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Abstract
In this paper, a new and novel approach is designed for extracting local binary
pattern (LBP) texture features from the computer-identified mass regions,
aiming to reduce false-positive (FP) detection in a computerized mass detection
framework. The proposed texture feature, the so-called multiresolution LBP
feature, is well able to characterize the regional texture patterns of core and
margin regions of a mass, as well as to preserve the spatial structure information
of the mass. In addition, to maximize a complementary effect on improving
classification accuracy, multiresolution texture analysis has been incorporated
into the extraction of LBP features. Further, SVM-RFE-based variable selection
strategy is applied for selecting an optimal subset of variables of multiresolution
LBP texture features to maximize the separation between breast masses and
normal tissues. Extensive and comparative experiments have been conducted to
evaluate the proposed method on two public benchmark mammogram databases
(DBs). Experimental results show that the proposed multiresolution LBP
features (extracted from automatically segmented mass boundaries) outperform
other state-of-the-art texture features developed for FP reduction. Our results
also indicate that combining our multiresolution LBP features with variable
selection strategy is an effective solution for reducing FP signals in computer-
aided detection (CAD) of mammographic masses.

(Some figures may appear in colour only in the online journal)

1. Introduction

Screening mammography is the most common cost-effective method to detect early breast
cancer. Breast cancers are generally presented as microcalcifications, masses or asymmetry in
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mammography (Freer and Ulissey 2001). In general, breast masses are much more difficult to
detect and classify than microcalcifications because masses can be simulated or obscured by
normal glandular tissue in dense breast (Chan et al 1995). Computer-aided detection (CAD)
of breast cancers in mammography is an active area of research (Suri and Rangayyan 2006).
CAD is designed to provide visual prompts (mainly masses and microcalcification clusters)
to the interpreting radiologists in specific areas on mammograms. In particular, masses are
important indicators of malignancy on mammograms. However, as reported in a large body
of studies (Tang et al 2009, Zheng et al 2001, Birdwell et al 2001, Suri and Rangayyan 2006,
Eltonsy et al 2007, Lladó et al 2009), the sensitivity of current CAD systems for masses is
high, but the specificity is not due to high false-positive (FP) detection rates. In CAD systems,
a FP is usually a region being normal tissue, but interpreted by the computer algorithms as
a suspicious one (Chan et al 1995, Wei et al 1997). High FP rates increase the radiologists’
recall rate in clinical CAD environment, while it induces unnecessary biopsies (Freer and
Ulissey 2001, Tang et al 2009, Zheng et al 2001). Hence, in order to reduce costs and patient
discomfort, it is of paramount importance for currently developed CAD systems to reduce the
number of FP signals without missing any malignant masses (Wei et al 1997, Sahiner et al
1996, 1998, 2001).

In recent years, many researchers have investigated the use of computer-extracted image
features for the detection and classification of breast masses. In particular, considerable
research efforts (Wei et al 1997, Sahiner et al 1996, 1998, 2001) have been devoted to
the development of texture features for the classification of lesions. The results reported in
these works indicate that texture features can play a crucial role in encoding the characteristics
of masses (such as the margin and density of mammographic abnormalities (Huo et al 1998)),
and they can be used to considerably improve classification accuracy for differentiating
masses and breast normal tissues. Until so far, the most commonly used texture features
for mammographic mass detection (classification) can be roughly divided into four classes
(Cheng et al 2005): (1) spatial gray-level dependence (SGLD)-based texture features (Wei et al
1997), (2) gray-level difference statistics (GLDS)-based texture features (Sahiner et al 1996),
(3) run length statistics (RLS)-based texture features (Sahiner et al 2001) and (4) rubber-
band straightening transform (RBST)-based texture features (Sahiner et al 1998). In Wei
et al (1997), texture features were extracted from a SGLD matrix, which characterizes the
average spatial relationship of pairs of gray levels in the region of interest (ROI). Experimental
results showed that using texture features derived from SGLD matrices is effective for the
classification of masses and normal breast tissue on mammograms. In Sahiner et al (1996),
the authors investigated the use of GLDS-based local texture features. They demonstrated the
usefulness of using GLDS-based texture features for the classification of masses and normal
tissue on mammograms. The authors in Sahiner et al (2001) proposed the RLS-based texture
features for classifying a mass as malignant or benign. In Sahiner et al (2001), RLS texture
features were extracted by computing a gray-level run (a set of consecutive, collinear pixels
with the same gray-level value) and a run length (the number of pixels in a run). The results
indicate that RLS-based features are effective for the characterization of breast masses on
mammograms. In Sahiner et al (1998), the authors introduced an RBST-based texture features
to analyze the margin characteristics of a mass. The RBST maps the pixel values in a band of
pixels surrounding the mass onto the Cartesian plane (Sahiner et al 1998). This work reports
that features extracted from RBST images are significant in the differentiation of malignant
and benign masses.

While many texture feature extraction methods have been explored in the CAD of breast
masses in past years, developing effective and robust texture features —which allow the highest
classification accuracy for an FP reduction purpose—still remains challenging. In this paper,
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we present a new texture feature extraction approach based on local binary patterns (LBP),
which aims to considerably reduce the FP rate in a practical CAD system. To our knowledge,
the methods explicitly and systematically devoted to the development of LBP-based texture
features for the purpose of FP reduction in CAD systems are quite a few, although the idea
of using LBP texture information for mammographic mass classification has been previously
introduced by the authors in Lladó et al (2009) and Oliver et al (2007). It should be noted,
however, that our proposed approach to extracting LBP texture features from mammographic
masses has been devised in a novel and quite different way. In particular, differing from
the previous approach proposed in Lladó et al (2009) and Oliver et al (2007), key technical
contributions of this work can be summarized in the following aspects.

• In a previous approach, following the same original idea of the LBP operator proposed
by Ojala et al (1996, 2002), the ROI image is divided into several rectangular local
regions, and LBP texture patterns, each extracted from a corresponding local region, are
concatenated to produce the final LBP-based texture descriptor. However, in the proposed
approach, two individual LBP patterns are independently extracted from the so-called core
and margin regions of pixels (a band of pixels surrounding the segmented mass object in the
ROI) of a given mass region, respectively. The proposed approach allows for characterizing
the inherent LBP-based texture features of a mass region in a more effective and robust
way, as well as at the same time for well preserving the spatial structure information of the
mass.

• The previous approach only makes use of a single-resolution-based LBP operation during
the extraction of LBP texture features. On the other hand, multiresolution LBP texture
analysis has been incorporated into the proposed LBP feature extraction solution—leading
to the proposed multiresolution LBP features. As demonstrated in section 5.4, using
multiresolution LBP texture analysis is beneficial for facilitating a complementary effect
on improving classification accuracy.

• The previous approach simply applies the LBP features to a classifier model (for
mass classification purpose) without any sophisticated feature (or variable) selection
strategy. However, it is important to note that the LBP features generally result
in the high dimensionality and the redundant information (Ojala et al 2002). This
might cause the degradation in classification performance (Bishop 2006). To tackle
the aforementioned limitation, we introduce an effective variable selection mechanism
(designed for classification) to maximize classification accuracy obtained using the
proposed multiresolution LBP features. Toward this goal, SVM-RFE-based variable
selection strategy (Guyon and Elisseeff 2003, Guyon et al 2002) is adopted to select
an optimal subset of variables of multiresolution LBP features to maximize the separation
between masses and normal tissues. To the best of our knowledge, combining the
proposed multiresolution LBP features with SVM-RFE-based variable selection is a new
approach in the task of differentiating ROIs on mammograms as either mass or normal
tissue.

Comparative and extensive experiments have been conducted to investigate the
effectiveness of proposed multiresolution LBP features in conjunction with SVM-RFE-based
variable selection. Two benchmark mammogram datasets Digital Database for Screening
Mammography (DDSM) (Heath et al 2000) and Mammographic Image Analysis Society
(MAIS) (Suckling et al 1994) databases (DBs) are used. Our experiments show that the
proposed solution to extract multiresolution LBP features is able to achieve a high level of
classification accuracy—in the presence of the errors caused by the inaccurate location of the
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(a) (b)

Figure 1. (a) Mass ROI. (b) Normal tissue ROI. See the text for explanation.

boundaries of masses automatically segmented using computer algorithms (see figure 1)—
that meets the requirement of practical clinical applications. In addition, we clearly validate
the feasibility of proposed multiresolution texture features by making comparisons with other
state-of-the-art texture features developed for mammographic mass classification. In particular,
it has been found that the proposed method considerably outperforms the best LBP feature
extraction approach previously proposed in Lladó et al (2009) and Oliver et al (2007), in
terms of classification performance for test data. Moreover, our results demonstrate that the
performance (in terms of reducing FP detections) can be further improved by combining our
multiresolution LBP features with variable selection strategy.

The remainder of this paper is organized as follows. In section 2, ROI detection and the
segmentation method used in this study is briefly explained. Section 3 details the proposed
mutiresolution LBP feature extraction approach. In section 4, we discuss the SVM-RFE
algorithm for variable selection. In section 5, we present the experimental results. The
conclusion is drawn in section 6.

2. ROI detection and segmentation

Note that a typical CAD system largely consists of three parts (Petrick et al 1999, Mudigonda
et al 2001, Dominguez and Nandi 2008): (1) automated detection and segmentation of
mammographic masses from a given mammogram, which yields ROIs; (2) automated feature
extraction for generated ROIs; (3) automated classification of ROIs into true and false positives
for an FP reduction purpose. Before explaining the extraction of multiresolution LBP features
for classifying ROIs, we briefly describe the ROI detection and segmentation method employed
in this study.

In our work, as recommend in Chan et al (1995), Wei et al (1997), Sahiner et al (1996) and
Mudigonda et al (2001) to perform a more realistic assessment of the classification process,
the ROI regions were automatically detected and segmented from each mammogram by using
a fully automated segmentation method. For this purpose, one popular approach to use a
multi-level thresholding algorithm (Mudigonda et al 2001, Dominguez and Nandi 2008, Hong
and Sohn 2010) was adopted for segmenting masses. We chose this segmentation approach
because it has been well documented in previous publications in that it can provide ‘successful’
segmentation results. Also note that the mass detection and segmentation method used in our
research adopts an ‘unsupervised’ scheme (Tang et al 2009, Oliver et al 2010). Unsupervised
approaches do not generally require the training stage in order to optimize their performances
(Oliver et al 2010). Instead, the optimal performance of the used algorithm entirely depends
on tuning parameters, by adjusting a threshold value (not using training images) to find the
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proper balance between sensitivity and specificity (Mudigonda et al 2001, Dominguez and
Nandi 2008, Hong and Sohn 2010). This fact enables us to evaluate FP reduction performance
without any potential bias (especially due to the overlap of training and testing images) induced
by the optimization (or tuning) process of ROI detection and segmentation used in this study.

The segmentation algorithm used consists of the following three sequential steps: (1) the
construction of the isocontour map; (2) the formation of the inclusion tree and (3) the
computation of the minimum nesting depth (MND). The aforementioned individual steps
are briefly explained in the following. The isocontour map is obtained from a set of isocontours
at multiple different threshold values over the intensity range of the mammogram. From the
isocontour map representation of the image, suspicious regions, which form a dense quasi-
concentric pattern, are detected by considering the nesting patterns of isocontours, as well
as gradient between isocontours, for the purpose of characterizing mass objects. Next, the
inclusion tree is generated from the isocontour map to represent the enclosure relationship
between contours. The inclusion tree is used to determine ROIs from the suspicious regions
by analyzing the inclusion tree. Note that the probability (confidence) that a segmented ROI
is truly mass is measured by the MND, which is defined as the number of isocontours that are
embedded within a contour in question. The MND is used as a threshold value to eliminate
less suspicious regions. The implementation details of each step have been described in the
literature (Mudigonda et al 2001, Dominguez and Nandi 2008, Hong and Sohn 2010).

Figure 1 shows an example of segmented ROIs generated by the segmentation algorithm
used. Note that in figure 1, the red line is successfully segmented mass contour (or boundary)
identified by the segmentation algorithm, and the blue line is the mass outline (as ground
truth) marked by experienced radiologists. Note that the size of the ROI is chosen such that
the computer-marked mass contour and a band of pixels surrounding a segmented object
are included in the ROI (a detailed description of determining the width of band is given
in section 3.2). The mass or normal tissue ROIs are then used as input for the extraction of
multiresolution LBP features to be discussed in the following section.

3. Proposed texture feature extraction

The proposed multiresolution LBP features (extracted from given ROIs) are computed based
on the LBP operator introduced by Ojala et al (2002). In this section, we will briefly review
the LBP operator and describe in detail the proposed texture feature extraction method.

3.1. Review of the LBP operator

The basic LBP operator labels the pixels of an image by thresholding the neighborhood of each
pixel with center pixel value and considering the result of thresholding with center pixel as a
binary pattern number (Ojala et al 1996). The limitation of the basic LBP operator is that its
small 3 × 3 neighborhood cannot capture dominant features with large-scale structures. Thus,
the LBP operator was extended to use circular neighborhood suggested in Ojala et al (2002).
In this study, the LBP operator with a circularly symmetric neighborhood of P members on a
circle radius of R is employed. Also, note that in the computation of LBP for a given image,
the uniform LBP operator (Ojala et al 2002) is adopted because it is reasonable to assume that
a typical mass ROI image is likely to contain only a smaller number of LBP values (called
uniform patterns (Ojala et al 2002), which contain at most two bitwise transitions from 0 to
1 or vice versa). The rationale behind this assumption is that the gray-level changes at the
masses are usually constant and at least gradual (rather than abrupt), as reported in a large
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number of literatures (Chan et al 1995, Wei et al 1997, Sahiner et al 1996, Mudigonda et al
2001, Dominguez and Nandi 2008, Hong and Sohn 2010).

Let us denote zc to represent the center pixel position of an image and zn(n = 0, . . . , P−1)

are P equally spaced pixels (or sampling points) on a circle of radius R (R > 0) that form a
circular neighborhood of the center pixel zc. The uniform LBP operator for the center pixel
position zc of an image is then defined as follows (Ojala et al 2002):

LBPP, R(zc) =

⎧⎪⎨
⎪⎩

P−1∑
n=0

δ(rn−rc)2
n if H � 2

P(P − 1) + 2 otherwise,

(1)

where

H = |δ(rP−1 − rc) − δ(r0 − rc)| +
P−1∑
n=1

|δ(rn − rc) − δ(rn−1 − rc)|, (2)

and δ(x) =
{

1 x � 0
0 x < 0

, rn(n = 0, . . . , P − 1) denote the pixel values of an image at zn and

rc denotes the pixel value at zc of a circular neighborhood.

3.2. Computing LBP histograms of core and margin regions

In order to characterize the texture pattern information of the masses at a regional level, as
well as to capture the spatial structure (global geometry) of the masses, we construct a band
of pixels along the boundary of the segmented object in the ROI. Note that the regions that are
segmented by the method described in section 2 vary greatly in size and shape. To cope with
this problem, we adaptively compute the width of the band based on the segmented region’s
size and shape. Specifically, the diameter of the bounding circle enclosing a given segmented
region is first obtained by calculating the maximum distance between any two points on its
boundary. Next, the area of the segmented region Sr and the bounding circle Sc enclosing the
region are calculated. The width of the band is then computed as Wb = Rc(Sr/Sc), where
Rc is the radius of the bounding circle. Note that the ratio Sr/Sc is a simple indicator of
representing the narrowness and complexity of the segmented region. Finally, the band of
pixels can be formed by applying morphological dilation operation (Gonzalez and Woods
2008) on the boundary of the segmented object. Note that for the dilation operation, the
diameter of the circular morphological operator is set to the width of the band (Wb). The bands
of pixels extracted across the boundaries of the segmented regions are illustrated in figure 2(a).

Based on the band of pixels, a segmented object is divided into two individual subregions
(as shown in figures 2(b) and (c)), as follows: the core and margin regions each denoted by Rcore

and Rmargin, respectively. The rationale behind such region partition is that within a given ROI,
there may be several subregions showing different texture statistics, for instance, the region
inside the mass (i.e. core region), the transition region between the mass and surrounding
tissue (i.e. margin region) and surrounding tissue. Based on (1), let LBPcore

P,R (zc) be the LBP
label at a given pixel location zc = (x, y) of the core region Rcore. The LBP histogram hcore

corresponding to a core region is then extracted as follows:

hcore = [hcore(1), . . . , hcore(P(P − 1) + 3)]T, (3)

where

hcore(k) =
∑

zc=(x,y) in Rcore

T (LBPcore
P,R (zc) = lk), for 1 � k � P(P − 1) + 3, (4)
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(a)

(b)

(c)

Figure 2. (a) Band of pixels (white) constructed adaptively across the boundaries (black) of the
segmented regions detected in the mammogram from MIAS DB. Note that the region enclosed by a
dot-line circle corresponds to true mass region, while the others are FP regions. (b) Corresponding
mass ROI image of a true mass region shown in (a). (c) Core and margin regions extracted from
the mass ROI shown in (b).

and T (·) is an indicator function that returns 1 when the Boolean logic of its input augments is
true and returns 0 otherwise, T represents the transpose operator of the matrix and lk denotes
LBP label of the kth bin and, therefore, hcore(k) denotes the number of pixels with the LBP
value lk within the core region Rcore. Note that in (3), the LBP histogram consists of P(P−1)+3
bins: P(P − 1) bins for the patterns with two transitions, two bins for the patterns with zero
transitions and one bin for all non-uniform patterns. Using (3) and (4), we can also readily
compute the LBP histogram (denoted by hmargin) corresponding to the margin region Rmargin.

Figure 3 shows the two histograms of core and margin regions, respectively. Note that
each histogram shown in figure 3 has been averaged over a total of 246 histograms —each
computed using one of the 246 mass ROIs —identified from 303 mammograms collected
from DDSM (Cheng et al 2005) DB. Further, each histogram has been normalized by dividing
each of its components by the total number of LBP labels. From figure 3, we can see that the
histogram of LBP labels for core regions can be concentrated to a small range of bins, while
histograms of LBP labels for margin regions should be more spread out. This observation
demonstrates that LBP histograms computed from the core and margin regions of masses well
represent typical characteristics of masses. The change of pixel values of mass core region is
nearly uniform, at least gradual change. Hence, the mass core region has a uniform circular
structure that contains a small number of spatial transitions. This observation is consistent
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Figure 3. Core and margin regions and their corresponding histograms obtained using uniform
LBP operator with parameters P = 8 and R = 2.

with a previous one that reported that the frequency components of masses are usually in the
low-frequency region (Wei et al 1995). On the other hand, the change of pixel values of mass
margin region may be more abrupt, especially in the margin between mass and normal tissues,
so that the LBP labels should often be quite different.

Note that as demonstrated in figure 3, hcore and hmargin can provide regional LBP histogram
information for core and margin regions, respectively. In order to capture the additional
information about the spatial structure (or configuration) of core and margin regions of masses,
the two corresponding LBP histograms hcore and hmargin are combined by concatenating them
into a longer histogram vector as follows:

hcombined = [(hcore)
T(hmargin)

T]T. (5)

3.3. Generation of multiresolution LBP features

Besides spatial structure information (of the mass) encoded in hcombined, we exploit additional
discriminant information through using multiresolution analysis. Note that by altering
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parameters P and R, we can realize LBP operation for any quantization of the angular
space and for any spatial resolution. Hence, to perform multiresolution texture analysis,
we define a set {(Pk, Rk)}M

k=1 consisting of M different pairs (P, R) in the LBP operator
defined in (1). Multiresolution analysis can be accomplished by combing the responses of
M multiple LBP operators realized with different configurations of (Pk, Rk). Specifically, by
using {(Pk, Rk)}M

k=1 and (5), we can compute M individual combined LBP histograms, denoted
by h(m)

combined(m = 1, . . . , M),for the segmented region under consideration.
In order to extract the proposed multiresolution LBP feature, individual h(m)

combined are fused
by concatenating them into an augmented vector:

xmulti LBP = [(
h(1)

combined

)T(
h(2)

combined

)T · · · (h(M)

combined

)T]T
. (6)

This expression is based on information fusion theory (Jain et al 2005, Mangai et al 2010)
for pattern classification. Techniques for fusing multiple evidences (i.e. multiple classification
results or multiple features) can be generally classified into two classes: fusion at the ‘feature-
level’ and fusion at the ‘decision-level’. In the proposed multiresolution LBP features, we
make the use of feature-level fusion strategy for the following reason: ‘feature-level fusion’
can generally achieve better classification result compared to performance obtained using
‘decision-level’ fusion; this is mainly due to the fact that feature-level fusion can provide a
complementary effect by eliminating noisy information arising from the components (to be
fused) to a certain degree (Jain et al 2005, Mangai et al 2010). From this perspective, combining
multiple h(m)

combined based on feature-level fusion strategy is expected to produce more robust
features against mass appearance variations. It should also be noted that in (6), the underlying
reason for the adoption of the multirsolution framework is that we are able to extract additional
and complementary discrimination information (by exploiting different spatial relationships)
than what a single-resolution LBP operator does. In addition, it is important to note that
our multiresolution LBP features are gray-scale and rotation invariant as the LBP operation
defined in (1) is performed based on the use of signed difference and circular neighborhood, as
discussed in section 3.1. This is a particularly useful property in extracting the texture features
of masses, since the location and orientation of mass in the ROI can be arbitrary.

The segmented mass regions are encoded via our multiresolution LBP features on three
different levels of discriminating information: (1) the histograms each computed from core
and margin regions, respectively, encode the associated regional LBP distribution information,
(2) these two individual histograms are combined to produce spatial structure (global geometry)
information of masses and (3) the combined histograms are concatenated to exploit additional
discriminating information provided by using multiresolution analysis. Indeed, the proposed
mutiresolution LBP features condense all of the aforementioned discriminant information in
the form of hierarchically encoded structure as shown in figure 4. The benefit of the hierarchical
encoding approach for characterizing masses is that the proposed multiresolution LBP features
are able to handle a wide variability in the appearance (e.g., shapes and sizes) of masses
found in clinical mammograms for a classification purpose. Further, the hierarchical encoding
structure of our multiresolution LBP features allows for realizing a robust mass classification
solution against the imprecise location of the boundaries of the masses posed by computer
segmentation algorithms. The rationale behind these advantages is that although a loss in
discriminating information (e.g., regional LBP distribution of masses) available at a lower
level of a hierarchical encoding structure may occur, the discriminating patterns (e.g., spatial
structure of masses) at a higher level are able to be reserved to some extent. This is mainly
because that, as demonstrated in our experiment, discriminating patterns available at all levels
of hierarchical encoding structure potentially offer different complementary information about
the complex patterns of masses and, therefore, they are likely to be mutually compensational
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Figure 4. Illustration of the hierarchical encoding structure of masses via the proposed
multiresolution LBP features. Note that the region enclosed by red line represents the core region,
while the region located between red and blue lines represents margin region. Also note that in
order to illustrate multiresolution analysis, LBP histograms from core and margin regions are
computed using individual LBP operators each associated with a particular (P, R).

for mammographic mass classification, as well as for improving classification accuracy (for
more details, please refer to the experimental assessment in section 5.4).

4. Variable selection of multiresolution LBP features

For classification, one straightforward way is to apply multiresolution LBP features defined
in (6) to a classifier (such as support vector machines (SVMs)). However, it should be noted
that the multiresolution LBP feature may result in the high dimensionality and the redundant
information. This might cause the degradation in classification performance (Bishop 2006).
In addition, the computational cost of inputting high-dimensional features into a classifier
is generally prohibitive (Bishop 2006). Hence, it is necessary to identify the proper set of
variables of the multiresolution LBP feature and filter the undesired ones which confuse the
classifier and produce worse performance. For this purpose, the multiresolution LBP features
are applied to variable selection (Guyon and Elisseeff 2003) analysis to reduce dimensionality,
ultimately aiming to maximize classification accuracy. In this paper, an SVM-RFE (recursive
feature elimination) (Guyon et al 2002) is adopted as a variable selection framework because
of its lower computational complexity, compared to randomized or exponential algorithms,
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and its optimality in the subset selection algorithm (Guyon et al 2002). Since the ranking
criterion of the SVM-RFE is derived from the formulation of SVMs, we briefly review the
SVMs classification method before describing the details on the SVM-RFE-based variable
selection.

SVMs have been the most widely used approach for the classification problem. It
constructs an optimal hyperplane decision function in the so-called feature space that is
mapped via a mapping function � from the original input space. Let us use xi to denote the
ith example vector in the original input space and zi to denote the corresponding vector in
the feature space, zi = �(xi). For a typical classification problem with N training samples
{xi, yi}N

i=1, where yi denotes the class label of xi and yi ∈ {+1,−1}, finding the discriminant
function f (x) = w ·�(x)+b is formulated using the following optimization problem (Vapnik
1998):

min
w,b,ξi

1

2
||w||2 + C

∑N

i=1
ξi

subject to li(w · zi + b) � 1 − ξi, ξi � 0, (7)

where C > 0 is predefined higher level parameter, besides the kernel function parameter. The
solution (weight vector w) of this optimization problem is of the form

w =
∑N

i=1
αiyizi, (8)

where αi is the solution of the following quadratic optimization problem (Vapnik 1998):

min
αi

1

2

∑N

i=1

∑N

j=1
αiα jyiy j(zi · z j) −

∑N

i=1
αi

subject to 0 � αi � C,
∑N

i=1
αiyi = 0. (9)

We now describe the SVM-RFE algorithm for the variable ranking and selection of our
multiresolution LBP features. SVM-RFE was originally proposed to perform gene selection
for cancer classification (Guyon et al 2002). In general, variable selection involves ranking
the variables based on their importance (Guyon and Elisseeff 2003). In the SVM-RFE, nested
subsets of feature variables are selected in a sequential backward elimination manner, which
starts with all the variables and removes one variable. In this way, all the feature variables
have been ranked. At each step, the coefficients of the weight vector w defined in (8) of an
SVM are used to compute the variable ranking score. The variable (i.e. the ith variable) with
the smallest ranking score ci = (wi)

2 is eliminated, where wi represents the corresponding
component in the weight vector w. Using (wi)

2 as ranking score corresponds to removing the
variable whose removal changes the objective function least. Here, the objective function is
defined as J = (1/2)||w||2 in the SVM-RFE.

To explain the usefulness of choosing this objective function, we approximate the change
in the objective function caused by removing the ith feature by expanding the objective function
in the Taylor series to second order:

�J(i) = ∂J

∂wi
�wi + ∂2J

∂w2
i

(�wi)
2. (10)

At the optimum of J, the first-order term can be neglected and with J = (1/2)||w||2, the
equation shown in (10) becomes

�J(i) = (�wi)
2. (11)

Note that in (11), �wi = wi corresponds to removing the ith variable, which represents that the
smallest weight value contributes the least to the resulting hyperplane and can be discarded.
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It should also be noted that in order for RFE to work, variable scaling (Guyon and Elisseeff
2003) has to be performed.

To perform variable selection on multiresolution LBP features, the recursive elimination
procedure of the SVM-RFE is as follows.

(1) Start: ranked variable list L = []; selected variable subset S = {1, . . . , d}.
(2) Repeat until all variables of multiresolution LBP feature are ranked.

(a) Train an SVM with multiresolution LBP features in set S as input variables.
(b) Compute the weight vector using (8).
(c) Compute the ranking scores for variables in S: ci = (wi)

2.

(d) Find the variable with the smallest ranking score: e = arg min
i

ci.

(e) Update: L = [e, L], S = S − {e}.
(3) Output: ranked variable list L.

5. Experiments

In this section, we have conducted a series of experiments to study the effectiveness of
the proposed approach for extracting multiresolution LBP features and to study the effect
of applying variable selection on multiresolution LBP features to improve accuracy in FP
reduction. The details on our experimental studies are given in the following subsections.

5.1. Experimental setup and condition

In our experiments, two public benchmark mammogram datasets MIAS (Suckling et al 1994)
and DDSM (Heath et al 2000) DBs were used. MIAS DB consists of film mammography
images having a pixel size of 200 μm with 8-bit gray-level resolution. A total of 89 single-
view mammograms (each containing one mass) were collected from the MIAS DB in our
study. These collected 89 mammograms consisted of 34 fatty, 31 fatty-glandular and 24 dense-
glandular background tissue. Note that these mammograms were chosen to well characterize
the diversity of masses, encountered in clinical practice. As for another different dataset,
the 303 single-view mammograms were collected from the DDSM DB. The selection of these
mammograms was based on the following criteria: (1) in DDSM DB, mammogram images are
digitized by different scanners with different resolutions (Heath et al 2000), (Catarious et al
2006). Hence, for data consistency purposes, all 303 mammograms were randomly selected
from the same type of scanner and resolution; (2) we chose 303 mammograms acquired using
the scanner type Howtek 960 because a large number of cases are digitized by this type (Heath
et al 2000). Collected images from the DDSM were digitized with a pixel size of 43.5 μm
with 12-bit gray level resolution. In this study, all images collected from the DDSM were
subsampled to 200 μm and quantized to 8 bits per pixel for computational efficiency. The
200 μm pixel size is consistent with that used by another group (Catarious et al 2004, 2006).

As described in section 2, using a computer segmentation algorithm, two sets of ROI
images were generated from the MAIS and the DDSM DBs, respectively. Note that, during
the generation of ROIs, we chose operating threshold (point) which led to an average number
of 11 FPs per image at a detection sensitivity of about 80% with MAIS DB. Also, when using
DDSM DB, operating threshold at 8 FPs per image with about 81% sensitivity was selected.
With these fixed operating thresholds, FP reduction analysis was performed on all approaches
used in the following experiments. Using 89 images collected from the MAIS DB, a total of
1 693 ROIs were generated: 72 mass ROIs and 1 621 normal tissue ROIs (i.e. FP regions).
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(a) (b)

Figure 5. The example of ROIs containing masses with different image sizes that are automatically
extracted from mammograms by using computer segmentation algorithm described in section 2.
(a) MIAS DB. (b) DDSM DB.

72 mass ROIs included 20 circumscribed masses, 15 spiculated masses, 14 ill-defined masses,
12 architectural distortions and 11 asymmetries. Note that an ROI extracted from the MIAS
DB is regarded as a true mass ROI when the ROI includes the center of abnormality provided
by the MIAS DB (Mudigonda et al 2001, Dominguez and Nandi 2008). Moreover, a total
of 2 743 ROIs were automatically generated by using 303 images collected from the DDSM
DB: 246 mass ROIs and 2 497 normal tissue ROIs. DDSM DB provides annotations of the
masses presented in each image. These annotations were considered as the ground truth in
our experiments as already described in figure 1. Using ground truth information, a generated
ROI was considered as a true mass ROI only if it met the following two criteria (Eltonsy et al
2007, Hsu et al 2010, Yu et al 2010): (1) the centroid of a segmented region is included in the
DDSM annotated area and (2) a segmented region intersects with the true mass region more
than 25%.

Figure 5 shows examples of ROIs of the mammograms collected from both MIAS and
DDSM DBs. In addition, figure 6 shows information of mass dataset constructed using the
DDSM DB. It can be seen from figure 6 that the masses with different shapes and density
found in clinical practice were fairly well represented in the data set by containing a broad
variety of mass shapes, margin characteristics and breast densities. Also note that as shown in
figure 1(b), errors caused by mass segmentation (using computer algorithm) were not excluded
from our experiments. Therefore, it should be emphasized that this allows testing the proposed
method in realistic clinical conditions, as also encountered by real-world CAD applications.

The SVM classifier which utilizes a radial basis function (Guyon et al 2002, Vapnik 1998)
(as kernel) was used for a classifier. A total of ROIs for two datasets were randomly divided
into two sets of equal size: training and testing sets. For each random partition, we train an
SVM classifier (including the process of optimizing both the associated parameter of the kernel
function and the regularization parameter to achieve the smallest generalization error (Samulski
and Karssemeijer 2011)) on the training set and then test it on the corresponding test set. Note
that, to guarantee stable classification results, 40 independent runs of aforementioned random
partitions were executed. Thus, all of the results reported in this section were averaged over 40
runs. The SVM classification outputs were used as the decision variable in receiver operating
characteristics (ROC) analysis (Suri and Rangayyan 2006) to evaluate the classification
performance. ROC analysis evaluates the relationship between the true-positive fraction (TPF)
or sensitivity and the false-positive fraction (FPF) or specificity (1–FPF) at differing decision
thresholds. The area under the ROC curve denoted by Az was used as an index of classification
accuracy. Moreover, to test the statistical significance of the difference in Az (the area under the
ROC curve) of different methods, a popular statistical test developed by Hanley and McNeil
(1983) was used.
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Figure 6. Information of our mass dataset in the case of the DDSM DB. (a) Distribution of mass
shapes, IRR: irregular, LOB: lobulated, OVA: oval, ROU: round, ARC: architectural distortion,
ASY: asymmetry, FOC: focal asymmetry, TUB: tubular, (b) distribution of the breast density in
terms of BI-RADS category, (c) distribution of mass margins, ILL: ill defined, CIR: circumscribed,
SPI: spiculated, OBS: obscured, MIC: microlobulated, C–O: circumscribed-obscured, O-C:
obscured-circumscribed, O-I: obscured-ill defined and (d) distribution of mass subtlety ranging
from 1 (subtle) to 5 (obvious).

5.2. Classification with multiresolution LBP features

In this section, an extensive and comparative experimental study has been conducted to
demonstrate the effectiveness of the proposed multiresolution LBP features. For this purpose,
we compare the proposed texture feature against other six texture features (developed for
the purpose of mammographic mass classification): (1) texture flow-field analysis-based
features (Mudigonda et al 2001), (2) SGLD-based features (Wei et al 1997), (3) GLDS-
based features (Sahiner et al 1996), (4) RLS-based features (Sahiner et al 2001), (5) RBST-
based features (Sahiner et al 1998) and (6) previous LBP-based features (Lladó et al 2009). It
should be noted that, when implementing other texture features, we have strictly followed the
implementation guidelines (and parameter settings) listed in the respective published paper
for the purpose of stable comparisons. For texture flow-field analysis-based features, the
four features, namely ‘contrast’, ‘coherence ratio’, ‘entropy of orientation’, and ‘variance of
coherence-weighted angular estimates’ were extracted based on textual flow-field analysis
(Mudigonda et al 2001). For SGLD-based features, 13 features, namely ‘correlation’,
‘energy’, ‘entropy’, ‘inertia’, ‘inverse difference moment’, ‘sum average’, ‘sum variance’,
‘sum entropy’, ‘difference energy’, ‘difference variance’, ‘difference entropy’, ‘information
measure of correlation 1’ and ‘information measure of correlation 2’ were extracted from
each SGLD matrix at six different interpixel distances (d = 1, 2, 4, 6, 8 and 10) and in four
directions (θ = 0◦, 45◦, 90◦and 135◦) were used to produce 24 SGLD matrices (Wei et al
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1997, Cheng et al 2005). Therefore, a total of 312 SGLD features were computed for each ROI.
For GLDS-based features, the following four features ‘contrast’, ‘angular second moment’,
‘entropy’, and ‘mean’ were extracted from the gray-level difference statistics vector (Sahiner
et al 1996, Cheng et al 2005). Analogous to SGLD matrix computation, six interpixel distances
and four directions were used to calculate 24 GLDS vectors, yielding 96 GLDS features. For
RLS-based texture features, five texture measures, namely ‘short run emphasis’, ‘long runs
emphasis’, ‘gray-level nonuniformity’, ‘run-length nonuniformity’ and ‘run percentage’ were
obtained from the gray-level run length matrices with four directions, θ = {0◦, 45◦, 90◦, 135◦}
(Sahiner et al 2001, Cheng et al 2005). Hence, a total of 20 RLS-based features were calculated
for each ROI image. For RBST-based texture features, using eight different pixel pair distances
(d = 1, 2, 3, 4, 6, 8, 12 and 16) and in four directions (θ = 0◦, 45◦, 90◦and 135◦), the SGLD
matrices were calculated from the RBST image representation (Sahiner et al 1998). Next, as
recommended in Sahiner et al (1998), eight texture measures, namely ‘correlation’, ‘energy’,
‘difference entropy’, ‘inverse difference moment’, ‘entropy’, ‘sum average’, ‘sum entropy’
and ‘inertia’ were extracted from each SGLD matrix. As a result, a total of 256 SGLD features
for each RBST image representation were used in our experimentation. Note that, following
the same parameter values as used in Sahiner et al (1998), the 40-pixel-wide band was used to
construct the RBST images. For implementing previously developed LBP features, we divided
each ROI image into 5 × 5 squared local regions and using a uniform LBP operator with
(P, R) values of (8,1), we extracted LBP histograms from these local regions and subsequently
concatenated them (Lladó et al 2009). Next, as suggested by authors in Lladó et al (2009),
this concatenated histogram was combined with the LBP histograms extracted from the 3 × 3
central regions to form the final texture descriptor.

For comparison purposes, the ROC curves obtained using seven different texture
features are plotted in figure 7. Note that in figure 7, in order to guarantee the stability
of classification performance with respect to different settings of LBP parameters (P, R),

three different resolution combinations are used to compute the ROC curves obtained
for the proposed multiresolution LBP features. Specifically, as suggested in Ojala et al
(2002), we use the two 3-resolution combinations and the one 2-resolution combination
for multiresolution analysis. As shown in figure 7, the proposed multiresolution LBP features
achieve better classification performance, compared to the other six texture features, for
both MAIS and DDSM DBs. In particular, the proposed multiresolution LBP features
(for the case of using (P, R) values of (8, 1), (8, 2), and (8, 3)) attain the best Az

values up to 0.9631 and 0.8741 for MIAS and DDSM DBs, respectively, of all texture
features under consideration. It should be also noted that our multiresolution LBP features
considerably outperform the previous LBP-based features proposed in Lladó et al (2009)
for both datasets. This result demonstrates that the proposed approach is more suitable
for reliably encoding the texture patterns of the mass subregions (e.g., the region inside
the mass) via conventional LBP operation, as well as for extracting complementary
and discriminating information from the mass region by employing multiresolution
analysis.

Clinically, the specificities at high sensitivity levels are important measures of
classification accuracy because the cost of missing a cancer is greater than the cost of
performing a biopsy to assess a lesion (Zheng et al 2001, Suri and Rangayyan 2006, Sahiner
et al 1996). Thus, the performances, in terms of specificity at a given high sensitivity level, were
also evaluated. Based on the results presented in figure 7, we then compared the FPF at TPFs of
95% and 90% obtained using the proposed multiresolution LBP features, and the second best
RBST-based features. When using MIAS DB, at a TPF of 95%, the average FPF over the three
different settings of LBP parameters (i.e. three different resolution combinations) is 0.1193
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Figure 7. Comparisons of ROC curves, with respect to six different types of texture features.
Note that ROC curves for the proposed multiresolution LBP features are obtained without variable
selection process. Also note that in the proposed multiresolution LBP features, the values enclosed
in square brackets represent the values of (P, R) for realizing LBP operation with different spatial
resolutions and different angular resolutions. (a) MAIS DB. (b) DDSM DB.

for the multiresolution LBP feature, while the FPF is 0.2013 for the RBST-based feature. At a
TPF of 90%, the average FPFs are 0.0710 for the multiresolution LBP feature and 0.1609 for
RBST-based feature. Note that similar results are also obtained for the case of using DDSM
DB. These encouraging results demonstrate the potential of applying our multiresolution LBP
features to a mammographic mass classification in a practical CAD system.
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Figure 8. Average Az values at different sizes of variable subsets selected by SVM-RFE algorithm.
The performance of the best variable subset selected is denoted by ‘+’. (a) MIAS DB. (b) DDSM
DB.

Table 1. Classification performances of the proposed multiresolution LBP features with and without
variable selection by SVM-RFE or SFS methods. Note that the average number of variables selected
by SVM-RFE and SFS are tabulated. (a) MIAS DB. (b) DDSM DB.

Performance measurement

TPF (%) at TPF (%) at
Approach Number of variables Az FPF of 10% FPF of 20%

(a)

Without variable selection Full (357) 0.963 ± 0.021 95.30 ± 2.09 96.54 ± 1.34
With SFS 202 0.972 ± 0.014 95.47 ± 2.41 97.81 ± 1.77
With SVM-RFE 238 0.988 ± 0.010 96.99 ± 2.37 98.57 ± 0.45

(b)
Without variable selection Full (357) 0.874 ± 0.019 67.47 ± 3.23 78.04 ± 1.37
With SFS 198 0.891 ± 0.023 73.95 ± 2.91 87.86 ± 0.51
With SVM-RFE 255 0.921 ± 0.026 78.68 ± 3.63 91.67 ± 1.01

5.3. Effect of incorporating variable selection for FP reduction

In this section, we present the results for evaluation of effectiveness of combining the SVM-
RFE-based variable selection with the proposed multiresolution LBP features. The variable
selection procedure (described in section 4) was performed on multiresolution LBP features to
further improve classification performance. It should be noted that the goodness of a variable
subset selected by the SVM-RFE method was evaluated by the performance of an SVM
classifier built on the training set. More specifically, the goodness of a variable subset is
examined by the performance of an SVM classifier trained with variables in the subset as input
variables. Also note that in the computation of multiresolution LBP features, (P, R) values
of (8,1), (8,2) and (8,3) were chosen in the following experiments because this resolution
combination shows the best classification performance of all kinds of resolution combinations
represented in figure 7.

We plot the average Az value versus the size of variable subsets selected by the SVM-RFE
in figure 8. Based on the results shown in figure 8, the variable subset with the largest value
of Az is chosen as the best variable subset. To validate the feasibility of the SVM-RFE (as a
variable selection approach) for enhancing classification accuracy, the test performances of
the SVM with full number of variables are reported in table 1, together with those of the
best variable subset selected by the SVM-RFE. In addition, for the purpose of comparison,
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we also report the classification accuracy of the same SVM classifier using a well-established
feature selection method for mass classification, the so-called stepwise feature selection (SFS)
(Norusis 1933). At each step of the SFS procedure, one feature (or variable) is entered into or
removed from the selected feature pool by analyzing its effect on a selection criterion. In this
experiment, we employed the Wilks’ lambda as our selection criterion, which is defined as the
ratio of features selected by this method is controlled by two parameters, called F-to-enter and
F-to-remove (Norusis 1933). A detailed description of implementing the SVM classifier in
combination with the SFS procedure can be found in the literature (Way et al 2010). Looking
at the results in table 1(a) and (b), we can see that the classification performances with variable
selection using either the SVM-RFE or SFS are better than those obtained using all variables
(i.e. without variable selection) as input feature to an SVM classifier for both MAIS and DDSM
datasets. In particular, for the case of using MAIS DB, a statistical comparison between the
proposed the SVM-RFE and the method using all variables (i.e. without variable selection)
yields a two-tailed p-value of 0.031 (deemed statistically significant at a level of 0.05 (Zheng
et al 2001, Birdwell et al 2001)) for rejecting the null hypothesis that their corresponding ROC
curves have the same area under them; moreover a 95% confidence interval on the difference
in Az between the two methods is (0.008, 0.071). Also, when using DDSM DB, a statistical
comparison between two methods yields p-value of 0.018 and also 95% confidence interval
is (0.012, 0.096). It can also be observed that the classification results with the SVM-RFE
algorithm are better than their counterparts with the SFS. These results indicate that selecting
an appropriate subset of the multiresolution LBP feature using the SVM-RFE algorithm is
feasible for providing further improvement in classification accuracy.

Figure 9 shows some mammography examples for validating the usefulness of the
proposed solution (to combining our multiresolution LBP features with SVM-RFE variable
selection) for the purpose of correctly identifying masses from FP regions. From figure 9,
we can see that almost all FP regions have been removed after the FP reduction (without
missing true mass regions) performed via the proposed approach. These examples demonstrate
that the proposed approach has the potential for aiding radiologists in considerably reducing
the number of unnecessary biopsies performed without misclassifying mammographic masses.

5.4. Investigating effectiveness of multiresolution LBP features

Recall from section 3 that the following three different types of information in
characterizing masses are encoded into the multiresolution LBP features in a hierarchically
manner: (1) regional LBP distribution information, (2) spatial structure information and
(3) multiresolution information. To validate the potential advantage of fusing all of the
aforementioned information based on our method, we have performed additional experiments.
The first part of the analysis was focused on investigating the effectiveness of combining two
individual LBP distribution patterns each computed from core and margin regions, respectively,
and compared against a framework utilizing separately these LBP distribution patterns. The
second part was focused to examine the effect of exploiting multiresolution information on the
improvement in classification accuracy by comparing the cases of using only single resolution
during the computation of LBP texture features.

The results are given in figure 10 and table 2. From figure 10 and table 2, the following
observations can be made. First, the combination of LBP distribution patterns extracted from
both core and margin regions achieve much better results, compared to the cases of separately
using them. This result confirms that the LBP distribution patterns for core and margin region
parts are able to provide different discriminant information and to be mutually compensational
in terms of improving classification accuracy. Second, LBP distribution information extracted
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
( f ) 

Figure 9. Examples of mammograms (chosen from the DDSM DB) for demonstrating the
effectiveness of using our multiresolution LBP features together with SVM-RFE for reducing the
number of FP objects. (a), (c) and (e) The mammograms superimposed with detected suspicious
ROIs; true masses are indicated by white colored arrows in all mammograms. (b), (d) and (f) The
corresponding mammograms resulting from FP reduction performed via the proposed approach.
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Figure 10. ROC curves to demonstrate the effectiveness of ‘combined (or fused)’ LBP distribution
patterns extracted using both core and margin regions. Note that LBP operation with (P, R) values
of (8,1), (8,2) and (8,3) was used to compute ROC curves. (a) MIAS DB. (b) DDSM DB.

Table 2. Comparisons of classification performances obtained for single resolution vs.
multiresolution analysis to show the effectiveness of incorporating multiresolution information.
(a) MIAS DB. (b) DDSM DB.

Performance measurement

TPF (%) at TPF (%) at
Approach Values of (P, R) Az FPF of 10% FPF of 20%

(a)

Single resolution analysis (8,1) 0.903 ± 0.029 88.76 ± 2.67 92.02 ± 1.77
(16,2) 0.908 ± 0.025 88.89 ± 2.02 93.11 ± 0.98
(24,3) 0.896 ± 0.038 85.54 ± 3.88 90.59 ± 2.39

Multiresolution analysis (8,1)+(8,2)+(8,3) 0.963 ± 0.021 95.30 ± 2.09 96.54 ± 1.34
(8,1)+(16,2)+(24,3) 0.957 ± 0.017 94.95 ± 1.99 95.36 ± 0.83
(8,1)+(16,2) 0.948 ± 0.011 90.84 ± 1.81 94.49 ± 0.65

(b)
Single resolution analysis (8,1) 0.829 ± 0.017 55.93 ± 1.68 70.95 ± 1.88

(16,2) 0.835 ± 0.022 57.17 ± 2.90 72.02 ± 1.61
(24,3) 0.823 ± 0.011 54.91 ± 2.41 68.56 ± 1.03

Multiresolution analysis (8,1) + (8,2) + (8,3) 0.874 ± 0.019 67.47 ± 3.23 78.04 ± 1.37
(8,1) + (16,2) + (24,3) 0.864 ± 0.023 61.09 ± 2.11 75.28 ± 1.40
(8,1) + (16,2) 0.856 ± 0.016 61.95 ± 1.46 73.98 ± 0.32

from the core region yields better classification accuracy compared to that extracted from the
margin region. This result is an indication that texture statistics (or patterns) extracted from
the ‘inner regions’ of the masses are important characteristics in the classification of ROIs as
either containing mass or normal tissue. This observation can be supported by the following
two commonly used assumptions (in the detection of mammographic masses) (Dominguez
and Nandi 2008, Hong and Sohn 2010, Eltonsy et al 2007): (1) compared to normal tissues, the
regions inside the masses are generally brighter and more dense than their surrounding regions;
(2) the gray levels at the inner regions of the masses are relatively uniform; at least, they usually
change in a gradual manner. Finally, a multiresolution analysis allows for achieving higher
classification accuracy in comparison to the results obtained with LBP features at a single
resolution. In support of this observation, a statistical comparison of the results obtained using
a multiresolution analysis (for the case of using (P, R) values of (8, 1), (8, 2), and (8, 3)) with
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Figure 11. FROC results of a full CAD system based on the proposed multiresolution LBP features
in conjunction with SVM-RFE variable selection. (a) MIAS DB. (b) DDSM DB.

those obtained using single resolution (with (P, R) values of (8, 1)) yields a two-tailed p-value
of about 0.008 and 0.012 for MAIS and DDSM DBs, respectively. Also, when considering a
95% confidence interval on the difference in Az, we obtain (0.031, 0.088) and (0.027, 0.063)
for MAIS and DDSM DBs, respectively. Underlying reason for above result can be explained
as follows. The masses found in clinical mammograms have different sizes and shapes (Huo
et al 1998). Thus, it is generally difficult to define a priori an optimal and universal resolution
for the ROIs to be used for texture analysis. However, it can be expected that a multiresolution
analysis is beneficial when dealing with the aforementioned problem because it could provide
a scale-invariant interpretation of an image (Ojala et al 2002).

5.5. Evaluating mass detection and number of FPs

In this section, we present overall detection performance of a full CAD system based on
the proposed multiresolution LBP features in conjunction with SVM-RFE variable selection.
For this purpose, free-response receiver operating characteristic (FROC) curves (Suri and
Rangayyan 2006, Oliver et al 2010) were used. A FROC curve is obtained by plotting sensitivity
on the y axis and the number of FPs per image on the x axis. The FROC results obtained using
the sets of 89 MAIS mammograms and 303 DDSM mammograms are shown in figures 11(a)
and (b), respectively. For the images from the MAIS DB, we can obtain a sensitivity of 75.86%
at 1 FP per image, while we can achieve a sensitivity of 77.88% at 2 FPs for the DDSM DB.
Note that, compared to the number of FPs per image at initial detection sensitivity, a significant
FP reduction can be made by using the proposed method; for the MAIS DB, the overall FP
rate is reduced as much as 90.91% (from 11 to 1 per image) at only cost of 4.98% sensitivity
loss (from 80.84% to 75.86%), while it can be greatly reduced for 75.00% (from 8 to 2 per
image) with only loss of 3.30% sensitivity rate (from 81.18% to 77.88%) for the DDSM DB.

In a previous report on the detection performance on the MAIS DB, the detection accuracy
of masses has been reported as 62% sensitivity at 1 FP per image (Sampat et al 2008). In
Mudigonda et al (2001), the CAD system is reported to have 81% sensitivity at 2.2 FPs per
image for mass versus normal tissue classification. For the detection of masses in the DDSM,
the authors in Catarious et al (2004) reported a sensitivity of 80% at 4.5 FPs per image for the
testing set. In another mass detection study, which used images from the DDSM, the authors
in Catarious et al (2006) reported a sensitivity of 72% at 2 FPs per image for overall mass
detection performance (including the malignant and benign masses). The authors in Brake
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et al (2000) reported 81% sensitivity with FPs (per image) ranging from 1.35 to 3.66 FPs for
malignant mass detection performance. Note that the results of any given CAD algorithms
can vary significantly depending on the dataset used (Nishikawa et al 1994) and two CAD
algorithms can only be directly compared when the same training and testing sets are used
(Suri and Rangayyan 2006). Hence, it should be pointed out that the aforementioned discussion
on the comparison of results of previous studies aims at providing context for our work rather
than a direct comparison with our results, which is not meaningful because a different dataset
was used in the reference study.

6. Conclusions

We have developed a new and novel solution to extracting texture feature, referred to
as multiresolution LBP feature, for the characterization of mammographic masses. In our
approach, features describing the texture statistics of the mass were extracted from the core
and margin regions of the segmented mass, respectively. It was found that combining texture
patterns extracted from both core and margin regions was considerably more effective than
using texture patterns extracted from using only core or margin regions. In addition, in our
study, we demonstrated that incorporating multiresolution analysis into the extraction of LBP
texture features is helpful for enhancing the classification of masses and normal tissues. It
was also validated that combining our multiresolution LBP features and SVM-RFE variable
selection can further improve the classification accuracy. Based on our experimental results,
the proposed LBP feature extraction solution has clearly proven to be significant for the purpose
of FP reduction and is not sensitive to the precise location of boundaries of masses. Thus, it
can be expected that the proposed method could considerably improve radiologists’ accuracy
in the characterization of masses in CAD systems, and thereby might reduce unnecessary
biopsies.

For future work, in order to further guarantee the feasibility of our method in realistic
clinical conditions, as well as the generalizability of our results, the proposed method
should be tested on a large mammogram DB collected from a larger number of patients
undergoing routine mammographic screening at some medical centers. Also, future work
includes extending application of the proposed method to other different classification tasks
of importance in a CAD system, such as the differentiation of malignant and benign tissue in
mammography (Sahiner et al 1998).
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