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Many branches within geography deal with variables that vary not only in space but

also in time. Therefore, conventional geostatistics needs to be extended with methods

that estimate and quantify spatiotemporal variation and use it in spatiotemporal

interpolation and stochastic simulation. This article briefly summarizes the main con-

cepts of space–time geostatistics. Kriging in space and time can be done in much the

same way as it is in a purely spatial setting. The main difficulties are in defining a

realistic stochastic model that is assumed to have generated data and in characterizing

and estimating the space–time correlation of that model. This article uses a model-

based geostatistical approach to characterize space–time variability. The space–time

variable of interest is treated as a sum of independent stationary spatial, temporal, and

spatiotemporal components, which leads to a sum-metric space–time variogram

model. Methods are illustrated with a case study of space–time interpolation of

monthly averages of detected background radiation for a 5-year period in four

German states.

Introduction

Traditionally, geostatistics has dealt with static spatial variables. This focus is not

surprising because geostatistics has its roots in mining, where target variables often

are constant for time periods much smaller than the geologic time scale. However,

over the past few decades, the usefulness of geostatistics has been demonstrated not

only in mining and geology, but also in many other branches of geography and the

earth sciences. Consequently, geostatistical modeling also needs to address

variables that change in time as well as in space, such as terrestrial greenhouse

gas emissions, surface water quality, spread of diseases, fish stocks, real estate

value pricing, and political voting preferences. The extension of kriging and other
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geostatistical techniques to the space–time domain is not straightforward. Incor-

porating time is more than just adding a third (or fourth, if depth or height is the

third) dimension, because the behavior of a variable over time differs from its be-

havior over space, and characteristics of the temporal processes that cause tem-

poral variation are often known to some degree. If a statistical model characterizing

the spatiotemporal behavior of a variable is to be of any value, it has to take into

account differences between variation in space and in time. For example, over

time, periodicity associated with daily or seasonal patterns is common, whereas in

space, periodic variation is less common.

If the dynamic processes behind the space–time distribution of a target variable

are reasonably well understood, the most compelling approach is to incorporate

these explicitly into a process-based model, using a state–space approach (e.g.,

Huang and Cressie 1996; Hoeben and Troch 2000; Heemink, Verlaan, and Segers

2001; Bertino, Evensen, and Wackernagel 2003; Heuvelink et al. 2006). Here, the

state equation describes explicitly how the state (i.e., key variables) of a system at a

current point in time depends on that of the previous point in time. Measurements

of a state together with process knowledge contained in its state equation can be

used recursively to predict the state over time and space using a Kalman filter.

Space–time Kalman filtering has important advantages over empirical space–time

kriging described in this article, but sufficient knowledge must be available to

quantify the dynamic evolution of the system under study and to define its state

equation. When a space–time process satisfies a stochastic partial differential equa-

tion (PDE), then its space–time covariance structure also may be derived from a

description of the physical process (e.g., Kolovos et al. 2004). For many systems,

particularly in the social sciences, characterization of space–time variability by a

state equation or PDE may be too ambitious. An empirical approach may be more

appropriate in such cases. Accordingly, a space–time geostatistical model may be

specified and its parameters estimated from observed data. Although not physically

based, this model must appreciate the fundamental differences between spatial and

temporal variation and must include these differences in its structure and param-

eterization (Kyriakidis and Journel 1999; Heuvelink and Webster 2001; Gneiting

2002; Gething et al. 2007).

This article begins with a brief review of the main approaches in space–time

geostatistics. Most of these stem from the earth sciences. We show that kriging and

stochastic simulation in space and time can be done in much the same way as they

are in a purely spatial setting. The main difficulties are in defining a realistic sto-

chastic model that is assumed to have generated given data and in characterizing

and estimating the space–time correlation of that model. Several approaches exist

to model space–time correlation statistically, many of which require advanced

mathematical statistics. We provide a brief review but focus on one particular ap-

proach adapted from model-based geostatistics (Diggle and Ribeiro 2007). Here the

starting point is not the space–time covariance function; instead, a stochastic model

of the space–time variable of interest is postulated from which the space–time
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covariance can be explicitly derived. The proposed model treats the space–time

variable as a sum of a trend model plus independent stationary temporal, spatial,

and anisotropic space–time components. The resulting space–time variogram and

associated kriging formulations are applied to a space–time interpolation study

of background radiation across four German states for a 5-year period.

Space–time kriging

Consider a variable z 5 {z(s, t)|sAS, tAT} that varies within a spatial domain S and a

time interval T. Let z be observed at n space–time points (si, ti), i 5 1, . . ., n. These

space–time observations may be a time series of observations at one or multiple

spatial locations, a spatial network of observations collected at one or multiple

points in time, any arbitrary set of space–time points, or combinations of these

scenarios. Although the number of observations n may be very large, observing z at

each and every combination of time and space is impossible. To obtain complete

space–time coverage of z requires some form of interpolation. The objective then is

to obtain a prediction of z(s0, t0) at a point (s0, t0) at which z was not observed,

where (s0, t0) typically is associated with the nodes of a fine space–time grid. To do

this, z is assumed to be a realization of a random function Z having a full statistical

model, including its space–time dependence structure. Next, z(s0, t0) is predicted

from the observations or simulated from its conditional distribution. Sometimes

knowledge about the space–time dependence of Z itself is the goal of a study. For

instance, quantified space–time statistical dependencies may be instructive for the

exploration, comparison, interpretation, and explanation of the magnitude of tem-

poral, spatial, and spatiotemporal variation and are essential prerequisites for

optimizing spatiotemporal monitoring designs (De Gruijter et al. 2006; Brus and

Heuvelink 2007).

The space–time variation of Z can be characterized by first decomposing it into

a deterministic trend m and a zero-mean stochastic residual V as follows:

Zðs; tÞ ¼ mðs; tÞ þ V ðs; tÞ ð1Þ

The trend m is a deterministic, structural component representing large-scale vari-

ation. The residual is a stochastic component representing small-scale, noisy vari-

ation. Alternatively, the trend may be thought of as that part of Z that can be

explained physically or empirically, using auxiliary information. The residual is the

leftover part, which still holds information when it is correlated in space and/or

time. The decomposition of Z into a trend and a residual is a subjective choice

made by a modeler (Diggle and Ribeiro 2007). There is no unique way to

decompose Z, and different modelers make different choices. Also, different

decompositions may be made at various scales and for various levels of auxiliary

information.
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Characterization of a trend

As mentioned earlier, often the behavior of a variable over time is entirely different

from its behavior over space. This difference can be represented in the trend of a

space–time model specification. For instance, nitrous oxide emissions from agri-

cultural and natural land are causally dependent on factors such as climate, veg-

etation type, atmospheric deposition, land management, and soil properties

(Stehfest and Bouwman 2006). Ignoring these types of factors would be unwise

when interpolating nitrous oxide emission measurements in space and time. Sim-

ilarly, space–time modeling and estimation of black smoke particulate matter con-

centrations benefit from accounting for explanatory variables such as chimney

density, distance to nearest industrial area, and land use (Fanshawe et al. 2008).

Ideally, the trend would be a process-oriented, physical-deterministic model com-

ponent that would lead to the state–space approach described previously and

space–time Kalman filtering. However, when deterministic modeling is not feasi-

ble, due to a lack of understanding of the underlying governing processes or

because external forces and boundary conditions governing the behavior of a

target variable are unknown, one may rely on a regression-type model relating the

dependent to the explanatory variables in an empirical way. The simplest

approach, and the one used here, is to assume a trend that is a linear relationship

between the (possibly transformed) dependent and explanatory variables, as in lin-

ear multiple regression.

After a trend has been specified and its parameters estimated, it may be

subtracted from Z so that attention may be directed to the space–time stochastic

residual V. With this approach, uncertainties in the detrending procedure are not

taken into account in any subsequent analysis. In kriging, this drawback causes the

interpolation uncertainty to appear smaller than it is. This problem can be avoided

by accounting for uncertainties in the trend coefficients, such as is done in universal

kriging (Diggle and Ribeiro 2007). The universal kriging approach is pursued in this

article. Thus, the trend m can be written as

mðs; tÞ ¼
Xp

i¼1

bi f iðs; tÞ ð2Þ

where the bi are unknown regression coefficients, the fi are predictors that must be

known exhaustively over the space–time domain, and p is the number of predictors.

Characterization of the stochastic residual

Throughout this article, we assume that the zero-mean stochastic residual V is

multivariate normally distributed. Given this assumption, the only information

lacking is its autocovariance function,

Cðsi; t i; sj; t jÞ ¼ E ½V ðsi; t iÞ � V ðsj ; t jÞ� ð3Þ
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Alternatively, we may characterize the second-order properties of V with the

variogram g as follows:

gðsi ; t i; sj ; t jÞ ¼
1

2
E½ðV ðsi ; t iÞ � V ðsj; t jÞÞ2� ð4Þ

To facilitate the estimation of C (or g) from observations, some limiting additional

simplifying assumptions are necessary. This topic is addressed in the ‘‘Modeling

space–time variation’’ section.

Space–time kriging and stochastic simulation

Once the trend and the covariance function of a residual term have been specified,

(space–time) interpolation can be done in the usual way. Universal kriging yields

the best linear unbiased predictor (with minimum expected mean squared error

among all possible predictors under multivariate normality) of Z(s0, t0) as

ẑðs0; t0Þ ¼ mT
0 b̂þ cT

0 C�1
n z�Mb̂
� �

ð5Þ

(Bivand, Pebesma, and Gómez-Rubio 2008, section 8.5), where M is an n � p

design matrix of predictor variables at the observation points, m0 is a vector of

predictors at the prediction point, Cn is an n � n variance–covariance matrix for the

n residuals at the observation points, c0 is a vector of covariances between

the residuals at the observation and prediction points, and �z is a vector of obser-

vations z(si, ti). The regression coefficients are estimated with b̂ in the usual way,

using generalized least squares.

The variance of the universal kriging prediction error is given by

s2ðs0; t0Þ ¼ varðZðs0; t0Þ � Ẑðs0; t0ÞÞ
¼ Cðs0; t0; s0; t0Þ � cT

0 C�1
n c0

þ ðm0 �MT C�1
n c0ÞT ðMT C�1

n MÞ�1ðm0 �MT C�1
n c0Þ

ð6Þ

The universal kriging equations (5) and (6) remain basically the same, whether or

not a temporal dimension is included. Thus, this perspective posits that spatiotem-

poral kriging and spatial kriging do not differ. However, one possible difference

worth mentioning is that, in the space–time situation, predictions are often fore-

casts. When predictions into the future are based on observations in the past and

present, space–time kriging becomes an extrapolator, instead of an interpolator,

along the time axis. This feature has no effect on the kriging equations but does

cause the predictions to become less accurate (i.e., larger kriging variance) because

information comes from one direction only. When future observations are used to

predict the present, although smaller kriging variances result, improper represen-

tation of a dynamic trend may cause artifacts, such as when soil water content

predictions increase in anticipation of future rainfall events (e.g., Snepvangers, He-

uvelink, and Huisman 2003).

Extending kriging to stochastic simulation and generating possible realities of Z

(such as is needed in Monte Carlo uncertainty propagation analyses) is not difficult.
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Existing algorithms, such as sequential Gaussian simulation, can be used (Goo-

vaerts 1997; Bivand, Pebesma, and Gómez-Rubio 2008).

Modeling space–time variation

The main methodological difficulty with the application of space–time kriging lies

in the characterization of the space–time covariance function. This function defines

the covariance between the variable of interest at two space–time points, (s, t) and

(s1h, t1u), where h is the distance increment in space, and u is the increment in

time. In the most general case, it is a function of s, t, h, and u, as in equation (3).

However, this specification cannot be estimated because, in practice, we have

observations of only one realization from which to infer a covariance function. The

common solution to this problem is to introduce a stationarity assumption, which

posits that the covariance of V(s, t) and V(s1h, t1u) depends only on the distance in

space h and distance in time u between the points: C(s, t, s1h, t1u) 5 C(h, u).

Although typically h is two dimensional, assuming isotropy in space means that

Euclidean distance can be collapsed to one dimension in space, allowing both h

and u to be treated as scalars, h and u.

The stationarity assumption greatly simplifies the space–time correlation struc-

ture of V, but a further practical simplification is needed to be able to estimate a

space–time covariance function or variogram from a set of observations. Different

approaches can be used, but one major difficulty is to ensure that the space–time

covariance function is valid (i.e., positive definite; Gneiting 2002). Recently, many

advanced methods have been published in the statistical literature to define classes

of valid space–time covariance structures (e.g., Cressie and Huang 1999; Gneiting

2002; Kolovos et al. 2004; Stein 2005; Fuentes, Chen, and Davis 2008; Ma 2008;

Mateu, Porcu, and Gregori 2008). A comprehensive review of these methods is

beyond the scope of this article. The main distinction made is between separable

and nonseparable space–time covariance functions. Separable covariance func-

tions can be written as the product of a purely spatial and purely temporal com-

ponent (Mateu, Porcu, and Gregori 2008). This allows efficient estimation and

inference, but separability is restrictive and often requires unrealistic assumptions

(Brown et al. 2001; Stein 2005; Fuentes, Chen, and Davis 2008). Therefore, atten-

tion has shifted to nonseparable space–time covariance structures, and recently

many classes have been proposed, including structures that can handle anisotropies

(Mateu, Porcu, and Gregori 2008) and negative covariances (Gregori et al. 2008). A

comparison of different approaches also has been made (Huang et al. 2007).

Here we use a simpler approach and obtain a positive-definite nonseparable

space–time covariance function with a model-based approach. We define a model

for V and derive the associated covariance function from it. If each of the compo-

nents of the model has a positive-definite covariance function, the positive

definiteness of the space–time covariance function is guaranteed. In addition, a

model-based formulation enhances interpretation of the space–time variability of
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the underlying process because it makes the data-generation process explicit. We

use the following model:

V ðs; tÞ ¼ V sðsÞ þ V tðtÞ þ V stðs; tÞ ð7Þ

where Vs is a purely spatial process (i.e., its realizations are constant over time), Vt

is a purely temporal process (i.e., realizations are constant in space), and Vst is a

space–time process for which distance in space is made comparable to distance in

time by introducing a space–time anisotropy ratio. Introducing a norm, or ‘‘metric,’’

in space–time to compare distance in space with distance in time has been

criticized because it ignores the fundamental difference between time and space

(Myers 2002); nevertheless, it brings the analysis back to the familiar ground of

three-dimensional geostatistical modeling. It also has a theoretical basis, because

the metric space–time component can be shown to result from a space–time linear

autoregressive model formulation and has a covariance function with an exponen-

tial shape (Griffith and Heuvelink 2009). All three components of equation (7) are

assumed stationary and mutually independent, which leads to the ‘‘sum-metric’’

space–time covariance structure (Snepvangers, Heuvelink, and Huisman 2003):

Cðh; uÞ ¼ CsðhÞ þ CtðuÞ þ Cst

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ ða� uÞ2

q
ð8Þ

The first two terms in the right-hand side of equation (8) allow for the presence of

zonal anisotropies (i.e., variogram sills that are not the same in all directions). Zonal

anisotropy occurs when the amount of variation in time is smaller or greater than

that in space and/or that in joint space–time. The geometric anisotropy ratio a that

appears in the third term in the right-hand side of equation (8) is needed

because a unit of distance in space is not the same as a unit of distance in time.

For instance, if a5 20 m per day, then two points that are separated by 100 m in

space and zero days in time have the same correlation as two points that are five

days apart in time and zero meters in space, or as two points that are separated by

60 m in space and four days in time.

A case study

Most European countries established radiation monitoring networks as part of an

emergency response system after the 1986 Chernobyl nuclear power plant acci-

dent. Among other things, networks provide information about detected gamma

dose rates generated by gamma radiation. Data generally are recorded at 10-min

intervals (De Cort and De Vries 1997). The primary purpose of radiation monitoring

networks is to provide an emergency alert system capable of rapidly detecting large

atmospheric releases of radiation. However, gamma dose rate data have potential

utility in applications other than providing estimates of the radiation environment in

cases of emergency. For example, aerosol concentrations data are very uncertain,

and gamma dose rate data could be used to calibrate and improve climate models

that examine the transport, transformation, and removal of these gases and aerosols.
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Indeed, spatial variation in dose rates from gamma radiation can describe almost

60% of the spatial variation in radon gas (222Rn) flux (Szevgary et al. 2007a; Szeg-

vary, Leuenberger, and Conen 2007b). Time averages of gamma dose rates in non-

emergency situations also provide delineations of background radiation caused

by cosmic radiation, radioactive geological deposits, and normal anthropogenic

nuclear activities, such as those that take place in nuclear power plants, hospitals,

and research institutes (Melles et al. 2008). Maps portraying background radiation

distributions are useful for improving detection efficiency in emergency situations

(i.e., reduce false alarms).

We illustrate space–time geostatistics using monthly averaged gamma dose rates

collected during a 5-year period, calendar years 2003–2007, for four German states

(Niedersachsen, Nordrhein-Westfalen, Bremen, and Rheinland-Pfalz) in which 656

permanent gamma dose rate measurement devices are located (Fig. 1). Measurements

were not made at all sites over the entire period; a total of 36,681 observations were
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Figure 1. Study area with measurement locations. Grayscales are average gamma dose rates

for month 1 (January 2003) in micro-Sieverts per hour. Coordinates are in the Lambert Equal

Area, ETRS89 geodetic datum, GRS80 ellipsoid projection.
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made. All geostatistical analyses were done using the R-gstat package (Bivand,

Pebesma, and Gómez-Rubio 2008). Histograms of the data for arbitrarily selected

months (1, 13, and 15) are given in Fig. 2. The histograms show that the data have a

near-symmetric distribution and have no suspicious outliers. The same holds for all

other months. Fig. 1 also portrays the spatial distribution of the data for month 1, which

shows a north–south trend with larger values in the south. This trend probably is

caused by differences in geology and elevation (the effect of cosmic radiation is greater

at high altitudes), which can be taken into account by the trend of a space–time model.

Here, we simply used a trend that is linear in latitude.

The experimental space–time variogram of the detrended data is given in Fig. 3.

The marginal temporal and marginal spatial variograms are given in Fig. 4. An order of

magnitude difference in variation in time and space exists. The spatial variation

appears much greater than the temporal variation, even after removal of a spatial trend.

There is a dip in the marginal temporal variogram at the 12-month time lag, indicating

seasonal effects in gamma dose rates. As before, this pattern could be accounted for by

examining the periodic temporal trend (which is not done here). A space–time vario-

gram model was fitted to the data using a sum-metric model (i.e., equation [8]), where

exponential functions were chosen for the temporal and spatiotemporal variograms,

and the Bessel function was selected for the spatial component (Griffith and Layne

1999, pp. 146–52). Each of the three components has a nugget (c0), partial sill (c1), and

range parameter (r). The spatiotemporal variogram has an additional anisotropy ratio a,

resulting in 10 parameters in total. To speed up and improve convergence of the least

squares iterative numerical fitting (Cressie 1985), the number of degrees of freedom for

the model was reduced to three by imposing the following constraints, based on visual

inspection of the experimental variogram:

(1) c0(time)1c0(space–time) 5 1.0E� 6 (nugget of marginal temporal variogram);

(2) c0(time)1c0(space–time)1c1(time)1c1(space–time) 5 1.1E� 5 (sill of mar-

ginal temporal variogram);

(3) r(time) 5 6 months (temporal range parameter, effective range equals 18

months);

(4) c0(space)1c0(space–time) 5 2.0E� 5 (nugget of marginal spatial variogram);

(5) c0(space)1c0(space–time)1c1(space)1c1(space–time) 5 1.6E� 4 (sill of mar-

ginal spatial variogram);
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Figure 2. Histograms of gamma dose rate observations (mSv/h) for three arbitrary months.
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(6) r(space) 5 35 km (spatial range parameter, effective range equals 140 km);

and,

(7) c0(time)1c0(space)1c0(space–time)1c1(time)1c1(space)1c1(space–time) 5

1.63E� 4 (total sill).

The resulting parameter values are given in Table 1. The fitted model

also is represented by solid lines superimposed on the marginal variograms in

Fig. 4. Overall, the fit is satisfactory, although it might be improved by taking

the seasonal trend into account. Also, the fitted marginal spatial variogram fails

to incorporate the sudden increase for short lags. The variogram model was

fitted to the entire space–time experimental variogram, which may be one

reason why the fitting to the marginal experimental variograms may appear sub-

optimal.

The majority of the total variation is accounted for by the spatial component,

whereas the temporal and spatiotemporal components have a much smaller con-

tribution. This result suggests that spatial patterns are stable over time and hardly

change between months. Even though the temporal and spatiotemporal compo-

nents are small relative to the spatial component, ignoring these would prevent

any model variation in time, which is unrealistic (e.g., see observations plotted in

Fig. 5). A space–time component Vst also is important to include, because complete

space–time separation with only a spatial component Vs and a temporal compo-

nent Vt implies that spatial patterns are identical at all time points and that temporal

dynamics are the same everywhere, which is counter to evidence provided by the

observations. Excluding a space–time component would also cause singularity

problems, because many observations were taken from all four corners of space–
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Figure 3. Perspective view of space–time experimental variogram.
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time rectangles (Rouhani and Myers 1990; Snepvangers, Heuvelink, and Huisman

2003).

Now space–time kriging can be used to make predictions and quantify the

prediction error at any space–time point using all of the data. Here we present

results as time series near three arbitrarily chosen measurement locations (Fig. 5),

three arbitrarily chosen nonmeasurement locations (Fig. 6), and in the form of maps
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Figure 4. Marginal experimental variograms (dots) and fitted models (solid line): (a) temporal;

(b) spatial.

Table 1 Fitted Parameters of the Space–Time Variogram Model
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r
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r
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r
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for two arbitrarily chosen time points (Fig. 7). To reduce computational complexity,

the search radius of the kriging window was limited to a maximum of 700 closest

observations (where ‘‘closest’’ is defined in terms of the degree of correlation).

Although this number appears to be more than sufficient, in this case it may still be
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Figure 5. Kriging predictions over time in the immediate vicinity of three arbitrary measure-

ment locations; thin lines are predictions � one prediction error standard deviation. Dots are

measurements. (a) x 5 4,184,364, y 5 3,384,588; (b) x 5 4,080,946, y 5 3,101,289; (c)

x 5 4,143,018, y 5 2,892,560.
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too limited because of the many repeated measurements at each location (i.e., up to

60). However, using more observations would slow down the computations too

much and may create numerical instabilities.

Fig. 5 shows that temporal patterns are similar for all three measurement lo-

cations, with small values in winter and large values in (late) summer. However,
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Figure 6. Kriging predictions over time at three arbitrary nonmeasurement locations; thin

lines are predictions � one prediction error standard deviation. (a) x 5 4,321,000,

y 5 3,210,000; (b) x 5 4,075,412, y 5 3,104,620; (c) x 5 4,186,738, y 5 3,323,123.
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differences between stations are clear, particularly with respect to the mean value

and the magnitude of variation. Predictions also can differ systematically from the

measurements over longer time periods. For instance, predictions shown in Fig. 5a

(first year) and Fig. 5c (final year) are greater than their corresponding observations.

Apparently, neighboring stations have greater gamma dose rates, which are incor-

porated in the space–time kriging and cause a correction to greater values. Pre-

diction intervals seem to represent the uncertainty adequately, because roughly

two-thirds of the observations are contained within the prediction intervals. Fig. 6

shows that predictions at locations that are not close to an observation site are

smoother than those near observation sites and that the seasonal effect is much less

pronounced. Prediction intervals also are wider, and their width is practically con-

stant over time. This finding is expected, because the main source of prediction

error is spatial variability, which essentially does not change over time.

Fig. 7 confirms that the general spatial pattern of the gamma dose rate is per-

sistent over time, with large values in the south and southeast and small values in

the north. Differences between the two maps of predictions are very small. The

maps of kriging standard deviations (Fig. 8) show that prediction errors are small

(typically one order of magnitude smaller than the predicted values), with a spatial

pattern that reflects the spatial configuration of the observation locations. Because

the distribution of measurement locations is fairly uniform (see Fig. 1), the predic-

tion error standard deviation is almost constant in the interior of the study area. The

largest prediction errors are observed at the boundary of the area; however, the

effect is not strong because a greater relative concentration of measurement loca-

0.06

0.07

0.08

0.09

0.10

0.11

(a) (b)

0.06

0.07

0.08

0.09

0.10

0.11

0.12

Figure 7. Kriging predictions over space at two arbitrary time points: (a) month 13; (b) month

51.
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tions exists in the border areas (Fig. 1). Because the geostatistical model is dom-

inated by the spatial component, the maps presented in Figs. 7 and 8 will not differ

very much from maps obtained with conventional spatial kriging.

Discussion and conclusion

During the past few decades, interest in space–time geostatistics has grown,

although applications are still restricted mainly to academic research. One of the

obstacles to mainstream applications is the difficulty in building a space–time

model, in particular, the space–time variogram. The space–time variogram should

provide a realistic description of space–time variability and should not be too

complex to be feasible to determine from available data. Development of general

and flexible space–time covariance structures is an active research area within

statistics, but more effort is needed to communicate results with geostatisticians and

to embed results in geostatistical practice. Also, approaches that derive space–time

covariance structures from explicit models of random functions assumed to have

generated given data—be it space–time autoregressive moving average models or

PDEs—deserve attention. These approaches are attractive because they express

spatial and temporal relationships in a simple and natural way, with links to social

and physical processes such as interaction, attraction, repulsion, diffusion, and

convection (Whittle 1963; Bennett 1979; Griffith and Csillag 1993; Øksendal 2003;

Kolovos et al. 2004). In practice, purely spatial or temporal processes also may

be present, leading to a formulation that involves sums of temporal, spatial, and

spatiotemporal components. An implicit assumption is that these components act
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independently, which may not be realistic. Formulations that take into account

interactions among these components may need to be developed and their asso-

ciated variograms derived.

Constraints on variogram parameters in the empirical example presented here

cause the overall fit to deteriorate but were imposed to ensure convergence to a

near-global optimum of least-squares fitted parameters. Tools for fitting the space–

time variogram to experimental variograms remain poorly developed. To date,

fitting the parameters of the sum-metric model has been tried with ad hoc trial-

and-error methods (Heuvelink, Musters, and Pebesma 1997) and by relying on

numerical optimization techniques (Snepvangers, Heuvelink, and Huisman 2003).

The extension from simple or ordinary to universal kriging may impose additional

problems, namely, that least-squares solutions give biased results and suggest the

use of restricted maximum likelihood techniques (Diggle and Ribeiro 2007; Mar-

chant and Lark 2007).

The case study presented here involves predicting monthly averaged gamma

dose rates for four German states over a 5-year period. The data show a dominant

spatial component, which led us to conclude that spatial patterns of radiation are

stable over the time period studied; this is confirmed by kriging. Temporal patterns

are less consistent over space, although the seasonal effect is noticeable. Improved

modeling that would incorporate a seasonal effect, geology, and elevation in the

trend (Melles et al. 2008) would result in more realistic and more accurate pre-

dictions. However, even with a simple spatial trend model, observation density in

space and time is sufficiently large to ensure that the resulting space–time coverage

of gamma dose rate predictions has a small associated prediction error. The dom-

inance of the spatial component suggests that an alternative, purely spatial model

might represent the space–time distribution of the gamma dose rates as well as the

space–time model used here. Likelihood-ratio tests comparing the spatial and

spatiotemporal models may be used to analyze whether use of the more complex

spatiotemporal model is worthwhile. This test result might reveal that, from a pre-

diction error variance perspective, the spatiotemporal model provides no signifi-

cant improvement over the purely spatial model. However, the spatial model

would fail to represent the dynamic behavior of the gamma dose rates, for example,

as presented in Fig. 5. Although the temporal variation is much smaller in magni-

tude than the spatial variation, it may be of specific interest to users concerned with

temporal departures from the long-term background pattern. Likewise, the subtle

differences in spatial patterns such as those presented in Fig. 7 may be valuable too,

provided they are statistically significant.

Computationally, space–time kriging is more demanding than spatial kriging,

because typically the number of observations is large as is the number of space–

time prediction points. The total number of observations in our case study exceeds

36,000, which makes global kriging practically impossible. Instead, local search

neighborhoods with 700 observations were used. This may have caused some

artifacts in the prediction time series and maps.
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The principal finding of this case study is that space–time geostatistics can

produce large-scale space–time predictions of target variables and associated

prediction errors. In doing so, it provides insight into the relative contribution of

spatial, temporal, and spatiotemporal variation. This finding is not only useful

for optimizing spatiotemporal sampling and monitoring designs but also provides

insight into causes behind variation in space and time. Thus, space–time geosta-

tistics contributes to the understanding and modeling of phenomena that vary in

space and time.
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