Occupancy grids di-
vide the scene into a grid of cells. The cells may be uni-
form or varying in size. Typically each cell has a value
P(0;), representing the probability that something is oc-
cupying cell i. P(O;) = 0 indicates a cell that is certainly
empty, P(O;) = 1 indicates that it is certainly occupied,
and P(O;) = 0.5 is typically used to represent cells for
which no information is available.

In the intelligent vehicle context, the grid is typically
used to represent an area in front of the vehicle. That is
to say that rather than the grid being used to represent the
complete environment at a large scale, the grid is essen-
tially attached to the vehicle, in a robot-based frame, as
described in Sect.[I.2.1] This is because the grid is being
used to model the scene and identify potential dangers,
rather than building a global map. Work has been done
using this moving grid along with local-slam to differen-
tiate between moving and static obstacles.

In defining the grid, tradeoffs are made between accu-
racy and performance in specifying the grid size and cell
size. Specifically, smaller cells allows for a more accu-
rate representation of the scene. Similarly, a larger grid
allows representation of more of the environment. How-
ever, additional cells also require additional computing re-
sources, in terms of both memory for storing the grid, and
computing power for updating the grids. The computing
resources available and application-specific details (sen-
SOr range, sensor accuracy, accuracy requirements, etc.)
should be used to define the grid.

In the grid-based approaches, concepts such as objects
or tracks do not exist; they are replaced by other prop-
erties such as occupancy or elevation, which are directly
estimated for each cell of the grid using both sensor ob-
servations and some prior knowledge. It might seem
strange to have no object representations when objects
obviously exist in real life environments. However, an
object-based representation is not required for all applica-
tions. Where object-based representations are not perti-
nent, we argue that it is more useful to work with a more
descriptive, richer sensory representation rather than con-
structing object-based representations with their compli-
cations in data association. For example, to calculate the
risk of collision for a mobile robot, the only properties re-
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quired are the probability distribution on occupancy and
velocities for each cell in the grid. Variables such as the
number of objects are inconsequential in this respect.

Occupancy grids are especially useful to fuse informa-
tion from several sensors. In standard methods for sen-
sor fusion in tracking applications, the problem of track-
to-track association arises where each sensor contains
its own local information. Under the standard tracking
framework with multiple sensors, the problem of data as-
sociation will be further complicated: as well as the data
association between two consecutive time instances from
the same sensor, the association of tracks (or targets) be-
tween the different sensors must be taken into account as
well.

In contrast, the grid-based approaches will not en-
counter such a problem. A grid-based representation
provides a conducive framework for performing sensor
fusion Moravec| (1988)). Different sensor models can
be specified to match the different characteristics of the
different sensors, facilitating efficient fusion in the grids.
The absence of an object-based representation allows
easier fusing of low-level descriptive sensory information
onto the grids without requiring data association.

Grid mapping from sensor data Occupancy grids are
generally computed from the data provided by range find-
ers. The classical approach is based on the independent
beam model, taking into account both positive and nega-
tive information, see Sect.[2.2.1}

Grid mapping is somewhat less common with vision
sensors. With a single camera, integration over time is
necessary to retrieve distance measurements, leading to
approaches like visual-SLAM. Stereo-vision can provide
tri-dimensional data, so it is current practice to use it as a
distance sensor, considering a metric point cloud Brail-
lon et al.| (2006). Stereo-specific methods also exist.
InMatthies and Elfes|(1988) or Murray and Little|(2000),
the authors consider the first detected object for each col-
umn and suppose that it occludes the field ahead. This
is obtained by finding the highest disparity value for
each column of the image. The result is a ternary grid
(free/occupied/unknown) and the approach is sensitive to
outliers in the disparity map. An improvement has been
proposed in |Badino et al.| (2007)), where the authors pro-
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Figure 9: (a) Typical DATMO pipeline. (b) Three alterna-
tive approaches to the measurement update step in the DATMO
pipeline. Each approach starts with sensor data on the left and
produces tracks of moving objects or grids on the right. Pre-
dicted tracks and predicted grid are outputs of the dynamics up-
date. Red boxes are mandatory, the blue box is optional.

pose to build such a grid in the u-disparity plan. Occu-
pancy is then robustly estimated using dynamic program-
ming. The result is a ternary grid, specifically designed
for free field estimation. An improvement is proposed in
Perrollaz et al.| (2010), where the authors propose a visi-
bility based approach to estimate the occupancy probabil-
ity of each cell of the grid, in the u-disparity plane. This is
done by estimating for each cell the probabilities of “be-
ing visible”, of “containing an object”, and of “containing
the road surface”.

3 Inference: Filtering and Tracking

In a Bayesian approach, the evolving state of a dynamic
system is tracked using a Bayesian filter, which computes
the current belief bel; recursively from a prior belief bel;_;
using the Bayesian recursion equation (T). The filter con-

sists of a dynamics update, which captures the evolution
of the state between time steps, and a measurement up-
date, which incorporates the most recent sensor measure-
ments (Gordon, |1993} |Diard et al., 2003). In DATMO,
separate Bayesian filters are used to track the state of each
moving object (or cell). Updates of the Bayesian filter
are followed by a track management phase, during which
tracks are created and deleted and dependencies between
targets are enforced. The resulting pipeline for DATMO
is summarized in Fig. P(a)]

There are two types of Bayesian filters: parametric and
non-parametric (for an overview see |Arulampalam et al.
(2002)). Parametric filters include variants of Kalman fil-
ters (KF) and represent the belief by a parametric func-
tion, a Gaussian. Since the actual belief is usually non-
Gaussian, approximations have to be made as in the ex-
tended Kalman filter (EKF) or the unscented Kalman fil-
ter (UKF). Non-parametric filters include particle filters
(PF) and histogram filters (HF). They represent the belief
by a set of points, which are positioned randomly in case
of the PF and deterministically in HF. In PF these points
are called particles, in HF they are grid cells.

Parametric methods have the advantage of being more
efficient as their computational cost is polynomial in the
dimensionality of the state. However, parametric meth-
ods are unable to represent complex beliefs, which often
arise due to ambiguities in the data. They also often per-
form poorly if a sufficiently good estimate of the state is
not available a priori. In contrast, non-parametric meth-
ods have the advantage of being able to represent an arbi-
trary belief even if it has multiple high probability regions
(called modes). However, their computational cost is ex-
ponential in the dimensionality of the state and the base of
the exponent tends to be large. This property is often re-
ferred to as the curse of dimensionality (MacKay, |1998]).

Several types of DATMO approaches have evolved to
build around these advantages and disadvantages. To
help organize the discussion in this chapter, these ap-
proaches can be roughly divided into three main branches
(Fig.0()): the traditional approach, the model based ap-
proach, and the grid based approach approach. The first
two branches represent two schools of thought for pro-
ducing object level tracks: (i) build a pseudo-sensor of
target positions by augmenting the physical sensor with a
set of algorithms and then use a simple (usually paramet-
ric) filter (top branch), or (ii) use the raw sensor with a
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physical sensor model and employ a more advanced non-
parametric filter (middle branch). In (i) most of the prob-
lem is solved while producing pseudo-measurements of
target positions, whereas in (ii) most of the problem is
taken care of by the inference method. Both of these ap-
proaches are discussed below in Sect. [3.2]and Sect.[3.3]

The third approach (bottom branch in Fig. O(b)) has a
different goal than the first two. Instead of object level
tracks of targets, it produces tracks of grid cells — a lower
level representation of moving obstacles, which can be
used directly for low level trajectory planning. This ap-
proach is described in Sect. 3.4 To obtain object level
tracks, the grid based approach can be followed by a pro-
cess similar to the traditional branch, but replacing the
physical sensor with the grid representation, which is built
by the grid based approach. This method is described in
Sect.3.4.31

3.1 Track Management and Dynamics Up-
date

3.1.1 Imposing Track Constraints

Although during inference inter-track dependencies are
ignored as was already mentioned in Sect. [[.2.2] these
dependencies clearly exist. For example, no two vehicles
can occupy the same space at the same time. These depen-
dencies are enforced during the track management phase
by imposing constraints. The constraints may include as-
sumptions that targets do not overlap, are surrounded by
some amount of free space, and are located in regions of
interest (ROI, e.g. on or near roads).

Tracks violating constraints can be deleted right away,
can have their existence score decreased (as discussed be-
low), or can be merged with other tracks in the case of
overlapping targets.

3.1.2 Track Existence

Creation and deletion of tracks relies on track existence
probability, which can be derived using Bayes rule. This
probability is usually kept in log form as an existence
score, which represents the log-likelihood ratio (LLR)
first proposed by Sittler|(1964) and summarized by Black-
man et al.| (2004). This approach is an application of the
classical sequential probability ratio test (SPRT).

13

The existence score takes into account whether or not
the target has been observed, how well it matched the ob-
servations, how well it fits the dynamics model, as well as
expected probability of detection and expected density of
false alarms. It can also include terms for signal-to-noise
ratio (SNR). In short, if a target is observed and matches
the data well then the score is increased, otherwise it is
decreased.

3.1.3 Track Creation

After a measurement update, the sensor data not well ex-
plained by existing tracks are examined to initialize new
tracks. This process can take several frames of data into
account (e.g. from time steps t—2, r— 1, and #) by running
a Bayesian filter over these frames of data for a prospec-
tive target. For each frame of data, the existence score is
computed for the prospective target. If the score is suffi-
ciently high in all frames, the prospective target may be
added to the list of tracked targets.

Note that detection of new targets is a more challenging
problem than tracking of existing targets. Since the initial
pose uncertainty for each new target is very large, large
areas of space need to be examined for possible existence
of new targets. In contrast, during tracking of existing
targets, a prior pose estimate is already available from the
previous time step and hence the pose uncertainty of each
target is lower.

A number of techniques can be used to make detec-
tion of new targets more efficient. For example, it is com-
mon to restrict areas in which new targets can enter the
scene. These areas may be defined by boundaries of the
observed space (i.e. image boundaries for cameras and
point cloud boundaries for 3D sensors) and by features of
the environment (e.g. entrance lanes on freeways or inter-
sections). Another approach is to perform some fast pre-
processing of the data to determine locations, in which
new targets may have appeared. For example, sufficiently
large change has to occur in an area if it contains a moving
object.

3.1.4 Track Deletion

Like for track creation, existence score can be used to de-
termine if a particular track should be discontinued. The
existence score is computed for each target at each time



step. Once the score falls below a certain threshold, the
track is deleted.

3.1.5 Dynamics Update

Once track management phase completes, all surviving
tracks are propagated to the next time step. The prop-
agation is performed using the dynamics update of the
Bayesian filter used to track the targets. The dynamics up-
date relies on probabilistic laws of target dynamics, which
we discussed in Sect. [2.2.4] In effect, the dynamics up-
date computes the prediction distribution for each target
b_el, = p(S4Zy,...,Z;-1), which is given by the integral in
the Bayesian recursion equation (I).

3.2 Traditional DATMO

The traditional pipeline of DATMO corresponds to the top
branch in Fig.[9(b)] It usually relies on variants of Kalman
filters, although some recent approaches have used par-
ticle filters. The distinguishing characteristic of the tra-
ditional approach is that most of the work is done prior
to application of the filter. The data are segmented into
meaningful pieces using clustering or pattern recognition
methods as described in Sect.[3.2.Tand Sect. [4.1] respec-
tively. The pieces of data are associated with targets using
data association methods described below in Sect. 3.2.2
This stage can be challenging because of the association
ambiguities that often arise. Finally, for each target a
pseudo-measurement of position is produced by taking
geometric mean of the data assigned to each target. This
position estimate is then used in a Kalman filter variant
(or a particle filter) to update the belief of each target’s
state.

A broad spectrum of DATMO approaches fall into the
traditional approach category. While early work has used
simple clustering techniques to segment data (Sect.[3.2.1)),
recent work within the traditional branch partitions data
based on advanced pattern recognition techniques to im-
prove detection of targets (Sect. [4.T)).

3.2.1 Data Segmentation

Among the simplest methods for data segmentation are
the clustering methods. These methods can be applied di-
rectly to range data. The data points are segmented into
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clusters based on range discontinuities. These clusters
then need to be assigned to targets during the data asso-
ciation phase, however multiple clusters may need to be
associated with the same target.

A slightly more complex approach is to look for spe-
cific features in the data. Straight lines and letter L’s are
common features for range data. Harris corners and edges
are common for vision data. Again these features need to
be associated to targets with possibly multiple features as-
signed to each target.

More sophisticated techniques for data segmentation
rely on pattern recognition techniques, which are dis-
cussed in Sect. A.1]

3.2.2 Data Association

Once the data have been segmented into pieces, these
pieces need to be associated to targets. Below is a sum-
mary of data association methods. See [Cox| (1993) for a
detailed review.

One of the simplest methods for data association is
the nearest neighbor (NN) method, which assigns each
piece of data to the closest predicted target. This method
is widely used when update rates are high enough to
make this assignment unambiguous. A more sophis-
ticated method is the global nearest neighbor (GNN),
which ensures that each piece of data is assigned to one
target. It is useful for recognition based methods, which
ensure that each piece of data represents the entire tracked
object (e.g. pedestrian or vehicle) and hence a one-to-one
correspondence between targets and pieces of data is ap-
propriate.

More advanced methods have been developed for sit-
uations where ambiguities are plentiful. The two most
common approaches are the multiple hypothesis tracking
(MHT) algorithm and the joint probabilistic data associ-
ation filter (JPDAF).

MHT Algorithm Originally developed by |Reid|(1979),
this algorithm maintains multiple association hypotheses
between targets and measurements. The MHT framework
can handle situations where the measurements arise from
a varying number of targets or from background clutter.
For example in Fig. there is a single hypothesis H t‘_l
at time 7 — 1 containing targets Ttl_1 and th_l. At time ¢,
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Figure 10: Example of a data association problem with two
targets Trl_], th_l from time 7 — 1 and three new measurements
Ztl,th,Zt3 . A single hypothesis H }71 from the prior step splits
into multiple hypotheses at time ¢, of which only Hl1 and th are
shown. Arrows show the associations made.

the new observations are segmented into three pieces de-
noted by Z!, Z2, and Z>. The new possible hypotheses are
formed from the prior step hypothesis by associating the
new measurements to the existing targets or by initializ-
ing new targets from each new measurement. Thus, these
associations give rise to a number of hypotheses at time ¢,
of which only two are shown in the figure.

For each of the obtained hypotheses, a hypothesis score
is computed by summing the track existence scores (from
Sect.[3.1.2) of all targets within it. The hypothesis proba-
bility can then be computed from the hypothesis score.

In practical situations, several issues arise from the ap-
plication of this method. The most serious is the com-
binatorial increase in the number of generated tracks and
hypotheses. Several techniques such as tracks clustering
or pruning can be used to avoid this increase. For further
information on MHT and its variants see [Blackman et al.
(2004).

JPDAF Algorithm The algorithm was proposed by
Fortmann et al.| (1983)) based on the probabilistic data
association concept introduced by Bar-Shalom and Jaf-
fer| (1972). Unlike the MHT algorithm, JPDAF does not
suffer from the combinatorial explosion. It is similar to
GNN in that a single association hypothesis is maintained.
However, unlike GNN, JPDAF does not make a hard as-
signment of measurements to targets. Instead, it makes
a soft assignment by considering the probability of each
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(a) without geometric model (b) with geometric model
Figure 11: Scans from objects are often split up into separate
clusters due to occlusion (a). Geometric model helps interpret
the data properly (b). Purple shapes group together points that
have been associated together. In (b) the purple rectangle also
denotes the geometric model. Gray areas are objects. Gray dot-
ted lines represent laser rays. Black dots denote laser data points.
The figure is from |Petrovskayal (2011)).

measurement being assigned to each target.

More specifically, suppose we have K targets and M;
data segments Zt1 yenn ,ZtM !, Let the probability of measure-
ment m being caused by target k be denoted by k. Then
for target k, the measurement update is carried out consid-
ering all possible assignments of data segments

M;
p(ZISH)=n )" Bue p(Z11SY), @
m=1
where 1 is a normalization constant. For details on how
to approximate the probabilities B, see |Schulz et al.
(2003b).

A number of extensions and variants of JPDAF have
been developed (Cox, [1993). Most methods utilizing
JPDAF rely on parametric belief representations (i.e.
Kalman filters). Such methods are widely used in
DATMO approaches. Non-parametric variants of JPDAF
have also been developed (Schulz et al.l 2003b; Vermaak
et al.,[2005)), although these methods have yet to find their
way into DATMO for autonomous driving.

3.3 Model Based DATMO

The model based approach corresponds to the middle
branch in Fig. 0(b)] It works by directly modeling the



physical sensor and the moving objects using a physical
sensor model (Sect. [2.2.T) and geometric models of ob-
jects (Sect.[2.3.2). Most of the work here is done by the
filter itself. Separate data segmentation and association
steps are not required because the geometric object model
helps associate data points to targets (see Fig. [IT). The
main challenge is to make the filter efficient enough to
meet the high demands of autonomous driving.

3.3.1 Rao-Blackwellization

Inference efficiency can be improved with a hybrid rep-
resentation of the belief using a Rao-Blackwellized par-
ticle filter (RBPF). The concept of Rao-Blackwellization
dates back to |Raol (1945) and Blackwell| (1947) and has
been used with great success in SLAM (Murphy and Rus-
selll, [2001; Montemerlo), 2003). In RBPF, the belief over
some parameters of the state is represented by particles
with each particle maintaining a Gaussian belief over the
remaining parameters. This technique effectively reduces
the dimensionality of the state from the perspective of the
particle filter.

Let Q denote the vector of object shape parameters
(e.g., Q= (W,L,C,Cy)). Then the full belief is bel; :=
p(X1:4,v1:4,QZ1.1), where 1 : t is a shorthand for 1,...,z.
For Rao-Blackwellization, the belief is split into two con-
ditional factors

bel; = p(Xi:1,vi:lZi:t) p(QUX1:4,V1:0.Z10). (3)
The first factor represents the belief about the object mo-
tion, whereas the second factor represents the belief about
the object shape, conditioned on its motion. Let A, denote
the first factor and B; denote the second factor. The mo-
tion belief is represented by particles and the shape belief
is represented in Gaussian form. The dynamics update
of RBPF is the same as standard particle filter (PF): the
particles are resampled and propagated according to the
dynamics model. Like for PF, the measurement update in-
volves computation of the importance weights. For RBPF,
the correct importance weights can be shown to be

— p(XlZ[’vlillle[)
PX1:4,V14lZ1:4-1)

In words, the importance weights are the expected value
of the measurement likelihood with respect to the object

=Ep, | pziQX) | @

Wi
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shape prior. Using Gaussian approximations of B,_; and
the measurement model this expectation can be computed
in closed form. See Petrovskaya (2011) for derivations.

3.3.2 Scaling Series Algorithm

Efficiency can also be improved using an iterative an-
nealing method, such as a Scaling Series particle fil-
ter (SSPF). SSPF gradually refines the belief from very
coarse to fine resolution and simultaneously adjusts the
annealing temperature. At each iteration it uses a divide-
and-conquer strategy and thus it can be exponentially
faster than the basic particle filter. Even though in prin-
ciple SSPF can not escape the curse of dimensionality, it
effectively reduces the base of the exponent (e.g. from 30
down to 6). Hence, the curse’s effect is greatly diminished
allowing the approach to outperform PF by several orders
of magnitude. Detailed description of SSPF can be found
in|Petrovskaya and Khatib|(2011).

An example combining the use of SSPF and RBPF
techniques to solve the DATMO problem can be found
in (Petrovskaya and Thrun, |2009), where the resulting ap-
proach tracks vehicles in real time (see Fig. [IZ). Since
the model based approach leads to accurate estimation of
motion, it is possible to build full 3D models of passing
vehicles (Fig. [I3) by collecting all scan points assigned
to each target (Petrovskaya, 2011). The 3D models can
in turn be used for even more accurate motion estimation,
which is particularly useful for slow-moving vehicles near
intersections.

3.3.3 MCMC Approach

The DATMO problem can be posed as a batch problem
over a sliding window of a fixed number of frames. In
this form, it can be solved using the Markov Chain Monte
Carlo (MCMC) approach. See |Andrieu et al.| (2003) for
an introduction to MCMC and related concepts.

MCMC methods produce samples from a desired prob-
ability distribution by constructing a Markov chain, for
which the equilibrium distribution is equal to the desired
distribution. When these methods “walk” the chain for a
sufficiently large number of steps, the resulting state of the
chain can be used as a sample from the desired distribu-
tion. While it is usually easy to construct a Markov chain
with the desired distribution as its equilibrium, determin-



(b) Velodyne data and tracking results

Figure 12: Tracking results on course A at the 2007 Urban
Grand Challenge. The purple boxes in (b) denote the tracked
vehicles. Images are from [Petrovskaya and Thrun| (2009) and

Petrovkasal 2011,

ing the required number of steps (known as the mixing
time) can be difficult.

The Metropolis-Hastings version of MCMC was pro-
posed by Metropolis et al.| (1953 and [Hastings| (1970).
It uses a proposal distribution and accepts or rejects the
next state based on a ratio test, which takes into account
both the desired distribution and the proposal distribution.

Figure 13: 3D shape inference for vehicle tracking. The green
points show the accumulated Velodyne points assigned to each
vehicle over multiple frames. Tracking with anchor point co-
ordinates allows us to align the points from different frames on
per-vehicle basis. Blue car shows the position of the ego-vehicle.

Image is from (2011).

Although this algorithm will eventually converge for any
proposal distribution, a more informed proposal distribu-
tion greatly improves efficiency of the approach. For this
reason, [Vu and Aycard| (2009) used a data driven MCMC
technique and generated object hypotheses with a detec-
tion module, which identifies moving parts of dynamic
objects.

Further, their approach uses discrete models of ob-
jects: rectangles of several fixed sizes for cars, busses, and
bikes, and points for pedestrians. Each class of objects
also has its own dynamics model, which is integrated into
the framework using an interacting multiple model (IMM)

filter 2009).

3.4 Grid Based DATMO

The grid based DATMO approach corresponds to the bot-
tom branch in Fig.[9(b)] The Bayesian filtering paradigm
can be applied for estimation and filtering in the occu-
pancy grid framework. This provides multiple advantages
compared to static grids estimated independently for each
frame of sensor data:

e it allows estimation of the velocity of each cell of the
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grid, hence modeling the dynamic environment;

since it takes into consideration successive measure-
ments over time, it allows retention of information
about occupancy for regions of the scene that are oc-
cluded;

through filtering, it can remove errors that are present
on a unique frame of measurements.

Moreover, in the classical methodology presented in the
top branch of Fig. 9(b)] the problems of data association
and state estimation are highly coupled, and an error in
either component leads to erroneous outputs. The grid fil-
tering methodology makes it possible to decompose this
highly coupled relationship by avoiding the data associa-
tion problem, in the sense that the data association is han-
dled at a higher level of abstraction. A few methods have
been proposed in the literature in order to adapt Bayesian
filtering to the occupancy grids, the first and more popular
approach is the Bayesian Occupancy Filter (BOF) which
we will present briefly below.

3.4.1 The Bayesian Occupancy Filter

The Bayesian Occupancy Filter (BOF) addresses the dy-
namics of the environment using a two-step mechanism,
derived from the Bayesian filter. This mechanism esti-
mates, at each time step, the state of the occupancy grid
by combining a prediction step (history) and an estimation
step (incorporating new measurements). The considera-
tion of sensor observation history enables robust estima-
tion in changing environments (i.e. it allows processing of
temporary objects, occlusions and detection problems).
The state space of the BOF is a 2-dimensional occu-
pancy grid. Each cell of the grid is associated with a prob-
ability of occupancy and a probability distribution on the
velocity of the occupancy associated with the cell. Con-
trary to the initial formulation presented in |Coué et al.
(2006), this formulation does not allow for overlapping
objects. On the other hand, it allows for inferring velocity
distributions and reduces the computational complexity.
Define the following variables:

e C is an index that identifies each 2D cell of the grid.

e A is an index that identifies each possible antecedent
of the cell ¢ over all the cells in the 2D grid.
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e 7, € Z where Z; is the random variable of the sensor
measurement relative to the cell c.

VeV ={v,...,v,} where V is the random variable
of the velocities for the cell ¢ and its possible values
are discretized into n cases.

0,07 € 0 = {oce, emp} where O represents the ran-
dom variable of the state of ¢ being either “occu-
pied” or “empty”. O~! represents the random vari-
able of the state of an antecedent cell of ¢ through
the possible motion through c¢. For a given veloc-
ity vx = (vy,Vvy) and a given time step 6, it is pos-
sible to define an antecedent for ¢ = (x,y) as ek =
(x = vx0t,y —v01).

The decomposition of the joint distribution of the rel-
evant variables according to Bayes’ rule and dependency
assumptions can be expressed as:

P(C,A,Z,0,07',V)
= P(A)P(V|A)P(C|V,A)P(O~'|A)P(0l0~")P(Z]0,V,C)

with this decomposition, each component can be associ-
ated with a semantic and a parametric form. Particularly,
P(0|071) is the conditional distribution over the occu-
pancy of the current cell, which depends on the occupancy
state of the previous cell. It is defined as a transition ma-

trix:
= fd

which allows the system to use a constant velocity hypoth-
esis as an approximation; in this matrix, € is a parameter
representing the probability that the object in ¢ does not
follow the null acceleration model, i.e. € models the pre-
diction error.

The aim of filtering in the BOF grid is to estimate the oc-
cupancy and grid velocity distributions for each cell of the
grid, P(0,V|Z,C). The two stages of prediction and esti-
mation are performed for each iteration. In the context of
the BOF, prediction propagates cell occupancy probabil-
ities for each velocity and cell in the BOF (P(O,V|C)).
During estimation, P(O, V|C) is updated by taking into
account its observation P(Z|O,V,C) to obtain its final
Bayesian filter estimation P(O,V|Z,C). The result from
the Bayesian filter estimation is then used for prediction
in the next iteration.

1-€
€

€
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3.4.2 BOF Implementation

When implementing the BOF, the set of possible veloc-
ities is discretized. One way of implementing the com-
putation of the probability distribution is in the form of
histograms. The following equations are based on the dis-
crete case. Therefore, the global filtering equation can be
obtained by:

Yuo-1 P(C,A,Z,0,071,V)

P(V,01Z,C ’
( | ) ZA,O,O“lsV P(C,A,Z,0,071,V)

®

The global filtering equation (eqn. [5) can actually be sep-
arated into three stages. The first stage computes the pre-
diction of the probability measure for each occupancy and
velocity:

a(occ,vy)
= Y 4.0-1 PAAP(v|A)P(CIV,A)P(O~"|A)P(occ|O™"),
alemp,vy)
=Y 0.0-1 PAAP(|A)P(CIV,A)P(O~"|A)P(emp|O")

This is performed for each cell in the grid and for each
velocity: prediction for each cell is calculated by taking
into account the velocity probability and occupancy prob-
ability of the set of antecedent cells.

With the prediction of the grid occupancy and its ve-
locities, the second stage consists of multiplying by the
observation sensor model, which gives the unnormalized
Bayesian filter estimation on occupancy and velocity dis-
tribution:

Bloce,vi)
Blemp,vi)

P(Zlocc,vi)a(oce,vi),

P(Zlemp,vi)a(emp,vy).

Similarly to the prediction stage, these equations are per-
formed for each cell occupancy and each velocity. The
marginalization over the occupancy values gives the like-
lihood of a certain velocity:

Ivi)

Finally, the normalized Bayesian filter estimation on the
probability of occupancy for a cell C with a velocity vy is
obtained by:

Blocc,vy) +Blemp,vy).

Bloce,vy)

P(occ,vi|Z,C) .
¢ )

Q)
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The occupancy distribution in a cell can be obtained by
the marginalization over the velocities and the velocity
distribution by the marginalization over the occupancy
values:

POIZC) = ) P(V,01Z,C), @
\%4

P(V|Z,C)

Z P(V,0|Z,C). 8)
]

3.4.3 Object Level Tracking

There are often times where object level representations
are required. The philosophy of the BOF is to delay the
problem of data association and as a result does not con-
tain information with respect to objects. A natural ap-
proach to obtain an object level representation from the
BOF grids is to introduce grid based clustering to extract
object hypothesis and an object level tracker to handle the
hypothesis extracted.

Approaches similar to image processing can be advan-
tageously used for the clustering the grid, e.g. a search for
connected components after thresholding. When using a
dynamic grid estimation algorithm, like the Bayesian Oc-
cupancy Filter, it is possible to take advantage of the es-
timated velocities, in order to improve the clustering. For
instance, two very close objects with different velocities
would be in the same cluster without velocity estimation,
while they could be separated.

After segmentation of the grid, clusters representing the
different objects of the scene can be tracked over time. A
classical algorithm, like the JPDAF presented in Sect.
can be used for tracks management. However, in the
cluttered environment with numerous moving objects, the
JPDAF suffers from the combinational explosion of hy-
potheses. The Fast Clustering and Tracking Algorithm
(FCTA) is more adapted to the BOF framework and to real
time processing, since it uses a ROI based approach to fa-
cilitate the association stage (Mekhnacha et al., [2008).

FCTA could be roughly divided into a clustering mod-
ule, an ambiguous association handling module and a
tracking and track management module.

Clustering The clustering module takes the occu-
pancy/velocity grid of the BOF as the input and extracts



object level reports from it. A natural algorithm to achieve
this is to connect the eight-neighbor cells according to an
occupancy threshold. In addition to the occupancy val-
ues, a threshold of the Mahalanobis distance between the
velocity distributions is also employed to distinguish the
objects that are close to each other but with different mov-
ing velocities. In order to avoid searching for clusters in
the whole grid, the predicted targets states are used as a
form of feedback, by predicting regions of interest (ROI)
in which the clustering process starts.

A report for the tracker is a 4-dimensional observation
corresponding to the position and the velocity of an ex-
tracted cluster. The 2D position component of this vec-
tor is computed as the mass center of the region, and the
2D velocity component is the weighted mean of the es-
timated velocities of all cells of the cluster. These esti-
mations come with a covariance matrix representing the
uncertainty of the observation.

Re-clustering and track merging The output of this
clustering module leads to three possible cases (a) no ob-
servation, where the object is not observed in the ROI,
(b) ambiguity free, where one and only one cluster is ex-
tracted and is implicitly associated with the given object,
and (c) ambiguity, where the extracted cluster is associ-
ated with multiple objects. Therefore, a Bayesian algo-
rithm is used at this stage for tracks splitting and merging.

Tracks management After all the existing tracks are
processed, the non-associated cells are processed to ex-
tract clusters as observations for potential new targets, us-
ing a region growing strategy from some “cluster seeds”.
Classically in the FCTA, the prediction and estimation
of the targets are accomplished by attaching a Kalman
filter with each track, similar to the traditional DATMO
approach. A confidence on the existence of each track
is continuously estimated, thus allowing to delete tracks
with low confidence.

An example of result using the complete grid based
DATMO approach is presented in Fig. [T4]
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(a) Lidar impacts

(c) FCTA

Figure 14: Example of lidar based BOF DATMO: (a) a urban
scene, with dots representing the laser impacts, (b) the local oc-
cupancy grid estimated by BOF (c) tracked objects extracted by
FCTA.



4 Pattern Recognition and Sensor
Fusion

4.1 Pattern Recognition
4.1.1 Vision-based approaches

Object and people detection from vision data has a long
history and a large body of literature exists in this area.
Most of the existing approaches can be classified into one
of two major kinds of methods: window scrolling ap-
proaches and parts-based approaches (see Fig. [15).

e Window scrolling approaches use a rectangular
frame denoted as window that is shifted over a given
image at all possible positions and scales to search
for potential object occurences. For training, usu-
ally a fixed-size window is used in which features are
computed and a large hand-labeled data set contain-
ing positive (people) and negative data (background)
is used. In a similar way, silhouette matching works
by matching a contour of a person at different scales
and positions using an edge-to-contour metric such
as the Chamfer distance Borgefors| (1986). Seminal
works in this area are |Gavrila| (2000) and |Papageor-
giou and Poggiol| (2000).

Parts-based approaches use the fact that the most ob-
jects as well as the human body consist of connected
parts. Therefore, part appeareances are learned and
their geometrical relation is stored in a probabilistic
way. This method produces detections when parts
are represented in a geometrically consistent way in
the image. Seminal works in this area are|Viola et al.
(2003), Mohan et al.|(2001), and [Mikolajczyk et al.
(2004).

Recently, more mature methods that achieve high de-
tection rates in crowded scenes have been presented (see
Felzenszwalb et al.| (2008); [Tuzel et al.| (2007); |Dalal and
Triggs| (2005a)); [Leibe et al. (2005a); Wu and Nevatia
(2005)). Two people detection data sets from a moving
car (Enzweiler and Gavrila, 2009; |Dollar et al., 2009))
have been published in order to assess the performance
of several detection algorithms. The conceptually simple
Histogram-of-Oriented-Gradient detector by |Dalal and
Triggs (2005a) performs very well, especially for frontal
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views and intermediate sizes. Haar-based detectors such
as the one by Viola et al.| (2003) are more suited in detect-
ing smaller sizes. If pedestrians are represented at big-
ger scales and if the aim is to also extract the articulation
pose then component-based methods are expected to per-
form better (see |[Leibe et al.| (2005a)); [Felzenszwalb et al.
(2008))). We note that many of these algorithms have been
designed for people detection, but they also work for any
other object category, for example cars.

The implicit shape model (ISM) algorithm by |Leibe
et al.| (2005a) is a generative detection method in which
the detector is based on local features that independently
cast votes for a common object center. The input for train-
ing is a set of images of people in which foreground and
background is annotated via a binary mask. The first step
of training is to collect all descriptors (SIFT, shape con-
text, etc.) from interest points (Hessian-Laplace, Harris-
Laplace etc). Then, a clustering algorithm is employed to
reduce and generalize the numbers of descriptors present
in the image set. The authors suggest using agglomera-
tive clustering with average linkage, run with a fixed Eu-
clidean distance 6. The resulting clustered centroids con-
stitute the elements of the object codebook. Each element
of the codebook is then matched to the training set images
by using the same distance §. The matched descriptors
are used to note the relative position, with respect to the
object center, of the associated interest points as a tag of
the codebook element. To summarize: each element of
the codebook is a generalized representation of an object
patch and it is associated to a set of vectors indicating the
positional displacement with respect to the object center.

During detection, a new image is acquired and interest
points and associated descriptors are computed. Descrip-
tors are matched with the codebook by using the distance
6. Matches are used to cast votes for object centers from
the positions of the associated interest points. Votes are
collected in a 3D voting space, defined by the x,y im-
age coordinates and scale s. This procedures defines a
generic Hough transform (GHT), in which the modes of
the votes distribution define object detection hypotheses.
A clever form of mode estimation, sensitive to scale er-
rors amplification, is represented by a modification of the
standard mean-shift technique (see (Comaniciu and Meer|
(2002)), in which the kernel size is inflated anysotropi-
cally with respect to the scale (balloon kernel). In order
to refine results in case of overlapping detection, an max-



Figure 15: The main approach to object detection in computer
vision. Window scrolling (left) and by-parts reasoning (right).
The first classifies the image enclosed by the rectangle that has to
be swept over the image at each position and at different scales.
The latter classifies an object by reasoning on the geometrical
disposition of object parts.

imum descriptor length (MDL) cost is used that takes into
account that a feature is not sharable and it must belong to
an object or to another. A quadratic boolean programming
problem is formulated in order to solve this best assign-
ment. Furthermore, this technique can be used to gener-
ate objects segmentations by associating bitmap patches
to succesfully resolved feature assignments. One major
disadvantage of ISM is that it relies on standard image
features that have not been designed specifically for ob-
ject detection. An solution to this drawbacks is provided
by [Felzenszwalb et al.| (2008)) that combines the advan-
tages of ISM and HOG. It uses HOG-based classifiers to
detect body parts and it assembles them in a probabilistic
shape model.

A more classic window-based approach is used by the
HOG (histogram of oriented gradients) detector of
[and Triggs| (2005a). This detector is based on discrimina-
tive classification, thus negative and positive image train-
ing sets are needed. Each training sample is specified as
a rectangle enclosing the object. This rectangle (or win-
dow) has fixed size and it is used for computing features
at fixed locations. Precisely, the window is tessellated in
evenly overlapping square cells. An histogram of gradi-
ents is collected from the content of each cell. Cells are
organized 2 X 2 blocks for computing a histogram normal-
ization that takes in account larger areas to encode robust
illumination change. All the histograms of a window are
concatenated in a single histogram, called HOG. All the
HOG negative and positive features computed in training

data are used for Support Vector Machine (SVM) classifi-
cation with a linear kernel.

During detection, a new image is acquired and win-
dow is scrolled through the image at each position and
scale. HOG is computed in each step and classified via the
learned SVM. A non maxima suppression is used in order
to refine results and solve overlapping detections ambigu-
ity. A computationally faster version of HOG, based on
Adaboost SVM cascades on a non-regular window tes-
selation has been developed by (2006). Other
variants leverage the parallel processing power of GPU
(see[Prisacariu and Reid| (2009)) achieving 120Hz in clas-
sification speed. Occlusion handling and overall perfor-
mance has been improved with the HOG-LBP detector,
a novel detector that combines the HOG feature concept
with local binary patterns classification (LBP) (see

(2009)). People detection and very small scales has
been addressed by [Spinello et al| (2009), in which small

edge segments, extracted via a superpixel segmentation,
are assembled in a discriminative voting approach.
For car detection, simplistic computer vision ap-

proaches that exploit shadow detection (Dickmanns et al.|
1994), trunk-frontal symmetries 1991)), rect-
angular shapes (Bertozzi et all [T997) or vehicle lights

(Cucchiara and Piccardi, [1999) are nowdays overcame by
HOG/ISM detectors trained with databases of car images
(Ess et al,[2009; [Leibe et al.l[2007). Cars are learned with
several viepoint-dependent classifiers in order to account
for the difference in appearance with respect to the object
viewpoint.

4.1.2 Object and People Detection from 2D Laser
Data

To detect objects in 2D laser range scans, several ap-
proaches have been presented in the past (see, e.g.
let al.| (2002)); [Kleinhagenbrock et al.| (2002); [Schulz et al |
(2003a)); Xavier et al|(2005)); [Arras et al|(2007)). These
approaches extract features from the 2D scan data, which
are used to classify the data points into people or back-
ground. The features used can be motion features, geo-
metric features such as circles and lines, or a combina-
tion of these, and they are either predetermined or can be
learned from hand-labeled data as in[Arras et al.| (2007).
However, most of these approaches have the disadvantage
that they disregard the conditional dependence between
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Figure 16: Example of a 2D laser scan. Laser beams are shown
in red, while circles represent the measured points. Gray beams
indicate out-of-range readings which, apart from the absence of
an obstacle, can be caused by material reflections, sun light ef-
fects and a too large incidence angle between the laser beam and
the surface normal.

data in a close neighborhood. In particular, they can not
model the fact that the label /; of a given laser segment S;
is more likely to be /; if we know that /; is the label of
S; and that §; and S; are neighbors. One way to model
this conditional dependency is to use Conditional Random
Fields (CRFs) (Lafferty et al., 2001), as shown by |[Douil-
lard et al.| (2008)). CRFs represent the conditional proba-
bility p(1|s) using an undirected cyclic graph, in which
each node is associated with a hidden random variable
l; and an observation s;. For example, 1 can be a vector
of discrete labels that range over the 3 different classes
’pedestrian’, car’ and background’, where s are the fea-
ture vectors extracted from the 2D segments in the laser
scan. To obtain the structure of the CRF, the 2D scan
needs to be clustered first, which can be done using jump
distance clustering, a method that assigns two adjacent
points to the same cluster if they are not further away from
each other than a given threshold. As a result, all further
reasoning is done on the clusters instead of the individ-
ual data points. Then, in a second step the graph structure
needs to be computed. This can be done using a Delaunay
triangulation on the centroids of each segment. The re-
sulting graph connects clusters that are close to each other.
The intuition behind this is that neighboring clusters have
a higher likelihood to belong to the same class, which is
modeled with a statistical dependency in form of an edge
in the CRF (see Fig.[T7).

Assuming that the maximal clique size of the graph is 2,

Figure 17: Object detection from 2D laser range scans using
Conditional Random Fields (CRFs). The 2D data points shown
here correspond to the scan depicted in Fig. Left: First,
the 2D scan points are clustered using jump distance clustering.
The yellow lines correspond to the resulting clusters. Right: In
a second step, a Delaunay triangulation is computed on the cen-
troids of the segments. This triangulation defines the structure
of the CRF.

one can compute the conditional probability of the labels
1 given the observations s as:

1 N
pls)= 7o L_l[sa(si,m [ ] wtsisptilp, ©

(.8

where Z(s) = >y l_[fi] @i 1) [iijes (J/(si,sj,ll’.,l;) is usu-
ally called the partition function, & is the set of edges in
the graph, and ¢ and ¥ represent node and edge potentials.
These potentials are positive functions that return large
values if the labels /; correspond to the correct labels of
the segments s; with a high probability. This means, that
the potentials can be viewed as classifiers, where the node
potential ¢ only uses the local information (i.e. features)
of a segment for the classification, and the edge potential
Y measures the consistency of the labels between two ad-
jacent segments. To define the node and edge potentials
simple rules can be used that relate the feature vector with
the assigned class label, but it turns out that using a classi-
fier such as AdaBoost (Freund and Schapirel|1997)) for the
node potentials ¢ and a simple rule for the edge potentials
gives very good classification results (see [Spinello et al.
(2010)). To achieve this, a classification score g. is com-
puted for each class based on the M weak classifiers /{
and their corresponding weight coefficients a7 as returned
by the AdaBoost training algorithm:
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Figure 18: Classification results of pedestrians and cars from
2D laser range scans. The results obtained using a Conditional
Random Field on node potentials using AdaBoost are compared
with the results of an AdaBoost approach that is directly ap-
plied to the jump-distance clustered segments (AJDC). As can
be seen, the boosted CRF performs better than AdaBoost alone
(results taken from [Spinello et al.|(2010)).

M
gelsi) 1= ) afhe(sy). (10)
i=1
To obtain a classification likelihood, the logistic function
A(x) = (1+e7)~! can be applied to g.. For the edge poten-
tial, a good choice are rules such as “the closer two seg-
ments are to each other the higher is the chance that they
correspond to the same class” or “the higher the classifi-
cation score is for the two adjacent nodes on a given class,
the higher is the probability that they have the same class
labels”. For details about how this can be expressed in a
mathematical formulation see|Spinello et al.[(2010).

Fig. [I8] shows precision-recall curves for results ob-
tained with the boosted-CRF approach. As one can see,
the additional information about the statistical depen-
dence of labels from adjacent segments leveraged by the
CRF approach effectively improves the classification re-
sults over the standard AdaBoost method.

4.1.3 Example of detection by classifier ensemble

A feature-based fusion can be accomplished by a mono-
lithic classifier method or an ensemble of classifiers. Par-
ticularly, in the latter case, the decisions are spread into
small specialized sub-modules, which are in charge of de-
ciding over the feature representations. In this section,
an ensemble fusion method, which performs over a set
of features and image classifiers, are presented and dis-
cussed in a pedestrian detection task. In fact, concerning
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image classification, a single feature extractor-classifier
is not usually able to deal with the diversity of multiple
scenarios. Therefore, the integration of features and clas-
sifiers can bring benefits to cope with this problem, par-
ticularly when the parts are carefully chosen and syner-
gistically combined.

Fusion of classifiers has been studied in the last few
years with the aim of overcoming certain inabilities of
single classifiers (Kuncheval (2004)). The objective is to
explore diversity of the component classifiers in order to
enhance the overall classification performance. In other
words, since there is no perfect individual classifier yet,
by assembling them, one can complement the other. If
there are errors in the ensemble components, it is expected
that they occur on different image objects in order to give
rise to fusion methods that improve the performance of
the whole system. Additionally, the rationale of building
ensembles is also that most individual classifiers agree in
a certain way, such that the whole system can be more
successful than its component parts.

From experimental studies, a set of feature extractors
and strong classifiers were chosen which could interact
together to improve the general performance of the fi-
nal classification system. In this sense, the choice of
the feature extractors, histogram of oriented gradients
(HOG) and local receptive fields (LRF), was motivated
by the studies found in Dalal and Triggs| (2005b)), Munder
and Gavrilal (2006) and |Szarvas et al. (2006). [Dalal
and Triggs| (2005b)) presented an experimental analysis
demonstrating that HOG features outperforms PCA-SIFT,
Haar wavelets and shape contexts in a complex data set.
Munder and Gavrila Munder and Gavrila (2006) also ex-
perimentally showed that LRF features present superior
performance in comparison with PCA and Haar wavelets,
although computed from an MLP over Haar wavelets, or
PCA features, and classified by SVM or Adaboost, which
turned it to a method more sensitive to lighting variations.
Szarvas et al. |Szarvas et al.| (2006) found that LRFs built
on CNNs have great potential in pedestrian recognition.
Our goal is thus to show that there is an opportunity to
integrate synergistically the outputs of high performance
classifiers performing over these two types of features.

After an extensive experimental work, the final archi-
tecture of the proposed synergistic method was built, and
is illustrated in Fig. @] (see |Oliveira et al.| (2010) for
the complete description of the ensemble evaluation). In



the feature level, HOG and LRF feature extractors are in
charge of representing the objects in different ways. It
was demonstrated that HOG are better to represent pedes-
trians, while LRF are better to represent background.
Actually, they complement each other, in many circum-
stances with respect to pedestrian/non-pedestrian classi-
fication ability. Instead of employing weak classifiers in
the fashion of boosting methods, strong classifiers were
used in order to explore the complementarity of the fea-
tures. It means that once the chosen features provide syn-
ergism in the way of acting, the lesser errors they commit
individually, the better the integration made by the fusion
method. The name of the method was coined as HLSM-
FINT, standing for each initial letter of the feature extrac-
tors and classifiers used in the ensemble.

Fuzzy integral

Figure 19: Classifier ensemble synergism: The component clas-
sifiers, SVM and MLP, runs over the feature extractors HOG
and LRF. After a thorough evaluation of a bunch of methods,
a Sugeno fuzzy integral method was chosen as the best one to
combine the classifier results.

HLSM-FINT was evaluated, by means of receiver oper-
ating characteristic (ROC) curves, over DaimlerChrysler
Munder and Gavrila (2006), INRIA Dalal and Triggs
(2005b) and Nature Inspired Smart Information System
(NISIS) competition datasets (Oliveira et al.| (2010). Fur-
thermore, the DaimlerChrysler datasets were changed to
incorporate some usual situations involving lighting and
contrast changes. At the end, HLSM-FINT presented an
averaged performance of 94% of hit rate (HR) with 3% of
false alarm rate (FAR) over all datasets evaluated.

4.2 Detection by sensor fusion

Actually, in the last decades, several researchers have
been developing complete perception architectures for
intelligent transportation systems (ITS) |[Reisman et al.
(2004), [Leibe et al.| (2005b), Leibe et al.|(2007).
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In real life, perception systems have become a real-
ity with the deployment of camera-based object-detection
and lane departure systems, in top-of-the-line vehicles.
Although these systems are intended to aid the driver in
hazardous situations, much has yet to be done in order to
make them completely reliable in several circumstances.
In this regard, multi-sensor architectures may bring com-
plementarity and redundancy, making perception systems
more robust. The idea is to build a system to take advan-
tage of the strengths of various sensors.

For intelligent vehicle applications, some sensors ap-
pear as the best choices to perceive the environment in
order to provide sensing information and intelligent de-
cisions. They are range finders like lasers and cameras.
With those sensors, there are many approaches with the
aim of getting the best of sensor data integration. For
instance, [Perrollaz et al.| (2010) proposes a probabilistic
representation of the uncertainty of the fusion of two cam-
eras (stereo-vision); they build this representation into a
grid framework for object detection. |Oliveira et al.|(2010)
suggest that a semantic fusion of laser and vision in a fea-
ture level is highly advantageous for object detection, if
it is possible to decouple the detection dependency of the
vision system with respect to the laser detection |Oliveira
and Nunes| (2010). |Scheunert et al.| (2008)) integrate a
stereo vision with a laserscanner for obstacle avoidance;
that work is also structured in a occupancy grid frame-
work as in |Perrollaz et al.| (2010). |Spinello et al.| (2009)
propose a cooperative fusion of independent sensor detec-
tion of a laserscanner and a vision system; both sensors
are fused by means of a tracking system used in each sen-
sor space with respective data association.

A feature based fusion is characterized by an inte-
gration in the feature level. One should expect a gen-
eral feature-based fusion framework depicted in Fig. [20]
(for a broader view of various fusion architectures, see
Dasarathy| (1997)).

In Figure[20] it is shown how the feature-based fusion
is accomplished. The figure depicts a general framework
regardless of where the features are coming. Indeed, fea-
tures may be obtained from a unique sensor or multiple
ones. Also, the features can represent an object in differ-
ent sensor spaces (for instance, laser and camera). For all
those reasons, the choice of the fusion method is of under-
lying importance, and the fusion architecture ought to be
designed taking into account the different characteristics
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Figure 20: Feature based framework. Features 1..N are ex-
tracted in such a way that they could represent the object of in-
terest in different manners. After that, the features are fused in
the fusion method, which is ultimately structured as a monolithic
decision module or a set of specialized decision sub-modules in-
tegrated in a more generic method.

brought for each feature extractor.

In turn, the feature extractors are in charge of get-
ting good representations of an object of interest in the
scene. For “good”, one may expect that a particular ob-
ject should be represented differently from other objects
pertaining to a different category. Unfortunately, obtain-
ing this unique representation for each different type of
an object is cumbersome, if not impossible, which means
that errors will be encountered. Those errors will be dealt
with in the fusion method, which will later decide, in a
certain level (monolithically or via a classifier ensemble
methods), how to choose the best representation among
the inputs (features 1...N).

The choice of the fusion methods can be made namely
by considering the performance of the specialized deci-
sion sub-modules (if they are presented in the architec-
ture), the characteristics of the feature extractors and/or
how much information each feature carries on.

Another aspect of a fusion method design is the infor-
mation that each feature or the specialized fusion sub-
modules brings with them. The way to deal with this
feature inherent information is crucial since it is expected
that a fusion method explores not only redundancy but
also complementarity of information; in the first case, the
fusion will try to match similar characteristics that rein-

forces the decision, while in the latter one, the fusion
method appeals to the fact that one feature representa-
tion can complement information missing in the others.
The goal for the complementarity is also to decrease the
decision uncertainty by building the final decision from
small pieces of information coming from multiple sources
or representations. Next, a sensor fusion method based
on semantic information of parts-based detectors is de-
scribed.

Semantic fusion So far, fusion of laserscanner and vi-
sion sensors has been performed by assuming that the
probability to find an object is identical and usually in-
dependent, in both sensor spaces. There are two main
approaches for this type of fusion:

e A laserscanner segmentation method is used to find
most likely regions of interest (ROIs), where an im-
age classification system is applied.

e Indentically and independent distribution (IID) inte-
gration of sensor-driven classifiers (posterior proba-
bilities), or sensor-driven features.

Some of the works based on these ROI-driven methods
are presented as follows. |Szarvas et al.| (2006) rely en-
tirely on laser ROIs in order to find probable areas where a
pedestrian might be. Each image projected ROI is classi-
fied by a convolutional neural network (CNN)|Lecun et al.
(1998). When the laser fails, no pedestrians are detected.
Broggi et al.| (2008)) propose an on-spot pedestrian clas-
sification system, which first uses a laserscanner to de-
termine areas between vehicles, and then a Haar-like fea-
ture/adaboost classification system to name the projection
of these areas in the image. [Mahlisch et al.|(2006)) propose
a spatio-temporal alignment to integrate the laserscanner
and the monocular camera. For that purpose, features
in both sensor spaces are extracted, feeding a Bayesian
classifier to detect cars. Douillard et al. [Douillard et al.
(2007) propose an approach similar to the previous one,
but rather than a Bayesian rule they use a conditional ran-
dom field conditional random fields (CRF). Additionally,
they are able not only to classify laser and image features,
but also to find a temporal relationship between features
of sequential sensor readings. [Premebida et al.| (2007)
propose to classify features in laser space with a Gaus-
sian mixture model (GMM) while Haar-like features are
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Figure 21: The proposed framework is composed of 6 main
blocks: The image object detection based on a parts-based en-
semble detector using HLSM-FINT; laser segmentation and la-
beling; template matching; laser-vision registration, based on
Zhang and Pless’ method [Zhang and Pless| (2004); semantic
and contextual interpretation; and the semantic fusion based on
MLN.

extracted from the image objects and classified by an ad-
aboost. The confidence scores of the classifiers feed a
Bayesian rule to make the final decision. The goal is to
classify vehicles and pedestrians.

Unlike the aforementioned approaches, the semantic
fusion method [Oliveira et al| (2010) deals with partial
segments, it is able to recover depth information even
if the laser fails, and the integration is modeled through
contextual information. Figure [21] depicts the proposed
framework, which is comprised of 6 main blocks: The
image object detection based on the HLSM-FINT classi-
fier ensemble (see Section [.1.3] for more details); laser
segmentation and labeling; template matching based on
Procrustes analysis; a laser-vision registration procedure,
proposed by Zhang and Pless [Zhang and Pless| (2004);
semantic and contextual interpretation; and spatial re-
lationship management and decision outputs based on
Markov logic network (MLN) (Richardson and Domin-|
[205) (2006)).

As it can be noticed, features are extracted in each sen-
sor space. Here, it is important to say that there are 2 sen-
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Figure 22: Setup vehicle: The perception system ranges from
2 up to 20m in both sensor spaces. A SICK 2D laserscanner
(100° degrees of aperture angle) and a PointGrey camera set to
a resolution of 1024 x 768 pixels (45° degrees of field of view)
were used.

L3

Figure 23: A window sized 1.0m X 1.8m is shifted onto hori-
zontal and vertical directions in laser sensing space, with a stride
of 0.20m, ranging over 2m up to 20m in depth. The searching
area is constrained by the viewport formed by the planes 7| and
.

sor geometric spaces, considering the laser and the camera
spaces. However, there is an intermediary space where all
resulting detections are unified, that is, the image space.
In the image space, to guarantee that the individual de-
tections in both sensors will be independent, that is, non-
ROI based, a 2D window is slid in laser space, and sub-
sequently projected into the image space. This has three-
fold advantages: the economy on windows being slid in
various scales and positions in the image space; a 3D con-
trol of the vision detector, which allows a depth informa-
tion even if the laser fails; and, finally, the projections of
the laser segments can also be treated independent in the
same projections, in the image space. For those sliding
windows in the 3D laser space, it is assumed that the laser
is always parallel to the ground (see Fig. 22). Figure 23]
illustrates the geometry of this process.



The segmentation, in laser space, uses a featureless
approach. The rationale of this method is to segment
coarsely the laser raw points. These coarse segments, {c,},
where n =1,..., N, are posteriorly sub-segmented into fine
segments, {f,,}, where m = 1,..,3. This latter step is done
by a B-skeleton random graph. As the main goal is to
detect pedestrians in outdoor, the laser is mounted at the
pedestrian-waist level (see Fig. [22), avoiding common
problems as those observed in leg-level mounted systems.
Therefore, the fine segmentation step expects at most 3
body parts (2 arms and the torso).

On the other hand, in image space, the HLSM-FINT is
applied in a parts-based detector. Actually, the INRIA
datasets [Dalal and Triggs| (2005b) were used to train a
two-parts detector, which classifies the hip region and the
shoulder-head region of the human body. The idea is to
allow the image detector to cope with partial occlusion in
the same way that the laser detector does. With that, there
are parts being labeled in image and laser spaces. Each
of these parts is then contextually interpreted, and finally
modeled by an MLN.

In MLN framework (Richardson and Domingos|
(2006)), the information of the parts is modeled accord-
ing to first-order clauses. The first-order rules are then
structured as a Markov random fields (MRF) with a
grounded first-order formula in each node, which is so
called a ground MRF. After the inference process over the
MREF, marginal probabilities are then computed and out-
putted for each test case. To build the MLN, we have
used the Alchemy library, available at http://alchemy.cs.
washington.edu/.

As mentioned before, the semantic fusion of laser and
vision differs from previous fusion approaches on these
sensors, in the following twofold reasons: non ROI-
driven, and non-IID based fusion. These characteristics
led to a very robust system with independent and syner-
gistic sensor fusion, based on a semantic approach (see
Fig. 21).

The rationale of the semantic fusion system is based
on parts-based classifiers in both sensor spaces, which
are integrated with the detachment of the vision detec-
tor from the laser detector. This independent fusion was
achieved by the 2D sliding window running in 3D laser
space and the processing of the object parts in a non-1ID
framework, that is, MLN. With that, it was possible to
make the vision detection system to run regardless of the
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laser hypothesized ROI. The validation of the semantic
method was made over collected datasets, which are avail-
able at http://www.isr.uc.pt/~lreboucas. Some results of
the method application over the collected image frames is
depicted in Fig. [24]

Figure 24: Samples of the semantic fusion in action. In (a) and
(b), results of the individual classification in each sensor space
(the yellow bounding box is given by an image detector, while
the blue one is given by a laser segmentation). In (b), an ex-
ample where the laser fails and the image detector complements
the recognition process. Note that the depth information when
laser fails is estimated from the 3D searching windows. In (c),
the result of the semantic fusion (left to right) from (a) and (b),
respectively.

5 Conclusions

This chapter provided an overview of the DATMO prob-
lem for autonomous driving and outlined three main
classes of solutions: traditional, model based, and grid
based.

The traditional approach consists of data segmenta-
tion, association, and filtering steps. Recent innovations
within this class are lead by pattern recognition tech-
niques, which are capable of recognizing scene partici-


http://alchemy.cs.washington.edu/
http://alchemy.cs.washington.edu/
http://www.isr.uc.pt/~lreboucas

pants (e.g. pedestrians and vehicles) from a single frame
of data. These techniques are particularly useful for iden-
tifying potentially dynamic objects when these objects are
not yet moving.

The model based approach is able to infer and use addi-
tional shape knowledge, which is particularly useful when
working with large objects such as cars, buses, and trucks.
These objects are often split up into separate clusters due
to occlusion, making segmentation and association of data
difficult. Using geometric models, the model based ap-
proach bypasses segmentation and association steps al-
together. It also leads to more accurate motion estima-
tion, which is particularly important for objects with non-
holonomic motion and/or objects moving at high speeds.

The grid based approach delays data association deci-
sions to later stages of the DATMO pipeline. At early
stages it constructs a low level grid representation captur-
ing occupancy and velocity estimates of grid cells. This
representation can be used directly for motion planning
in dynamic free space or supplemented by segmentation
and association techniques to identify individual targets.
The grid based approach is particularly useful for identi-
fying a broad variety of objects regardless of their appear-
ance. This makes it capable of identifying small partici-
pants such as young children and pets.

DATMO for autonomous driving is a young and rapidly
developing field. Although many interesting and suc-
cessful methods have been developed, a fully reliable au-
tonomous DATMO system is yet to be built. For now,
existing DATMO systems can not rival human capabili-
ties in terms of detection range. Existing DATMO ap-
proaches have not yet been shown to be fully reliable with
respect to participants of unusual appearance, for exam-
ple unusual vehicles (e.g. construction equipment or pa-
rade floats), people wearing extravagant costumes or fully
draped in loose clothing, animals, or people pushing var-
ious objects. Performance of DATMO techniques in ad-
verse weather or lighting conditions is yet to be studied in
depth.
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