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ABSTRACT 

 

Surveillance video cameras have been increasingly deployed along roadways over the 

past decade. Automatic traffic data collection through surveillance video cameras is 

highly desirable. However, sight-degrading factors and camera vibrations make it an 

extremely challenging task.  

In this paper, a computer-vision based algorithm for vehicle detection and 

tracking is presented, implemented, and tested. This new algorithm comprises of four 

steps: user initialization, ST map generation, strand analysis, and vehicle tracking. It 

relies on a single, environment insensitive cue that can be easily obtained and analyzed 

without camera calibration. The proposed algorithm was implemented in Microsoft 

Visual C++ using OpenCV and Boost C++ graph libraries. Six test video data sets, 

representing a variety of lighting, flow level, and camera vibration conditions, were used 

to evaluate the performance of the new algorithm. Experimental results showed that 

environmental factors do not significantly impact the detection accuracy of the algorithm. 

Vehicle count errors ranged from 8% to 19% in the tests, with an overall average 

detection accuracy of 86.6%. Considering that the test scenarios were challenging, such 

test results are encouraging. 

 

 

Key words: automated vehicle detection, video detection, edge detection, Hough 

transform and spatial temporal map.  
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1. INTRODUCTION 
 

Automated vehicle detection has been an important component of freeway and 

intersection operation systems for decades. Inductance loop detectors have been the most 

popular form of detection systems since they were introduced in the early 1960s (1). 

They are relatively cheap in unit cost when compared with other detector types and can 

produce reliable traffic counts under most flow scenarios. However, loop detectors have 

their drawbacks. First, maintenance and installation of loop detectors require lane 

closures that may generate significant indirect cost (2). Such indirect costs may indeed 

make loop detector more expensive than many other detector types. Second, loop 

detectors are point detectors. Several loop detectors are required to obtain advanced 

traffic parameters, such as vehicle speed and queue lengths, and such loop configurations 

further increase the costs. Furthermore, embedding inductance loops in pavement often 

causes damage to the pavement structure and therefore shortens the lifetime of pavements 

(1).  

All these disadvantages have spurred further research in vehicle detection, with 

computer vision approaches quickly becoming popular alternatives. Video sensors not 

only have lower maintenance costs, but are also capable of providing richer traffic 

information than their inductance loop counterparts. Speed, queue lengths, and individual 

vehicle delay can be extracted from video images with proper video detection algorithms. 

However, since video-based vehicle detection algorithms are based on visual data, 

environmental factors and occlusions play significant roles in detection accuracy.  

Good visibility of objects of interest is a key assumption in any video-based 

detection mechanism. Environmental impacts may degrade the visibility or alter the 

appearance of the objects in the scene. A robust video detection system should be 

insensitive to the impacts of shadows, sun glare, rapidly changing lighting, and sight 

disturbing conditions, such as heavy rain.  Additionally, vibration is a very common 

problem for pole mounted cameras. The resulting movements of camera vibration often 

cause displacements of static objects between current frame and background frame and 

therefore trigger a significant amount of false alarms in vehicle detection.  

 Vehicle occlusions are prevalent in most observation angles and are perhaps the 

most challenging to overcome. Occlusions result when one vehicle appears next to 

another and obscures it partially or completely. Typically, video-based vehicle detection 

systems will interpret two occluded vehicles as one, leading to undercounting errors. 

Therefore, occlusion issues must be properly addressed in video-based vehicle detection 

algorithms to improve detection accuracy. 

In this paper, we present a novel approach for mitigating the environmental and 

occlusion impacts on video-based vehicle detection accuracy. The paper is organized as 

follows: a brief overview of the state of art is provided in Section 2, followed by the 

detailed description of the proposed algorithm in Section 3. In Section 4, we present some 

testing results of the proposed algorithm. Then we conclude the study and recommend 

future studies in the last section of this paper. 

 

2. STATE OF THE ART 
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Video-based vehicle detection has received much attention in the past two decades (see 

for example 3, 4, 5, and 6). Various algorithms have been developed and implemented, 

and resulted in several off-the-shelf commercial products, such as AutoScope and 

Traficon (7 and 8). Unfortunately, many of these existing systems require ideal camera 

settings that are difficult to achieve, uncongested traffic flow conditions, or clear weather 

conditions for accurate detection. Most systems also typically require extensive 

calibration before being used for traffic data collection.  

Automatic vehicle detection mainly consists of three steps: detection, 

classification, and tracking. The detection step is to segment objects of interest from its 

background. The classification step is to recognize the types of the segmented objects and 

put them into the right categories. The tracking step is to re-identify the same object in a 

sequence of frames to enable movement data collection over a distance. Through the 

above three steps, a complete spatio-temporal trajectory for each vehicle appearing in the 

field of view can be collected.  

Various visual cues and patterns have been explored to accomplish the above 

steps. A common approach for vehicle detection is background subtraction. This method 

is based on the subtraction of a “static background” image from the current frame, thus 

revealing the objects in motion. The background image is commonly generated by 

processing several previous frames. This approach only performs well when each vehicle 

object can be completely segmented and there are no sight-degrading factors present, 

such as heavy rain, shadow, camera vibration, and sun glare. More complete overviews 

of the background subtraction method and some issues associated with this method can 

be found in (6, 9, and 10).  

Model-based approaches have also been popular means of detecting and 

classifying vehicles (11 and 12). These approaches rely on a library of vehicle images as 

well as a model searching algorithm. The results of these approaches can also be 

significantly affected by sight-degrading factors.   

Kanade-Lucas-Tomasi (KLT) feature tracking has been a popular technique for 

vehicle tracking due to its relative insensitivity to noise and environmental effects (13). 

This method relies on motion-based features in the image and their respective locations 

for both tracking and detection. Motion-based feature points are those points with high 

gradient values in both the X and Y direction. These points can be found regardless of 

environmental conditions or camera movement. Hence, the KLT algorithm has been 

selected as one of the ideal candidates for vehicle tracking. Grouping the points, however, 

can be a challenging problem. Beymer et. al. (14) suggested aggregating the points based 

on relative speeds, but those can often be too similar in relative speed to distinguish and 

distorted due to perspective. Kanhere and Birchfield (15) utilized a similar notion but 

used background subtraction to locate ground-plane features as a more accurate 

measurement of vehicle location, effectively reducing perspective distortion. Results 

obtained using this method are very promising, yet background subtraction is still subject 

to some environmental constraints. 

Scan-line-based approaches gained early attention in vehicle detection because 

these approaches provide a convenient way of reducing input data and are suitable for 

real-time applications. Niyogi et.al (16) presented a unique approach to detecting 

pedestrian motion. The approach used a scan-line to obtain the spatio-temporal 

information of moving objects. These values retrieved from a scan-line were composed 
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together along the time axis to create “XT-lines”, a spatio-temporal map. Another scan-

line concept was adopted by Zhang et. al. (6) to detect vehicles by comparing the pixel 

values along a detection line between the composed background image and the current 

input frame. Liu and Yang (17) recently attempted to extend this notion to vehicle 

tracking. However, they resort to background subtraction to segment the resulting 

strands, leaving the system vulnerable to environmental factors.  

 

 

 

3. METHODOLOGY 

 

Based on the strengths and weaknesses of the abovementioned methods, we propose a 

new computer vision based algorithm for producing vehicle trajectories. Once vehicle 

trajectories are available, good volume counts can be extracted even when vehicles are 

occluded. This new algorithm contains four primary steps: user initialization, Spatio-

Temporal (ST) map generation, strand analysis, and vehicle tracking. Each step may be 

composed of several finer steps. Details of these primary steps are marked in dashed 

boxes in the flow chart shown Figure 1.  

 

 
 

FIGURE 1  Flow chart of the proposed algorithm. 

 

The first step is performed only once and contains three sub-steps: defining a 

detection zone, perspective transformation, and locating the scan-line on the lane of 

interest. A user must specify the detection zone of interest before proceeding on anything 

else. Then a homography transformation is conducted for the specified detection zone. A 

detection zone may contain multiple travel lanes. The user needs to draw a scan line on 
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each lane from which vehicle trajectory data will be collected in the transformed 

detection zone. After these user initializations, an ST map can be generated, in the second 

primary step, for vehicles traversing each data collection lane. Concurrently with the 

second step, the Hough line transform is used to retrieve a set of lines that describe the 

ST map.  

The third primary step includes two sub-steps: Canny edge (18) detection and 

Hough transform (19). Through these sub-steps, lines representing spatio-temporal 

movements of vehicles are obtained. By grouping these lines, individual vehicles can be 

identified and tracked in the last step of the proposed algorithm. 

In this four-step approach, the ST map plays an important role. Though it is the 

second step in the algorithm, we prefer introducing it first. We believe that a good 

understanding of the ST map will be helpful for understanding the user initialization 

process, strand analysis, and vehicle tracking steps. 

 

 

Generating the Spatio-Temporal Map (ST Map) 

 

An ST map shows the time progression of a particular pixel-wide slice of the image. This 

slice of the image corresponds to the user defined scan-line, as is illustrated in Figure 

2(a). The pixel intensity values along this line are captured at every frame and are stacked 

onto the ST map along the time axis, as is shown Figure 2(b). All pixels along the scan-

line will leave traces. A group of traces captured from a moving object will form a 

diagonal strand. This implies that each strand represents a separate object moving along 

the scan-line.  
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  (a) Scan-Line               (b) ST map for the right-most lane 

Figure 2  An ST Map Example. 

 

Compared to other vehicle detection and tracking methods, the ST map is fairly robust to 

sight-degrading factors, minor camera vibrations, and level of scene luminance. In 

addition, since an ST map can be used to track the spatial movement of an object, 

different types of occlusions may be distinguished as well. 

 

User Initialization 
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As is shown in Figure 2(b), if a scan-line is drawn on an input image without proper 

image transformation, the resulted ST map will be distorted due to the perspective effect. 

A distorted ST map creates more difficulties in strand analysis and does not accurately 

reflect the true trajectories of the vehicles. Hence, a perspective transformation is 

necessary to reduce distortion caused by the perspective effect on a 2-D image.  

 To accomplish this, the user should define a detection zone on the road surface in 

the input image. This detection zone should correspond to a square in the real world, with 

two edges parallel to the vehicle’s travel direction and the other two edges perpendicular 

to it. As shown in Figure 3(a), the user-defined detection zone, marked by the red 

quadrilateral on the image, can be transformed to a top-view image (see Figure 3(b)). We 

can see that lane division markers are approximately parallel to each other, indicating that 

the perspective effect has been corrected through the transformation. After constructing a 

scan-line on the top-view image, an ST map can be generated. The ST map expands from 

the left to the right with time. Figure 3(c) demonstrates an example ST map that shows 

three vehicles has passed the detection zone via the right-most lane at a nearly constant 

speed.  

When the perspective transformation is performed through this approach, only the 

image points on the ground have accurate transformations. Points above the ground 

plane, however, are distorted as you may have noticed from Figure 3. In addition, the 

height distortion of a vehicle enlarges as the distance between the vehicle and the camera 

increases. 

 

(a)(a)  
 

FIGURE 3  User initialization: (a) defining a detection zone, (b) user defined 

detection zone after perspective transformation, and (c) ST map retrieved from a 

scan-line. 

 

Transforming the scene image to the top-view image is performed through the 

homography matrix Hab. To compute Hab, we need to know the real-world coordinates for 

at least four points in the 2-D scene image and four more in the real world. A 

homography is a mapping relationship between a point on a ground plane and the same 
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point on an image plane. The perspective transformation is computed using a 3x3 

homography matrix abΗ : 

 

















=Η

333231

232221

131211

hhh

hhh

hhh

ab         (1) 

 

If a point ap  in the image scene can be represented as [ ]1 '
a a a

p x y=  and its 

corresponding matching point bp  in the real world can be represented as 

[ ]1 '
b b b

p x y= , then the homography matrix can be computed using eight known 

points and the relationships: bbaa pp Η=  and b ab a
p p= Η . Once elements in Hab are 

fully determined, coordinate conversion relationship between the image coordinates and 

the top-view image can be established. The required points are obtained directly from 

user input – the square detection zone defined by the user serves as the four image 

coordinate points. Using the length of the bottom edge of the user drawn zone to create a 

hypothetical separate perfect square yields the set of real-world coordinates, which is 

represented by the yellow square in Figure 3(a). This set of points only yields a rough, 

relative conversion, but that is all that is necessary to obtain linear trajectories at constant 

speeds. 

 

Figure 4 shows the ST maps obtained from a variety of scenes. The row (a) and (c) show 

the input images, and the row (b) and (d) show its corresponding results of ST maps.  
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(a)

(b)

(c)

(d)

 
 

FIGURE 4  ST Maps for various traffic environments. 

 

Strand Analysis 

 

Once the ST map is obtained, vehicle trajectories can be retrieved through strand 

analysis. This analysis aims at recognizing the strands present in the ST map and 

obtaining the coordinates along every strand to reconstruct the vehicle trajectories.  

As mentioned earlier, strand analysis will be accomplished through two finer 

steps: Canny edge detection and Hough transform. Figure 5 illustrates the procedure of 

the proposed approach. Figure 5(a) shows the top-view detection zone with a scan-line on 

the rightmost lane. Figure 5(b) shows a snapshot of the extracted ST map.  We can see 

that there are three strands in this snapshot, indicating three vehicles passed in the right-

most lane along the scan line. As shown in Figure 5(c), Canny edges on the ST map are 

extracted by applying the Canny filter (18).  The Hough line transform (19) is then 

applied to the Canny edges to retrieve complete lines from the strands. These identified 

complete lines are hereafter referred to as “Hough lines”. In Figure 5(d), these Hough 

lines are superimposed on the ST-map to demonstrate the accuracy of the algorithm.  
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FIGURE 5  Strand analysis: (a) top-view detection zone with a  scan-line, (b) ST 

map. (c) Canny edges of the ST map, and (d) the result of Hough transform. 

 

As mentioned earlier, the height distortion of a vehicle grows as the vehicle 

moves away from the camera. This implies that the extensions of all the Hough lines for 

each individual vehicle should theoretically converge at one point, illustrated in Figure 6. 

This characteristic of the obtained Hough lines serves as an important cue for detection 

and occlusion reasoning. The vehicle tracking problem now becomes an exercise in 

clustering the Hough lines.  

One should note that a vehicle’s ST trajectory is linear only when the vehicle is 

traveling straight and maintain a constant speed through the detection zone. This 

approach is not valid in the cases that the vehicle speed would vary significantly or a 

significant curvature is present in the highway geometry through the detection zone. To 

solve this problem, the detection zone can be defined to a smaller subset of the image, or 

a curve detection algorithm should be used. In this paper, only linear strands are 

considered based on the assumption that the vehicle travels with an approximately 

constant speed in the detection zone. 

(a) (b) 

(c) (d) 
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Figure 6   Extensions of the Hough lines.  

 

Vehicle Tracking 

 

In reality, the Hough lines generated by the same vehicle may not converge to a single 

point due to the inherent error and redundancy of the Hough transform. A simplified 

sample problem is illustrated in Figure 7(a), the dashed rectangle is the ST-map being 

processed and Lines 1 through 7 are the extracted Hough lines. Grouping these lines by 

clustering these intersection points is a feasible solution but can be complicated, 

particularly when the number of the existing clusters is unknown.  

Analyzing the intersections of the Hough lines is the key to determining the 

Hough line groups. Here we need to introduce the concept of “first intersection,” a notion 

used to group related Hough lines. First intersection for a Hough line is defined as the 

first intersection with another Hough line that happens below the bottom of the ST map, 

towards the hypothetical point of convergence. A Hough line may intersect with multiple 

other Hough lines, but only the first intersection for a particular line is of interest.  

Once the first intersection is found for a Hough line, the two intersecting lines are 

regarded as a Hough-line pair. The Hough-line pair relationships can be represented by a 

connected graph with undirected edges. Each node represents a Hough line. An edge 

represents a first intersection relationship between the connected two nodes. Hough lines 

generated by the same vehicle can be grouped together through a connected component 

analysis (23). Figure 7 demonstrates the concept of connected component analysis. The 

proposed algorithm searches from the bottom of the ST Map to find the first intersection 

point for each Hough line. As is shown in Figure 7(a), all the first intersection points are 

highlighted with large dots. For example, Line 7 first intersects Line 6, thus Lines 6 and 7 

are regarded as a Hough-line pair. In the connected graph, this new Hough-line pair is 

represented by adding a new edge to connect nodes 6 and 7. Following the same 
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procedure, all Hough-line pairs can be identified and represented in the graph as shown in 

Figure 7(b).  

Once the graph has been completely constructed, a depth-first search algorithm is 

used to determine the connected components which represent the line groups. The depth-

first algorithm, commonly used in Graph theory, is a powerful tool for graph traversal 

and search (20). The BOOST C++ graph library (22) is used in our implementation to 

construct these graphs and determine the connected components.  

Once the line groups have been established, the current and past positions of a 

vehicle can be obtained by taking the average slope of all the Hough lines in the same 

group. The vehicle positions from the trajectories are mapped to the scan-line to display 

the detected vehicles in motion. In Figure 8, vehicle 24 and vehicle 25 are tracked along 

the scan-line. This demonstrates the advantage of the ST-map because the historical 

vehicle trajectories can be easily found by using ST map without implementing other 

tracking procedures.  

 

1 2 3 4 5 6 7

ST Map 

            

2

1

3

4

5

6 7
 

                        (a)                (b)  

FIGURE 7  Demonstration of line grouping for vehicle detection: (a) Hough lines, 

and (b) Result of the constructed graphs. 
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FIGURE 8  Result of vehicle tracking 

 

4. EXPERIMENTAL RESULTS 

 

The proposed algorithm was implemented in C++ using OpenCV (21) and BOOST C++ 

(22) libraries. The algorithm runs in real-time on a 1.83 Ghz Intel Centrino mobile 

processor.  

The proposed algorithm was tested using six ten-minute video sequences 

collected at different locations with different traffic flow conditions. Various 

environments and traffic flow conditions were tested to verify the robustness of the 

algorithm. As shown in Figure 9, the test sites were chosen from WSDOT surveillance 

cameras mounted along SR-520 and I-5 in the Greater Seattle area. Figures 9(a), 9(b) and 

9(c) show snapshots captured from the SR-520 cameras mounted on a floating bridge. 

These locations can be especially challenging for computer-vision based vehicle 

detection and tracking due to camera vibrations caused by wind and structure shake. 

Furthermore, Figure 9(b) displays a field of view that shows a curved roadway segment. 

Even though this sequence can be challenging for the vertical scan-line based algorithm, 

vehicles were still properly detected and tracked using the proposed algorithm. Night-

time vehicle detection has been a very difficult task in computer vision applications. The 

algorithm was also tested in a nighttime scenario, as shown in Figure 9(c).  

Figures 9(d), 9(e), and 9(f) show the captured image from the surveillance 

cameras deployed along I-5. These cameras also suffer from minor vibration problems, 

shadows, and sun glaring. For all test scenarios except for that shown in Figure 9(e), the 

right-most lane of the nearest observed direction was chosen as the data collection lane. 

For the I-5 50
th

 Street site (Figure 9(e)), the left-most lane of reversible section (the inner 

group) was selected to determine the effects of a static occlusion, in this case a light pole.  

 

 

(a) (b) (c) 

(d) (e) (f) 
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FIGURE 9  Selected test sites: (a) SR-520: West Highrise looking East, (b) SR-520: 

West Highrise looking West, (c) SR-520: East Highrise looking West, (d) I-5: 

Southcenter, (e) I-5: NE 50
th

 St and (f) I-5: Klickitat Rd. 

 

Experimental results for all the six test scenarios are summarized in Table 1. The 

count accuracies range from 81% to 92%. Considering that the test scenarios are 

challenging, such results are encouraging. Of the six test scenarios examined, five under-

counted vehicles by 8% to 19%. Only the night scene on SR-520 or the test scenario 

shown on Figure 9(c) over-counted vehicles by 15.4%. This over-count error was largely 

caused by the invisible (non-texture) areas between the lighted front and rear ends of 

some vehicles. The invisible areas generate gaps in the ST map which can cause the 

grouping algorithm to prematurely group the front and rear areas separately into two 

vehicles. Besides the high night-time false positive rate, the algorithm tended to under-

count vehicles in most test scenarios. This was determined to be caused by the 

inconsistencies created by the probabilistic Hough transform implementation in OpenCV. 

The probabilistic implementation of the Hough transform provided different lines at 

every frame, sometimes providing inconsistent results that were responsible for the loss 

of the moving objects. 

 

TABLE 1  Test Results. 

Fig. Location Conditions Duration 
Manual 
Count 

Algorithm 
Count 

Count 
Error 

9(a) SR-520 WEST HIGHRISE E Camera vibration 10 min. 187 161 -13,9% 

9(b) SR-520 WEST HIGHRISE Curvature, vibration 10 min. 225 207 -8,0% 

9(c) SR-520 EAST HIGHRISE Night-time 10 min. 130 150 +15,4% 

9(d) I-5 SOUTHCENTER Shadows, vibration 10 min. 264 222 -15,9% 

9(e) I-5 50TH ST Light pole, shadows 10 min. 100 81 -19,0% 

9(f) I-5 KLICKITAT Glare, vibration 10 min. 165 151 -8,5% 

 TOTAL  60 min. 1071 972  

        (average absolute error =13,4%) 

 

Occlusions and Vehicle Shadows 

 

Occlusions and vehicle shadows, the most prevalent causes of misdetections, are handled 

through the inherent characteristics of the proposed algorithm without any additional 

reasoning.  

The use of vertical scan-lines for vehicle detection results in two types of 

encountered occlusions. The first type is the longitudinal occlusion that occurs between 

vehicles traveling in the same lane. The second type is the latitudinal occlusion that 

occurs between vehicles traveling in adjacent lanes. To some extent, the longitudinal 

occlusions were handled by the proposed Hough line grouping algorithm. Most of the 

occlusions encountered in all the test scenarios were of the longitudinal type because only 

one outer lane was selected for each test scenario. For the vehicles with the same height 

traveling closely at identical speeds, defining a longer scan-line can increase the chances 

of successful segmentation. Latitudinal occlusions can be avoided by setting a scan-lane 

on a proper location without being occluded by vehicles in adjacent lanes. Such scan-line 
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placement is possible for most lanes in common observation angles, as the mounting 

positions are generally high enough to provide a wide field of view.  

Vehicle shadows often pose problems as they are cast by and move with vehicles 

themselves. These shadows are often mistakenly regarded as additional vehicles by many 

other computer-vision approaches. Because shadows typically do not contain any inner 

texture, the output of the ST map will have only two Canny edges for each vehicle 

shadow. One edge happens on the transition from the regular environment to the shadow 

region, and the other edge happens on the transition back. Therefore, in order to prevent a 

shadow from being identified as a vehicle, each line group should contain at least three 

lines. In our experiments, a vehicle often has more than three Hough lines, as the 

windshield edges and bumper lines create numerous lines in addition to the vehicle 

borders. Although this three Hough-line threshold may miss vehicles with extremely low-

texture intensity, the chance of having such an event should be sufficiently small. Thus, 

the application of this threshold has effectively reduced false alarms caused by shadow 

effects in our experiments. Headlight blooms and reflections on wet pavement have 

similar attributes and were handled in the same manner. 

 

 

5. CONCLUSIONS 

 

Surveillance video cameras have been increasingly deployed along roadways over the 

past decade. Automatic traffic data collection through surveillance video cameras is 

highly desirable. However, sight-degrading factors and camera vibrations make it an 

extremely challenging task.  

In this paper, a computer-vision based algorithm for vehicle detection and 

tracking is presented, implemented, and tested. This new algorithm comprises of four 

steps: user initialization, ST map generation, strand analysis, and vehicle tracking. It 

relies on a single, environment insensitive cue that can be easily obtained and analyzed 

without camera calibration. The approach uses spatio-temporal slices that combine to 

create diagonal strands for every passing vehicle. The strands are then analyzed using the 

Hough transform to obtain groups of lines. A connected graph of the line objects is 

constructed for a connected-component analysis. Each connected line group represents 

one vehicle. Line group data can also be used to reconstruct vehicle trajectories and 

therefore track vehicles. Six test video data sets, representing a variety of lighting, flow 

level, and camera vibration conditions, were used to evaluate the performance of the new 

algorithm. Experimental results showed that environmental factors do not significantly 

impact the detection accuracy of the algorithm. Vehicle count errors ranged from 8% to 

19% in the tests, with an overall average detection accuracy of 86.6%. Considering that 

the test scenarios were challenging, such test results are encouraging. 

   In terms of future work, the algorithm can be further improved by modifying the 

Hough transform implementation to make the detection results more consistent. Also, for 

more severe occlusions, placing scan-lines on several lanes would be helpful to determine 

the origin of the occlusion. Heavy latitudinal occlusions can possibly be handled by 

analyzing all potentially occluding lanes and determining the relationship between the 

vehicles in each lane. If the relationship appears to be direct, a horizontal scan-line can be 
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used to determine whether the object extends into the adjacent lane. These directions 

should be investigated in future studies. 
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