
Not Always Buried Deep
Selections from Analytic and Combinatorial

Number Theory

c© 2003, 2004
Paul Pollack

2003 Summer Course Notes
Ross Summer Mathematics Program

First Draft: June 9, 2003
Second Draft: November 16, 2003
Last updated: May 9, 2004

In memory of Professor Arnold Ephraim Ross (1906-2002),
whose example continues to be a teacher for all of us.



Preface

The gold in ‘them there hills’ is not always buried deep. Much of
it is within easy reach. Some of it is right on the surface to be picked
up by any searcher with a keen eye for detail and an eagerness to
explore. As in any treasure hunt, the involvement grows as the hunt
proceeds and each success whether small or great adds the fuel of
excitement to the exploration. – Arnold Ross, Prolog (1978)

This manuscript grew out of notes for an eight-week summer course offered
to counselors at the 2003 Ross Summer Mathematics Program.

As the title suggests, all of the topics discussed lie close to the surface in that
their study requires no significant technical preparation. Solid undergraduate
courses in number theory, abstract algebra and single-variable calculus should
enable one to appreciate bulk of the text.

Outline of Contents

Our first chapter treats elementary prime number theory in Z,Z[i] and Fq[T ].
We begin with a topical survey of several proofs of the infinitude of the primes
(over Z). We then digress briefly to discuss how Gauss was led to conjecture the
prime number theorem (whose proof we defer to Chapter 4) before we tackle
some of the simplest estimates for π(x), such as Euler’s estimate π(x) = o(x).
The next two sections are devoted to the work of Chebyshev and Mertens, in-
cluding Chebyshev’s determination of x/ log x as the correct order of magnitude
of π(x) and Ramanujan’s proof of the asymptotic Bertrand’s postulate. Some
analogous results in Z[i] are discussed before we turn our attention to prime
number theory in the ring of polynomials over a finite field. There we focus on
a classical analog of the prime number theorem, due essentially to Gauss, and
a recently established analog of the twin prime conjecture, due (for q 6= 3) to
C. Hall [Hal03, Corollary 19]: if α ∈ F∗

q , where q > 2, then there are infinitely
many twin prime pairs h, h+ α ∈ Fq[T ].

Our heuristic approach to the prime number theorem also motivates several
as-yet unproved conjectures, such as the Goldbach and twin prime conjectures.
Such consequences are explored in the final section of Chapter 1. A further
example is the conjecture of Schinzel [SS58] that if f1, . . . , fk ∈ Z[T ] are dis-
tinct irreducible polynomials (with positive leading coefficient), then there are
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infinitely many integers n for which each fi(n) is prime, unless there is a “local
obstruction,” i.e., a prime p dividing the product f1(n) . . . fk(n) for every value
of n. We adapt our heuristic to motivate a stronger, quantitative form of this
conjecture put forward by Bateman & Horn [BH62], special cases of which had
previously been examined by Hardy & Littlewood.

The special case of Schinzel’s conjecture when k = 1 and f1 is linear is a
classical theorem of Dirichlet whose proof is taken up in Chapter 2. The theorem
is well known to follow from the nonvanishing of L(1, χ) for every character χ
of Z/qZ∗, where L(s, χ) is the associated Dirichlet series

∑

n χ(n)n−s. Both
this implication and the stated non-vanishing are usually proved using tools
from complex analysis, but we follow H.N. Shapiro [Sha50] in giving elementary
proofs of these facts. The major point of departure from Shapiro’s treatment
is our proof of the non-vanishing of L(1, χ) for real χ, which follows P. Monsky
[Mon93]. We conclude the chapter with the characterization of the integers
expressible as a sum of three squares, following Ankeny [Ank57] and Mordell
[Mor58].

Chapter 3 discusses elementary sieve methods in number theory. We begin
with a discussion of the sieve of Eratosthenes and some corollaries, e.g., that
almost all numbers do not admit a representation as a sum of two squares.
We then turn to Viggo Brun’s elementary “pure sieve,” which is used to de-
duce that the twin primes are sparse in the set of all primes, in that π2(x) =
O(x(log log x)2/ log2 x). One famous consequence is that

∑

p 1/p <∞, where p
runs over the twin primes. The strong form of the twin prime conjecture would
imply the more precise result π2(x) = O(x/ log2 x), which was obtained uncon-
ditionally by Brun and which we establish by a recent method Hooley [Hoo94].
The Brun-Hooley sieve also permits lower estimates, and in this way we prove
the following two approximations to the Goldbach and twin prime conjectures:

i. every large even N is the sum of two positive integers, neither of which
has more than 7 prime factors,

ii. there are infinitely many positive even integers N for which N,N +2 each
have no more than 7 prime divisors (counted with multiplicity).

Brun obtained results of this form (but with the worse constant 9 in place of 7)
in 1919 ([Bru19], [Bru20]), but by a much more complicated method.

In Chapter 4 we keep a promise made in Chapter 1: we describe an elemen-
tary proof of the prime number theorem, following A.J. Hildebrand [Hil86]. This
is one of only two elementary routes to the PNT known that differs essentially
from the original 1949 Erdős-Selberg approach. In order to keep the treatment
self-contained, we include Landau’s proof that the prime number theorem is
equivalent to the estimate

∑

n≤x µ(n) = o(x) (which is what we directly estab-
lish), a proof of the Turán-Kubilius inequality, and a brief account of Selberg’s
sieve (needed to derive an upper bound for the number of primes in a short
interval).

At this point, we switch focus from analytic number theory to additive and
combinatorial number theory.
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We commence our study anew in Chapter 5, with a survey of results from
additive number theory. If A1, . . . ,Ah are subsets of an additive semigroup S,
we define

A1 + · · ·+Ah := {a1 + · · ·+ ah : ai ∈ Ai}.

The set S is called an additive basis of finite order if hA = S for some positive
integer h, where hA denotes the h-fold sumset. S is called an asymptotic basis
of finite order if S \ hA is finite for some positive integer h. We will be particu-
larly concerned with the cases when S = Z/mZ and S = Z; in these situations
we attack the problem by studying how the size (respectively “thickness,” ap-
propriately defined) of a sumset A + B compares to that of the summands.
In these respective cases, we prove the important sumset theorems of Cauchy,
Davenport, Chowla [Cho35] and Mann [Man42]. We then combine our results
on additive bases with a sieve result from Chapter 3 to prove Schnirelmann’s
theorem [Sch33] that every integer n > 1 can be written as the sum of at most
C primes for some absolute constant C.

An intermediate result obtained in the proof of Schnirelmann’s theorem is
that {p+q : p, q prime} has positive lower density. We prove the same for the set
{p+ ak : p prime, k ≥ 1}, for every fixed integer a ≥ 2. This is due to Romanov
[Rom34]. When a = 2, Romanov asked whether this set contained all sufficiently
large odd numbers. This was answered in the negative by Erdős [Erd50], who
exhibited an infinite arithmetic progression of counterexamples. We discuss
his results and a related theorem of Crocker before turning to our final topic,
Schur’s regularity lemma. Schur proved [Sch16] that if the set {1, 2, . . . , bk!ec}
is partitioned into k subsets, then one of the subsets contains a solution to
x− y = z. While appearing as a lemma in a paper on Fermat’s Last Theorem,
Schur’s theorem is a combinatorial gem and an important ancestor of the results
discussed in the next chapter.

Chapter 6 treats the subject of sequences without arithmetic progressions.
The founding result in this area is the theorem of van der Waerden: in any finite
partition of the positive integers, (at least) one set in this partition contains
arbitrarily long arithmetic progressions [vdW27]. We present a short proof of
this, due to Graham & Rothschild [GR74], as exposited by Pomerance & Sárközy
[PS95]. One might suspect what is behind the truth of van der Waerden’s
theorem is that in any finite partition of the positive integers into k sets, (at
least) one of the sets is “thick,” in fact has upper density not less than 1/k. This
suspicion was confirmed by Szemerédi [Sze75], who proved that any subset of the
positive integers with positive upper density contains arbitrarily long arithmetic
progressions. The easier special case of 3-term progressions had been treated
earlier by K.F. Roth [Rot52], and we present two proofs of Roth’s theorem. The
first argument is purely combinatorial and is due to Szemerédi; our treatment
follows Graham [Gra81, Chapter 5]. The second argument is analytic, being
an instance of the circle method, and in the form presented here is due to D.J.
Newman ([New81], [New98]).

In the opposite direction, one can ask for a lower bound on r3(n), defined as
the size of the largest subset of {1, 2, . . . , n} with no three terms in arithmetic



iv

progression. Behrend [Beh46] (improving on earlier work of Salem & Spencer
[SS42]) proved

r3(n) ≥ N1−(2
√

2 log 2+o(1))/
√

logN ,

and apart from the constant 2
√

2 log 2 this remains the best known result. The
closing of Chapter 6 is devoted to a presentation of Behrend’s original elegant
construction.

The final chapter marks our return to the realm of additive number theory,
but our energies are now concentrated on a single problem: Waring’s conjecture
that for every positive integer k, the set of nonnegative kth powers forms an
additive basis of finite order (for N). The proof we present is an adaptation
of the Hardy-Littlewood circle method (see [Vau97, Chapter 2]) due to D.J.
Newman ([New60], [New98, Chapter V]). The circle method is usually used to
establish an asymptotic formula for the number of representations of an integer
as a sum of s kth powers, valid as n → ∞ for fixed s > s0(k). From this
asymptotic formula, Waring’s conjecture is immediate. However, we take an
easier route, proving only a rough upper bound for the number of representations
which, in combination with Schnirelmann’s results from Chapter 5, is enough
to imply the conjecture.

The Appendix reviews definitions and results from asymptotics; familiarity
with this material is assumed throughout the text.

Notation and Conventions

Much of our notation is standard and should be familiar to students of elemen-
tary number theory. However, the reader should be aware that we take the set
of natural numbers N to include 0; the positive integers are denoted by Z+.

By an arithmetic function we mean a function f : Z+ → C. An arithmetic
function is said to be multiplicative if f is not identically 0 and

f(ab) = f(a)f(b) whenever gcd(a, b) = 1.

Of the two common notations for the number of divisors of n, we choose τ(n).
We also use ν(n) to denote the number of distinct prime divisors of n, since the
usual notation ω(n) is needed for a different purpose in Chapter 3.

The notation f = O(g) means that |f | ≤ C|g| for some constant C. An
equivalent but more suggestive notation, due to Vinogradov, is f � g. The
notation f � g means g � f . If f � g and g � f , we say that f and g have
the same order of magnitude and write f � g. The notation f = o(g) as x→ a
(respectively f ∼ g as x → a) means that limx→a f(x)/g(x) = 0 (respectively
= 1); if no a is specified, then a = ∞ is assumed. See Appendix A for more
details.

Subsets of Z,Z/mZ or Fq are often denoted with script letters, e.g., A. The
number of positive elements of a subset of Z that do not exceed N (the so-called
counting function of the set) is denoted with the corresponding roman letter,
e.g.,

A(N) := |{1 ≤ n ≤ N : n ∈ A}| .
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We define the lower and upper asymptotic densities of A ⊂ Z by

d(A) := lim inf
x→∞

A(x)/x, d(A) := lim sup
x→∞

A(x)/x; (0.1)

if d(A) = d(A), then the common value is referred to as the natural density and
denoted d(A). Note that since A(x) = A(bxc), one obtains equivalent definitions
if x in (0.1) is restricted to the set of positive integers, which we shall sometimes
assume. A statement about positive integers is said to hold for “almost all n”
if the set of exceptions has density 0.

Sums and products indexed over p are restricted to primes p, unless otherwise
specified. The condition n ≤ x and its variants indicates that the sum (or
product) is taken over all positive integral n ≤ x. The empty sum and the
empty product are taken to be 0 and 1, respectively.

A partition of a set is a decomposition into disjoint subsets; we do not require
that the component sets be nonempty.

A Word on the Exercises

There are several exercises scattered throughout the text, usually discussing
applications or extensions of the main results. Exercises with a common theme
are often grouped into their own subsection, while an isolated exercise or two
is often left in the subsection treating the relevant subject matter. Most of the
exercises are not strictly necessary for an understanding of the text, and those
that are have been explicitly marked.
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Chapter 1

Elementary Prime Number
Theory

Mathematicians have tried in vain to this day to discover some
order in the sequence of prime numbers, and we have reason to
believe that it is a mystery into which the human mind will never
penetrate. – Leonhard Euler

1.1 Introduction

Few topics in number theory attract more attention, popular or professional,
than the theory of prime numbers. It is not hard to see why; the study of the
distribution of the primes possesses in abundance the very features that draw so
many of us to number theory in the first place: intrinsic beauty, accessible points
of entry, and a lingering sense of mystery embodied in numerous unprententious
but infuriatingly obstinate open problems.

The first significant result here is, of course, the infinitude of the primes. A
considerable portion of this opening chapter is devoted to surveying the many
arguments that have been brought to bear on this theme.

After we know the prime counting function π(x) tends to infinity, it is natural
to wonder if something more precise can be asserted. In the late 1700s and
early 1800s, Legendre and Gauss independently conjectured the prime number
theorem:

π(x) := |{p ≤ x : p prime}| ∼ x/ log x.

Gauss’ motivation for making this conjecture is described in §1.3.

Though unable to prove the prime number theorem, the 19th century math-
ematician Chebyshev made several important contributions to prime number
theory. He proved that x/ log x was the correct order of magnitude of π(x), in
that the ratio π(x) log x/x is bounded between two positive constants for x ≥ 2.

1



2 CHAPTER 1. ELEMENTARY PRIME NUMBER THEORY

He also showed

lim inf
π(x)

x/ log x
≤ 1, lim sup

π(x)

x/ log x
≥ 1,

so that if π(x) log x/x tends to a limit, then that limit must be 1. Thus, the
surprise (and the difficulty!) inherent in the prime number theorem is not in
the rate at which π(x) grows, but in the regularity of its growth. Finally, he
proved (a strengthening of) Bertrand’s postulate, that there is always a prime
between n and 2n. After a brief discussion of simpler estimates for π(x) in §1.4,
we take up Chebyshev’s ideas in §1.5, together with an application of Sierpiński
to primes represented by quadratic polynomials.

Later in the 19th century, Mertens’ took up Chebyshev’s results and used
them to make rigorous certain earlier assertions of Euler and Gauss. In par-
ticular, he obtained quite precise estimates for

∑

p≤x 1/p and
∏

p≤x (1− 1/p).
These estimates are useful in many contexts, for example in our proof of Dirich-
let’s Theorem (Chapter 2) and in our discussion of sieve methods (Chapter 3).

The estimates of Chebyshev and Mertens are the zenith in our development
of prime number theory over Z. At this point, we leave the realm of what we
can prove to be true to discuss what, if the universe is just, should be true. For
example, modifying Gauss’ heuristic motivating the prime number theorem, we
derive quantitative versions of the twin prime and Goldbach conjectures.

In the final two sections, we take a brief look at prime number theory in two
other contexts: the ring of Gaussian integers and the ring of polynomials over a
finite field. In the former case, we content ourselves with stating the analog of
the prime number theorem and generalizing the previously established estimates
of Chebyshev. In the latter case, we are able to do much more; it is possible to
prove the prime number theorem in an elementary manner, and to settle one
version of the “twin prime conjecture.”

1.2 There are Infinitely Many Primes

Recall that a prime number is an integer greater than 1 admitting no nontrivial
factorization. Much of classical number theory centers around the study of the
counting function

π(x) := |{p ≤ x : p prime}|.
In this chapter we explore some of the more elementary results in this direction,
beginning with a deservedly famous theorem from antiquity:

Theorem 1.2.1. There are infinitely many primes, i.e., π(x)→∞ as x→∞.

In this section we describe several methods for proving Theorem 1.2.1. Most
of these proofs may be found in [Dic66, Chapter XVIII] or [Nar00, §1.1]. For
other compilations, see [Rib96, Chapter 1] and [Moh79]. Some of the methods
discussed here yield the stronger result that

∑
1/p diverges; other elementary

proofs of that fact may be found in [Bel43], [Mos58], and the survey [VE80].
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1.2.1 Euclid and his Imitators

We begin with the well-known classical proof found in Euclid’s Elements (from
circa 300 BC):

Proof. Suppose p1, p2, . . . , pn is any finite list of primes. Let P denote the
product of the pi and consider the integer P + 1. Since P + 1 ≡ 1 (mod pi)
for each prime pi in our list, P + 1 cannot be divisible by any of the pi. But
as an integer larger than 1, it has some prime divisor p. It follows that there is
always a prime missing from any finite list, or as Euclid put it, prime numbers
are more than any assigned multitude of primes.

There are many trivial variants; for instance, we can easily show that for
every integer m there is a prime p > m by taking as p any prime divisor of
m! + 1.

We will give several similar proofs in this section: all of these begin with a
finite list of primes and produce an integer > 1 that is coprime to all of them.
Stietjes’ proof is a quintessential example:

Stieltjes’ proof, 1890. Suppose p1, . . . , pn is a finite list of distinct primes with
product P and let P = AB be any decomposition of P into positive factors.

Let p be one of the pi. Then p divides AB, so that either p | A or p | B. If
p were to divide both, then p2 would divide P , and this would violate unique
factorization; consequently p divides exactly one of A and B. It follows that
p - A+B. So A+B is divisible by none of the pi; but as A+B ≥ 2, it has some
prime divisor. So again we’ve discovered a prime not on our original list.

Euler’s second proof (published posthumously). The proof is based on the mul-
tiplicativity of the φ-function; Let p1, . . . , pn be a list of distinct primes with
product P . By said multiplicativity,

φ(P ) =
∏

(pi − 1) ≥ 2n−1 ≥ 2,

provided our list contains at least two primes (as we may assume). This in-
equality says there exists an integer in the range [2, P ] that is coprime to P , but
such an integer has a prime factor necessarily different from any of the pi.

Proof of Braun (1897), Métrod (1917). Let p1, . . . , pn be a list of n ≥ 2 distinct
primes and let P = p1p2 · · · pn as usual. Consider the integer

N := P/p1 + P/p2 + · · ·+ P/pn.

For each i, 1 ≤ i ≤ n,

N ≡ P/pi =
∏

j 6=i
pj 6≡ 0 (mod pi),

so that N is divisible by none of the pi. But N ≥ 2, so must possess a prime
factor not on our list.
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Exercise 1.2.1. Adapt Euclid’s proof of the infinitude of primes to demonstrate
that for every integer m ≥ 3, there exist infinitely many primes p 6≡ 1 (mod m).

Exercise 1.2.2 (A. Granville, cf. [Has50, p. 168]). Generalizing the result of
the previous exercise, show that if H is a proper subgroup of Z/mZ∗, then there
exist infinitely many primes p with p (mod m) /∈ H.

1.2.2 Coprime Integer Sequences

Suppose we know an infinite sequence of pairwise relatively prime positive inte-
gers

2 ≤ n1 < n2 < . . . .

Then we may define a sequence of primes pi by selecting arbitrarily a prime
divisor of the corresponding ni; the terms of this sequence are pairwise distinct
because the ni are pairwise coprime.

If we can exhibit such a sequence of ni without invoking the infinitude of
the primes, we have a further proof of Theorem 1.2.1. This was accomplished
by Goldbach:

Proof (Goldbach, 1730). Let n1 = 3, and inductively define

ni = 2 +
∏

1≤j<i
nj

for i > 1. Then the following assertions are all easily verified in succession:

i. Each ni is odd.

ii. When j > i, nj ≡ 2 mod ni.

iii. We have gcd(ni, nj) = 1 for i 6= j.

Theorem 1.2.1 now follows from the above remarks.

A straightforward induction shows

ni = 22i−1

+ 1, (1.1)

and this is how Goldbach presented the proof. Of course we could have chosen
the ni in a different fashion above, taking for instance a different value for n1

and/or adding 1 instead of adding 2. See Exercise 1.2.3.
Before proceeding, we pause to note that the above proof implies more than

simply the infinitude of the primes. First, it gives us an upper bound for the
nth prime: 22n−1

+ 1; this translates into a lower bound of the shape

π(x)� log log x (x→∞).

Second, it may be used to prove that certain arithmetic progressions contain
infinitely many primes. To see this, let p | ni and note that by (1.1), we have

22i−1 ≡ −1 (mod p), 22i ≡ 1 (mod p).
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Hence the order of 2 (mod p) is precisely 2i. It follows that 2i divides the order
of the multiplicative group mod p, so that 2i | (p−1) or, otherwise stated, p ≡ 1
(mod 2i). As a consequence, for any fixed k, there are infinitely many primes
p ≡ 1 (mod 2k): choose a prime pi dividing ni for each i ≥ k. The subject
of primes in prescribed arithmetic progressions will be revisited in Chapter 2,
when we prove Dirichlet’s celebrated theorem on the subject.

A related method of proving the infinitude of the primes is as follows: Let
a1 < a2 < a3 < . . . be a sequence of positive integers with the property that

gcd(i, j) = 1 =⇒ gcd(ai, aj) = 1.

Moreover, suppose that for some prime p, the integer ap has at least two distinct
prime divisors. Then if p1, . . . , pk were a list of all the primes, the integer

ap1ap2 · · · apk

would possess least k+1 prime factors: indeed, each factor exceeds 1, the factors
are pairwise relatively prime, and one of the factors is divisible by two distinct
primes. So there are k + 1 > k primes, a contradiction.

It remains to construct such a sequence. We leave to the reader the easy
exercise of showing that an = 2n − 1 has the desired properties (note that
a11 = 23 · 89). A similar proof taking instead an as the nth Fibonacci number
was given by M. Wunderlich [Wun65] and was abstracted much as above by
Hemminger [Hem66].

Exercise 1.2.3 (A. Granville). Let n1 = 2, and for i > 1 define

ni = 1 +
∏

j<i

nj .

Thus the sequence {ni} begins 2, 3, 7, 43, . . . . Show that

a) The ni are pairwise relatively prime.

b) For i > 1, ni = f(ni−1), where f(T ) = T 2 − T + 1.

c) If p | f(n) for some integer n, then −3 is a square (mod p). Taking a
prime divisor of each ni, conclude that there are infinitely many primes
p ≡ 1 (mod 3).

Exercise 1.2.4 (Mohanty [Moh78]). Let m be a positive integer. Let A1 be any
integer with gcd(A1,m) = 1, and for n ≥ 1 define

An+1 = A2
n −mAn +m.

a) Show that gcd(Ai, Aj) = 1 for i 6= j. Suggestion: Show that if p | Ai for
some i, then for all j > i we have p - Aj .

b) Show that if A1 > m, one has An > m ≥ 1 for every n. Use this to give
another demonstration that there are an infinite number of primes.
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c) Taking A1 = 3 and m = 2, show that An = 22n−1

+ 1; thus we have recov-
ered Goldbach’s proof. Note that the choice A1 = 2, m = 1 corresponds
to Exercise 1.2.3.

Exercise 1.2.5 (Harris [Har56]). Let b0, b1, b2 be positive integers with b0 co-
prime to b2. Define Ak for k = 0, 1 and 2 as the numerator when the finite
continued fraction

b0 +
1

b1 +
1

. . . +
1

bk

is put in lowest terms. For k = 3, 4, . . . , inductively define bk and Ak by

bk = A0A1 . . . Ak−3

and Ak by the rule given above. Prove that the Ai form an increasing sequence
of pairwise coprime positive integers.

Exercise 1.2.6 (Aldaz & Bravo [AB03]). Let pi denote the ith prime. Euclid’s
argument shows that for each r, there is a prime in the interval (pr,

∏r
1 pi + 1].

Prove that the number of primes in the (smaller) interval (pr,
∏r

2 pi + 1] tends
to infinity with r.

Suggestion: With P =
∏r

2 pi, show that P − 2, P − 22, . . . , P − 2k are > 1
and pairwise coprime for fixed k and large r; then choose a prime factor of each.

1.2.3 The Riemann Zeta Function

Define the Riemann zeta function (for <(s) > 1, to ensure convergence) by

ζ(s) :=

∞∑

n=1

1

ns
.

A mere glance at any analytic number theory text (such as [Dav00]) will reveal
that this function occupies a central position in the subject, particularly in
investigations concerning the distribution of primes. We shall more or less
avoid it in these notes, but in the deeper investigations the zeta function is
indispensable.

Riemann introduced the study of ζ(s) as a function of a complex variable
in an 1859 memoir on the distribution of primes [Rie59]. But the connection
between the zeta function and the prime numbers goes back earlier. Over a
hundred years prior, Euler had looked at the same series for real s and had had
shown that[Eul37, Theorema 8]

∞∑

n=1

1

ns
=
∏

p

1

1− 1
ps

(s > 1). (1.2)
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This is often called an analytic statement of unique factorization. To see why,
notice that formally (i.e, disregarding matters of convergence)

∏

p

(

1 +
1

ps
+

1

p2s
+ · · ·

)

=

∞∑

n=1

an
ns
,

where an counts the number of factorizations of n into prime powers. Thus,
unique factorization (the statement that an = 1 for all n) is equivalent to the
statement that (1.2) holds as a formal product of Dirichlet series, which is itself
equivalent to the fact that (1.2) holds for all real s > 1 (or even a sequence of
s tending to ∞) by a standard uniqueness theorem for Dirichlet series (for a
proof see, e.g., [Apo76, Theorem 11.3]).

Euler’s product expansion of ζ is the first example of what is now called
an “Euler factorization.” We now prove (following [Hua82]) a theorem giving
general conditions for the validity of such factorizations.

Theorem 1.2.2 (Euler Factorization). Let f be a multiplicative function.
Then ∞∑

n=1

f(n) =
∏

p

(
1 + f(p) + f(p2) + · · ·

)
(1.3)

provided either of the following two conditions holds:

i.
∑∞
n=1 |f(n)| converges.

ii.
∏

p

(
1 + |f(p)|+ |f(p2)|+ · · ·

)
converges.

If f is completely multiplicative, the factors in (1.3) form a geometric series
whose convergence is implied by either of the above conditions. Thus we have
the following consequence:

Corollary 1.2.3. Let f be a completely multiplicative function. Then

∞∑

n=1

f(n) =
∏

p

1

1− f(p)

subject to either of the two convergence criteria above.

Observe that (1.2) is immediate from this corollary. One takes f(n) = 1/ns

and observes that for s > 1, condition i) holds (for example) by the integral
test.

Proof of Theorem 1.2.2. Suppose i) holds above, and set S0 =
∑∞
n=1 |f(n)|.

Observe that for each prime p, the series
∑∞
k=0 f(pk) converges absolutely, since

each term of the series
∑∞
k=0 |f(pk)| appears in the sum defining S0. Therefore

P (x) =
∏

p≤x

(
1 + f(p) + f(p2) + · · ·

)
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is a finite product of absolutely convergent series; consequently,

P (x) =
∑

n:p|n⇒p≤x
f(n).

If we now set S =
∑∞
n=1 f(n) (which converges absolutely), we have

S − P (x) =
∑

n:p|n for some p>x

f(n),

which shows

|S − P (x)| ≤
∑

n>x

|f(n)| → 0

as x→∞. Thus P (x)→ S as x→∞, which is the assertion of (1.3).
Now suppose that ii) holds above. We shall show that i) holds as well, so

the result follows from what we have just done. To see this, let

P0 =
∏

p

(
1 + |f(p)|+ |f(p2)|+ · · ·

)
,

and let

P0(x) :=
∏

p≤x

(
1 + |f(p)|+ |f(p2)|+ · · ·

)

=
∑

n:p|n⇒p≤x
|f(n)| ≥

∑

n≤x
|f(n)|.

Since P0(x) ≤ P0 for all positive x, the partial sums
∑

n≤x |f(n)| form a bounded
increasing sequence. Thus

∑ |f(n)| converges, proving i).

We can now present Euler’s proof of the infinitude of the primes.

Euler’s first proof of Theorem 1.2.1. Let f be defined by f(n) = 1/n for every
n. Assuming there are only finitely many primes p, condition ii) of Theorem
(1.3) is trivially satisfied, as the product in question only has finitely many
terms. It follows that

∞∑

n=1

1

n
=
∏

p

(

1 +
1

p
+

1

p2
+ · · ·

)

<∞,

in contradiction with the divergence of the harmonic series.

It was known to Euler that this proof actually gave more:

Theorem 1.2.4. The series
∑

1/p diverges, where the sum is over all primes
p.
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Proof. Suppose not and let C =
∑

1/p. As in the last proof, take f(n) = 1/n
in Theorem 1.2.2. We check that condition ii) of that theorem holds in this
circumstance as well. For nonnegative x,

∏

p≤x

(

1 +
1

p
+

1

p2
+ c . . .

)

=
∏

p≤x

1

1− 1
p

=
∏

p≤x

(

1 +
1

p− 1

)

≤
∏

p≤x

(

1 +
2

p

)

.

Now recall that et ≥ 1 + t for every nonnegative t; this is clear from truncating
the Taylor expansion et = 1 + t+ t2/2! + · · · . It follows that

∏

p≤x

(

1 +
2

p

)

≤
∏

p≤x
e2/p = e

∑

p≤x 2/p ≤ e2C .

Consequently, the partial products

∏

p≤x

(

1 +
1

p
+

1

p2
+ . . .

)

form a bounded, increasing sequence, which implies ii). Thus

∞∑

n=1

1

n
=
∏

p

1

1− 1
p

≤ e2C ,

a contradiction.

Similar methods give an explicit lower bound on the partial sums
∑

p≤x 1/p:
Note that for x ≥ 2,

∏

p≤x

1

1− 1
p

=
∑

n≤x:p|n⇒p≤x

1

n
≥
∑

n≤x

1

n
≥ log x. (1.4)

Proceeding as above, we deduce that
∑

p≤x (p− 1)−1 ≥ log log x. To derive a
lower bound for

∑

p≤x 1/p from this, note that

∑

p≤x

1

p
=
∑

p≤x

1

p− 1
−
∑

p≤x

(
1

p− 1
− 1

p

)

≥
∑

p≤x

1

p− 1
−
∑

n≥2

(
1

n− 1
− 1

n

)

=




∑

p≤x

1

p− 1



− 1 ≥ log log x− 1.

(1.5)

Exercise 1.2.7. Say that a number n is squarefull if p2 | n whenever p | n, i.e., if
every prime showing up in the factorization of n occurs with multiplicity larger
than 1. Using Euler factorizations (Theorem 1.2.2), show that

∑
n−1 converges

when the sum is restricted to squarefull numbers n. Determine all real α for
which

∑
n−α converges.
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Exercise 1.2.8 (Ramanujan). Taking as known

∞∑

n=1

1

n2
=
π2

6
and

∞∑

n=1

1

n4
=
π4

90
,

show that
∑

n 1/n2 = 9/(2π2), where the sum ranges over positive squarefree
integers n with an odd number of prime divisors. Hint: |µ| − µ = 2χ, where χ
is the characteristic function of the integers in question.

The next few proofs also make use of the ζ-function and its Euler factoriza-
tion, but in a decidedly different manner.

Proof of J. Hacks. We need the well-known result that ζ(2) = π2/6; several
proofs of this may be found in [Cha02]. We put s = 2 in the Euler factorization
of ζ(s) to obtain

π2

6
= ζ(2) =

∏

p

1

1− 1
p2

.

If there are only finitely many primes, the rightmost product is a finite product
of rational numbers, implying that π2/6, so also π2, is rational. But π2 is
irrational since π is transcendental.

Exercise 1.2.9. In this exercise we present a similar proof based instead on the
irrationality of π. Let

χ(n) =

{

(−1)(n−1)/2 if 2 - n,

0 otherwise.

a) Show that χ(n) is a completely multiplicative function, i.e.,

χ(ab) = χ(a)χ(b)

for every pair of positive integers a, b.

b) Assume there are only finitely many primes. Show that this assumption
implies that for every s > 0,

∞∑

n=1

χ(n)

ns
=
∏

p

(

1− χ(p)

ps

)−1

.

c) Take s = 1 and obtain a contradiction to the irrationality of π. You may
assume that π/4 = 1− 1/3 + 1/5− 1/7 + · · · .

Hacks’ demonstration relies on knowing the irrationality of π2; we can avoid
direct considerations of irrationality provided we also assume as known that
ζ(4) = π4/90:
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Proof. We begin with the observation that

ζ(2)2

ζ(4)
=
π4/36

π4/90
=

5

2
.

We now use the Euler factorization of ζ to get 5/2 as an infinite product of
primes. Since

ζ(2)2 =

(
∏

p

1

1− 1
p2

)2

=
∏

p

(1− p−2)−2,

we find

ζ(2)2/ζ(4) =
∏

p

(1− p−4)(1− p−2)−2 =
∏

p

p4 − 1

p4

p4

(p2 − 1)2
=
∏

p

p2 + 1

p2 − 1
,

so that
5

2
=

5

3

10

8

26

24
. . . .

If there are only finitely many primes, then the product on the right hand side
is a finite one and can be written as M/N , where M = 5 · 10 · 26 · · · and
N = 3 · 8 · 24 · · · . Then M/N = 5/2, so 2M = 5N ; since 3 | N , necessarily
3 |M . But this cannot be: M is a product of numbers of the form k2 + 1, and
no such number is a multiple of 3.

The above was inspired by Wagstaff’s (open) question [Guy94, B48] as to

whether there exists an elementary proof that 5
2 =

∏

p
p2+1
p2−1 .

1.2.4 Squarefree Numbers

By unique factorization there is a bijection

{subsets of the primes} ←→ {squarefree positive integers},

given by taking

S 7−→
∏

p∈S
p.

So to prove the infinitude of the primes, it suffices to prove there are infinitely
many positive squarefree integers.

J. Perott’s proof, 1881. We sieve out the non-squarefree integers from 1, . . . , N
by removing those divisible by 12, then those divisible by 22, etc. The number
of removed integers is bounded above by

∞∑

k=2

bN/k2c ≤ N
∞∑

k=2

k−2 = N(ζ(2)− 1),

so that the number of squarefree integers up to N , say A(N), satisfies

A(N) ≥ N −N(ζ(2)− 1) = N(2− ζ(2)).
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Because 1/t2 is a decreasing function of t,

ζ(2) = 1 +

∞∑

n=2

1

n2
< 1 +

∞∑

n=1

∫ n+1

n

dt

t2
= 1 +

∫ ∞

1

dt

t2
= 2.

It follows that A(N)/N is bounded below by a positive constant, so that the
squarefree numbers have positive lower density. In particular, there are infinitely
many of them.

Remark. We have modified Perrott’s proof by eliminating the use of ζ(2) = π2/6.
As observed by Dressler[Dre75], this proof also yields a lower bound on π(N).

One has only to take logarithms in the estimate 2π(N) ≥ A(N)� N to find

π(N) ≥ logA(N)/ log 2 ≥ logN/ log 2 +O(1).

Every positive n can be decomposed as the product of a square and a square-
free integer, for dividing n by its largest square factor can only yield a squarefree
quotient. This simple observation plays a key role in the following short proof
of Theorem 1.2.1:

Erdős’ proof. Let N be a positive integer. There are at most
√
N squares not

exceeding N and at most 2π(N) squarefree integers below this bound. Since
every integer not exceeding N is a product of a square not exceeding N and a
squarefree number not exceeding N , we must have

2π(N)
√
N ≥ N.

Dividing by
√
N and taking logarithms, we get the bound

π(N) ≥ logN/ log 4.

Actually we can get considerably more mileage from this idea, namely the
divergence of the series

∑
1/p:

Erdős’ proof of Theorem 1.2.4. Suppose
∑

1/p converges; then the contribu-
tion from the tail of the sum tends to 0, so that there exists some real number
M with

∑

p>M

1

p
< 1/2. (1.6)

Keep this M fixed.
Now let N be an arbitrary positive integer. The estimate (1.6) implies that

most integers up to N factor completely over the primes not exceeding M .
Indeed, the number of integers not exceeding N that have a prime factor p > M
is bounded above by

∑

M<p≤N

⌊
N

p

⌋

≤ N
∑

p>M

1

p
< N/2,
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so that at leastN/2 integers not exceedingN are divisible only by primes p ≤M .
We now show that there are too few integers divisible only by primes p ≤M

for this to be possible. There are at most
√
N squares not exceeding N , and

at most C := 2π(M) squarefree numbers composed only of primes not exceeding
M . Thus there are at most C

√
N integers not exceeding N all of whose prime

factors do not exceed M . But C
√
N < N/2 whenever N is large, in fact as soon

as N > 4C2.

It is remarkable that this method of proving the infinitude of the primes
(in contrast with Euclid’s, for instance) is independent of the additive structure
of the integers. This allows us to carry over the idea to certain commutative
semigroups:

Exercise 1.2.10. Let S be a countable set equipped with a binary operation
satisfying the usual axioms for an abelian group with the (possible) exception
of the existence of inverses. Moreover, suppose that there is a nonempty set of
“primes” P ⊂ S with the property that every s ∈ S admits a factorization

s = pe11 p
e2
2 · · · pek

k ,

where each pi ∈ P and the ei are natural numbers. (Note that we do not require
uniqueness of this representation.) Furthermore, suppose there is a “norm”

‖ · ‖ : S → Z+

with the following properties:

i. ‖ · ‖ is totally multiplicative, i.e., ‖ab‖ = ‖a‖‖b‖ for every a, b ∈ S.

ii. There exist constants c1, c2 > 0 such that

c1x ≤ |{s ∈ S : ‖s‖ ≤ x}| ≤ c2x (1.7)

whenever x is sufficiently large.

Show that
∑

p∈P ‖p‖−1 diverges.

Exercise 1.2.11 (continuation). We can recover the divergence of
∑

1/p by tak-
ing for S the semigroup of positive integers, P the set of primes, and ‖ · ‖ the
usual absolute value. Here we present an analogous application to the Gaussian
integers:

a) Show that the conditions i) and ii) of the preceding exercise are satisfied
with S the set of nonzero Gaussian integers, P the set of Gaussian primes
together with {1,−1, i,−i}, and ‖ · ‖ the usual norm map. Conclude that
∑

1/Nπ diverges, where the sum is over all Gaussian primes π.

Hint: Verifying (1.7) amounts to estimating the number of lattice points
in the circle of radius

√
x; for this, consider appropriate circumscribed and

inscribed squares.
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b) Show that the sum
∑

1/Nπ, taken over the Gaussian primes π associated
to rational primes p ≡ 3 (mod 4), converges. By combining this with part
a), show that

∑

p≡1 (mod 4) 1/p diverges.

Remark. Suppose that in Exercise 1.2.10 we assume that elements of S factor
uniquely (up to order) as products of elements of P. Furthermore, suppose we
replace (1.7) with the tighter hypothesis that

|{s ∈ S : ‖s‖ ≤ x}| = cx+O(xθ) (x→∞) (1.8)

for some positive constant c and some θ < 1. Then Knopfmacher [Kno75] has
shown

πP(x) :=
∑

p∈P,‖p‖≤x
1 = (c+ o(1))

x

log x
; (1.9)

this generalizes the prime number theorem.
For the reader who has seen some algebraic number theory, we remark that

all these hypotheses are satisfied with OK the ring of integers of a number field,
P the set of this ring’s maximal ideals and ‖ · ‖ as the usual norm map on
ideals. In this case (1.9) amounts to the “prime ideal theorem” (see the brief
discussion at the start of §1.9). However, verifying condition (1.8), or even the
weaker (1.7), is difficult. An instructive exercise is to check the latter for Q(

√
2);

note that this implies
∑

p≡±1 (mod 8) 1/p diverges. The material from the final
section of Appendix A may prove useful.

1.2.5 Smooth Numbers

A theme in the last few proofs is that for fixed M , there are not enough primes
p ≤ M to account for the primes forming a “multiplicative basis” for the in-
tegers. A particularly direct proof along the same lines can be constructed by
counting smooth numbers, numbers all of whose prime factors are small.

Define

ψ(x, y) := #{n ≤ x : p | n =⇒ p ≤ y}. (1.10)

In other words, ψ(x, y) counts the number of positive integers not exceeding x
all of whose prime factors do not exceed y; such integers are called y-smooth.
We need only the following trivial upper bound:

Lemma 1.2.5. For x ≥ 1, y ≥ 2, we have

ψ(x, y) ≤
(

1 +
log x

log 2

)π(y)

.

Proof. Let k = π(y). By unique factorization, calculating ψ(x, y) is equivalent
to counting the number of k-tuples of nonnegative integers e1, . . . , ek with

pe11 p
e2
2 · · · pek

k ≤ x.
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This inequality requires pei
i ≤ x, so that

ei ≤ log x/ log pi ≤ log x/ log 2.

This forces ei to lie in a set of 1 + blog x/ log 2c integers.

Since every positive integer not exceeding N is a (possibly empty) product
of primes not exceeding N ,

N = ψ(N,π(N)) ≤ (1 + logN/ log 2)π(N).

It follows that

π(N) ≥ logN

log(1 + logN/ log 2)
.

Taking some care to estimate the denominator, we obtain the lower bound

π(N) ≥ (1 + o(1))
logN

log logN
,

which of course tends to infinity. Proofs of Theorem 1.2.1 based on similar ideas
were given by Thue in 1897 and Auric in 1915.

Exercise 1.2.12 (M. Hirschhorn [Hir02]). Let p1, p2, . . . denote the sequence of
odd primes.

a) Reasoning as before, prove that the number of odd positive integers not
exceeding N which can be written in the form pe11 · · · pek

k does not exceed

k∏

i=1

(
logN

log pi
+ 1

)

=

k∏

i=1

logNpi
log pi

< (log pkN)
k
<
√

2k!
√

pkN.

b) Supposing p1, . . . , pk exist, prove that pk+1 exists and satisfies pk+1 ≤
4(2k!)pk + 1. (Of course this is far weaker than Bertrand’s postulate,
which asserts pk+1 < 2pk.)

Exercise 1.2.13 (A Bit More Psixyology). We now develop a sharper estimate
of ψ(x, y) when y is fixed and x is tending to infinity.

Suppose that x ≥ 1 and y ≥ 2, and let p1, . . . , pk be the list of all primes
not exceeding y (so that k = π(y)).

a) Show that ψ(x, y) is given by

#{(x1, · · · , xk) ∈ Nk : x1 log p1 + x2 log p2 + · · ·+ xk log pk ≤ log x}.

Hence, for fixed y, ψ(x, y) counts the number of “first quadrant” lattice
points contained in a simplex expanding homothetically with x.
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b) Recall that for positive numbers a1, · · · , ak,

vol({(x1, · · · , xk) : a1x1 + a2x2 + · · · akxk ≤ X, each xi ≥ 0}) =

Xk/(k!a1 · · · ak).

Referring to Appendix A, Theorem A.3.1, prove that for fixed y ≥ 2,

ψ(x, y) ∼ 1

π(y)!

logπ(y) x

log p1 log p2 · · · log pπ(y)
(x→∞).

For another proof of this formula, see [Rub93]. By considering appropriate
inscribed and circumscribed tetrahedrons, one may show that the difference of
the two sides in this asymptotic formula is O(logπ(y)−1 x) (again for fixed y, as
x→∞).

1.2.6 The Heavy Machinery

We now present three high-powered proofs of the infinitude of the primes, uti-
lizing (respectively) nonstandard analysis, topology and commutative algebra.

None of these proofs really yield any new insights. But for the sensibly
sophisticated party host, they are indispensable.

Euclid’s proof revisited (Non-standard Analysis, [Gol98]). Let P be the set of
primes, which we suppose finite. Let ∗Z+ denote the hyperreal extension of the
positive integers, and ∗P the extension of P. P finite implies ∗P = P. Choose
n ∈ ∗Z+ divisible (in ∗Z+) by every standard positive integer. Let p ∈ ∗P be a
divisor (in ∗Z+) of n + 1. (That n, p exist follows from transfer.) As ∗P = P,
p is a standard positive integer, so p | n. Hence p | (n + 1) − n = 1, which is
absurd.

Furstenberg’s proof (Point-set Topology, [Fur55]). We put a topology on the in-
tegers by taking as basic open sets all arithmetic progressions (infinite in both
directions). Then each arithmetic progression is both open and closed: it is
open by choice of the basis, and it is closed since its complement is the union of
the other arithmetic progressions with the same common difference. For each
prime p, let Ap = pZ, and define A := ∪pAp. The set {−1, 1} = Z \ A is not
open. (Indeed, every open set is either empty or contains an arithmetic pro-
gression, so infinite.) It follows that A is not closed. On the other hand, if there
are only finitely many primes then A is a finite union of closed sets, hence itself
closed.

Remark. Golomb [Gol59] studies the topology on the positive integers generated
by taking as a basis the (restricted) arithmetic progressions

(qZ + a) ∩ Z+ = {n ≥ 1 : n ≡ a (mod q)},

where
a, q ∈ N, gcd(a, q) = 1, and q > 0.
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This topology possesses a number of interesting properties; e.g., Dirichlet’s the-
orem on the infinitude of primes in arithmetic progressions is equivalent to the
statement that the set of primes is dense. See also [KP97], which considers
similar questions in a more general algebraic context.

Washington’s proof (Commutative Algebra). We use the result that a Dedekind
domain with finitely many nonzero prime ideals is a principal ideal domain (see,
e.g., [Lor96, Proposition III.2.12]), hence also a unique factorization domain.

The ring of integers of any number field is always a Dedekind domain; conse-
quently, if K is a number field for which OK does not possess unique factoriza-
tion, then OK has infinitely many nonzero prime ideals. Each such prime ideal
lies above a rational prime p, and for each prime p there are at most [K : Q]
prime ideals lying above it. It follows that there are infinitely many primes p,
provided there exists a single example of a number ring OK without unique
factorization. And there does: we may famously take K = Q(

√
−5), as the

factorization
6 = (1 +

√
−5)(1−

√
−5)

is a well-known instance of the failure of unique factorization there.

1.2.7 Exercises

Exercise 1.2.14 (Schur). For f(T ) ∈ Z[T ], let P(f) be the set of primes p which
divide f(n) for some integer n. Show that if f is nonconstant, P(f) is infinite.

The next two exercises outline an elementary proof that there are infinitely
many primes p ≡ 1 (mod m) for every positive integer m. We apply the result
of Exercise 1.2.14 to the so-called cyclotomic polynomials. Recall that the mth
cyclotomic polynomial is defined by

Φm(T ) =
∏

1≤k≤m
gcd(k,m)=1

(

T − e2πik/m
)

,

i.e., Φm(T ) is the monic polynomial in C[T ] whose roots are precisely the prim-
itive mth roots of unity, each occurring with multiplicity 1. To even to hope
apply the preceding exercise, we need that the coefficients of these polynomials
are not merely complex numbers, but in fact integers. We sketch the proof of
this now:

For any m, we have

Tm − 1 =
∏

d|m
Φd(T ); (1.11)

to see this, note that Tm − 1 is the product of T − ζ where ζ ranges over all
mth roots of unity. But the mth roots of unity are the disjoint union of the
primitive dth roots of unity, taken over those d dividing m, which implies (1.11).
Applying Möbius inversion to (1.11) yields

Φm(T ) =
∏

d|m

(
T d − 1

)µ(m/d)
= F/G,
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where
F =

∏

d|m,µ(m/d)=1

(
T d − 1

)
, G =

∏

d|m,µ(m/d)=−1

(
T d − 1

)
.

Now F and G are monic polynomials in Z[T ] with G 6= 0, so we can write

F = GQ+R, (1.12)

where Q,R ∈ Z[T ] and degR < degQ. Of course (1.12) remains valid over C[T ]
and expresses in that ring one result of division by Q. But we know that over
C[T ], we have F = GΦm with no remainder; by the uniqueness of the division
algorithm for polynomials, it follows that R = 0 above. Consequently,

Φm = F/G = Q ∈ Z[T ].

Exercise 1.2.15. Let m be a positive integer and suppose that p | Φm(n) for
the integer n. Show that either p | m or the order of n (mod p) is exactly m.
Proceed as follows:

a) Using (1.11), show that

p | Φm(n) | nm − 1.

Thus d := ordpn | m.

b) Show that p | Φd(n).

c) Suppose that p | Φm(n) and that d is a proper divisor of m; show that
Tm − 1 has a multiple root over Fp.

d) Show that if Tm−1 has a multiple root over Fp, then p | m. (Hint: What
are the roots of f ′?)

Exercise 1.2.16. Combining the result of the preceding exercise with that of
Exercise 1.2.14, complete the proof that there are infinitely many primes p ≡ 1
(mod m).

Exercise 1.2.17 (A. Granville, cf. [Has50, IV., p. 171]). Using the results of
Exercises 1.2.2 and 1.2.16, show that at least three of the four residue classes
1, 5, 7, 11 (mod 12) contain infinitely many primes.

Exercise 1.2.18. Let 0 6= f ∈ Z[T ]. Prove the following result of Bauer (as given
in [Nag64, pp. 168-169]):

Theorem. If 0 6= f(T ) ∈ Z[T ] is a polynomial with at least one real root, then for
every m ≥ 3, there exist infinitely many primes p ∈ P(f) with p 6≡ 1 (mod m).

Fix m ≥ 3 and proceed by showing that each of the following conditions on
a polynomial f(T ) ∈ Z[T ] is sufficient for the conclusion of the theorem to hold:

i. f has a positive leading coefficient and constant term −1.
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ii. f has a positive leading coefficient and negative constant term.

iii. f has a positive leading coefficient and f(a) < 0 for some a ∈ Z.

iv. f has a positive leading coefficient and f(a) < 0 for some a ∈ Q.

v. f has a positive leading coefficient and f(a) < 0 for some a ∈ R.

vi. f has a positive leading coefficient and f(a) = 0 for some a ∈ R. Hint:
Show that this is implied by v) provided f has no multiple roots; then
argue that we can always make this assumption. Gauss’ lemma may be
of help.

Exercise 1.2.19 (Goldbach). Prove that there is no nonconstant polynomial
f(T ) ∈ Z[T ] with the property that f(n) is prime for all natural numbers n.

1.3 Discovering the Prime Number Theorem

. . . Even before I had begun my more detailed investigations into
higher arithmetic, one of my projects was to turn my attention to the
decreasing frequency of primes, to which end I counted the primes
in several chiliads [intervals of length 1000] and recorded the results
on the attached white pages. I soon recognized that behind all of its
fluctuations, this frequency is on average inversely proportional to
the logarithm, so that the number of primes below a given bound n
is approximately equal to

∫
dn

log n
,

where the logarithm is understood to be hyperbolic. – Gauss, Christ-
mas Eve letter to Enke, 1849 (excerpted from [Gol73])

We know from the preceding section that π(x) → ∞ as x → ∞. But how fast
and how regularly does it do so? We shall examine this question the way Gauss
did, empirically, and in this way we shall be led to conjecture the result now
known as the prime number theorem.

1.3.1 An Empirical Approach

We begin by studying the “density” of primes around a given point x; it is
not clear how this should be defined, other than that it should be something
obtained by counting a set of primes near x and dividing by the “size” of the
set. We quantify this with the choice

∆(x) =
π(x)− π(x− 1000)

1000
,
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so that ∆(x) measures the proportion of primes in the interval (x − 1000, x].
If we make a table of values of x against values of ∆(x), we end up with a
table resembling Table 1.1 (a similar table may be found in Gauss’ collected
works [Gau73a]): The first two rows of Table 1.1 suggest that ∆(x) is a slowly
decreasing function of x.

It was Gauss’ genius to invert ∆(x) and look for approximations by ele-
mentary functions. In this way he discovered empirically that ∆(x) ≈ 1/ log x.
Since ∆(x) is defined as the slope of a chord on the graph of y = π(x), it is
natural to think that one could recover π(x) by integrating this approximation.
This suggests

π(x) ≈ li(x) :=

∫ x

2

dt

log t
.

Table 1.2 shows a comparison of π(x) and li(x) for powers of 10 up to 1012.
Gauss had access to a similar table (with values in a more limited range), and he
no doubt noticed that while the absolute difference between li(x) and π(x) ap-
pears large for large x, the relative difference is small in that the ratio π(x)/li(x)
seems to be tending to 1. Reading the approximation sign above as asymptotic
equality, our conjecture takes the following shape:

Prime Number Theorem. As x→∞, we have the asymptotic formula

π(x) ∼
∫ x

2

dt

log t
. (1.13)

Gauss conjectured this sometime in the (closed) interval between 1792 and
1793, when he was still a teenager. However, the first published record of a
conjecture of this form occurs later in 1798, in Legendre’s Essai sur la Théorie
des Nombres.

The most important step towards a proof of the prime number theorem was
taken by Riemann [Rie59], who in 1859 devoted his only memoir on number
theory to outlining a possible attack on the prime number theorem through a
study of the analytic properties of the function ζ(s). It was to take 40 more
years for complex analysis to develop to the point where Riemann’s plan could be
carried through. This was independently accomplished in in 1896 by Hadamard
and de la Vallée Poussin. There are still no simple proofs, although there are
short proofs which require only a modicum of familiarity with complex analysis
(e.g. [Zag97]). In Chapter 4, we will give a (long) proof of the prime number
theorem free of any complex analysis.

Table 1.1: Comparison of ∆(x) and 1/ log x, rounded to nearest thousandth

x 1000 2000 3000 4000 5000 6000 7000 8000 9000
∆(x) .168 .135 .127 .120 .119 .114 .117 .107 .110

1/ log x .145 .132 .125 .121 .117 .115 .113 .111 .110
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Table 1.2: Comparison of π(x) and li(x)

x π(x) li(x) li(x)− π(x) π(x)/li(x)

103 168 177 9 .9514937
104 1,229 1245 16 .9870757
105 9,592 9,629 37 .9961820
106 78,498 78,627 129 .9983658
107 664,579 664,917 338 .9994909
108 5,761,455 5,762,208 753 .9998694
109 50,847,534 50,849,234 1700 .9999665

1010 455,052,512 455,055,614 3103 .9999933
1011 4,118,054,813 4,118,066,400 11587 .9999972
1012 37,607,912,018 37,607,950,280 38263 .9999988

The prime number theorem is often stated in the form

π(x) ∼ x

log x
. (1.14)

It is not difficult to show that the two statements (1.13) and (1.14) are equiva-
lent: if we integrate (1.13) by parts, we see

li(x) =

∫ x

2

dt

log t
=

t

log t

∣
∣
∣
∣

x

2

+

∫ x

2

dt

log2 t

=
x

log x
− 2

log 2
+

∫ x

2

dt

log2 t
. (1.15)

If we can show that
li(x) ∼ x/ log x, (1.16)

then the equivalence of (1.13) and (1.14) follows by transitivity. The constant
term on the right of (1.15) is unimportant, so we focus on showing the integral
appearing here is of smaller order of magnitude than x/ log x.

First, a plausibility argument: most values of 1/ log2 t in [2, x] should look
roughly like 1/ log2 x; we thus expect a contribution of roughly x/ log2 x from
the integral. To make this rigorous, we think of x as large and split the range of
integration at

√
x. The first integral, between 2 and

√
x, is estimated trivially

from above, noting that the denominator is bounded below by the positive
constant 1/ log2 2. For the latter integral, taken between

√
x and x, we note

that the denominator is at least log2√x � log2 x. These observations lead to
the estimate

∫ x

2

dt

log2 t
=

∫ √
x

2

dt

log2 t
+

∫ x

√
x

dt

log2 t

� √x+
x

log2 x
� x

log2 x
= o(x/ log x).
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Now (1.16) follows easily.

Exercise 1.3.1. Use L’Hôpital’s rule to give another proof that li(x) ∼ x/ log x.

1.3.2 Exercises: Some Consequences of the PNT

Exercise 1.3.2. Assuming the prime number theorem, prove that the nth prime
pn satisfies pn ∼ n log n as n→∞.

Suggestion: Show that if an ∼ bn and an → ∞ (both as n → ∞), then
an log an ∼ bn log bn. Apply this with an = pn/ log pn and bn = n.

Exercise 1.3.3. We give two applications of the preceding exercise:

a) Prove that pn+1/pn → 1.

Consequently, to each ε > 0 there corresponds an x0 with

π((1 + ε)x)− π(x) > 0

whenever x > x0. We will prove this elementarily for ε = 1 later in the
chapter (Theorem 1.5.3).

b) Prove that the set {p/q : p, q prime} is dense in the set of nonnegative real
numbers.

Hint: what is the limit of pan/pbn as n→∞?

The prime number theorem in its most basic form (1.13) is equivalent to the
relation

π(x) = li(x) + o(x/ log x). (1.17)

Now li(x) can be expanded through repeated integration by parts:

li(x) =
x

log x
+1!

x

log2 x
+2!

x

log3 x
+· · ·+(k−1)!

x

logk x
+Ok

(
x

logk+1 x

)

. (1.18)

We would like to substitute the expansion (1.18) into (1.17). However, as
things stand now it is impossible for this process to produce a sharper estimate
than π(x) = x/ log x+ o(x/ log x), because the higher order terms of (1.18) are
absorbed into the error o(x/ log x). In order to preserve the usefulness of this
expansion we need a better error term in the prime number theorem, such as
that provided by the following theorem (see, e.g., [Dav00]):

Prime Number Theorem (with error term). For a certain absolute con-
stant c > 0, we have

π(x) = li(x) +O(x exp(−c(log x)1/2) (1.19)

for all x ≥ 2.



1.4. THE SIMPLEST ESTIMATES FOR π(X) 23

The quantity inside theO-term in (1.19) is easily checked to beOA(x/ logA x)
for every A, but is not O(xδ) for any δ < 1. Nevertheless, its is suspected that
π(x) − li(x) = O(xδ) for every δ > 1/2; this is equivalent to the most famous
conjecture in all of number theory, the Riemann hypothesis.

In any event, the fact that the error term is O(x/ logA x) for arbitrary A
implies

π(x) =
x

log x
+ 1!

x

log2 x
+ · · ·+ (k − 1)!

x

logk x
+Ok

(
x

logk+1 x

)

, (1.20)

which is already exceedingly useful.

Exercise 1.3.4. In 1798, Legendre conjectured π(x) was of the form x/(A log x+
B) for some constants A and B. In 1808, he refined this conjecture, claiming
that

π(x) =
x

log x−A(x)

where A(x) is “approximately 1.08366 · · · .” Presumably he meant that if we
solve the above equation for A(x), so that

A(x) = −(x/π(x)− log x),

then A(x)→ 1.08366 · · · as x→∞. Assuming (1.20), show that that Legendre
was wrong: A(x)→ 1 as x→∞.

Actually Legendre was proven wrong in regard to this matter fifty years
before the prime number theorem was established: in 1848, Chebyshev showed
that if A(x) tends to a limit, the limit has to be 1. An alternate means of
establishing Chebyshev’s claim, due to Pintz, is indicated in Exercise 1.7.2.

Exercise 1.3.5 (Landau). Use (1.20) to show that for large enough x, there are
eventually more primes in the interval (1, x] than in the interval (x, 2x]. Show
that in fact

π(2x)− 2π(x)→ −∞ (x→∞).

1.4 The Simplest Estimates for π(x)

In this chapter, we content ourselves with estimates that can be established
relatively easily by elementary means. Here we take up two such estimates,
both of which can be considered corollaries to the divergence of

∑
1/p, and

both of which (in some nebulous form) find their origins in remarks of Euler.

1.4.1 The Primes are Infinitely Fewer than the Integers

We begin with a simple but nevertheless decidedly nontrivial result:

Theorem 1.4.1. As x→∞, we have π(x)/x→ 0.
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Remark. This theorem is suggested by Euler’s claim [Eul37, Theorema 7, Corol-
larium 3] that the “primes are infinitely fewer than the integers.” However, Euler
does not prove Theorem 1.4.1; his justification for this assertion is that

∏

p

p

p− 1
= log∞, while

∞∏

n=2

n

n− 1
=∞.

Indeed, the former product “is” (formally) the harmonic series, which Euler
interpreted as log∞ (motivated by the growth of its partial sums). By con-
trast, the partial products

∏

2≤n≤x n/(n− 1) telescope to bxc, which perhaps
motivates Euler’s labelling the latter product “absolute” ∞.

The proof of Theorem 1.4.1 proceeds along rather intuitive lines. We already
know how to get upper bounds on the proportion (i.e., upper density) of the
primes: half of all numbers are even, so already the proportion of primes cannot
exceed 1/2. Another way of viewing this argument is that all but finitely many
primes fall into the unique reduced residue class (mod 2); from this perspective,
the correct generalization is in plain sight. Namely, take any integer q; then
every prime p - q has to fall into one of the φ(q)/q reduced residue classes
(mod q), and this forces the proportion of primes to be at most φ(q)/q. If we
can make φ(q)/q arbitrarily small, this will imply our theorem.

We now formalize these ideas, first proving that it is possible to find such q.

Lemma 1.4.2. Let ε > 0. Then there exists q with φ(q)/q < ε.

Proof. Note that φ(q)/q =
∏

p|q (1− 1/p), which is small when q is a product

of many small primes. Guided by this, we let q := qx =
∏

p≤x p be the product
of all primes not exceeding x. Then from (1.4) we know that for x ≥ 2, one has

φ(qx)/qx =
∏

p≤x
(1− 1/p) ≤ (log x)−1,

which yields the desired inequality as soon as x > max{2, e1/ε}.

Proof of Theorem 1.4.1. Let q be a positive integer (and p a prime). If p and q
have a nontrivial common factor, necessarily p | q. Hence

π(x) ≤ |{1 ≤ n ≤ x : gcd(n, q) = 1}|+ ν(q),

where ν(q) denotes the number of distinct prime divisors of q. The interval [1, x]
is contained in the first dx/qe blocks of q consecutive integers (beginning at 1),
each of which contains φ(q) numbers relatively prime to q. It follows that

π(x)

x
≤ φ(q)(x/q + 1)

x
+
ν(q)

x
.

Now let ε > 0 be given. Choose q with φ(q)/q < ε/2; so that

π(x)

x
≤ φ(q)

q
+
φ(q)

x
+
ν(q)

x
< ε/2 +

φ(q)

x
+
ν(q)

x
< ε

for all large x. Hence π(x)/x→ 0, as claimed.
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1.4.2 More Primes than Squares

We have just shown that there are not too many primes. On the other hand,
we have some reason to think that there are not too few primes. For instance,
the divergence of

∑
1/p versus the convergence of

∑
1/n2 suggests there are

“more primes than squares.” Alternately, following Euler [Eul37, Theorema 7,
Corollarium 2], we could compare products instead of sums (for the first product,
cf. (1.4); note the second product below telescopes so is easy to compute):

∏

p

p

p− 1
= log∞ while

∞∏

n=2

n2

n2 − 1
= 2.

To make precise the claim that there are more primes than squares (which
Euler did not), apply summation by parts (Theorem A.2.3):

∑

p≤x

1

p
=

∫ x

3/2

dπ(t)

t
(1.21)

=
π(x)

x
− π(3/2)

3/2
+

∫ x

3/2

π(t)

t2
dt =

∫ x

2

π(t)

t2
dt+O(1).

If π(x)� x1/2, the final integral here is�
∫ x

2
t−3/2 dt� 1. This in turn implies

∑
1/p has bounded partial sums, so (as a series of positive terms) is convergent,

an absurdity. This gives us one way of making our claim precise: for any positive
constant c and any x0, there is an x > x0 with π(x) > c

√
x. (However, notice

that we have not proved π(x)� √x.)
We can get more impressive results by replacing x1/2 with certain faster-

growing functions. Note for instance that

∫ ∞

2

dt

t log1+ε t
=

∫ ∞

log 2

1

euu1+ε
eu du =

∫ ∞

log 2

du

u1+ε
<∞

for every positive ε. It follows by the same argument as above that for no ε > 0
is π(x)� x/ log1+ε x. We have thus proven the following: For every ε > 0,

lim sup
x→∞

π(x)

x/ log1+ε x
=∞.

Exercise 1.4.1. Show that one can replace x/ log1+ε x with

x

log x(log log x)1+ε
.

Generalize.

Exercise 1.4.2. Show that if we assume as known not only that
∑

1/p diverges,
but that (cf. (1.5))

∑

p≤x

1

p
≥ log log x− 1,
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then the above method yields

lim sup
x→∞

π(x)

x/ log x
≥ 1.

It is important to emphasize that we have not proved any lower estimate
for π(x); we have merely disproved an upper estimate. In fact, from the mere
divergence of

∑
1/p it is impossible to obtain any lower bound of the form

π(x)� f(x) for a function f(x)→∞:

Exercise 1.4.3. Let f be a nonnegative-valued function defined for x > x0 with
the property that f(x) → ∞ as x → ∞. Show that there exists a set A of
positive integers with the following two properties:

∑

a∈A

1

a
=∞, lim inf

x→∞
A(x)

f(x)
= 0.

Hint: Use the divergence of
∑∞
n=N n

−1 for every N to show we can satisfy the
first criterion while including enough “gaps” to force the second to hold as well.

1.5 Chebyshev’s Work on π(x)

[Chebyshev] was the only man ever able to cope with the refrac-
tory character and erratic flow of prime numbers and to confine the
stream of their progression with algebraic limits, building up, if I
may so say, banks on either side which that stream, devious and
irregular as are its windings, can never overflow. – J.J. Sylvester

The first significant results on π(x) since Euclid were published by Chebyshev
in two important 1851-1852 papers ([Che51], [Che52]). We shall focus our at-
tention on three of his results:

Theorem 1.5.1. Suppose that

lim
x→∞

π(x)

x/ log x

tends to a limit as x→∞. Then that limit equals 1.

Theorem 1.5.2. There exist positive constants c1, c2 and a real number x0 such
that

c1
x

log x
≤ π(x) ≤ c2

x

log x

for x > x0.

Theorem 1.5.3 (Bertrand’s postulate, asymptotic form). For all suffi-
ciently large x, there exists a prime in the interval (x, 2x].
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This section contains simple proofs of each of these assertions; the methods
of proof are related to Chebyshev’s, but are not identical. For more faithful
renderings of Chebyshev’s work, see [Nar00, Chapter 3], [Sha83, Chapter 9] or
[Dia82].

We begin by introducing certain auxiliary functions studied by Chebyshev,
namely:

θ(x) :=
∑

p≤x
log p, ψ(x) :=

∞∑

n=1

θ(x1/n). (1.22)

The sum defining ψ appears to be infinite, but is essentially finite since θ(x1/n)
vanishes whenever x1/n < 2.

From the analytic point of view, these functions turn out to be better-
behaved and more natural objects of study than π(x). But estimates for π(x)
can be easily deduced from estimates for θ or ψ. For example, partial summation
shows that

θ(x) =

∫ x

3/2

log t dπ(t) = π(x) log x−
∫ x

2

π(t)

t
dt.

Because π(t)/t = o(1) (Theorem 1.4.1), we have
∫ x

2
π(t)/t dt = o(x), whence

θ(x) = π(x) log x+ o(x),

and
θ(x)

x
=

π(x)

x/ log x
+ o(1). (1.23)

The same estimate holds with ψ in place of θ, the reason being that ψ and θ
differ by only a small amount. To quantify this, write

ψ(x)− θ(x) = θ(x1/2) + θ(x1/3) + . . . .

Now θ(x1/n) vanishes whenever x1/n < 2, i.e., as soon as n > log x/ log 2.
Consequently, only O(log x) of the terms in the right-hand sum are nonzero.
Because of the trivial bound θ(x) ≤ x log x, we see that

ψ(x)− θ(x)� x1/2 log x+ (x1/3 log x) log x� x1/2 log x. (1.24)

Thus replacing θ with ψ in equation (1.23) results in an extra error term
O(log x/x1/2), which can be absorbed into the existing o(1) error term. We
have thus shown:

Proposition 1.5.4. As x→∞, we have both

θ(x)

x
=

π(x)

x/ log x
+ o(1), (1.25)

ψ(x)

x
=

π(x)

x/ log x
+ o(1). (1.26)
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Consequently:

Corollary 1.5.5. If any of θ(x)/x, ψ(x)/x, π(x)/(x/ log x) tends to a limit as
x→∞, then all of them do, and the limit in each case is the same.

In particular, the prime number theorem is equivalent to either of the asser-
tions θ(x) ∼ x, ψ(x) ∼ x.

Indeed, (1.25) and (1.26) imply together that

lim inf
x→∞

θ(x)

x
= lim inf

x→∞
π(x)

x/ log x
= lim inf

x→∞
ψ(x)

x
,

and similarly for the lim sup.
The definition of ψ we gave above is useful for comparison with θ, but it

masks the arithmetic information that ψ encodes. If we observe that for any
fixed positive integer k,

θ(x1/k) =
∑

p≤x1/k

log p =
∑

pk≤x
log p,

then we may rewrite

ψ(x) = θ(x) + θ(x1/2) + · · · =
∑

pk≤x
log p, (1.27)

where the final sum is over all pairs (p, k) where p is prime, k is a positive
integer and pk ≤ x. Now introduce the von-Mangoldt function Λ(n), defined by

Λ(n) =

{

log p if n = pk is a prime power,

0 otherwise.

This is well-defined by unique factorization, and equation (1.27) says

ψ(x) =
∑

n≤x
Λ(n).

Lemma 1.5.6. For every positive integer n,

∑

d|n
Λ(n) = log n.

Proof. Write n =
∏

p|n p
ep . Then

∑

d|n
Λ(d) =

∑

pk|n
log p =

∑

p|n

ep∑

k=1

log p

=
∑

p|n
ep log p =

∑

p|n
log pep = log

∏

p|n
pep = log n.
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We may finally introduce our main tool for estimating ψ(x). Following
Chebyshev, let

T (x) : =
∑

n≤x
log n

= x log x− x+O(log x),

where the final line is the weak Stirling approximation to log [x]! (which can
easily be obtained from Appendix A, Corollary A.2.2). The following lemma
allows us to obtain estimates for ψ from our estimate of T :

Lemma 1.5.7. For every positive x, we have

T (x) =
∑

n≤x
ψ(x/n).

Proof. Observe

∑

n≤x
ψ(x/n) =

∑

n≤x

∑

m≤x/n
Λ(k) =

∑

nm≤x
Λ(m)

=
∑

N≤x

∑

m|N
Λ(m) =

∑

N≤x
logN = T (x).

1.5.1 Proof of Theorem 1.5.1

If we combine Lemma 1.5.7 with the estimate for T (x), we see

∑

n≤x
ψ(x/n) ∼ x log x (x→∞).

This is the same estimate one would obtain if one substituted x/n for ψ(x/n),
which can be considered heuristic support for the prime number theorem in
the form ψ(x) ∼ x. Moreover, this idea can be used to prove the following
proposition:

Proposition 1.5.8. Suppose that ψ(x)/x→ C as x→∞. Then C = 1.

Proof. It suffices to show the hypothesis implies
∑

n≤x ψ(x/n) ∼ Cx log x. By
hypothesis, we may write ψ(x) = Cx+ g(x) where g(x) = o(x). Then

∑

n≤x
ψ(x/n) = Cx

∑

n≤x
n−1 +

∑

n≤x
g(x/n)

= Cx log x+ o(x log x) +
∑

n≤x
g(x/n). (1.28)

We would like to show that the final summand can be absorbed into the error
term o(x log x). To see this, let ε > 0 be given and choose N large enough that
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x > N implies |g(x)|/x < ε/2. Let M be an upper bound for |g| on [1, N ]. Then
∣
∣
∣
∣
∣
∣

∑

n≤x
g(x/n)

∣
∣
∣
∣
∣
∣

≤
∑

n≤x
x/n<N

|g(x/n)|+
∑

n≤x
x/n≥N

|g(x/n)|

≤Mx+
ε

2
x
∑

n≤x
n−1 < εx log x

for sufficiently large x. It follows that
∑

n≤x g(x/n) is o(x log x), which inserted
in (1.28) completes the proof of the claim.

By Corollary 1.5.5, we see that if π(x)/(x/ log x) tends to a limit, then that
limit is also necessarily 1. That is, we have proved Theorem 1.5.1.

Exercise 1.5.1. Modify the proof of Proposition 1.5.8 to show

lim inf
x→∞

π(x)

x/ log x
≤ 1, lim sup

x→∞

π(x)

x/ log x
≥ 1.

1.5.2 Proof of Theorem 1.5.2

One theorem down, two to go. We begin by noticing that for x ≥ 4, say, we
have the estimate

T (x)− 2T (x/2) = x log x− x+O(log x)− 2
(x

2
log

x

2
− x

2
+O

(

log
x

2

))

= x log 2 +O(log x).

On the other hand, by Lemma 1.5.7 we can also write

T (x)− 2T (x/2) =
∑

n≤x
ψ(x/n)−

∑

n≤x
2ψ(x/2n)

= ψ(x)− ψ(x/2) + ψ(x/3)− ψ(x/4) + . . .

Since ψ is a nondecreasing function, this is an alternating series of terms non-
increasing in absolute value. It follows that for any even k, we have

T (x)− 2T (x/2) ≥ ψ(x)− ψ(x/2) + · · ·+ ψ(x/(k − 1))− ψ(x/k), (1.29)

while for any odd k, we have

T (x)− 2T (x/2) ≤ ψ(x)− ψ(x/2) + . . .− ψ(x/(k − 1)) + ψ(x/k). (1.30)

Take k = 1; this gives the lower bound

ψ(x) ≥ T (x)− 2T (x/2) = x log 2 +O(log x).

Getting an upper bound on ψ(x) is a tad bit trickier. We first take k = 2 in
(1.29), which gives us

ψ(x)− ψ(x/2) ≤ T (x)− 2T (x/2) = x log 2 +O(log x).
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Replacing x with x/2, x/4, etc., we obtain estimates for ψ(x/2)− ψ(x/4), then
ψ(x/4)− ψ(x/8), etc. We then add the estimates. For this, think of x as large,
and choose k with 8 ≤ x/2k < 16. For each 1 ≤ j ≤ k,

ψ(x/2j−1)− ψ(x/2j) ≤ x

2j
log 2 +O

(

log
x

2j−1

)

=
x

2j
log 2 +O(log x).

Noting that k � log x and summing the expressions for j = 1, 2, . . . , k gives the
upper estimate

ψ(x)− ψ(x/2k) ≤ x log 2

(

1 +
1

2
+ · · ·+ 1

2j

)

+O(log x log x),

≤ 2x log 2 +O(log2 x).

Thus
ψ(x) ≤ 2x log 2 +O(log2 x) + ψ(16) ≤ 2x log 2 +O(log2 x).

We assumed that x was sufficiently large when deriving this estimate, but it is
clear now that it holds (with perhaps a different implied constant) for x ≥ 4,
say. Thus we have shown:

Proposition 1.5.9. For x ≥ 4, we have

x log 2 +O(log x) ≤ ψ(x) ≤ 2x log 2 +O(log2 x). (1.31)

This implies Theorem 1.5.2: Recall (1.26), which states that as x→∞,

π(x)

x/ log x
=
ψ(x)

x
+ o(1).

Substituting the estimates of (1.31) yields

log 2 + o(1) ≤ π(x)

x/ log x
≤ 2 log 2 + o(1) (1.32)

as x → ∞. It follows that in the statement of Theorem 1.5.2 we may take
for c1 and c2 any constants less than log 2 and greater than 2 log 2 respectively.
Note that if the ratio 2 log 2/ log 2 were any smaller, this would yield a proof of
Bertrand’s postulate!

Exercise 1.5.2. Show that there are positive constants c1, c2 such that for every
x ≥ 2, we have

c1
x

log x
≤ π(x) ≤ c2

x

log x
.

1.5.3 Proof of Bertrand’s Postulate

We begin with the observation that there is a prime in the interval (x, 2x]
precisely when θ(2x)− θ(x) > 0. Our strategy is to obtain a lower estimate for
the related quantity ψ(2x)− ψ(x) and then to transition to θ(2x)− θ(x) using
the estimate for the difference ψ − θ given by (1.24).
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Our first instinct is perhaps to take k = 2 in (1.29); this immediately gives
us a bound on T (x)− 2T (x/2), namely

ψ(x)− ψ(x/2) ≤ T (x)− 2T (x/2).

Unfortunately, the inequality is going the wrong way for our purposes. Instead,
take k = 3 in (1.30); we then have

ψ(x)− ψ(x/2) + ψ(x/3) ≥ T (x)− 2T (x/2) = x log 2 +O(log x).

But for large x, one has

ψ(x/3) ≤ x2 log 2

3
+O

(

log2 x

3

)

= x
2 log 2

3
+O(log2 x).

Consequently,

ψ(x)− ψ(x/2) ≥ x log 2

3
+O(log2 x).

But since ψ(u)− θ(u)� u1/2 log u for u ≥ 2, this implies

θ(x)− θ(x/2) ≥ x log 2

3
+O(x1/2 log x) (x→∞). (1.33)

As the right hand side is positive for large enough x, Theorem 1.5.3 follows.
In fact, we can get a lower bound on π(x) − π(x/2) of the same order of

magnitude as the lower bound for π(x) that we derived in the previous section.
Note that

θ(x)− θ(x/2) =
∑

x/2<p≤x
log p ≤ log x (π(x)− π(x/2)) ,

so that by (1.33) one has

π(x)− π(x/2) ≥ log 2

3

x

log x
+O(x1/2) =

(
log 2

3
+ o(1)

)
x

log x
(x→∞).

(1.34)
The argument of this section is due to Ramanujan [Ram19]. For other

proofs of Bertrand’s postulate, see §9.3 of H.N. Shapiro’s superb introductory
text [Sha83].

1.5.4 Exercises

Exercise 1.5.3 (M. Nair [Nai82]).

a) Show that
eψ(x) := lcm[1, 2, . . . , bxc].

b) As a corollary, prove that if f(T ) ∈ Z[T ] is a polynomial of degree d, then

eψ(d+1)

∫ 1

0

f(x) dx ∈ Z.
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c) Take f(T ) = Tn(1− T )n. Prove that

0 <

∫ 1

0

f(x) dx ≤ 4−n.

d) Deduce from b), c) and the minimality of 1 among the positive integers
that ψ(2n + 1) ≥ 2n log 2. Conclude from this that as x → ∞, we have
ψ(x) ≥ x(log 2 + o(1)), so that π(x) ≥ (log 2 + o(1))x/ log x.

Exercise 1.5.4. Using the method of the previous exercise but considering in-
stead f(T ) = (T −T 2)2n(1− 2T )2n, show that π(x) ≥ (C+ o(1))x/ log x, where

C := − logm

3
= .7803552047 . . . ,

m :=
1

3

(

1

2
− 1

6

√
3−

(
1

2
− 1

6

√
3

)2
)
√

3.

Combining this lower bound for π(x) with the upper bound of (1.32), show that
π(2x) > π(x) whenever x is sufficiently large. We thus have another proof of
Bertrand’s postulate for large x.

Exercise 1.5.5. Let P (n) denote the largest prime power divisor of n so that,
e.g., P (4) = 4 and P (100) = 25.

a) Prove that P (n)→∞ as n→∞ without using Chebyshev’s theorems.

b) From the inequality

log n ≤
∑

pk≤P (n)

log p = ψ(P (n)),

deduce that P (n)� log n as n→∞.

c) Let Nk :=
∏k
i=1 pi be the product of the first k primes. Show that

P (Nk)� logNk for k = 1, 2, . . . .

Hint: For c), the bound θ(x) � x for x ≥ 2 (which follows from (1.31) and
(1.24)) may prove useful.

Exercise 1.5.6 (Richert [Ric49]). Assume Bertrand’s postulate is known in its
full form: for every x ≥ 1, there is a prime in the interval (x, 2x]. Show that
every integer n > 6 can be written as a sum of distinct primes.

Suggestion: The assertion holds for all integers n ≤ 13 using only primes
not exceeding 11. Thus it is true for all 6 < n ≤ 26 using only primes not
exceeding 13, etc. . . A more general sufficient condition for all large integers to
be the sum of distinct terms of a given sequence, together with some interesting
applications, can be found in [Bro76].
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Exercise 1.5.7. Let m and M be defined by

m := lim inf
π(x)

x/ log x
, M := lim sup

π(x)

x/ log x
;

so that according to Chebyshev’s Theorem 1.5.2 we have 0 < m ≤ M < ∞.
Define dn by dn = pn+1 − pn (where pi denotes the ith prime), so that the
sequence {dn} begins 1, 2, 2, 4, 2, 4, 2, . . . . Prove that

lim inf dn/ log pn ≤
1

m
, lim sup dn/ log pn ≥

1

M
.

Exercise 1.5.8 (Erdős & Turán [ET48], continuation). Show that both dn <
dn+1 and dn > dn+1 hold for infinitely many values of n. To establish the
second of these, proceed as follows: Choose a positive constant C so that dn <
C log pn holds infinitely often (as is possible by the last exercise). Supposing
contrariwise that dn ≤ dn+1 holds for all n ≥ n0, consider the infinite chain
dn0
≤ dn0+1 ≤ dn0+2 ≤ . . . .

a) Show that for each positive integer k, one has dn = dn+1 = k for at most
k contiguous pairs above.

b) Now choose m > n0 with dm < C log pm, and use a) to show

m− n0 ≤ 1 + 2 + · · ·+ dm ≤ (C log pm)2.

Hence obtain an upper bound for m = π(pm) contradicting (for large m)
the lower bound of Theorem 1.5.2.

It is not known whether dn = dn+1 holds infinitely often.

Exercise 1.5.9. Chebyshev’s 1851 paper contained a proof of the following result,
versions of which may be found in [Nar00, §3.1], [Lan53, Chapter 10].

Theorem. For every k = 2, 3, . . . and every positive constant C, there exist
infinitely many positive integers m with

π(m) < li(m) + C
m

logkm
,

and infinitely many positive integers n with

π(n) > li(n)− C n

logk n
.

In this exercise we give two of Chebyshev’s applications:

a) Deduce that if π(x)/li(x) tends to a limit as x → ∞, then that limit is
necessarily 1. Since li(x) ∼ x/ log x, this implies Theorem 1.5.1.

b) Deduce that if x/π(x) − log x tends to a limit as x → ∞, then that
limit is necessarily −1. This disproves Legendre’s conjecture mentioned
in Exercise 1.3.4.
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1.6 Polynomials that Represent Many Primes

Euler observed that n2 − n + 41 is prime for each of n = 0, 1, 2, . . . , 40. We
know from Exercise 1.2.19 that no nonconstant polynomial can represent only
primes, so that the pattern must eventually break down. And indeed, the value
of Euler’s polynomial at n = 41 is clearly divisible by 41.

There are quite a few questions we might have when confronted with this
example. One is whether there is any “explanation” for this long run of primes.
There is – surprisingly, one can see this phenomenon as a manifestation of

uniqueness of factorization in Z[ 1+
√−163
2 ]; as this lies rather far afield, we refer

the interested reader to [Coh80, Chapter 9, §8]. Another natural question is
whether Euler’s polynomial represents infinitely many primes. It almost cer-
tainly does, but we cannot prove it. Indeed, it is not known whether there is a
single polynomial in Z[T ] of degree > 1 which represents infinitely many prime
values. Conjectural answers to such questions are considered in §1.8.3.

Humbled, we could ask whether there we can at least establish that there are
polynomials of degree > 1 that represent, if not infinitely many primes, at least
arbitrarily many. Our next theorem gives an affirmative answer, even when we
restrict to a special class of quadratic polynomials:

Theorem 1.6.1 (Sierpiński [Sie64]). For every N , there exists an integer k
for which there are more than N primes represented by T 2 + k; i.e.,

sup
k∈Z

|{p : p = a2 + k for some a ∈ Z}| =∞.

Theorem 1.6.1 is an immediate consequence of the following sharper result,
which we derive from Chebyshev’s estimates by a simple counting argument:

Lemma 1.6.2. For every x ≥ 2, there exists a positive integer k ≤ 2
√
x such

that the number of primes p ≤ x represented by T 2 + k is � √x/log x.

Proof. For each p ≤ x, write p = b√pc2 + k(p). Then k(p) ≥ 1 (since no prime
is a square), while

k(p) = p− b√pc2 ≤ p− (
√
p− 1)2 ≤ 2

√
p ≤ 2

√
x.

It follows from the Pigeonhole principle that at least π(x)/(2
√
x) primes not

exceeding x share the same value of k(p). Since π(x) � x/ log x for x ≥ 2, the
result follows.

Note that we expect T 2 + K to assume infinitely many prime values for
any fixed integer K not of the form −m2. This would follow from Schinzel &
Sierpiński’s “Hypothesis H,” described in §1.8.3.

Our final question is whether it is possible to outdo Euler. That is, can
we come up with a polynomial (with integer coefficients) assuming, say, 100
(distinct) prime values at consecutive integers? 1000? arbitrarily many? An
affirmative answer is provided by the next theorem, a weakened version of a
result proved by Chang & Lih in [CL77]. For the full result, which requires
Dirichlet’s theorem on primes in progressions, see Exercise 2.1.2:
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Theorem 1.6.3. For every natural number N , there is a polynomial f(T ) ∈
Z[T ] such that f(n) produces N + 1 distinct primes as n increases from 0 to N .

Proof. For each 0 ≤ k ≤ N , define

gk(T ) =

N∏

i=0
i6=k

(T − i) ∈ Z[T ].

Then gk(k) 6= 0, while gk(n) = 0 for 1 ≤ n 6= k ≤ N . From Exercise 1.2.16
(applied with m = gk(k)) we may deduce that there are integers m0,m1, . . . ,mN

for which
1 +m0g0(0), 1 +m1g1(1), . . . , 1 +mNgN (N)

is a list of N + 1 distinct primes. (Inductively choose the mi so that each
corresponding term is prime and different from its predecessors.) Then if we set

f(T ) := 1 +

N∑

k=0

mkgk(T ) ∈ Z[T ],

f will have the property enunciated in the theorem.

How small an f (in terms of its degree) can we take in Theorem 1.6.3? Our
construction shows such an f exists of degree N . Later (Exercise 1.8.9) we shall
see that there is a suitable polynomial of degree 1, provided the prime k-tuples
conjecture holds. See also Exercise 1.8.10.

Exercise 1.6.1. Give a proof of Theorem 1.6.1 using, instead of Chebyshev’s
theorem, the result of §1.4 that lim supx→∞ π(x)/

√
x =∞.

Exercise 1.6.2 (Garrison [Gar90]).

a) Show that for every d ≥ 2 and every N , there exists a positive integer k
for which T d + k assumes more than N prime values.

b) Show that part a) remains true if “positive” is replaced by “negative.”

Exercise 1.6.3 (Abel & Siebert [AS93]). Let f(T ) ∈ Z[T ] be a polynomial of
degree d ≥ 2 with positive leading coefficient. Show that for every N , there
exists an integer k for which f(T ) + k assumes more than N prime values.

Exercise 1.6.4. Show that for every N , there exists an even integer k such that
there least N prime pairs p, p + k. More generally, for any positive integers r
and N , there exist even integers k1 < k2 < · · · < kr−1 such that there are more
than N prime r-tuples p, p+ k1, . . . , p+ kr−1.

Exercise 1.6.5. It is conjectured that there is always a prime between any two
consecutive squares, moreover that the number between consecutive squares
tends to infinity. Using Chebyshev’s theorems, show that as x→∞,

max
n≤x

π((n+ 1)2)− π(n2)� x/ log x.

As one consequence, there is a pair of consecutive squares between which there
are more than 1000 primes.
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Remark. Sieve methods show that between any two large consecutive squares
there are always numbers with “few” prime factors; see Chapter 3, Exercise
3.5.4(b) for a precise statement of this kind.

1.7 Some Estimates of Mertens

By 1737, Euler was not only aware that
∑

1/p diverged, but had assigned the
infinite sum the value log log∞ [Eul37, Theorema 19], showing he possessed an
inkling as to the rate of growth of the partial sums.

Sixty years later, Gauss [Gau73b, pp. 11-16] would make the more precise
assertion that

“1 +
1

2
+

1

3
+

1

5
+

1

7
+

1

11
+ · · ·+ 1

x
= (for x infinite) llx+ V,′′

writing that he suspected V to be a constant near 1.266. It seems reasonable
to read this as the conjecture that

∑

p≤x 1/p = log log x+ V + o(1). Gauss also
claimed

“
2

1
· 3

2
· 5

4
. . .

x

x− 1
= (x inf) a.lx′′

for some constant a about 1.874, which we can read as the conjecture that

∏

p≤x
(1− 1/p)

−1 ∼ a log x.

Mertens observed [Mer74] that Chebyshev’s results could be used to obtain
such asymptotic formulas for the sum

∑

p≤x 1/p and the product
∏

p≤x(1−1/p).
His theorems prove Gauss’ claims to be qualitatively right on, although Gauss’
constants may be shown to be slightly off.

1.7.1 Mertens’ Theorem, sans the Constant

We begin by estimating the quantity

A(x) :=
∑

p≤x

log p

p
.

From this, estimates for
∑

p≤x 1/p follow by partial summation, and then esti-
mates for

∏

p≤x(1− 1/p) follow by taking logarithms.
Our starting point is the observation that T (x) can be re-expressed by

T (x) =
∑

n≤x
log n =

∑

n≤x

∑

d|n
Λ(d)

=
∑

d≤x

∑

n≤x
d|n

Λ(d) =
∑

d≤x
Λ(d)

⌊x

d

⌋

.
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Now drop the greatest integer sign in the final sum; the incurred error is �
∑

d≤x Λ(d) = ψ(x) � x (for x ≥ 4) by (1.31). Recalling that T (x) = x log x +
O(x), we deduce in turn that

x
∑

d≤x

Λ(d)

d
= x log x+O(x),

∑

d≤x

Λ(d)

d
= log x+O(1). (1.35)

Estimate (1.35) was proven for x ≥ 4, but it clearly remains true for every
x ≥ 1. If we recall the definition of Λ(d), we can rewrite this sum in a more
revealing form:

∑

d≤x

Λ(d)

d
=
∑

pk≤x

log p

pk
. (1.36)

This is visibly closer to the first sum we are aiming to estimate, the difference
being the inclusion of terms corresponding to prime powers pk with k ≥ 2. But
these make a bounded contribution;

∑

pk≤x
k≥2

log p

pk
≤
∑

p≤x
log p

∞∑

k=2

p−k

=
∑

p≤x

log p

p(p− 1)
≤

∑

2≤n≤x

log n

n(n− 1)
= O(1), (1.37)

since the final sum converges as x → ∞. Combining (1.35), (1.36) and (1.37),
we obtain the important result that for x ≥ 1,

∑

p≤x

log p

p
= log x+O(1). (1.38)

Now for x ≥ 2,

∑

p≤x

1

p
=

∫ x

3/2

dA(t)

log t
=
A(x)

log x
− A(3/2)

log (3/2)
+

∫ x

3/2

A(t)

t log2 t
dt

= 1 +O

(
1

log x

)

+

∫ x

2

dt

t log t
+

∫ x

2

A(t)− log t

t log2 t
dt

= log log x+ 1− log log 2 +

∫ x

2

A(t)− log t

t log2 t
dt.

Since A(t)− log t = O(1) and
∫∞
2
dt/(t log2 t) converges, the integral

I :=

∫ ∞

2

A(t)− log t

t log2 t
dt
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converges (absolutely) to a finite real number I. Then

I −
∫ x

2

A(t)− log t

t log2 t
dt�

∫ ∞

x

dt

t log2 t
=

1

log x
.

We have thus shown that with

B := 1− log log 2 + I, (1.39)

we have
∑

p≤x

1

p
= log log x+B +O

(
1

log x

)

. (1.40)

As a corollary, we now prove a weakened form of the result usually known as
Mertens’ theorem:

Mertens’ Theorem (minus the constant). For some constant C,

∏

p≤x

(

1− 1

p

)

=
C

log x

(

1 +O

(
1

log x

))

(x ≥ 2).

Proof. Let Px :=
∏

p≤x (1− 1/p), so that

logPx =
∑

p≤x
log

(

1− 1

p

)

= −
∑

p≤x

1

p
−
∑

p≤x

∞∑

k=2

1

kpk
.

Since ∞∑

k=2

1

kpk
≤ 1

2

∞∑

k=2

p−k =
1

2p(p− 1)
� p−2,

the infinite sum
∑

p

∑∞
k=2 k

−1p−k converges absolutely to S, say. Then we also
have

S −
∑

p≤x

∞∑

k=2

1

kpk
�
∑

p>x

p−2 �
∑

n>x

n−2 � x−1,

so that

logPx = − log log x−B +O(1/ log x)− S +O(1/x)

= − log log x−B − S +O(1/ log x).

Thus

∏

p≤x

(

1− 1

p

)

=
e−B−S

log x
eO(1/ log x) =

e−B−S

log x

(

1 +O

(
1

log x

))

and the result follows with C = e−B−S .
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Mertens was able to derive the remarkable equality B + S = γ, where γ is
the unique constant with

∑

n≤x
1

n
= log x+ γ +O(1/x) (x→∞). (1.41)

The existence of γ is proved in Appendix A, §A.2.2 as an example of Euler’s
summation formula.

1.7.2 The Constant in Mertens’ Theorem

In the previous subsection we proved that

∏

p≤x
(1− 1/p) ∼ C/ log x (x→∞),

where, keeping our earlier notation, C = e−(S+B). Following Murty ([Mur01,
Chapter 9]), we complete the proof of Mertens’ theorem by proving that S+B =
γ, the usual Euler-Mascheroni constant.

Let us introduce (or recall, in the case of the zeta function) the notation

ζ(s) :=

∞∑

n=1

1

ns
, Z(s) =

∑

p

1

ps
(s > 1).

Both series are uniformly convergent on every half-line {s : s ≥ 1 + ε}; con-
sequently, both ζ(s) and Z(s) represent continuous functions for s > 1. Since
both the harmonic series

∑
1/n and the “prime harmonic series”

∑
1/p diverge,

we expect ζ(s) and Z(s) to “blow up” as s tends down to 1. For ζ(s), this can
be seen from the following lemma:

Lemma 1.7.1. As s tends down to 1,

ζ(s) =
1

s− 1
+O(1).

Proof. Fix s > 1. Since t−s is a decreasing function of t on (0,∞),

1

s− 1
=

∫ ∞

1

t−s ≤ ζ(s) ≤ 1 +

∫ ∞

1

t−s dt = 1 +
1

s− 1
,

so that 0 ≤ ζ(s)− (s− 1)−1 ≤ 1.

We can use this lemma to estimate log ζ(s) as s tends down to 1:

Lemma 1.7.2. As s tends down to 1,

log ζ(s) = (s− 1)

∫ ∞

0

H(u)e−(s−1)u du+O(s− 1), (1.42)

where H(x) =
∑

n≤x 1/n.
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Proof. By the preceding lemma, (s− 1)ζ(s) = 1 +O(s− 1), so that as s tends
down to 1,

log ζ(s) = log
1

s− 1
+ log(1 +O(s− 1)) = log

1

s− 1
+O(s− 1). (1.43)

Since (for s ↓ 1)

1− e−(s−1) = 1− (1− (s− 1) +O((s− 1)2)) = (s− 1)(1 +O(s− 1)),

we also have
log
(

1− e−(s−1)
)

= log (s− 1) +O(s− 1), (1.44)

so that (comparing (1.43) and (1.44))

log ζ(s) = − log
(

1− e−(s−1)
)

+O(s− 1) =

∞∑

n=1

e−(s−1)n

n
+O(s− 1). (1.45)

Applying partial summation we obtain

log ζ(s) =

∫ ∞

0

e−(s−1)u dH(u) +O(s− 1) (s ↓ 1)

= H(x)e−(s−1)x + (s− 1)

∫ x

0

H(u)e−(s−1)u du

]

x=∞
+O(s− 1)

= (s− 1)

∫ ∞

0

H(u)e−(s−1)u du+O(s− 1).

We now derive an analogous estimate for P (s):

Lemma 1.7.3. As s tends down to 1, we have

Z(s) = (s− 1)

∫ ∞

0

P (eu)e−(s−1)u du, (1.46)

where P (x) =
∑

p≤x 1/p.

Proof. By partial summation,

∑

p

1

ps
=

∫ ∞

1

dP (t)

ts−1

=
P (x)

xs−1
− P (1)

1
+ (s− 1)

∫ x

1

P (t)

ts
dt

]

x=∞
= (s− 1)

∫ ∞

1

P (t)

ts
dt.

The lemma follows upon making the substitution t = eu.

Theorem 1.7.4 (Mertens’ Theorem). In the notation of the previous sub-
section,

S +B = γ.

Therefore
∏

p≤x
(1− 1/p) =

e−γ

log x
(1 +O (1/ log x)) .
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Proof. Define

f(s) := −
∑

p

(

log

(

1− 1

ps

)

+
1

ps

)

.

Because of the Euler-factorization of ζ(s), we have

f(s) = log ζ(s)−
∑

p

1

ps
= log ζ(s)− Z(s) (1.47)

for s > 1. Now for s ≥ 1/2,

log

(

1− 1

ps

)

+
1

ps
� 1

p2s
,

so that the series defining f(s) converges absolutely and uniformly on every
half-line {s : s ≥ 1/2 + ε}. In particular, f is continuous at s = 1, and

f(1) =
∑

p

(

− log

(

1− 1

p

)

+
1

p

)

=
∑

p

∞∑

k=2

1

kpk
= S.

It therefore suffices to establish that as s tends down to 1,

f(s) = γ −B + o(1).

From (1.47), (1.46) and (1.42),

f(s) = (s− 1)

∫ ∞

0

(H(t)− P (et))e−(s−1)t dt+O(s− 1) (s ↓ 1). (1.48)

We now employ our existing estimates for H(x) and P (x) given by (1.41) and
(1.40) respectively. We find that for large t,

H(t)− P (et) = (log t+ γ +O(1/t))− (log t+B +O(1/t))

= γ −B +O(1/(t+ 1));

this estimate persists for t ≥ 0, with perhaps a different implied constant.
Substituting into (1.48) shows

f(s) = (s− 1)

∫ ∞

0

(

(γ − β)e−(s−1)t +O

(
e−(s−1)t

t+ 1

))

dt+O(s− 1)

= γ − β +O

(

(s− 1)

∫ ∞

0

e−(s−1)t

t+ 1
dt

)

+O(s− 1).

We are almost at our goal. The estimate f(s) = γ − β + o(1) as s ↓ 1 will
follow as soon as we show

(s− 1)

∫ ∞

0

e−(s−1)t

t+ 1
dt = o(1) (s ↓ 1). (1.49)
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We do this directly: Let ε > 0 be given, and choose a positive integer N with
N−1 < ε/2. Rewrite the left hand side of (1.49) as

(s− 1)

∫ N

0

e−(s−1)t

t+ 1
dt+ (s− 1)

∫ ∞

N

e−(s−1)t

t+ 1
dt.

Choose κ > 1 so that for any s ∈ (1, κ], the first summand is smaller than ε/2.
The latter summand is bounded above by

(s− 1)

∫ ∞

0

e−(s−1)t

N + 1
dt =

1

N + 1
< ε/2,

so that for any s ∈ (1, κ],

0 ≤ (s− 1)

∫ ∞

0

e−(s−1)t

t+ 1
dt < ε/2 + ε/2 = ε.

As ε > 0 was arbitrary, the estimate (1.49) follows.

1.7.3 Exercises

Exercise 1.7.1. Fix α ∈ (1/2, 1] and let A = Aα be the set of positive integers
n possessing a prime factor p > nα. Here we prove A has density log 1/α. For
example, taking α = 1/2, this says that there is about a 70% chance a positive
number has a prime divisor exceeding its square root.

a) Because α > 1/2, every n has at most one prime divisor exceeding nα.
Use this to prove

A(x) =
∑

p≤x

∑

n≤max{x,p1/α}
p|n

1.

b) Split the sum in a) into S1 + S2, where S1 is the sum over those primes
p ≤ x for which x = max{x, p1/α}, and S2 is the remainder. Prove that

S1 =
∑

p≤xα

bp1/α−1c � π(xα)x1−α � x/ log x, and

S2 =
∑

xα<p≤x
bx/pc = x log

1

α
+O(x/ log x).

Deduce that A(x) := x log(1/α) +O(x/ log x).

c) Give a similar argument proving ψ(x, xα) ∼ x log 1
α . (For the definition of

ψ, see (1.10).)

Exercise 1.7.2. For this exercise, assume the hypothetical estimate

π(x) =
Ax

log x+B + o(1)
. (1.50)
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For example, if x/π(x) − log x tends to a limit C, then this holds with A = 1
and B = C. Following Pintz [Pin80], we will show that the only possibility of
such an estimate is if A = 1 and B = −1; this disproves Legendre’s conjecture.

a) Using partial summation, deduce from (1.50) that

θ(x) = π(x) log x−
∫ x

2

π(t) dt/t

=
Ax

1 +B/ log x+ o(1/ log x)
−
∫ x

2

A

log t+B + o(1)
dt

= Ax− (AB +A)
x

log x
+ o(x/ log x).

b) Conclude from (1.24) that the estimate of a) holds also for ψ(x).

c) Use this estimate for ψ to show that

∑

pk≤x

log p

pk
=

∫ x

3/2

dψ(t)

t
=

∫ x

2

ψ(t)

t2
dt+O(1)

= A log x− (AB +A) log log x+ o(log log x).

d) Deduce from (1.35) and (1.36) that

A = 1, −(AB +A) = 0,

so that A = 1, B = −1.

1.8 Motivating some Famous Conjectures about
Primes

1.8.1 Primes in Arithmetic Progressions

We have already discussed how Gauss conjectured the prime number theorem
based on the (empirical) observation that the density of primes near is x seems
to behave like 1/ log x. That theorem is only the first of many conjectures that
Gauss’ observation motivates, and we take the opportunity here to single out
several others. Many of these rank with the most famous unsolved problems
in number theory, and seem immune to the analytic machinery deployed so
successfully against the prime number theorem.

To warm-up, let us investigate the distribution of primes in the arithmetic
progression a (mod q), where where gcd(a, q) = 1 (and q > 0). Assuming
the density of primes near x is approximately 1/ log x, our first guess is that
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the number of primes in the sequence a + Mq with M ≤ z should be well-
approximated by

∫ z

2

dt

log (a+ tq)
=

∫ z

2

(
1

log t
+O

(
1

log2 t

))

dt = li(z) +O

(
z

log2 z

)

∼ li(z).1

But things aren’t quite this simple! We are assuming a+Mq has the same
likelihood of being prime as an average integer of its size. But if p divides
q, then p never divides an integer of the progression a (mod q). That is, the
probability that p doesn’t divide an integer in this progression is 1, while for a
random integer it’s 1− 1/p. On the other hand, if p is a prime not dividing q,
then p divides an element of the progression with the same probability (viz. 1/p)
as it divides a random integer (since then a+mq ≡ 0 (mod p) has one solution
(mod p)). This suggests we multiply our original guess by the correction factor

∏

p|q

1

1− 1/p
=

q

φ(q)
.

Piecing together the above, we arrive at the following:

Conjecture 1.8.1. Let a, q be integers with gcd(a, q) = 1 and q positive. Then

#{M ≤ z : a+Mq is prime} ∼ q

φ(q)
li(z) (z →∞).

This turns out to be a theorem, usually expressed in the equivalent form

#{p ≤ x : p ≡ a (mod q)} ∼ 1

φ(q)

x

log x
(x→∞).

This can be proved by the same analytic methods used to establish the prime
number theorem and is known as the prime number theorem for arithmetic
progressions (for a sketch of one proof see [Els98]).

1.8.2 The Twin Prime and Goldbach Problems

With this under our belt, we turn our attention to counting twin primes, primes
p such that p+ 2 is also prime.

We reason as follows: If (n, n + 2) behaved like a random ordered pair
of integers of size near n, we would expect both entries to be simultaneously
prime with probability 1/ log2 n. But we cannot make such an assumption of
randomness: the probability that neither entry of a random pair of integers is
divisible by p is (1−1/p)2, but the probability that neither n nor n+2 is divisible
by p is (1− ω(p)/p), where ω(p) is the number of solutions to the congruence

n(n+ 2) ≡ 0 (mod p).

1Of course, the lower range of integration here is unimportant since it only has the effect
of shifting the integral by a constant; we choose 2 in order to ensure that the denominator is
well-behaved.
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Table 1.3: Comparison of π2(x) and L2(x) := 2C2

∫ x

2
dt/ log2 t

x π2(x) L2(x)− π2(x)

105 1,224 25
106 8,169 79
107 58,980 -226
108 440,312 56
109 3,424,506 802

1010 27,412,679 -1,262
1011 224,376,048 -7,183
1012 1,870,585,220 -25,353
1013 15,834,664,872 -66,567
1014 135,780,321,665 -56,771
1015 1,177,209,242,304 -750,443

Since ω(p) = 1 if p = 2 and ω(p) = 2 for p > 2, we are led to multiply our
former guess by the correction factor

1− 1/2

(1− 1/2)2

∏

p

1− 2/p

(1− 1/p)2
.

Simplifying this product, we arrive at:

Twin Prime Conjecture (Quantitative Form). The set of twin primes is
infinite. More precisely, as x→∞,

π2(x) := #{p ≤ x : p+ 2 is also prime} ∼ 2C2

∫ x

2

dt

log2 t
,

where
C2 :=

∏

p>2

(
1− (p− 1)−2

)

is the twin prime constant.

Computational evidence for this conjecture (drawn from [Nic03]) is presented
in Table 1.8.2.

This heuristic in support of the twin prime conjecture also motivates the
Goldbach conjecture; this should not be surprising, since asking for a represen-
tation of an even number N in the form p+ p′ is equivalent to asking that the
polynomials n and N − n simultaneously represent prime values. Naively, one
guesses this should happen with probability 1

logn log (N−n) . To determine the

correction factor, we notice that n(N − n) ≡ 0 (mod p) has one solution when
p | N and two solutions otherwise. This leads us to multiply our guess by

∏

p|N

1− 1/p

(1− 1/p)2

∏

p-N

1− 2/p

(1− 1/p)2
= 2C2

∏

p|N,p>2

p− 1

p− 2
,
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where C2 is the twin prime constant. Hence we conjecture

#{p, p′ : p+ p′ = N} ∼ 2C2




∏

p|N,p>2

p− 1

p− 2





∫ N−2

2

dt

log t log (N − t)

as N → ∞ through even values. It turns out that (exercise!) the integral on

the right behaves asymptotically no differently than
∫ N

2
dt/ log2 t, leading to:

Goldbach Conjecture (Quantitative Form). As N → ∞ through even
numbers, we have

#{p, p′ : p+ p′ = N} ∼ 2C2




∏

p|N,p>2

p− 1

p− 2





∫ N

2

dt

log2 t
. (1.51)

Notice that this asymptotic formula implies not only that every large enough
even number N is a sum of two primes, but also that the number of represen-
tations tends to infinity with N .

Exercise 1.8.1. Let N be a positive, even integer. Give a heuristic suggesting
that the number of primes p ≤ x for which p+N is also prime is asymptotic to

2C2




∏

p|N,p>2

p− 1

p− 2





∫ x

2

dt

log2 t
.

Remark. In Chapter 3 we will discuss methods which can be used to establish
upper bounds for the quantities of this section of the same order of magnitude
as the conjectured asymptotics.

1.8.3 An Extended Hardy-Littlewood Conjecture

Our questions about primes in progressions and about twin primes are instances
of the following more general query: Suppose f1(T ), . . . , fk(T ) ∈ Z[T ] are non-
constant and non-associated over Q; are there infinitely many positive integral
n for which f1(n), . . . , fk(n) are simultaneously prime?2 If, for given fi, the an-
swer is yes, then can we say anything about how many such n there are below
a given bound?

For the answer to our first question to be affirmative, we surely must re-
quire each fi be irreducible over Z (cf. Exercise 1.8.2). But this is not enough:
the polynomial T 2 + T + 2 is irreducible over Z but assumes only even values.
A similar local obstruction occurs whenever the product f1(T ) . . . fk(T ) pos-
sesses a fixed prime divisor, i.e., whenever there exists a fixed prime p dividing
f1(n) . . . fk(n) for every integer n. For in this case, choose n0 large enough that
|fi(n)| > p for each i whenever n > n0; then for every n > n0, some fi(n) must
be composite, since some fi(n) has p as a proper divisor.

So suppose both

2For this discussion, it is convenient to define a prime over Z as any irreducible element,
positive or negative.
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i. the fi are all irreducible over Z,

ii. the product f1 . . . fk has no fixed prime divisor.

The conjecture that in this case, the fi are simultaneously prime for infinitely
many positive integer evaluations is called Hypothesis H . Originally formulated
by Schinzel, it is known to have a number of interesting number-theoretic con-
sequences; a smattering of such appears in [SS58].

Following Bateman & Horn [BH62], we now derive a quantitative version of
this conjecture (for an alternative treatment, see Exercise 3.1.1). Special cases
of this had been considered earlier by Hardy & Littlewood. Let di denote the
degree of fi. Then log |fi| is asymptotically di log |n|, so that we expect

πf1,...,fk
(x) := |{n ≤ x : f1(n), . . . , fk(n) simultaneously prime}|

to be asymptotic to

C(f1, . . . , fk)
1

d1 . . . dk

∫ x

2

dt

logk t
, (1.52)

where the correction factor C(f1, . . . , fk) is given by the infinite product

C(f1, . . . , fk) :=
∏

p

1− ω(p)/p

(1− 1/p)k
. (1.53)

Here

ω(p) = |{n (mod p) : f1(n) . . . fk(n) ≡ 0 (mod p)}|.

Bateman & Horn show that the above conditions on the fi imply that the
product defining C(f1, . . . , fk) converges (usually conditionally) to a positive
constant, so their conjecture indeed implies Hypothesis H. The proof of this
unfortunately requires more algebraic number theory than we are assuming
here, so we omit it.

The state of our knowledge about these conjectures is rather pathetic. When
k = 1 and f1 is linear, the Bateman-Horn conjecture reduces to the prime
number theorem for arithmetic progressions. In all other cases, not even the
weaker, qualitative assertion of Hypothesis H is known to hold.

We conclude by mentioning that the Bateman-Horn conjecture has recently
been generalized [CCG03] to polynomials over Fq[u]. Rather surprisingly, the
natural analog of (1.52) is provably false in this situation. As an extreme (and
atypical) example of this phenomenon, we mention that when F is a finite field
of characteristic p, the polynomial g4p + u ∈ F [u] is never irreducible when
deg g > 0, despite the fact that T 4p + u ∈ F [u][T ] is nonconstant, irreducible
over F [u] and without a fixed prime divisor. In fact, whenever deg g > 0, the
polynomial g4p + u factors into an even number of (distinct) irreducibles.
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1.8.4 Exercises: More on the Bateman-Horn Conjecture

Exercise 1.8.2. Suppose f(T ) ∈ Z[T ] is a nonconstant polynomial reducible over
Z. Show that f(n) assumes at most 2 deg f irreducible values as n ranges over
the integers.

Exercise 1.8.3 (Shanks [Sha60]). Using Hypothesis H, deduce the existence of
infinitely many prime pairs n, n+ 1 + i ∈ Z[i] (with n ∈ Z).

Instead of working through Hypothesis H, one can formulate analogous con-
jectures directly over Z[i]. For such a conjecture treating the case of several
monic linear polynomials over an arbitrary algebraic number field, see [GS00].

Exercise 1.8.4 (Shanks [Sha64], †). Let f(z) =
∑∞
n=0 z

n(n+1)/2 and define

h(z) := f(z)2 − 3f(z) + 2 = (f(z)− 1)2 − (f(z)− 1).

Prove that there are infinitely many primes of the form n2+1
2 , as predicted by

Hypothesis H, if and only if the power series of h (about 0) has infinitely many
negative coefficients.

Exercise 1.8.5. Let f(T ) be an irreducible polynomial in F [u][T ], where F is
an infinite field. Show that there are automatically no local obstructions: for
every prime π ∈ F [u], there exists t ∈ F [u] with π - f(t). Show that such a t
may in fact be chosen from F .

Remark. Suppose F = Q. Assume that f(t) ∈ F [u][T ] is irreducible with
degu f > 0. Then f(t) will be a polynomial in u of degree degu f for all but
finitely many rational t. It is a theorem (a simple version of the Hilbert Ir-
reducibility Theorem) that for infinitely many of these t, the corresponding
polynomial in u is irreducible. For a relatively elementary proof and some ap-
plications to Galois theory, see [Had78, Chapter 4].

Exercise 1.8.6 (see [RS98]). Show that there are polynomials f(T ) ∈ Z[T ] of
arbitrarily high degree with f(T )2 + 1 irreducible.

Hint: Eisenstein’s criterion.

The remaining exercises concern the special case of the Bateman-Horn con-
jecture where f1, . . . , fk are linear polynomials. This (or the corresponding
weaker analog of Hypothesis H) is known as the prime k-tuples conjecture.

Exercise 1.8.7. In this special case, prove that ω(p) = k for all but finitely many
primes p. Deduce that the infinite product (1.53) converges to a positive real
number.

Exercise 1.8.8 (cf. [Pol]). Assume the prime k-tuples conjecture. Show that
µ(n+ 1) = µ(n+ 2) = µ(n+ 3) = 1 for infinitely many natural numbers n.

Suggestion: Consider triples

29(30 · 31t+ 1), 30(29 · 31t+ 1), 31(29 · 30t+ 1).

Exercise 1.8.9 (Schinzel & Sierpiński [SS58]). Assume the prime k-tuples con-
jecture. Show that there are arbitrarily long arithmetic progressions consisting
only of primes. Show that this remains true if we require the primes be consec-
utive.
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Exercise 1.8.10 (Granville & Mollin [GM00]). Assume the prime k-tuples con-
jecture. Show that for every positive integer N , there exists an integer A for
which n2 − n+A assumes prime values for each 0 ≤ n ≤ N .

Suggestion: Consider the N linear polynomials T + (n2 − n) for 1 ≤ n ≤ N .

1.9 Elementary Prime Number Theory in Z[i]

Figure 1.1: The Gaussian Primes with Absolute Value Less than 50.

1.9.1 The Prime Ideal Theorem

In 1903, Landau showed [Lan03] that for any number field K (i.e., any field
extension K of Q with [K : Q] <∞),

#{prime ideals p of OK : Np ≤ x} ∼ x

log x
,

where OK is the “ring of integers” of K (a certain subring of K we won’t define
here) and the norm N I of a nonzero ideal I is the size of the (provably finite)
quotient ring OK/I. In the case when K = Q, this “ring of integers” OK is
just the familiar ring Z, and the nonzero prime ideals are just the ideals pZ,
different primes p giving rise to different ideals. (This final clause depends on our
convention that primes in Z are always positive.) Since N (pZ) = |Z/pZ| = p,
this case of Landau’s prime ideal theorem amounts to exactly the usual prime
number theorem.

In this section we examine the next simplest case, when K = Q(i). Then
OK is the ring of Gaussian integers Z[i], which bears many similarities to Z.
Our goal is to obtain analogs of Chebyshev’s theorems (cf. §1.5) by the method
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of Landau [Lan02], who was the first to carry out this project for arbitrary
number rings OK .

1.9.2 Chebyshev Analogs

We begin by introducing some notation. We let πK(x) denote the number of
Gaussian primes of norm not exceeding x. Analogously to (1.22), we set

θK(x) :=
∑

N%≤x
logN%, ψK(x) := θ(x) + θ(x1/2) + . . . , 3

where in this section the letter % always denotes a Gaussian prime. (We would
use π, but we will need the constant 3.14159 . . . later).

Recall that Z[i] is a principal ideal domain with four units and that the
norm of an element is the absolute value of the norm of the ideal it generates.
Therefore, we can recast the prime ideal theorem in the form

πK(x) ∼ 4
x

log x
. (1.54)

The upper estimate πK(x) � x/ log x is easy to obtain from our already-
established bounds on π(x). Indeed, each Gaussian prime % with norm not
exceeding x divides a rational prime p not exceeding x, and each rational prime
p has at most 2 prime divisors up to associates, so at most 8 prime divisors
total. Hence

πK(x) ≤ 8π(x)� x

log x
(x→∞),

by (1.32). By fiddling with the implied constant, this actually holds for all
x ≥ 2. This implies that in the same range both θK(x) and ψK(x) are O(x),
since

θK(x) ≤ ψK(x) =

∞∑

k=1

∑

N%≤x1/k

logN% =
∑

N%k≤x
logN%

=
∑

N%≤x
logN%

⌊
log x

logN%

⌋

≤ πK(x) log x� x.

The problem of obtaining lower bounds is a bit trickier. For this, we introduce
the following analogs of bxc! and T (x):

Fx :=
∏

Nα≤x
α6=0

α, TK(x) := logNFx.

Let Z(x) denote the number of nonzero elements of norm not exceeding x. This
is just the number of lattice points inside or on the circle with radius

√
x centered

at the origin, not counting the origin itself. So by Corollary A.3.3,

Z(x) = πx+O(
√
x). (1.55)

3Beware! these notations are nonstandard; in the literature they denote corresponding
counts over prime ideals, not elements.
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We now estimate TK(x) =
∑

0<Nα≤x logNα by partial summation:

TK(x) =

∫ x

1/2

log t dZ(t) = Z(x) log x−
∫ x

1/2

Z(t)

t
dt

= πx log x+O(
√
x log x)−

∫ x

1

πt+O(
√
t)

t
dt

= πx log x− πx+O(
√
xlog x). (1.56)

In order to extract information from this, we need the following lemma, an
analog of the usual formula for the highest power of a prime dividing a factorial:

Lemma 1.9.1. Let % be a Gaussian prime and let x be a positive real number.
The exponent on the largest power of % dividing Fx is given by

Z(x/N%) + Z(x/N%2) + Z(x/N%3) + . . . .

Exercise 1.9.1. Prove this!

Given x ≥ 2, choose a set of representatives P of the equivalence classes
of Gaussian primes of norm not exceeding x (under the relation of being asso-
ciates). Then Fx is an associate of

∏

N%≤x
%∈P

%Z(x/N%)+Z(x/N%2)+Z(x/N%3)+...,

so that

TK(x) = logNFx
=
∑

N%≤x
%∈P

logN%
(
Z(x/N%) + Z(x/N%2) + Z(x/N%3) + . . .

)

=
1

4

∑

N%≤x
logN%

(
Z(x/N%) + Z(x/N%2) + Z(x/N%3) + . . .

)
. (1.57)

Since Z(x)� x for all x > 0, one has

∑

N%≤x
logN%

∞∑

k=2

Z(x/N%k)� x
∑

N%≤x
logN%

∞∑

k=2

1

N%k

� x
∑

N%≤x

logN%
N%(N%− 1)

� x
∑

2≤n≤x

log n

n(n− 1)
� x,

(1.58)

where in the second line we have used that there are at most 8 = O(1) Gaussian
primes of any given norm. Combining (1.56), (1.57) and (1.58) yields

1

4

∑

N%≤x
Z(x/N%) logN% = πx log x+O(x).
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If we recall that Z(t) = πt+O(
√
t) for t ≥ 1, we have shown that

π

4
x
∑

N%≤x

logN%
N% = πx log x+O(x) +O




√
x
∑

N%≤x

logN%√N%



 . (1.59)

The final error term is estimated using the upper bound πK(x)� x/ log x:

∑

N%≤x

logN%√N% =

∫ x

3/2

log t√
t
dπK(t) =

πK(x) log x√
x

−
∫ x

2

πK(t)
1− (log t)/2

t3/2
dt

� √x+

∫ x

2

t−1/2 dt� x1/2.

Substituting into (1.59) and dividing by πx/4, we obtain

∑

N%≤x

logN%
N% = 4 log x+O(1). (1.60)

It follows by partial summation (exercise!) that

lim inf
x→∞

πK(x)

x/ log x
≤ 4, lim sup

x→∞

πK(x)

x/ log x
≥ 4,

so that if the limit exists, it must equal 4. This is the analog of Theorem 1.5.1.
Now choose a constant C > 0 with the property that for every x ≥ 2,

∣
∣
∣
∣
∣
∣

∑

N%≤x

logN%
N% − 4 log x

∣
∣
∣
∣
∣
∣

≤ C.

(This is exactly what the estimate (1.60) says we can do!) We set D = eC .
Then for x ≥ 2,

∑

x<N%≤Dx

logN%
N% ≥ (4 log (Dx)− C)− (4 log (x) + C)

= 4 logD − 2C = 2C > 0.

Thus there is always a Gaussian prime with norm in the interval (x,Dx]; this
can be considered an analog of Bertrand’s postulate (Theorem 1.5.3). Moreover,
since log t/t is a decreasing function of t for t ≥ 3, one has for every x ≥ 3,

C ≤
∑

x<N%≤Dx

logN%
N% ≤ log x

x
(πK(Dx)− πK(x)) , (1.61)

so that there are in fact � x/ log x primes with norm falling into this interval.
Since a lower bound for πK(Dx)− πK(x) is a lower bound for πK(Dx) also, we
see (1.61) implies that for x ≥ 3D,

πK(x) ≥ C(x/D)/ log (x/D),
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so that as x→∞ we have the estimate

πK(x)� x/ log x.

This final estimate is the analog of the lower bound in Theorem 1.5.2.

1.9.3 Exercises

Exercise 1.9.2. Prove the analog of (1.23) by showing that as x→∞,

θK(x)

x
=

πK(x)

x/ log x
+ o(1).

Do the same for ψK . Deduce that as x → ∞, one has both θK(x) � x and
ψK(x) � x; moreover, the prime ideal theorem for Z[i] (statement (1.54)) is
equivalent to either of θK(x) ∼ 4x or ψK(x) ∼ 4x.

Exercise 1.9.3. Owing to the familiar characterization of Gaussian primes, the
estimates developed in this section imply certain facts about the distribution of
rational primes in progressions (mod 4).

a) Show that as x→∞, one has

∑

p≤x
p≡1 (mod 4)

log p

p
=

1

2
log x+O(1).

Hint: Note that there are 8 Gaussian primes of norm p for every rational
prime p ≡ 1 (mod 4). Show that the primes % dividing some rational
prime p 6≡ 1 (mod 4) contribute a bounded amount to the sum (1.60).

b) Using part a) and estimate (1.38), show that as x→∞,

∑

p≤x
p≡1 (mod 4)

log p

p
=

1

2
log x+O(1).

c) Show that there is a constant C > 1 such that for every x ≥ 2, there is
both a prime p ≡ 1 (mod 4) and a prime p ≡ 3 (mod 4) in the interval
(x,Cx].

d) Show that as x→∞,

π(x; 4, 1)� x/ log x and π(x; 4, 3)� x/ log x.

e) From a) and b), show that if π(x;4,1)
x/ log x or π(x;4,3)

x/ log x tends to a limit, then that

limit must be 1/2.

When we prove Dirichlet’s theorem, we will see that all of these statements gen-
eralize to an arbitrary arithmetic progression a (mod q) satisfying gcd(a, q) = 1.

Exercise 1.9.4. Generalize the results of this section to Z[ω], where ω = e2πi/3.
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1.10 The Distribution of Primes in Fq[T ]

There is a fruitful analogy between the ring Z of integers and the ring F [T ] of
polynomials over a field F . Just as every nonzero integer has a positive asso-
ciate which factors uniquely as a (possibly empty) product of positive primes,
every nonzero polynomial has a monic associate factoring uniquely into monic
irreducibles.

The usual prime counting function π(x) counts the number of positive ir-
reducible n ∈ Z for which |Z/nZ| ≤ x. To introduce an analogous counting
function for irreducible polynomials over F = Fq, we first define N f := qdeg f ,
so that N f = |F [T ]/(f)| for f 6= 0. We then define

πq(x) := |{h ∈ F[T ] : h monic and irreducible,Nh ≤ x}|.

However, any hope that πq(x) be asymptotic to a smooth, steadily-growing
function like x/ log x is shattered by the observation that πq(x) is constant
between powers of q and (as one would expect) has rather large jumps at these
powers. A more profitable initial object of study is the function νq(n), defined
as the number of monic irreducibles of degree n. In fact, we will obtain an exact
formula for νq(n), with the consequence that νq(n) = qn/n + O(qn/2/n). It is
this estimate that we call the prime number theorem. By partial summation,
an asymptotic estimate for πq(x) of order x/ log x as x tends to infinity along
powers of q follows; this is left to the exercises.

Many questions about the distribution of rational primes can be reformulated
in this new context. Somewhat surprisingly, questions which are inaccessible
over Z can sometimes be proven elementarily when stated over Fq[T ].

As an example, we mention one analog of the twin prime problem: Let
F = Fq be a finite field; are there infinitely many “twin primes” f, f+1 ∈ F [T ]?

When q = 2, there certainly are not. But there are for q > 3, as recently
demonstrated by C. Hall [Hal03, Corollary 19]. What is actually proved is that
in this case, there exists an α ∈ Fq and a prime l for which the polynomials

T l
k − α− 1, T l

k − α (k = 1, 2, . . . )

are simultaneously irreducible. Our method of proving this irreducibility gener-
alizes to provide a construction of infinitely many twin prime pairs in the single
remaining case, that of q = 3. We thus have a complete solution to our analog
of the twin prime conjecture (but see the more general version of §1.10.4)!

1.10.1 The Prime Number Theorem

It is a remarkable fact that for the ring of polynomials over a finite field F =
Fq, the analog of the prime number theorem can be proved in a completely
elementary fashion.

Lemma 1.10.1. Let h(T ) ∈ F [T ] be an irreducible polynomial of degree d.
Then h(T ) | T qn − T if and only if d | n.
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Proof. Suppose first that d | n. Since F [T ]/(h(T )) is a field of size qd, the

qdth power map is the identity. In particular, T q
d ≡ T (mod h(T )), whence

h(T ) | T qd − T . But d | n implies qd − 1 | qn − 1, which in turn implies

T q
d − T | T qn − T .
Now suppose h(T ) | T qn − T . Choose g(T ) ∈ F [T ] with the property that

g(T ) (mod h(T )) is a generator of the multiplicative group F [T ]/(h(T ))∗. Then

h(T ) | T qn − T | g(T q
n

)− g(T ) = g(T )q
n − g(T ),

whence g(T )q
n−1 ≡ 1 (mod h(T )). But the coset of g has order qd − 1, whence

qd − 1 | qn − 1 and d | n.

Lemma 1.10.2. Over F , we have the factorization

T q
n − T =

∏

h monic, irreducible
deg h|n

h(T ). (1.62)

Proof. Write T q
n − T = p1(T )p2(T ) . . . pk(T ), where the pi are monic irre-

ducibles. By the Lemma, the pi occurring are exactly those with degree dividing
n. It thus suffices to check that the polynomial on the left is squarefree – but if
A(T )2 | T qn − T , then A(T ) | (T qn − T )′ = −1, an absurdity.

Let νq(n) denote the number of monic irreducibles of degree n over F .

Theorem 1.10.3 (Prime Number Theorem for Fq[T ]). The number of
monic irreducibles νq(n) of degree n ≥ 1 over the finite field F with q elements
is given by

νq(n) =
1

n

∑

d|n
qdµ(n/d) = qn/n+O(qn/2/n).

Here the implied constant is absolute.

Proof. We compare the degrees of both sides in the factorization (1.62):

qn =
∑

d|n
dνq(d). (1.63)

The stated formula follows by Möbius inversion. To obtain the O-estimate for
the error, observe that

|νq(n)− qn/n| = 1

n

∣
∣
∣
∣
∣
∣

∑

d|n,d<n
qdµ(n/d)

∣
∣
∣
∣
∣
∣

≤ 1

n

bn/2c
∑

d=1

qd

≤ 1

n
qbn/2c

(

1 +
1

q
+

1

q2
+ . . .

)

≤ qn/2

n

q

q − 1
≤ 2qn/2/n.
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1.10.2 Exercises: Further Elementary Estimates

For real x, define

πq(x) :=
∑

Nh≤x
1, θq(x) :=

∑

Nh≤x
logNh, ψq(x) :=

∑

Nhk≤x
logNh,

where above (and throughout this series of exercises) h ranges over monic irre-
ducibles of Fq[T ].

Exercise 1.10.1. Use partial summation to deduce the following estimate from
Theorem 1.10.3:

πq(q
n) =

qn+1 − q
q − 1

1

n
+O

(
qn/n2

)
.

Thus, setting x = qn, we have

πq(x) ∼ q

q − 1

x

log x/ log q
(as x = qn →∞).

Show that this asymptotic estimate does not hold as x→∞ without restriction.

Exercise 1.10.2 (Snyder [Sny]). Show that

ψq(q
k) = log q

qk+1 − q
q − 1

,

while the same formula holds for θq(q
k) up to an error of O(qk/2k).

Exercise 1.10.3. Prove that for x = qn, we have

∑

Nhk≤x

logNh
Nh = log x.

Prove that this estimate remains valid for every x ≥ 1 up to an error term of
O(1). Deduce that

∑

Nh≤x

logNh
Nh = log x+O(1)

for x ≥ 1, and by applying partial summation that

∑

Nh≤x

1

Nh = log log x+ c+O

(
1

log x

)

for x ≥ 2 and a certain constant c = c(q).

The next exercise presents an alternate proof of the prime number theorem
for Fq[T ]. Define

ζq(s) :=
∑

f

1

N fs , (1.64)

where the sum is over all monic polynomials f(T ) ∈ F [T ]. We assume at the
outset that the terms in the sum are taken with respect to a fixed ordering in
which they are arranged by increasing degree.
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Exercise 1.10.4.

a) Show that for <(s) > 1, the sum (1.64) converges absolutely, and

ζq(s) =

∞∑

n=0

1

qns
qn =

1

1− q1−s . (1.65)

b) Establish the Euler factorization, valid in the same region:

ζq(s) =
∏

h

1

1−Nh−s =

∞∏

n=1

(
1

1− q−ns
)νq(n)

. (1.66)

Here the product is taken over all monic irreducibles h.

c) Comparing (1.65) and (1.66), prove that for |z| < q−1,

1

1− qz =

∞∏

n=1

(1− zn)
−νq(n)

.

d) Taking the logarithm of both sides and replacing each term of the form
log (1− x) by its Taylor series, prove that for |z| < q−1,

∞∑

N=1

zN
qN

N
=

∞∑

N=1

zN
∑

nm=N

nνq(n)

N
.

Rederive (1.63) by comparing coefficients of zN .

Exercise 1.10.5 (A Polynomial Analog of Goldbach’s Conjecture). This exercise
outlines an elementary argument of Hayes [Hay63] to the effect that if q is large
compared to n, every polynomial of degree n in Fq[T ] is a sum of two irreducible
polynomials of degree n+ 1.

a) Let n be a positive integer. Using Theorem 1.10.3, show that if q > q0 =
q0(n), then

νq(n+ 1) ≥ 1

2

qn+1

n+ 1
> qn.

b) Deduce that if f(T ) ∈ Fq[T ] is any polynomial of degree n, where q >
q0(n), then there are two irreducible polynomials h1, h2 of degree n + 1
which are congruent (mod f(T )).

c) Show that h1 − h2 = βf , where β ∈ F∗
q . Thus the identity f = β−1h1 +

(−β−1)h2 exhibits f as a sum of two irreducibles of degree n+ 1.

Let us mention another result of Hayes [Hay65] in the same vein: if D is a
principal ideal domain with infinitely many nonassociated primes, then every
polynomial in D[T ] is the sum of two irreducibles. The proof is an elementary
but clever application of Eisenstein’s irreducibility criterion, and the method
extends to any Dedekind domain with infinitely many prime ideals. In partic-
ular, in both Z[T ] and F [T1, T2] = F [T1][T2], every polynomial is a sum of two
irreducibles.
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1.10.3 New Irreducibles from Old

Let f(T ) ∈ Fq[T ] be an irreducible polynomial not associated to T . The order
of f is the multiplicative order of any root of f in any extension field containing
such a root. This is well-defined, since if E ⊃ F is an extension containing the
root α, then we have an isomorphism

Fq[T ]/(f(T )) ∼= Fq(α) ⊂ E, T (mod f(T )) 7→ α.

Note that the order of f always divides qdeg f − 1.
Our goal is the proof of the following result, a special case of [LN97, Theorem

3.35] (for a stronger result, see Exercise 1.10.7):

Theorem 1.10.4. Let f(T ) ∈ Fq[T ] be an irreducible polynomial of degree d
and order e. Suppose l is an odd prime for which l | e, l - (qd − 1)/e. Then

f(T l
k

) is irreducible for every k = 1, 2, 3, . . . . The same holds if l = 2, provided
qd ≡ 1 (mod 4).

Remark. It is illuminating to note that the complicated divisibility condition of
the theorem, viz. l | e, l - (qd − 1)/e, is equivalent to the statement that the
roots of f are not lth powers in its splitting field Fqd . I owe this observation to
Chris Hall.

We need a series of lemmas:

Lemma 1.10.5. Let f(T ) ∈ Fq[T ] be an irreducible polynomial of degree d and
order e. Then ordeq = d.

Proof. We have

f(T ) | T qn − T ⇐⇒ T q
n−1 ≡ 1 (mod f(T ))⇐⇒ e | qn − 1⇐⇒ ordeq | n.

On the other hand, f(T ) | T qn−T if and only if d | n (Lemma 1.10.1). It follows
that d divides ordeq and vice-versa.

Our next lemma belongs to elementary number theory:

Lemma 1.10.6. Let l be an odd prime. Suppose the integer n is such that

n ≡ 1 (mod la), but n 6≡ 1 (mod la+1),

where a ≥ 1. If r is a positive integer for which lb‖r, then

nr ≡ 1 (mod la+b), but nr 6≡ 1 (mod la+b+1).

The same holds if l = 2, provided n ≡ 1 (mod 4), i.e., provided that a ≥ 2.

Proof. It suffices to establish the lemma for the two cases when r is coprime to
l and when r = l, the general case following from successive application.

When r is coprime to l, write

nr − 1 = (n− 1)(nr−1 + nr−2 + · · ·+ 1).
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The last factor is ≡ r 6≡ 0 (mod l), so that the same power of l exactly divides
both n− 1 and nr − 1, and the result follows.

When r = l, write n− 1 = laq, where l - q. Then

nr − 1 = (laq + 1)l − 1 =

l∑

j=1

(
l

j

)

(laq)j ≡ la+1q (mod lE),

where we may take E = 2a in any case and E = 2a+ 1 if l is odd. When l = 2,
we have assumed a ≥ 2, so that in any case E > a + 1. Since l - q, it follows
that la+1 ‖ nr − 1.

Proof of Theorem 1.10.4. Let α be a root of f(T l
k

) in a suitable extension E

of Fq. Then αl
k

has (multiplicative) order e. Since l | e, it follows that α has
order elk (see Exercise 1.10.6).

Since we are aiming to prove f(T l
k

) is irreducible, we would like to establish

f(T l
k

) is in fact the minimal polynomial for α over Fq. Since f(T l
k

) possesses
α as a root, it suffices to show the degree D of the minimal polynomial for α is

the same as the degree of f(T l
k

), i.e., that D = dlk.
Define a by the relation la ‖ e. Since l - (qd − 1)/e, the same power of l

exactly divides both e and qd − 1. The hypotheses of the theorem imply a ≥ 1
in any case and a ≥ 2 if l = 2.

By Lemma 1.10.5, d = ordeq and D = ordelkq. Thus d | D. Now qdQ ≡ 1
(mod elk) if and only if both

qdQ ≡ 1 (mod la+k) and qdQ ≡ 1 (mod e).

The latter relation imposes no restriction on Q while the former holds if and
only if lk | Q (by Lemma 1.10.6). The desired relation D = dlk follows.

As an application of Theorem 1.10.4, we prove:

Corollary 1.10.7. Let F = Fq be a finite field. Suppose l | q − 1 for the odd

prime l and that α ∈ F is not an lth power. Then T l
k −α is irreducible over F

for every k = 1, 2, 3, . . . . The same holds if l = 2, provided q ≡ 1 (mod 4).

Proof. Apply Theorem 1.10.4 to the irreducible polynomial T − α of degree
d = 1. The order e of f is the order of α. Let g generate F ∗ and write α = gj ,
so that l - j. Then e = (q − 1)/(q − 1, j). Thus l | e, l - (q − 1)/e.

Exercise 1.10.6. Let G be a group and suppose g ∈ G has order e. Suppose that
h ∈ G is a Lth root of G, i.e., satisfies hL = g, and that every prime dividing L
also divides e. Then h has order eL.

Exercise 1.10.7. Let f(T ) ∈ Fq[T ] be an irreducible polynomial of degree d and
order e. Suppose L is chosen so that every prime l | L also satisfies l | e, l -
(qd − 1)/e. Moreover, assume qd ≡ 1 (mod 4) if L ≡ 0 (mod 4). Then f(tL) is
irreducible.
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1.10.4 The Twin Prime Problem

Let F = Fq be a finite field and fix d ∈ F [T ]. In analogy with the twin prime
conjecture over Z, it is natural to ask if there are infinitely many prime pairs
f, f + d ∈ F [T ].

To see when this is a sensible question, let us first rule out local obstructions.
When is there is a prime h ∈ F [T ] which divides f(f +d) for every f? The only
way this can happen is if 0,−d exhaust the residue classes (mod h), so that
Nh = 2. This can only happen if q = 2 and deg h = 1, so that h = T or T + 1.

So let us assume now that either q 6= 2 or that T (T + 1) | d. Then one
conjectures (cf. [CCG03, Conjecture 10.10])

|{g ∈ F [T ] : deg f = n, f and f + d both irreducible}|

∼
∏

h-d

1− 2/Nh
(1− 1/Nh)2

∏

h|d
(1− 1/Nh)−1 (q − 1)qn

n2
(n→∞), (1.67)

where the products are over monic irreducibles h. The infinite product here
converges (exercise), so we expect infinitely many twin primes. Note that the
sampled f are not required to be monic; this explains the presence of the factor
q − 1.

As with the analogous conjecture over Z (cf. Exercise 1.8.1), a proof of
(1.67) seems hopelessly out of reach. But whereas over Z, there are no d for
which the set of prime pairs h, h + d is provably infinite, the construction of
§1.10.3 implies this (actually, a little more) is true for Fq[T ] when d = 1:

Theorem 1.10.8. Let F = Fq, where q 6= 2. Then there exist infinitely many
monic twin prime pairs h, h+ 1 ∈ F [T ].

The idea of the proof is to show that for almost all q, one can find consecutive
lth power nonresidues α, α+ 1 ∈ Fq for some prime l | q−1 (where additionally
4 | q − 1 if l = 2). Then by Corollary 1.10.7,

T l
k − α− 1, T l

k − α (k = 1, 2, . . . )

are an infinite family of twin prime pairs. In the single case where this strategy
does not go through, we will use the construction of the last section to exhibit
another family of twin prime pairs.

Executing this plan requires a series of lemmas. The first of these has a
combinatorial flavor; it shows there are two consecutive non-lth powers provided
there are not too many lth powers.

Lemma 1.10.9. Let S ⊂ F = Fq, and let b ∈ F ∗. Suppose that for each a ∈ F ,
either a or a+ b is an element of S. Then |S| ≥ q/2.
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Proof. We have

q =
∑

a∈F
1 ≤

∑

a∈F
|S ∩ {a, a+ b}|

=
∑

a∈F

∑

c∈S∩{a,a+b}
1 =

∑

c∈S

∑

a∈F
c∈{a,a+b}

1 =
∑

s∈S
2 = 2|S|.

When l | q − 1, the number of lth powers in Fq is (q − 1)/l + 1, and this
exceeds q/2 when l = 2. Consequently, if 2 is the only prime dividing q − 1,
then the preceding lemma cannot be used to guarantee consecutive lth power
nonresidues for some prime l | q − 1. Our next lemma tells us precisely when
we are in this unfortunate situation:

Lemma 1.10.10. Suppose n is positive integer for which 2n+1 = pk is a prime
power. Then either k = 1 or n = 3, p = 3, k = 2.

Proof. Suppose n, k is a solution. If k is odd, write

2n = pk − 1 = (p− 1)(pk−1 + · · ·+ p+ 1).

Since p is clearly odd, the final factor is congruent to k (mod 2), so is also odd.
As an odd divisor of 2n, it must equal unity. It follows that k = 1.

If k is even, then
2n = (pk/2 − 1)(pk/2 + 1),

forcing the two factors on the right to be powers of 2 differing by 2. It follows
that pk/2 − 1 = 2, whence p = 3, k = 2, and n = 3.

Lemma 1.10.11. Let F = Fq, where q 6= 2, 3. Then for some prime l | q − 1,
there exist consecutive lth power nonresidues α, α + 1 ∈ F . Moreover, we can
choose l 6= 2 except possibly when q ≡ 1 (mod 4).

Proof. We consider two cases, depending on whether or not q − 1 possesses an
odd prime factor l. Suppose it does and that l is any such prime factor; we
claim that there are two consecutive lth power nonresidues. Otherwise, with S
as the set of lth powers,

1 +
q − 1

3
≥ 1 +

q − 1

l
= |S| ≥ q/2,

so that q ≤ 4. However, when q = 4, we necessarily have l = 3, and Flq =
F3
q = {0, 1} ⊂ F2. In particular, if we choose α ∈ F4 \ F2, then α, α + 1 are

consecutive cubic nonresidues.
Suppose now that q − 1 is a power of 2. Then necessarily q ≡ 1 (mod 4).

In fact, by Lemma 1.10.10, either q = 9 or q is a Fermat prime. In the former
case, we make the identification

F9 = F3(β), β2 + 1 = 0.
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There are five squares in F9, namely 0, 1, β2 = −1, (1+β)2 = 2β, β2(1+β)2 = β.
Thus β + 1, β + 2 are consecutive quadratic nonresidues.

Finally, suppose q = 22k

+ 1 is a Fermat prime, where k is a positive integer.
If k = 1, then q = 5 and 2, 3 are consecutive nonsquares. Otherwise, we shall
prove

(
2

q

)

= 1,

(
3

q

)

=

(
5

q

)

= −1.

It follows that 5, 6 are a pair of consecutive quadratic nonresidues. To verify the
status of these Legendre symbols, note first that q ≡ 1 (mod 8), whence 2 is a
square. The other claims follow from quadratic reciprocity and the congruences
q ≡ 2 (mod 3), q ≡ 2 (mod 5), which are easily verified by induction on k.

Proof of Theorem 1.10.8. For q 6= 3, the theorem follows from Corollary 1.10.7
and Lemma 1.10.11. When q = 3, we apply Theorem 1.10.4 directly to the
irreducible polynomials T 3 − T + 1 and T 3 − T + 2 of degree d = 3.

With f denoting either of these polynomials, the order e of f is a divisor of
33 − 1 = 26 exceeding 2 (since the roots do not live in F ). It follows that we
may take l = 13 in Theorem 1.10.4, so that

T 3·13k − T 13k

+ 1, T 3·13k − T 13k

+ 2

are a twin prime pair for each k = 1, 2, 3, . . . .

Since we can scale the twin prime pair h, h + 1 by any unit α, Theorem
1.10.8 has the following easy consequence, mentioned in the introduction to this
section:

Corollary 1.10.12. Let F = Fq, where q 6= 2, and let α ∈ F ∗. Then there are
infinitely many twin prime pairs h, h+ α ∈ F [T ].

This is a qualitative improvement on an earlier sieve result of Cherly [Che78,
Theorem 1.2] that there are infinitely many pairs f, f+α, each member of which
has at most four (non-associated) prime divisors.

The preceding corollary does not guarantee there are infinitely many such
monic twin prime pairs. Nevertheless, this is true:

Theorem 1.10.13. Let F = Fq, where q 6= 2, and let α ∈ F ∗. Then there are
infinitely many monic twin prime pairs h, h+ α ∈ F [T ].

The proof of this is outlined in the exercises.

1.10.5 Exercises: Proof of Theorem 1.10.13

Exercise 1.10.8. Let q and α be as in Theorem 1.10.13. Suppose q − 1 is not a
power of 2, so that it is divisible by some odd prime l. By imitating the proof
of Lemma 1.10.11, show that if q > 4, there is a pair of lth power nonresidues
differing by α. Now invoke Corollary 1.10.7 to prove that the conclusion of
Theorem 1.10.13 holds for q.
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Exercise 1.10.9. Suppose q = 4 and make the identification

F4 = F2(β), β2 + β + 1 = 0.

Thus the nonzero elements of F4 are 1, β, β + 1. The case of Theorem 1.10.13
when q = 4, α = 1 is covered by Theorem 1.10.8, so we may assume α = β or
α = β + 1. Use Theorem 1.10.4 to prove that

T 2·5k

+ (β + 1)T 5k

+ 1, T 2·5k

+ (β + 1)T 5k

+ (β + 1) (k = 1, 2, 3, . . . )

describes an infinite family of twin prime pairs differing by β.
To handle the case of pairs differing by β+ 1, consider the automorphism of

F4[T ] induced by the nontrivial automorphism of F4.

By Lemma 1.10.10, the only remaining cases of Theorem 1.10.13 are when
q = 9 or q is a Fermat prime.

Exercise 1.10.10. By direct computation, establish that every element of F9 is
a difference of two nonsquares. Now deduce the case q = 9 of Theorem 1.10.13
from Corollary 1.10.7.

Exercise 1.10.11. Let p be an odd prime and c an integer coprime to p. Define

S :=
∑

a (mod p)

(
a

p

)(
a+ c

p

)

.

Using Euler’s criterion
(
n
p

)
≡ n(p−1)/2 (mod p), show that S ≡ −1 (mod p).

Show also that |S| ≤ p− 2. Conclude S = −1.

Exercise 1.10.12. Let p be an odd prime and let N be the set of nonsquares in
Fp. Show that N − N is all of Fp whenever p ≥ 7. Suggestion: For fixed c,
relate the number of pairs of quadratic nonresidues with difference c to the sum

∑

a (mod p)

(

1−
(
a

p

))(

1−
(
a+ c

p

))

;

then invoke the result of the previous exercise. For an alternate proof, see
Chapter 5, Exercise 5.2.2.

Deduce from Corollary 1.10.7 that Theorem 1.10.13 holds if q is a Fermat
prime and q ≥ 7.

Exercise 1.10.13. It remains only to treat the cases q = 3 and q = 5. Suppose
q = 3. Then by replacing α with −α we can assume α = 1, so that the result
follows from Theorem 1.10.8. When q = 5, we can similarly assume α = 1 or
α = 2. The former case follows from Theorem 1.10.8; to handle the latter, use
Theorem 1.10.4 to prove that

T 3·31k

+ T 31k

+ 4, T 3·31k

+ T 31k

+ 1 (k = 1, 2, 3, . . . )

describes an infinite family of twin prime pairs differing by 2.
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Chapter 2

Dirichlet’s Theorem

2.1 Introduction and a Special Case

In this chapter we prove that whenever gcd(a, q) = 1, there exist infinitely many
primes p ≡ a (mod q). This is the famous theorem of Dirichlet [Dir37] on primes
in an arithmetic progression. Actually, we shall prove more, namely that for
x ≥ 4,

∑

p≤x
p≡a (mod q)

log p

p
=

1

φ(q)
log x+O(1). (2.1)

The infinitude of the primes p ≡ a (mod q) is of course an easy consequence of
this, but (2.1) says much more. In view of (1.38), it says that in a certain sense
the fraction of primes falling into the given residue class is exactly 1/φ(q). The
prime number theorem for arithmetic progressions – i.e., the assertion that for
fixed a and q,

π(x; q, a) ∼ 1

φ(q)

x

log x
(x→∞) (2.2)

– implies this is actually true in the sense of relative asymptotic density.

Both the prime number theorem and the corresponding equidistribution
statement are difficult, and we shall not prove either here. It is worth noting
that estimate (2.1) does allow us to prove a weaker statement in the direction
of (2.2), namely

π(x; q, a)�a,q
x

log x
, (2.3)

which can be considered an analog of Chebyshev’s lower bounds from the pre-
ceding chapter. For the deduction of (2.3) from (2.1), see the exercises of §2.6;
we will concentrate our efforts in the text on the proof of (2.1).

In order to illustrate the usefulness of Dirichlet’s theorem, we conclude the
chapter with a proof of Legendre’s characterization of the integers expressible
as a sum of three squares.

71
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The proof of Dirichlet’s theorem given in this chapter is due to H.N. Shapiro
([Sha50], [Sha83, Chapter 9]). Our exposition is closely based on the proof as
described in [GL66, §3.2], but our treatment of the nonvanishing of L(1, χ) for
real χ incorporates simplifications due to Monsky [Mon93]. For other presen-
tations of this proof, see also [Apo76, Chapter 7], [Nat00, Chapter 10]. The
usual complex-analytic proof is well-described in [IR90, Chapter 16]. Our ar-
gument for the three squares theorem is that of Ankeny [Ank57], incorporating
the insights of Mordell [Mor58].

2.1.1 The Case of Progressions (mod 4)

Developing the tools necessary to handle the general case will require a few
sections of preparation, but we can already give the proof of (2.1) in the case of
progressions mod 4. Note that if q is any positive integer and a is any integer,
one has

∑

n≤x
n≡a (mod q)

Λ(n)

n
=

∑

pk≤x
pk≡a (mod q)

log p

pk

=
∑

p≤x
p≡a (mod q)

log p

p
+
∑

k≥2

∑

p≤x1/k

pk≡a (mod q)

log p

pk
.

Moreover, the double sum is bounded above by the finite (absolute) constant

∑

k≥2

∑

n≥2

log n

nk
=
∑

n≥2

log n

n(n− 1)
.

Consequently,

∑

p≤x
p≡a (mod q)

log p

p
=

∑

n≤x
n≡a (mod q)

Λ(n)

n
+O(1). (2.4)

Thus estimates for
∑

log p/p over any residue class mod q will follow from
corresponding estimates for

∑
Λ(n)/n, which are easier to obtain.

Now specialize by taking q = 4. Define the functions χ and χ0 by

χ(n) =

{

(−1)(n−1)/2 if 2 - n,

0 otherwise.
and χ0(n) =

{

1 if 2 - n,

0 otherwise.

It is straightforward to check that with this definition, one has χ(ab) = χ(a)χ(b)
for every pair of integers a, b.

These functions are useful to us because χ0 + χ is twice the characteris-
tic function of the arithmetic progression 1 (mod 4), and χ0 − χ is twice the
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characteristic function of the arithmetic progression 3 (mod 4). This suggests
studying the summatory functions

∑

n≤x

χ0(n)Λ(n)

n
,

∑

n≤x

χ(n)Λ(n)

n
. (2.5)

The first of these behaves very much like the sum
∑

n≤x Λ(n)/n investigated in
the last chapter:

∑

n≤x

χ0(n)Λ(n)

n
=
∑

n≤x

Λ(n)

n
−
∑

2k≤x

log 2

2k

=
∑

n≤x

Λ(n)

n
+O(1) = log x+O(1), (2.6)

the final equality coming from (1.35).
To investigate the second sum, we introduce the series

L := 1− 1

3
+

1

5
− 1

7
+ · · · =

∞∑

n=1

χ(n)

n
.

Grouping terms, we notice L = (1− 1/3) + (1/5− 1/7) + · · · > 0.
Since L is an alternating series with terms decreasing in absolute value, if

we use N to denote the smallest odd integer exceeding x, then for every x ≥ 1,
∣
∣
∣
∣
∣

∑

n>x

χ(n)

n

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣

χ(N)

N

∣
∣
∣
∣

=
1

N
≤ 1

x
. (2.7)

We can now estimate the second function appearing in (2.5) by an ingenious
device of Mertens. We note that

∑

n≤x

χ(n) log(n)

n
=
∑

n≤x

χ(n)

n

∑

d|n
Λ(d)

=
∑

d≤x
Λ(d)

∑

n≤x
d|n

χ(n)

n

=
∑

de≤x

χ(de)Λ(d)

de
=
∑

d≤x

χ(d)Λ(d)

d

∑

e≤x/d

χ(e)

e
.

The inner sum here is equal to L−∑e>x/d χ(e)/e = L+O(d/x). Substituting
this estimate above yields

∑

n≤x

χ(n) log(n)

n
= L

∑

d≤x

χ(d)Λ(d)

d
+O




1

x

∑

d≤x
Λ(d)





= L
∑

d≤x

χ(d)Λ(d)

d
+O(1),
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since
∑

d≤x Λ(d) = ψ(x)� x. But we also have
∑
χ(n) log n/n = O(1), since

log 1

1
− log 3

3
+

log 5

5
− . . .

is, with the first few terms omitted, an alternating series with decreasing terms.
Thus

L
∑

d≤x

χ(d)Λ(d)

d
= O(1),

and since L 6= 0, it follows that

∑

d≤x

χ(d)Λ(d)

d
= O(1). (2.8)

From (2.6) and (2.8), we deduce that

∑

n≤x
n≡1 mod 4

Λ(n)

n
+

∑

n≤x
n≡3 mod 4

Λ(n)

n
= log x+O(1),

∑

n≤x
n≡1 mod 4

Λ(n)

n
−

∑

n≤x
n≡3 mod 4

Λ(n)

n
= O(1).

If we add these estimates, we see

∑

n≤x
n≡1 (mod 4)

Λ(n)

n
=

1

2
log x+O(1),

and if we subtract we get the same estimate for n ≡ 3 (mod 4). Referring
to equation (2.4) shows that the same estimates hold for the sums

∑
log p/p,

finishing the proof in this case.
For a general progression a (mod q), we have to consider φ(q) − 1 series

analogous to our L, corresponding to the φ(q)−1 nontrivial Dirichlet characters
(whose role above was played by the single character χ). The difficult point turns
out to be showing that L 6= 0, which in the case considered above was trivial.

Remark. For the remainder of this chapter, we adopt the convention that all
implied constants (unless otherwise stated) may depend on q. Further
dependence will be mentioned explicitly.

2.1.2 Exercises

Exercise 2.1.1 (Sierpiński [Sie48]). Using Dirichlet’s theorem, prove that for
each positive integer K, there exists a prime p > K for which all the numbers
p± i, i = 1, 2, . . . ,K, are composite.

For another proof (of a somewhat stronger result) utilizing sieve methods
instead of Dirichlet’s theorem, see Exercise 3.4.2. Erdős & Rényi ([ER50])
showed that the smallest such prime does not exceed ecK for a certain absolute
constant c.
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Exercise 2.1.2 (Chang & Lih [CL77]). Using Dirichlet’s theorem on primes in
arithmetic progressions, prove the following strengthening of Theorem 1.6.3:
For each prime p, there is a polynomial fp with integer coefficients producing
distinct prime values for 0 ≤ n ≤ p− 1, with prescribed initial value fp(0) = p.

Exercise 2.1.3 (D.J. Newman). Dov Jarden, in the book Recurring Sequences
(1973), made the observation that φ(30n+ 1) > φ(30n) for all n ≤ 10, 000. D.J.
Newman later verified this continues to hold for all n ≤ 20, 000, 000.

Using Dirichlet’s theorem on primes in progressions, prove that contrary to
what one might expect from the computational evidence, the reverse inequality

φ(30n+ 1) < φ(30n) (2.9)

holds for infinitely many n. The smallest such n, which has over 1000 decimal
digits, has been given explicitly by Martin [Mar99]. The result of this exercise
is a special case of a theorem of Newman [New97]; a second proof of his general
result, which avoids Dirichlet’s theorem, can be found in [ABGU01].

Hint: Let Px :=
∏

5<p≤x p. For each x, choose a positive prime n = n(x)
such that Px | 30n+ 1. Show (2.9) then holds for large enough x.

Exercise 2.1.4. This exercise illustrates the utility of (2.1) as an equidistribution
statement. Define n� as that portion of n! composed of primes 3 (mod 4), i.e.,

n� :=
∏

pk‖n!
p≡3 (mod 4)

pk.

a) Using the results of this section on primes in progressions mod 4, show
that

log n� =
1

2
n log n+O(n) ∼ 1

2
log n!.

b) Suppose that n and y are positive integers with n! + 1 = y8. Using the
factorization

n! = y8 − 1 =
(
(y4 + 1)(y2 + 1)

)
(y2 − 1),

prove that n� ≤ y2 − 1 ≤ (n!)1/4. Deduce from part a) that the equation
n! + 1 = y8 has only finitely many solutions.

c) Assuming (2.1) in full generality, show by similar methods that the equa-
tion n! + 1 = xp has at most finitely many solutions for each fixed odd
prime p. Note that in combination with part b), this shows n! + 1 = xm

has only finitely many solutions for each positive integer m > 1 except
possibly for m = 2 and m = 4.

It has been shown that n! + 1 = ym has no solutions for any m > 2 (see [EO37]
for m 6= 4 and [PS73] for the case m = 4). When m = 2, there is an 1885
conjecture of Brocard that the only solutions correspond to n = 4, 5 and 7, but
even proving the finiteness of their number remains open.
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2.2 The Characters of a Finite Abelian Group

2.2.1 The Classification of Characters

Let G be a finite abelian group. The characters of G are the homomorphisms

χ : G→ C∗,

i.e., the functions from G to the nonzero complex numbers satisfying

χ(ab) = χ(a)χ(b) (2.10)

for every a, b ∈ G. The set of characters is denoted Ĝ.
Let us attempt to describe the elements of Ĝ. We always have the trivial or

principal character that takes everything to 1, i.e.,

χ0(g) = 1 for every g ∈ G.

The existence of nonprincipal characters is not at all clear this point.
One thing we see immediately is that if χ is a character of G, then every

value χ assumes is a root of unity. Indeed, if the order of g ∈ G is n, then

χ(g)n = χ(gn) = χ(1) = 1.

Suppose that G is cyclic, and fix a generator g0. Then knowing χ(g0) de-
termines χ(g) for every g ∈ G; indeed, if g = gk0 for some positive integer k,
then

χ(g) = χ(gk0 ) = χ(g0)k.

Since the values of χ(g0) must all be |G|th roots of unity, and since the value of
χ(g0) determines the character, we see there are at most |G| characters. There
are exactly |G| if and only if for every |G|th root of unity η there is a character
with χ(g) = η. And that is actually true: just define

χ(gk0 ) = ηk.

We have to check that this definition makes sense. It certainly defines χ on all
of G, since g0 generates G, so that the only thing that needs checking now is
that if g = gk10 = gk20 , then also ηk1 = ηk2 . But since g0 has order |G|, the first
condition forces k1 ≡ k2 (mod |G|), which in turn forces ηk1 = ηk2 . So we’ve
found all the characters of G.

A similar approach works if G is a direct sum of two cyclic groups, say
G ∼= Z/mZ⊕Z/nZ. It suffices to classify the characters of Z/mZ⊕Z/nZ, and
for this we can proceed much as before: if we know where (1, 0) and (0, 1) are
sent by a character χ, we know where everything is sent. Since (1, 0) has order
m and (0, 1) has order n, we must have χ((1, 0))m = 1 and χ((0, 1))n = 1. If we
now arbitrarily prescribe the values of η1 = χ((1, 0)) and η2 = χ((0, 1)) subject
to these conditions, then

χ((c, d)) = ηc1η
d
2
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is seen to be a well-defined character by essentially the same argument as we
gave before. So we’ve found all the characters in this case as well. Since there
are m choices for η1 and n choices for η2, we see G has exactly mn characters.

The same argument generalizes, of course, to give us a complete description
of the characters of G when

G ∼= Z/m1Z⊕ Z/m2Z⊕ · · · ⊕ Z/mkZ

is any finite direct sum of cyclic groups. In particular, we see there are

m1m2 . . .mk = |G|

characters. And now we must confess that we have actually reached the end of
the story because of the following classification theorem from algebra:

Theorem. Every finite abelian group is a direct sum of cyclic groups.

This theorem (and more) is proved as Theorem B.1.1.

Remark. For the purposes of this chapter, it is not necessary to invoke this
difficult result. We only need to understand the characters of G = Z/mZ∗, the
group of units (mod m). In this case the existence of a decomposition into
cyclic groups is entirely elementary. Indeed, the Chinese remainder theorem
guarantees that if m =

∏k
i=1 p

ei
i , then

Z/mZ∗ ∼= Z/pe11 Z∗ ⊕ · · · ⊕ Z/pek

k Z∗.

Noting that (see, e.g., [IR90, Theorems 2, 2’])

Z/peZ∗ ∼=
{

Z/2Z⊕ Z/2e−2Z if p = 2, e > 2,

Z/(p− 1)pe−1Z otherwise,

we obtain the desired decomposition.
Unfortunately, this simple argument does not work in other cases which are

of interest. For example, if π(x) is a prime in Fq[x], then one can show that
typically the units group of the quotient ring Fq[x]/(π(x)k) is not cyclic; in fact,
for fixed π the minimal number of elements required to generate this group tends
to infinity with k (cf. [Ros02, Proposition 1.6]).

2.2.2 The Orthogonality Relations

The characters of an abelian group satisfy special relations known as orthogo-
nality relations, which play a key role in the proof of Dirichlet’s theorem. In the
situation that concerns us, when G = Z/mZ∗, these relations allow us to ex-
press the characteristic function of a reduced residue class (mod m) as a linear
combination of characters.

Before stating these relations, we note that Ĝ can be made into a group (the
so-called dual group of G) by defining, for characters χ, ψ ∈ Ĝ,

χψ(g) = χ(g)ψ(g),
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i.e., by defining the multiplication pointwise. An identity for this operation is
the trivial homomorphism χ0. Associativity and commutativity follow from the
corresponding properties of C∗. Inverses are easy; just define the character χ−1

of G by
χ−1(g) = χ(g)−1.

This makes sense since χ takes values in the nonzero complex numbers, and the
desired multiplicativity follows from just taking the reciprocal of (2.10). Notice
that because the values χ assumes are always roots of unity,

χ−1 = χ,

where χ is defined by
χ(g) := χ(g).

Now suppose χ ∈ Ĝ is a nonprincipal character, i.e., χ 6= χ0. Then there
exists h ∈ G with χ(h) 6= 1. Since G is a group, hg runs over the elements of G
as g does. Thus, setting Sχ =

∑

g∈G χ(g), one has

χ(h)Sχ = χ(h)
∑

g∈G
χ(g) =

∑

g∈G
χ(hg) =

∑

g∈G
χ(g) = Sχ.

Since χ(h) 6= 1, this forces

Sχ =
∑

g∈G
χ(g) = 0.

We have thus shown

∑

g∈G
χ(g) =

{

|G| if χ = χ0,

0 otherwise.
(2.11)

Since χ = χ−1 for any character χ, this can be recast in the following form: if
χ and ψ are two characters of G, then

∑

g∈G
χ(g)ψ(g) =

{

|G| if χ = ψ,

0 otherwise.
(2.12)

For the second orthogonality relation, instead of fixing χ ∈ Ĝ and summing over
all g ∈ G, we fix g ∈ G and sum over all χ ∈ Ĝ. We need the following lemma:

Lemma 2.2.1. Let G be a finite abelian group and let g 6= 1 be an element of
G. Then there exists a character χ ∈ Ĝ with χ(g) 6= 1.

Proof. Let
θ : G→ Z/m1Z⊕ Z/m2Z⊕ · · · ⊕ Z/mkZ

be an isomorphism of G with a direct sum of cyclic groups. It suffices to find a
character of this direct sum not vanishing at the image of g. Since g 6= 1, not
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all the components of θ(g) can vanish; suppose the rth component (1 ≤ r ≤ k)
is nonzero. By our classification of characters of direct sums of cyclic groups,
there exists a character χ of the direct sum with

χ(0, 0, . . . , 0, 1
︸︷︷︸

jth entry

, 0, . . . , 0) =

{

e2πi/mr if j = r,

1 otherwise.

Then χ(θ(g)) 6= 1.

Now we can proceed as before. Let g 6= 1 be an element of G and choose
ψ ∈ Ĝ with ψ(g) 6= 1. Set Sg =

∑

χ∈Ĝ χ(g); then since Ĝ forms a group, ψχ

runs over all elements of Ĝ as χ does. Consequently,

ψ(g)Sg = ψ(g)
∑

χ∈Ĝ

χ(g) =
∑

χ∈Ĝ

ψχ(g) =
∑

χ∈Ĝ

χ(g) = Sg.

Hence
∑

χ∈Ĝ

χ(g) =

{

|G| if g = 1

0 otherwise.

If we note that for any g ∈ G,

χ(g−1) = χ(g)−1 = χ(g) = χ(g),

we can recast this in the following form:

∑

χ∈Ĝ

χ(g)χ(h) =

{

1 if g = h,

0 otherwise.
(2.13)

2.2.3 Dirichlet Characters

Let q be a positive integer and set G = Z/qZ∗, the group of units (mod q).
If χ ∈ Ĝ, there is an associated function χ̃ defined on defined on the integers
coprime to q given by setting

χ̃(a) = χ(a (mod q)).

In order to obtain a function defined on all of the integers, we define χ̃(a) = 0
when gcd(a, q) > 1.

The functions χ̃ are called Dirichlet characters (mod q). Instead of χ̃, in
what follows we abuse notation and use the same symbol χ to denote both the
function on G and the associated function on the integers.

The following properties can now be readily verified (exercise!):

i. χ is periodic (mod q), i.e., χ(a+ q) = χ(a) for every a ∈ Z.
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ii. χ is completely multiplicative, i.e., or every a, b ∈ Z,

χ(ab) = χ(a)χ(b)

The orthogonality relations translate into the following two theorems:

Theorem 2.2.2. Let q be a positive integer and let χ, ψ be two Dirichlet char-
acters (mod q).

∑

a (mod q)

χ(a)ψ(a) =

{

φ(q) if χ = ψ−1,

0 otherwise.
. (2.14)

Theorem 2.2.3. Let q be a positive integer. If a, b are integers with gcd(a, q) =
1, then

∑

χ

χ(a)χ(b) =

{

φ(q) if a ≡ b (mod q),

0 otherwise.
(2.15)

These theorems are proved by applying (2.12) and (2.13), respectively, to the
group Z/qZ∗ of size φ(q). Indeed, the first theorem is immediate from (2.12),
since the contribution to the sum from those a with gcd(a, q) > 1 is 0.

To prove the second theorem, we note the stated equality follows from (2.13)
if gcd(a, q) = gcd(b, q) = 1. If, however, gcd(b, q) > 1 then the sum vanishes
(since each term is 0 owing to the presence of χ(b)); since gcd(b, q) > 1 implies
a 6≡ b (mod q), the theorem holds in this case as well. (This is where we need
the condition that gcd(a, q) = 1.)

2.2.4 Exercises

Exercise 2.2.1. Fill in the following tables of group characters for Z/5Z∗ and
Z/8Z∗:

1 2 3 4
χ0 1 1 1 1
χ1 1
χ2 1
χ3 1

1 3 5 7
χ0 1 1 1 1
χ1 1
χ2 1
χ3 1

Exercise 2.2.2 (A. Granville). Define the Carmichael λ-function by setting λ(pk) =
φ(pk) for p an odd prime, setting

λ(2k) =

{

φ(2k) if k ≤ 2,
1
2φ(2k) otherwise,

and in general if n =
∏k
i=1 p

ei
i , by setting

λ(n) = lcm[λ(pe11 ), λ(pe22 ), . . . , λ(pek

k )].
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a) Show that every value assumed by a character χ of Z/nZ∗ is a λ(n)th
root of unity.

b) Prove that for some character χ, the image χ(Z/nZ∗) is the complete set
of λ(n)th roots of unity.

Exercise 2.2.3. Use the explicit description of characters described in this section
to show that Ĝ ∼= G. You may find it helpful to handle the case when G is cyclic
first.

Exercise 2.2.4. Say that a Dirichlet character χ is real if χ assumes only real
values. Show that χ is real if and only if χ2 = χ0. Using the result of the
previous exercise, determine all moduli m for which all Dirichlet characters are
real.

Exercise 2.2.5. Let χ be a function defined on the integers possessing the fol-
lowing three properties:

i. χ is periodic (mod q).

ii. χ is completely multiplicative.

iii. χ(n) = 0 if and only if gcd(n, q) > 1.

Show that χ is a Dirichlet character (mod q).

The next two exercises require some familiarity with linear algebra.

Exercise 2.2.6. Let G be a finite abelian group and let C[G] denote the space
of functions f : G→ C. For φ, ψ ∈ C[G], define

(φ, ψ) =
1

|G|
∑

g∈G
φ(g)ψ(g).

Show that this is a scalar product on C[G]. Using (2.12) show that the characters
of G form an orthonormal basis for C[G]. This explains the name “orthogonality
relation.”

Exercise 2.2.7. Suppose G is a finite abelian group of order n with elements
g1, g2, . . . , gn and characters χ1, χ2, . . . , χn. Define the matrix

M :=








χ1(g1) χ1(g2) . . . χ1(gn)
χ2(g1) χ2(g2) . . . χ2(gn)

...
...

. . .
...

χn(g1) χn(g2) . . . χn(gn)







.

Let M∗ denote the conjugate-transpose of M . Using (2.12), show that MM∗ =
nI, where I is the n × n identity matrix. Deduce (from linear algebra) that
M∗M = nI also, and show this implies (2.13). That is, the first orthogonality
relation implies the second.



82 CHAPTER 2. DIRICHLET’S THEOREM

2.3 The L-series at s = 1

If χ is a Dirichlet character mod q, it is usual to associate with it the L-series

L(s, χ) :=
∞∑

n=1

χ(n)

ns
. (2.16)

For our purposes, only the series corresponding to the nontrivial characters are
of interest and these are only of interest at s = 1. Nevertheless, because there
is no extra difficulty involved, we begin by treating the series corresponding to
nontrivial Dirichlet characters whenever s > 0.

Lemma 2.3.1. Let χ be a nontrivial Dirichlet character mod q. Then the series
(2.16) converges for s > 0. Moreover, for every x ≥ 1,

∣
∣
∣
∣
∣

∑

n>x

χ(n)

ns

∣
∣
∣
∣
∣
≤ 2qx−s.

In particular,
∑

n>x

χ(n)

n
� 1

x
.

Proof. Define

S(x) :=
∑

n≤x
χ(n). (2.17)

Theorem 2.2.2 implies that
∑
χ(n) = 0 when taken over any block of q con-

secutive integers. This implies |S(x)| ≤ q for every x. Now we apply partial
summation:

∑

n≤x

χ(n)

ns
=

∫ x

1/2

dS(t)

ts
=
S(x)

xs
+

∫ x

1

s
S(t)

ts+1
dt.

As x→∞, the first factor on the right tends to 0 since S(x) remains bounded
while xs tends to infinity. The last factor converges as x → ∞, by comparison
with the absolutely convergent integral

∫ ∞

1

s
q

ts+1
dt = q.

This proves the first claim.
Bounding the tail end is another similar application of partial summation:

∑

n>x

χ(n)

ns
=

∫ ∞

x

dS(t)

ts

=
S(y)

ys
− S(x)

xs
+

∫ y

x

s
S(t)

ts+1
dt

]

y=∞
= −S(x)

xs
+

∫ ∞

x

s
S(t)

ts+1
dt.

The first term is bounded in absolute value by qx−s and the second by
∫ ∞

x

s
q

ts+1
dt = qx−s,

so that the stated estimate follows by the triangle inequality.
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2.4 The Nonvanishing of L(1, χ) for complex χ

We say that a Dirichlet character χ is real if it assumes only real values; other-
wise, we call it a complex character.

We first prove a lemma showing how the behavior of the sum
∑
χ(n)Λ(n)/n

is dependent on the vanishing or nonvanishing of L(1, χ).

Lemma 2.4.1. Let χ be any nontrivial Dirichlet character mod q. Then for
x ≥ 4,

∑

n≤x

χ(n)Λ(n)

n
=

{

O(1) if L(1, χ) 6= 0

− log x+O(1) otherwise.

It is convenient to prove this lemma in two parts:

Proof when L(1, χ) 6= 0. The strategy of the proof is exactly the same as for
the special case given in the introduction; only the justifications are somewhat
different. We start with reexpressing

∑

n≤x

χ(n) log(n)

n
=
∑

n≤x

χ(n)

n

∑

d|n
Λ(d)

=
∑

de≤x

χ(de)Λ(d)

de

=
∑

d≤x

χ(d)Λ(d)

d

∑

e≤x/d

χ(e)

e
.

The inner sum here is equal to L(1, χ) −∑e>x/d χ(e)/e = L(1, χ) + O(d/x),
using the result of Lemma 2.3.1. Inserting this estimate in the above shows

∑

n≤x

χ(n) log(n)

n
= L(1, χ)

∑

d≤x

χ(d)Λ(d)

d
+O




1

x

∑

d≤x
Λ(d)





= L(1, χ)
∑

d≤x

χ(d)Λ(d)

d
+O(1), (2.18)

since
∑

d≤x Λ(d) = ψ(x)� x by (1.31).
But we also have

∑

n≤x

χ(n) log n

n
= O(1). (2.19)

Indeed, with S defined as in (2.17),

∑

n≤x

χ(n) log n

n
=

∫ x

1/2

dS(t) log t

t

=
S(x) log x

x
−
∫ x

1

S(t)
1− log t

t2
dt,
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so that (noting that log t/t is decreasing for t ≥ e)
∣
∣
∣
∣
∣
∣

∑

n≤x

χ(n) log(n)

n

∣
∣
∣
∣
∣
∣

≤ q log 4

4
+ q

∫ ∞

1

dt

t2
+ q

∫ ∞

1

log t

t2
dt� 1.

Together, (2.18) and (2.19) imply

L(1, χ)
∑

d≤x

χ(d)Λ(d)

d
= O(1).

Since L(1, χ) 6= 0, it follows that

∑

d≤x

χ(d)Λ(d)

d
= O(1),

which is the statement of the lemma in this case. (The implied constant here
depends on the value of L(1, χ), but as there are only finitely many Dirichlet
characters mod q, it may be chosen to depend only on q.)

Proof when L(1, χ) = 0. Applying Möbius inversion to the relation

log n =
∑

d|n
Λ(d),

we obtain

Λ(n) =
∑

d|n
µ(d) log

n

d
=
∑

d|n
µ(d) log n−

∑

d|n
µ(d) log d

= log n
∑

d|n
µ(d)−

∑

d|n
µ(d) log d

= −
∑

d|n
µ(d) log d,

since for every positive integer n, either log n or
∑

d|n µ(d) vanishes. Thus for
positive x, one has

∑

d|n
µ(d) log

x

d
= log x

∑

d|n
µ(d) + Λ(n)

=

{

log x+ Λ(n) if n = 1,

Λ(n) otherwise.
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It follows that

log x+
∑

n≤x

χ(n)Λ(n)

n
=
∑

n≤x

χ(n)

n

∑

d|n
µ(d) log

x

d

=
∑

d≤x
µ(d) log

x

d

∑

n≤x
d|n

χ(n)

n

=
∑

de≤x
µ(d) log

x

d

χ(de)

de

=
∑

d≤x
µ(d) log

x

d

χ(d)

d

∑

e≤x/d

χ(e)

e

= L(1, χ)
∑

d≤x
µ(d) log

x

d

χ(d)

d
+R(x), (2.20)

where (using the estimate of Lemma 2.3.1)

R(x)�
∑

d≤x

(

log
x

d

) 1

d

d

x

� 1

x

∑

d≤x
(log x− log d)

=
1

x
([x] log x− log [x]!)

=
1

x
(x log x+O(log x)− (x log x− x+O(log x)))� 1.

Since also L(1, χ) = 0 in this case, (2.20) implies

log x+
∑

n≤x

χ(n)Λ(n)

n
= O(1),

which proves the claim.

We also require an estimate for the sum
∑

n≤x χ(n)Λ(n)/n corresponding
to the principal character χ.

Lemma 2.4.2. Let χ0 be the principal character mod q. Then for x ≥ 4,

∑

n≤x

χ0(n)Λ(n)

n
= log x+O(1).

Proof. Observe that

∑

n≤x

Λ(n)

n
−
∑

n≤x

χ0(n)Λ(n)

n
=
∑

p|q

∑

pk≤x

log p

pk
�
∑

p|q

log p

p− 1
� 1.

The result now follows from (1.35).
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We can now prove the main result of this section.

Theorem 2.4.3. Let χ be a complex character mod q. Then L(1, χ) 6= 0.

Proof. The results of Lemmas 2.4.1 and 2.4.2 together imply that for x ≥ 4,

∑

χ

∑

n≤x

χ(n)Λ(n)

n
= (1− V ) log x+O(1), (2.21)

where V denotes the number of nonprincipal χ with L(1, χ) = 0 and the sum is
taken over all Dirichlet characters mod q. On the other hand, taking a = 1 in
the orthogonality relation (2.15) shows that

∑

χ

∑

n≤x

χ(n)Λ(n)

n
= φ(q)

∑

n≤x
n≡1 (mod q)

Λ(n)

n
≥ 0. (2.22)

If V > 1, then (2.21) and (2.22) contradict each other for large enough x. Thus
V ≤ 1, i.e., L(1, χ) is nonzero for at most one nonprincipal character χ.

But if L(1, χ) = 0 for some complex character χ, then

0 = L(1, χ) =

∞∑

n=1

χ(n)

n
=

∞∑

n=1

χ(n)

n
= L(1, χ)

also. Since χ is complex, χ 6= χ, so that V ≥ 2, a contradiction.

2.5 The Nonvanishing of L(1, χ) for real, non-
principal χ

The most difficult step in the proof of Dirichlet’s theorem is the nonvanishing
of L(1, χ) for real nonprincipal χ. The proof we present in this section is due to
Monsky [Mon93] and is a simplification of an earlier argument due to Gelfond
& Linnik (e.g., see [GL66, Chapter 3]). For other elementary proofs of the
non-vanishing of the L functions at s = 1, see [Nar00, §2.4].

Define, for 0 < x < 1,

f(x) :=

∞∑

d=1

∞∑

k=1

χ(d)xkd. (2.23)

We begin with the observation that for each 0 < x < 1,

∞∑

d=1

∞∑

k=1

|χ(d)|xkd

converges. To see this, it suffices to show that

∞∑

d=1

∞∑

k=1

xkd =

∞∑

d=1

xd

1− xd
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converges for 0 < x < 1. But for every 0 < x < 1, we have xd/(1 − xd) ≤
xd/(1−x) for each d ≥ 1, so the result follows by comparison with the convergent
geometric series

∑∞
d=1 x

d.
These remarks imply [Tit39, §1.6] that the series defining f converges for

0 < x < 1, and that the terms may be rearranged in any order without affecting
the convergence or the value of the sum.

The inner sum in the original definition of f is a geometric series and

f(x) =

∞∑

d=1

χ(d)
xd

1− xd . (2.24)

But we may also write

f(x) =

∞∑

n=1

∑

dk=n

χ(d)xn =

∞∑

n=1

cnx
n,

where
cn =

∑

d|n
χ(d).

We claim that each cn is nonnegative. To see this, note that since χ is multi-
plicative, cn (considered as a function of n) is also multiplicative, whence

cn =
∏

pe‖n
cpe =

∏

pe‖n
(1 + χ(p) + · · ·+ χ(pe)) .

But since χ is real, one has either χ(p) = 0, 1, or −1, so that

1 + χ(p) + · · ·+ χ(pe) =







1 if χ(p) = 0,

e+ 1 if χ(p) = 1,

0 if χ(p) = −1 and 2 - e,

1 if χ(p) = −1 and 2 | e.

Since the sum is nonnegative in each case, our claim follows.
Moreover, we see that cpe ≥ 1 whenever e is even; it follows that cn ≥ 1

whenever n is a square. This implies that

f(x) =
∑

cnx
n →∞ (x ↑ 1).

Indeed, let N be a positive integer, choose M > 4N2 and define the polynomial
h(x) as the Mth partial sum of f , i.e., h(x) :=

∑M
n=1 cnx

n. Then

lim
x↑1

h(x) = h(1) ≥
∑

n≤M
n=�

1 = b
√
Mc ≥ 2N.

By continuity, there is a half-open interval [1− ε, 1) (with 0 < ε < 1) such that
h(x) ≥ N whenever x ∈ [1 − ε, 1). Since f(x) ≥ h(x) for every x ∈ (0, 1), it
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follows that f(x) ≥ N whenever x ∈ [1−ε, 1). Since N can be chosen arbitrarily
large, limx↑1 f(x) =∞, as claimed.

Now suppose that L(1, χ) = 0. Then for 0 < x < 1,

−f(x) =
L(1, χ)

1− x − f(x)

=

∞∑

n=1

χ(n)

(
1

n(1− x)
− xn

1− xn
)

=

∞∑

n=1

χ(n)bn(x), (2.25)

say. We claim that
b1(x) ≥ b2(x) ≥ b3(x) ≥ · · · ≥ 0. (2.26)

To prove this, note that

(1− x)(bn(x)− bn+1(x))

=
1

n
− 1

n+ 1
− xn

1 + x+ · · ·+ xn−1
+

xn+1

1 + x+ · · ·+ xn

=
1

n(n+ 1)
− xn

(1 + x+ · · ·+ xn−1)(1 + x+ · · ·+ xn)
.

(2.27)

The arithmetic-geometric mean inequality now implies both

1 + x+ · · ·+ xn−1 ≥ nx(n−1)/2 ≥ nxn/2,
1 + x+ · · ·+ xn ≥ (n+ 1)xn/2.

Substituting into (2.27) shows that (1−x)(bn(x)−bn+1(x)) ≥ 0; this proves the
bn(x) are nonincreasing in n for fixed x ∈ (0, 1). Since bn(x) → 0 as n → ∞,
and bn(x) is nonincreasing in n, it follows that each bn(x) is nonnegative.

Define S(x) =
∑

n≤x χ(n). Then (cf. (A.1), Appendix A)

M∑

n=1

χ(n)bn(x) =

M∑

n=1

(S(n)− S(n− 1))bn(x)

= S(M)bM (x) +

M−1∑

n=1

S(n)(bn(x)− bn+1(x)).

Using the inequality |S(x)| ≤ q and the nonnegativity of both bM (x) and bn(x)−
bn+1(x) (by (2.26)), we have by the triangle inequality

∣
∣
∣
∣
∣

M∑

n=1

χ(n)bn(x)

∣
∣
∣
∣
∣
≤ qbM (x) + q

M−1∑

n=1

(bn(x)− bn+1(x))

≤ qbM (x) + q(b1(x)− bM (x)) = qb1(x).

But

b1(x) =
1

1− x −
x

1− x = 1.
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Consequently, |SM (x)| ≤ q for every M ; letting M tend to infinity, it follows
from (2.25) that |f(x)| ≤ q. This holds for for every x ∈ (0, 1), contradicting
that f(x)→∞ as to x ↑ 1.

2.6 Completion of the Proof

Let q be a positive integer and let a be any integer coprime to q.
The results of the last two sections imply that L(1, χ) 6= 0 for every nontrivial

character χ mod q. It follows from Lemma 2.4.1 that for every such χ, one has

∑

n≤x

χ(n)Λ(n)

n
= O(1). (2.28)

We record here also the result of Lemma 2.4.2 that

∑

n≤x

χ0(n)Λ(n)

n
= log x+O(1). (2.29)

Then from the orthogonality relation (2.15), we see

∑

n≤x
n≡a (mod q)

Λ(n)

n
=

1

φ(q)

∑

χ

χ(a)
∑

n≤x

χ(n)Λ(n)

n

=
1

φ(q)
χ0(a) log x+O(1) =

1

φ(q)
log x+O(1), (2.30)

since χ0(a) = 1 (because gcd(a, q) = 1).
But already in the introduction we showed (2.4)

∑

p≤x
p≡a (mod q)

log p

p
=

∑

n≤x
n≡a (mod q)

Λ(n)

n
+O(1), (2.31)

with an absolute implied constant. Hence (2.30) implies

∑

p≤x
p≡a (mod q)

log p

p
=

1

φ(q)
log x+O(1).

2.6.1 Exercises

Exercise 2.6.1. Let P be a set of primes for which the estimate

∑

p≤x,p∈P

log p

p
= κ log x+O(1)

holds for some constant κ > 0 and every x ≥ 2.
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a) Show that for some constant D > 1, there are � x/ log x primes in the
interval (x,Dx] for every x ≥ 2.

Hint: Review the material of Chapter 1, §1.9.

b) Define
πP(x) := #{p ≤ x : p ∈ P}.

Using the result of a), show that

πP(x)�P
x

log x

as x→∞.

c) Show that if

lim
x→∞

πP(x)

x/ log x

exists, then it equals κ.

Exercise 2.6.2 (Mertens [Mer97]). Let a and q be integers with q positive and
a coprime to q. Define

M(q) :=
∑

χ6=χ0

1

|L(1, χ)| ,

the sum being over all nonprincipal characters (mod q).

a) By making explicit the dependence on q in our proofs, show that for x ≥ 4,

φ(q)
∑

p≤x
p≡a (mod q)

log p

p
=

log x+O(1) +O(φ(q)) +O




∑

p|q

log p

p− 1



+O(qM(q)),

where the implied constants are absolute.

b) Let χ be a nontrivial character (mod q). By splitting the sum defining
L(1, χ) as

∑

n≤q +
∑

n>q, prove that L(1, χ) � log q, with an absolute
implied constant.

c) Prove that there is an absolute constant C with the property that for every
x ≥ 4, there is a prime p ≡ a (mod q) in the interval [x, x exp(CqM(q))].

Exercise 2.6.3. Show that under the hypotheses of Exercise 2.6.1, there is a
positive constant C = C(P) such that

∏

p≤x,p∈P

(

1− 1

p

)

=
C

logκ x

(

1 +O

(
1

log x

))

.

for x ≥ 2. Here the implied constant may depend on P.
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Remark (on Exercise 2.6.3). When P is the set of primes p ≡ a (mod q) (so
that κ = 1/φ(q)), K.S. Williams [Wil74] has given an explicit determination of
the constant C, which we now describe. For each character χ (mod q), let kχ
be the completely multiplicative function satisfying

kχ(p) := p

(

1−
(

1− χ(p)

p

)(

1− 1

p

)−χ(p)
)

.

It may be shown that K(s, χ) :=
∑∞
n=1 kχ(n)/ns converges absolutely for every

real s > 0, in particular at s = 1. The constant C above is given by



e−γ
q

φ(q)

∏

χ6=χ0

(
K(1, χ)

L(1, χ)

)χ(a)




1/φ(q)

.

2.7 Sums of Three Squares

It is usual for elementary texts to characterize the set of integers expressible
as a sum of two squares and to prove that every positive integer admits a
representation as a sum of four squares.

However, representability by three squares usually receives short shrift in
these texts. Most end their discussion with the following necessary condition
for representability:

Theorem 2.7.1. Suppose the positive integer n is a sum of three integer squares.
Then n is not a power of 4 multiplied by a number 7 (mod 8).

Proof. Introduce the function

r3(m) := |{(x1, x2, x3) ∈ Z3 : x2
1 + x2

2 + x2
3 = m}|, (2.32)

which counts the number of representations of m as a sum of three squares.
Because every square is congruent to 0, 1 or 4 (mod 8), we have r3(m) = 0
whenever m ≡ 7 (mod 8).

We next claim that r3(4m) = r3(m) for every positive integer m. Indeed,
given any representation of m as a sum of three integral squares, we can multi-
ply the values of x1, x2 and x3 by 2 to obtain a representation of 4m. Different
representations of m yield different representations of 4m. To see every repre-
sentation of 4m arises in this way, suppose X2

1 +X2
2 +X2

3 = 4m. Looking mod
4, we see X1,X2 and X3 are all even, so X1 = 2x1,X2 = 2x2 and X3 = 2x3 for
some x1, x2 and x3 whose squares sum to m.

Putting these two pieces together, we see r3(m) = 0 whenever m has the
shape 4k(8n+ 7).

The goal of this section is to prove that the necessary condition of the pre-
vious theorem is also sufficient:
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Theorem 2.7.2 (Legendre, 1798). Every positive integer n not of the form
4k(8m+ 7) is expressible as a sum of three squares.

Before describing the proof, we mention two important corollaries. These
are the first two cases of Cauchy’s polygonal number theorem stating that every
nonnegative integer is the sum of k k-gonal numbers (where k ≥ 3):

Theorem 2.7.3 (Gauss). Every nonnegative is a sum of three triangular num-
bers, i.e., three numbers of the form (k2 + k)/2, with k nonnegative.

Proof. The equation

m =
k2
1 + k1

2
+
k2
2 + k2

2
+
k2
3 + k3

2

is equivalent to

8m+ 3 = (2k1 + 1)2 + (2k2 + 1)2 + (2k3 + 1)2.

Therefore, the assertion of the theorem is equivalent to the claim that every
positive integer ≡ 3 (mod 8) is a sum of three odd squares. Legendre’s theorem
implies all positive integers ≡ 3 (mod 8) are sums of three squares; looking
(mod 8) we find all the squares are odd. The result follows.

Theorem 2.7.4 (Lagrange). Every nonnegative integer is a sum of four
squares.

Proof. By Legendre’s theorem it suffices to establish this for m of the form
4k(8n + 7). By the same theorem, m − 4k = 4k(8n + 6) is a sum of three
squares, say x2

1 + x2
2 + x2

3. Therefore m = x2
1 + x2

2 + x2
3 + (2k)2 is a sum of four

squares.

This proof of Theorem 2.7.2 is long. The next four subsections are devoted
to outlining that portion of the general theory of quadratic forms needed for
the proof, which is given in the succeeding two subsections. The last subsection
discusses the number of representations of an integer as a sum of three squares.

2.7.1 Quadratic Forms

For the purposes of this section, an (integral) n-ary quadratic form is a poly-
nomial f in x1, . . . , xn which can be written (necessarily uniquely) in the shape

f(x1, . . . , xn) =
∑

1≤i,j≤n
aijxixj ,

1 (2.33)

where the aij are integers and aij = aji for each pair i, j. If we associate f with
the symmetric matrix (aij), we obtain a bijection between the n-ary forms and
the symmetric n× n integer matrices (aij).

1For reasons that will be clear later, we will sometimes write the arguments of f as a
column vector of indeterminates.
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Observe that the binary quadratic forms are the integer polynomials of the
form ax2 + 2bxy + cy2, where a, b and c are integers. In general, an n-ary
quadratic form is a degree 2 homogeneous polynomial in Z[x1, . . . , xn] for which
the coefficients of all the cross terms xixj are even.

2.7.2 Equivalent Forms

For each n, we define an action of GL(n,Z) (the space of invertible n×n matrices
with integral entries) on Z[x1, . . . , xn] by

A · f





x1
x2

...
xn



 = f



A





x1
x2

...
xn







 (A ∈ GL(n,Z), f ∈ Z[x1, . . . , xn]).

This is a bona fide action: clearly In · f = f for each f , where In is the n × n
identity matrix, and the reader can easily check that A · (B · f) = (AB) · f
for each A,B ∈ GL(n,Z) and each polynomial f . We then get an equivalence
relation on Z[x1, . . . , xn] by saying f and g are equivalent (written f ∼ g) if
g = A · f for some invertible n× n matrix A.

The reason for introducing this notion is that equivalent polynomials rep-
resent the same integers. More precisely, if f and g are equivalent, with say
f = A · g, then the map x → Ax is a bijection between {x ∈ Zn : f(x) = m}
and {x ∈ Zn : g(x) = m}, for each integer m.

Let us now check that our equivalence relation on polynomials descends to
an equivalence relation on n-ary quadratic forms. It suffices to verify that if f is
an n-ary quadratic form, then so is A ·f , for any A ∈ GL(n,Z). So suppose f is
given by (2.33), and let M be the corresponding symmetrix matrix M := (aij).
Observe that with

x =

(
x1

...
xn

)

,

we have
f(x) = xTMx,

where T denotes the transpose. Consequently, for A ∈ GL(n,Z),

(A · f)(x) = f(Ax) = xTATMAx. (2.34)

The matrix ATMA is symmetric, so we conclude that A · f is again a quadratic
form (with associated matrix ATMA). We have thus shown that our equivalence
relation does descend to an equivalence relation on forms; moreover, the forms
corresponding to the symmetric matrices M1 and M2 are equivalent precisely
when there is an invertible integer matrix A with

M2 = ATMA.

In this case the symmetric matrices M1 andM2 are said to be congruent (written
M1 ∼M2).
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Example. Let n = 2, and let f(x1, x2) = x2
1+x2

2 and g(x1, x2) = x2
1+4x1x2+5x2

2.
Then f ∼ g, since g(x1, x2) = f(x1 + 2x2, x2) while ( 1 2

0 1 ) is invertible. Note
that (

1 2
2 5

)

=

(
1 0
2 1

)(
1 0
0 1

)(
1 2
0 1

)

.

Now define the determinant of a form f as the determinant of the associated
matrix M = (aij). Since, for A ∈ GL(n,Z),

det(ATMA) = det(AT ) det(M) det(A)

= det(A)2 det(M) = (±1)2 det(M) = det(M),

the determinant depends only on the equivalence class of f .
The next two subsections are occupied with the proof of the following im-

portant result concerning this invariant:

Theorem 2.7.5. Let f be a ternary quadratic form of determinant 1, and
suppose f(x1, x2, x3) ≥ 0 for all integral x1, x2, x3 with equality only when x1 =
x2 = x3 = 0. Moreover, suppose f represents 1 for integral values of x1, x2 and
x3. Then f is equivalent to x2 + y2 + z2.

Remark. The hypothesis that f represent 1 is redundant. We will verify this
hypothesis directly in the relevant special case later; for the general fact, see the
result of Exercise 2.7.2.

2.7.3 Bilinear Forms on Zn

A map l : Zn → Z is said to be linear if

l(mv + nw) = ml(v) + nl(w)

for every v,w ∈ Zn and every m,n ∈ Z. A map b : Zn × Zn → Z is said to be
bilinear if b(v,w) is linear as a function of w for each fixed v and linear as a
function of v for each fixed w.

Now suppose we are given a basis B of Zn, say e1, . . . , en, and a bilinear
form b : Zn×Zn → Z. (By Lemma B.2.1, every basis of Zn has n elements.) A
generic u ∈ Zn may be written u =

∑
ciei, where the coefficients ci are integers;

we set

uB :=

(
c1
...
cn

)

∈ Zn.

Then if v,w ∈ Zn, with

vB =

(
c1
...
cn

)

, wB =

(
d1
...
dn

)

,

we have
b(v,w) = b(

∑

ciei,
∑

cjej) =
∑

1≤i,j≤n
cicjb(ei, ej).
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If we introduce the matrix

M :=








b(e1, e1) b(e1, e2) . . . b(e1, en)
b(e2, e1) b(e2, e2) . . . b(e2, en)

...
...

. . .
...

b(en, e1) b(en, e2) . . . b(en, en)








(2.35)

we therefore have
b(v,w) = vTBMwB. (2.36)

In fact, M is the unique matrix for which (2.36) holds. For suppose (2.36) holds
for M . Let v = ei and w = ej, so that vB and wB are the ith and jth standard
basis vectors, respectively. Then (2.36) shows the ith row, jth column entry of
M is be b(ei, ej). We call M the matrix of b with respect to the basis B.

Now fix a bilinear form b : Zn → Z. Let us examine the question of how
the matrix of b changes upon a change of basis. So suppose e1, . . . , en and
e1

′, . . . , en
′ are two bases B and B′, respectively, and let MB and MB′ denote

respectively the matrices of b with respect to B and B′. Write

ej
′ =

n∑

i=1

aijei,

where the aij are integers. Then A := (aij) ∈ GL(n,Z). Also, if if v,w ∈ Zn

with vB′ = (c1, . . . , cn)T and wB′ = (d1, . . . , dn)T , then vB = AvB′ and similarly
for wB. Therefore,

b(v,w) = vTBMBw = vTB′ATMBAwB′ .

Since also
b(v,w) = vTB′MB′wB′ ,

the aforementioned uniqueness implies

MB′ = ATMBA.

Therefore, changing bases replaces the matrix of b with a congruent matrix.
Now suppose we begin with a symmetric integer matrix M . Then we may

define a bilinear form on Zn by setting

b(v,w) = vTMw;

this bilinear form has matrix M with respect to the standard basis for Zn. The
form b defined in this way is not only bilinear, but is also symmetric: for each
pair v,w ∈ Zn,

b(v,w) = b(w,v).

The simplest way of seeing this is to observe that as b(v,w) is a scalar,

b(v,w) = b(v,w)T = (vTMw)T

= wTMTv = wTMv = b(w,v).
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Conversely, if b is a symmetric bilinear form, then its matrix with respect to
any basis is clearly symmetric, as is evident from (2.35).

Let us briefly summarize how the results of this discussion will be used in
the sequel. Let f be a quadratic form associated to the symmetric matrix M .
Let b be the bilinear form defined above. Then

b(v,v) = vTMv = f(v)

for every v ∈ Zn, where f is the quadratic form associated to the matrix A.
The results of this section imply that to understand the equivalence class of f ,
we can we can study the symmetric bilinear form b; if M ′ is any matrix of this
bilinear form with respect to a change of basis, then M ′ is congruent to M , so
our earlier results imply the form corresponding to M ′ is equivalent to f .

We end with a useful technical lemma:

Lemma 2.7.6. Let b : Zn × Zn → Z be a bilinear form on Zn, and sup-
pose b(e1, e1) = 1 for a certain e1 ∈ Zn. Then we can extend e1 to a basis
e1, e2, . . . , en for Zn with the additional property that

b(e1, ej) = 0 (j = 2, 3, . . . , n).

Proof. Let H := {v ∈ Zn : b(e1,v) = 0}. We claim

Zn = Ze1 ⊕H.

Given y ∈ Zn, write

y = b(e1,y)e1 + (y − b(e1,y)e1) .

The first term lies in Ze1, and one checks easily that the second lies in H. This
proves Zn = Ze1 + H; to see the sum is direct, suppose y ∈ Ze1 ∩ H, say
y = ne1; then

0 = b(e1,y) = b(e1, ne1) = nb(e1, e1) = n,

so n = 0 and y = 0.
To complete the proof, choose a basis e2, . . . , en for H; then e1, . . . , en is

a basis for Zn, and the additional property is guaranteed by the definition of
H. (The existence of a basis for H comes from Theorem B.2.2; that any such
basis has n − 1 elements follows from the fact that Zn has rank n; cf. Lemma
B.2.1.)

2.7.4 Forms of Determinant 1

We now complete the proof of Theorem 2.7.5. It is helpful to begin by estab-
lishing the analogous result for binary quadratic forms. We make use of the
following fundamental result from the geometry of numbers:
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Theorem 2.7.7 (Minkowski). Let X be region in Rn which is convex and
symmetric about the origin. Let L be a complete lattice in Rn; that is, let there
be n linearly independent vectors v1, . . . ,vn ∈ Rn with

L = Zv1 + · · ·+ Zvn.

Let V be the volume of the “fundamental parallelepiped”

P :=

{ n∑

i=1

aivi : 0 ≤ ai ≤ 1 for each i

}

. (2.37)

Then if vol(X) > 2nV , the set X contains a point of the lattice L other than
the origin. (Here vol(X) denotes the Lebesgue measure of X.)

Proof. Let e1, . . . , en be the standard basis vectors, and let T be the (invertible)
linear transformation with Tvi = ei for each i. Then T restricts to a bijection
between L and Zn, and takes the parallelepiped (2.37) of volume V to the unit
box

{(x1, . . . , xn) ∈ Rn : 0 ≤ xi ≤ 1 for each i}
of volume 1. A linear transformation T always shrinks volumes by a fixed ratio,
so it must shrink all volumes by the factor 1/V . In particular, X goes to a set
T (X) of volume vol(X)/V > 2n. One checks without difficulty that T (X) is
also convex and centrally symmetric.

We can therefore assume from the start that L = Zn is the standard lattice
and that X is a convex, centrally symmetric set of volume exceeding 2n. Under
this hypothesis, consider the system of 2 × 2 × · · · × 2 boxes of volume 2n

centered at the points (a1, . . . , an) where all the ai are even integers. Imagine
shifting the portion of X from each box to the single box containing the origin.
Since vol(X) > 2n and since volume is both countably additive and translation-
invariant, two of the translates must overlap. That is, there must exist x1,x2 ∈
X with

x1 = x2 + (2b1, . . . , 2bn)

for some integers b1, . . . bn, not all 0. Since X is centrally symmetric, −x2 ∈ X;
finally, since X is convex, it now follows that

1

2
(x1 +−x2) =

1

2
((x2 + (2b1, . . . , bn))− x2) = (b1, . . . , bn) ∈ X.

The proof is complete, as (b1, . . . , bn) is a nonzero point of Zn.

Say that an integral n-ary quadratic form f is positive definite if f(v) ≥ 0
for every v ∈ Zn, with equality only when v = 0. Note that if f is a positive
definite quadratic form, and g ∼ f , then g is also positive definite: g(v) ≤ 0
implies f(Av) ≤ 0, so Av = 0, and v = 0.

Corollary 2.7.8. Let f(x, y) = ax2
1 + 2bx1y1 + cy2

1 be a positive definite binary
quadratic form of determinant ac − b2 = 1. Then there are integers x, y with
f(x, y) = 1.
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Proof. Observe that for (real) x, y, we have

af(x, y) = (ax+ by)2 + (ac− b2)y2 = (ax+ by)2 + y2.

Since f is positive definite with f(1, 0) = a, we must have a > 0; therefore, we
can write

f(x, y) =

(√
ax+

b√
a
y

)2

+

(
1√
a
y

)2

. (2.38)

It will therefore suffice to show the circle u2 + v2 < 2 contains a nonzero point
of the lattice L generated by v1 := (

√
a, b/
√
a) and v2 := (0, 1/

√
a). But the

fundamental parallelepiped (2.37) has volume

∣
∣
∣
∣

√
a 0

b/
√
a 1/

√
a

∣
∣
∣
∣

= 1,

and the circle u2 + v2 < 2 has area 2π > 4 · 1, so this is immediate from
Minkowski’s theorem.

Theorem 2.7.9. Let f be as in the above corollary. Then f ∼ x2
1 + y2

1.

Proof. Let b be the symmetric bilinear form on Z2 associated to f (see the last
paragraph of the preceding subsection). By the corollary, there is an e1 ∈ Z2

with b(e1, e1) = 1. By Lemma 2.7.6, we can extend this to a basis e1, e2 of Z2

with b(e1, e2) = 0. Then (as b is symmetric) the matrix of b with respect to
e1, e2 looks like

(
b(e1, e1) b(e1, e2)
b(e2, e1) b(e2, e2)

)

=

(
1 0
0 b(e2, e2)

)

.

As a matrix congruent to the matrix of f , it must have the same determinant
of f , whence b(e2, e2) = 1. Therefore, the identity matrix is congruent to the
matrix of f , so the form associated to the identity matrix, namely x2

1 + y2
1 , is

equivalent to f .

We can similarly prove Theorem 2.7.5, that a positive definite ternary form
of discriminant 1 representing 1 is equivalent to x2

1 + x2
2 + x2

3:

Proof of Theorem 2.7.5. Let b be the symmetric bilinear form on Z3 associated
to f . By hypothesis, there is an e1 ∈ Z3 with b(e1, e1) = 1. Extend e1 to a
basis e1, e2, e3, as in Lemma 2.7.6. Then the matrix of b with respect to this
basis has the shape





1 0 0
0 b(e2, e2) b(e2, e3)
0 b(e3, e2) b(e3, e3)



 .

Because f has determinant 1, the bottom-right 2 × 2 matrix, say M , also has
determinant 1.
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Now M is a symmetric matrix, so we can associate with it the binary
quadratic form

g(x2, x3) =
∑

2≤i,j≤3

b(ei, ej)xixj

of determinant 1. If g were not positive definite, then the ternary form

x2
1 + g(x2, x3) = x2

1 +
∑

2≤i,j≤3

b(ei, ej)xixj

would also fail to be positive definite. But as this latter form is equivalent to f ,
it must be positive definite. So g is positive-definite. Theorem 2.7.9 now implies
M is congruent to the identity. Suppose ATMA is the 2 × 2 identity matrix,
with A ∈ GL(2,Z); then

(
1 0
0 A

)T (
1 0
0 M

)(
1 0
0 A

)

= I3,

the 3 × 3 identity matrix. Since the matrix of f was congruent to ( 1 0
0 M ), we

now find the matrix of f is congruent to the 3 × 3 identity matrix. The result
follows.

2.7.5 Proof of the Three Squares Theorem

We are now ready to prove Theorem 2.7.2.
Theorem 2.7.2 follows once it is known that every squarefree m 6≡ 7 (mod 8)

is a sum of three squares. For let m be given, where m is not a power of 4
multiplied by a number 7 (mod 8). Write m = m′r2, where m′ is squarefree,
and r = 2ks with s odd. Then were m′ ≡ 7 (mod 8), we would have

m = m′(2ks)2 = 4k(m′s2),

with

m′s2 ≡ 7s2 ≡ 7 (mod 8),

and this would contradict our initial hypothesis on m. So there is a representa-
tion

m′ = a2
1 + a2

2 + a2
3 (a1, a2, a3 ∈ Z),

which implies the representation

m = (ra1)2 + (ra2)2 + (ra3)2.

Our plan is as follows: Given a squarefree m 6≡ 7 (mod 8), we will produce
a ternary quadratic form f of determinant 1 representing both 1 and m. By
Theorem 2.7.5, f is equivalent to x2

1 + x2
2 + x2

3. By the remarks following the
definition of equivalence, x2

1 + x2
2 + x2

3 must also represent m. It remains to
construct such a form and verify it has the needed properties.
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We suppose for the moment that it is possible to choose integers A,B, a, h
and b so that

a > 0, ab− h2 = m, (2.39)

and so that the polynomial f determined by

mf(x1, x2, x3) = (Ax1 +Bx2 +mx3)2 + ϕ(x2, x3), (2.40)

where

ϕ(x1, x2) = ax2
1 + 2hx1x2 + bx2

2,

is an integral ternary quadratic form. (Since any choice of A,B, a, h and b
determines f as a homogeneous polynomial of degree 2, what needs to be verified
is that f has integer coefficients and even cross-term coefficients.) We defer the
proof of this, which will be accomplished by quadratic reciprocity and Dirichlet’s
theorem, to the next subsection.

We claim that the f determined this way has the properties needed to com-
plete the proof. We need check four things:

i. The form f is positive-definite.

ii. The form f has determinant 1.

iii. The form f represents 1.

iv. The form f represents m.

We proceed to establish each of these in succession.
We can write (using (2.39))

mf(x1, x2, x3) = (Ax1 +Bx2 +mx3)2 + ax2
2 + 2hx2x3 + bx2

3

= (Ax1 +Bx2 +mx3)2 +
1

a
((ax1 + hx2)2 + (ab− h2)x2

2)

= (Ax1 +Bx2 +mx3)2 +
1

a
((ax1 + hx2)2 +mx2

2),

so that

f(x1, x2, x3) =
(

A√
m
x1 +

B√
m
x2 +

√
mx3

)2

+

(√
a

m
x1 +

h√
am

x2

)2

+ (
1√
a
x2)2. (2.41)

Since f is a sum of squares, we have f(x) ≥ 0 for every x ∈ Z3. Suppose equality
holds; then all three squares on the right hand side of (2.41) must vanish.
Starting with the last term we find x2 = 0. This together with the vanishing of
the second term implies x1 = 0, and these together with the vanishing of the
first term imply x3 = 0 also. So f is positive definite, and we have verified the
first of the requisite properties.
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To verify the second, introduce the ternary form g = x2
1 + x2

2 + x2
3. Then we

can rewrite (2.41) in the form

f = g
(

A
(
x1
x2
x3

))

,

where

A =






A√
m

B√
m

√
m

√
a
m

h√
am

0

0 1√
a

0




 .

Therefore, since g corresponds to the identity matrix, we have (by the proof
of (2.34), which nowhere requires that A have integer entries)

f





x1

x2

x3



 =
(
x1 x2 x3

)
AT I2A





x1

x2

x3



 ;

it follows that AT I2A = ATA is the matrix of f , so that the determinant of f
is

det(ATA) = det(A)2 =

(√
m
√

a/m
1√
a

)2

= 1;

here we have computed the determinant of A by expanding by minors along the
third column. We have therefore verified the second required property.

For the third property we again invoke Minkowski’s theorem (Theorem
2.7.7). By (2.41), it suffices to show that the Z-span L of the three vectors

v1 :=
(

A√
m

B√
m

√
m
)

, v2 :=
(√

a
m

h√
am

0
)

, v3 :=
(

0 1√
a

0
)

intersects the sphere u2 + v2 +w2 < 2 in a point other than the origin. Because
det(A) = 1, the vectors v1,v2 and v3 are linearly independent, so L is a com-
plete lattice, and the fundamental parallelepiped (2.37) has volume 1. Since the
sphere has volume

4

3
π(
√

2)3 ≈ 11.8 > 8 · 1,
the third claim follows from Minkowski’s theorem.

The fourth property is easiest of all to verify; since the coefficient of x2
3 in f

is m, we have f
(

0
0
1

)

= m.

2.7.6 Completion of The Proof

We now show that for any squarefree m 6≡ 7 (mod 8), it is possible to choose
the integers A,B, a, h and b in accordance with the previous conditions.

Expanding out the right hand side of (2.40) we find

mf(x1, x2, x3) = (Ax1 +Bx2 +mx3)2 + (ax2
1 + 2hx1x2 + bx2

2)

= A2x2
1 +B2x2

2 +m2x2
3 + 2ABx1x2 + 2Bmx2x3+

2Amx1x3 + ax2
1 + 2hx1x2 +mx2

2.
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Collecting like terms and dividing by m shows

f(x1, x2, x3) =

(
A2 + a

m

)

x2
1 +

(
B2 + b

m

)

x2
2 +mx2

3

+ 2

(
AB + h

m

)

x1x2 + 2Ax1x3 + 2Bx2x3. (2.42)

Now f will have integer coefficients and even cross-term coefficients provided
the following congruences on the integers A,B, a, h and b hold:

A2 ≡ −a (mod m), B2 ≡ −b (mod m), AB ≡ −h (mod m). (2.43)

So we need to prove these congruences can be simultaneously satisfied with our
other condition (2.39), namely

a > 0, ab− h2 = m. (2.44)

To satisfy (2.44) it is sufficient to choose a to be a positive integer coprime
to m for which −m is a square. We can then choose h so h2 ≡ −m (mod a)
and determine b to satisfy ab−h2 = m. Note that because h is only determined
(mod a) and gcd(a,m) = 1, we can choose h so that h ≡ 0 (mod m); then
ab − h2 = m implies b ≡ 0 (mod m). We choose B as any integer with B ≡ 0
(mod m). With all these choices, the final two congruences of (2.43) hold.

We have thus reduced the problem to showing we can choose a positive
integer a coprime to m with −a a square (mod m) and −m a square (mod a).
It is no surprise that quadratic reciprocity (used below for the Jacobi symbol)
enters the picture at this point.

We take several cases depending on the residue class of m (mod 8).
Suppose first that m ≡ 1 (mod 4) (i.e., m ≡ 1 or 5 (mod 8)). Choose a to

be an odd prime satisfying the congruences

a ≡ −1 (mod m), a ≡ 1 (mod 4);

that this is possible is a consequence of Dirichlet’s theorem. Then −a is trivially
a square (mod m); to see −m is a square (mod a), observe

(−m
a

)

=

(−1

a

)(
m

a

)

=

(
m

a

)

=

(
a

m

)

=

(−1

m

)(−a
m

)

=

(−a
m

)

=

(
1

m

)

= 1.

Suppose next that m ≡ 3 (mod 8). In this case we take a = 2p, where p is
an odd prime satisfying

2p ≡ −1 (mod m), p ≡ 1 (mod 4).

As before, −a is trivially a square (mod m). To see −m is a square (mod a),
it suffices to check −m is a square (mod p). But

(−m
p

)

=

(−1

p

)(
m

p

)

=

(
m

p

)

=

(
p

m

)

=

(
4p

m

)

=

(−2

m

)(−2p

m

)

=

(−2

m

)

= 1.
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Finally, suppose m is even (so that m ≡ 2 or 6 (mod 8)) and write m = 2m1,
where m1 is odd. If m1 ≡ 1 (mod 4), choose a an odd prime with

a ≡ −1 (mod m), a ≡ 1 (mod 8).

Then −a is trivially a square (mod m). To check −m is a square (mod a),
observe

(−m
a

)

=

(−2

a

)(
m1

a

)

=

(
m1

a

)

=

(
a

m1

)

=

(−1

m1

)

= 1.

If m1 ≡ 3 (mod 4), choose a an odd prime with

a ≡ −1 (mod m), a ≡ 3 (mod 8).

As before −a is a square (mod m). To check −m is a square (mod a) in this
case, note

(−m
a

)

=

(−2

a

)(
m1

a

)

=

(
m1

a

)

= −
(
a

m1

)

= −
(−1

m1

)(−a
m1

)

= −(−1)(1) = 1.

2.7.7 The Number of Representations

There are elementary formulas in terms of divisor sums for the number of rep-
resentations of an integer n as a sum of 2 and 4 squares. Namely, with r2(n)
and r4(n) defined in analogy with (2.32), we have (see [IR90, Proposition 17.6.1,
Corollary to Proposition 17.7.2])

r2(n) = 4

(
∑

d|n
2-d

(−1)(d−1)/2

)

, and r4(n) =

{

8
∑

d|n d if n is odd,

24
∑

d|n d if n is even.

However, for sums of three squares the situation is much more complicated.
In his Disquisitiones Arithmeticae (1801), Gauss expressed the number of rep-
resentations in terms of certain (complicated) quantities arising in his theory of
binary quadratic forms.

We conclude this chapter by stating the following theorem (see [Bat51])
which expresses r3(n) in terms of L(1, χ) for a certain character χ (mod 4n):

Theorem. Let n be a positive integer, with n = 4an1 and 4 - n1. Then

r3(n) =
16

π

√
nL(1, χ)q(n)P (n),

where

q(n) =







0 if n1 ≡ 7 (mod 8),

2−a if n1 ≡ 3 (mod 8),

3 · 2a−1 if n1 ≡ 1, 2, 5 or 6 (mod 8),



104 CHAPTER 2. DIRICHLET’S THEOREM

P (n) =
∏

p2b‖n
p odd,b≥1



1 +

b−1∑

j=1

p−j + p−b
(

1−
(

(−n/p2b)

p

)
1

p

)−1




(understood so that P (n) = 1 for squarefree n), and χ is the character (mod 4n)
given by

χ(m) :=

{

0 if m is even,
(−n
m

)
if m is odd.

The standard reference on sums of squares is [Gro85]. Chapter 4 of that text
contains a wealth of additional information on representability by three squares,
including a detailed discussion of alternate expressions for r3(n).

2.7.8 Exercises

Exercise 2.7.1. Let L ⊂ Rn be a complete lattice, i.e., the Z-span of n linearly
independent vectors.

a) Prove that any bounded subset of Rn contains only finitely many elements
of L.

b) Prove that the conclusion of Minkowski’s Theorem continues to hold when-
ever the nonstrict inequality vol(X) ≥ 2nV is satisfied, provided the given
convex, centrally symmetric set X is closed.

Exercise 2.7.2 (Minkowski). It is known that for any symmetric matrix M of
rational numbers, one can find a matrix A of rational numbers with ATMA a
diagonal matrix.

a) Suppose f is an n-ary integral quadratic form and let M be the n × n
symmetric matrix associated to f . Let A be as above. Prove that f
is positive definite if and only if the diagonal entries of ATMA are all
positive. Deduce that the determinant D of a positive definite form always
satisfies D > 0.

b) Prove that if f is a positive definite (integral) n-ary quadratic form of
determinant D, then there exists v ∈ Zn with

0 < f(v) ≤ 4ω−2/n
n

n
√
D,

where ωn is the volume of the n-dimensional unit ball.

Exercise 2.7.3. Use Theorem 2.7.9 to prove that every prime p ≡ 1 (mod 4)
is expressible as a sum of two squares. Suggestion: let a2 ≡ −1 (mod p) and
consider the form

px2
1 + 2ax1x2 +

(
a2 + 1

p

)

x2
2.

Exercise 2.7.4. Let m be an odd positive integer.
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a) Prove that m can be written as a sum of four squares with two of them
equal.

b) Prove that m can be written as a sum of four squares with two of them
consecutive.

Suggestions: For a), write 2m = x2 + y2 + z2, as is possible by Legendre’s
theorem; by reordering, show we can assume x, y are odd while z is even. Let
a = (x+ y)/2, b = (x− y)/2 and use the identity

a2 + b2 =
1

2

(
x2 + y2

)
. (2.45)

Complete the proof by taking c = z/2. For b), write 2m − 1 = x2 + y2 + z2.
Show that after a rearrangement we can assume x = 2a, y = 2b are even while
z = 2c+ 1 is odd. Then use the identities (2.45) and

c2 + (c+ 1)2 =
1

2

(
(2c+ 1)2 + 1

)
.

Exercise 2.7.5 (Turski [Tur33]). Prove that every positive integer is the sum of
at most 10 odd squares and that infinitely many require 10.

Exercise 2.7.6. Prove that the set of positive integers expressible as a sum of
three squares has density 5/6.

Exercise 2.7.7 (Carlitz [Car75]). Let F be a finite field of odd order q. Prove
that every polynomial in F [T ] is a sum of three squares. Show that “three” can
be replaced by “two” if q ≡ 1 (mod 4), but not if q ≡ 3 (mod 4).

Hint (for the first part): First consider the problem of expressing

T = (rT + r′)2 + (sT + s′)2 + (uT + u′)2 (2.46)

with r, s, u, r′, s′, u′ ∈ F . This is equivalent to the system

r2 + s2 + u2 = r′2 + s′2 + u′2 = 0, 2rr′ + 2ss′ + 2uu′ = 1.

To solve this system, choose r and s with r2 + s2 + 1 = 0 (arguing that this
is always possible by the Pigeonhole principle), and let u = 1. Then let r′′ =
−s, s′′ = r and u′′ = 1, and scale these appropriately to obtain r′, s′ and u′

respectively. Finally, replace T in (2.46) with a generic f(T ) ∈ F [T ].
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Kais. Akad. Wissensch. Wien 106 (1897), 254–286.

[Mon93] Paul Monsky, Simplifying the proof of Dirichlet’s theorem, Amer.
Math. Monthly 100 (1993), no. 9, 861–862. MR 95b:11085



REFERENCES 107

[Mor58] L. J. Mordell, On the representation of a number as a sum of three
squares, Rev. Math. Pures Appl. 3 (1958), 25–27. MR 23 #A117

[Nar00] W ladys law Narkiewicz, The development of prime number the-
ory, Springer Monographs in Mathematics, Springer-Verlag, Berlin,
2000, From Euclid to Hardy and Littlewood. MR 2001c:11098

[Nat00] Melvyn B. Nathanson, Elementary methods in number theory, Grad-
uate Texts in Mathematics, vol. 195, Springer-Verlag, New York,
2000. MR 2001j:11001

[New97] D. J. Newman, Euler’s φ function on arithmetic progressions, Amer.
Math. Monthly 104 (1997), no. 3, 256–257. MR 97m:11010

[PS73] Richard M. Pollack and Harold N. Shapiro, The next to last case
of a factorial diophantine equation, Comm. Pure Appl. Math. 26
(1973), 313–325. MR 50 #12915

[Ros02] Michael Rosen, Number theory in function fields, Graduate Texts in
Mathematics, vol. 210, Springer-Verlag, New York, 2002. MR 1 876
657

[Sha50] Harold N. Shapiro, On primes in arithmetic progression. II, Ann. of
Math. (2) 52 (1950), 231–243. MR 12,81b

[Sha83] , Introduction to the theory of numbers, Pure and Applied
Mathematics, John Wiley & Sons Inc., New York, 1983, A Wiley-
Interscience Publication. MR 84f:10001

[Sie48] W. Sierpiński, Remarque sur la répartition des nombres premiers,
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Chapter 3

Sieve Methods

Brun’s [sieve] method . . . is perhaps our most powerful elemen-
tary tool in number theory. – P. Erdős, Some Recent Advances and
Current Problems in Number Theory [Erd65]

3.1 Introduction

3.1.1 The Sieve of Eratosthenes

Granville has pointed out [Gra95] that ancient Greek mathematics produced
two results in prime number theory that have proved of first importance in
subsequent thought. The first is Euclid’s proof of the infinitude of the primes,
which we have discussed in the opening to Chapter 1. The second is the sieve
of Eratosthenes.

Eratosthenes’ method allows one to determine the primes not exceeding x
based on knowledge only of the primes not exceeding

√
x. His procedure is

roughly as follows: begin with a list of all positive integers at least 2 but not
exceeding x and for each prime p ≤ √x cross out all the multiples of p on the
list; the numbers remaining are exactly the primes in the interval (

√
x, x]. We

can illustrate this process with x = 30, sieving by the primes 2, 3, 5.

2 3 �4 5 �6 7 �8 �9 �10
11 �12 13 �14 �15 �16 17 �18 19 �20
�21 �22 23 �24 �25 �26 �27 �28 29 �30

This is remarkable not only insofar as it gives a fast algorithm for listing primes,
but also in that it suggests the useful viewpoint of the primes as the integers
surviving a “sieving process.”

3.1.2 Legendre’s Formula

Let us attempt to count how many integers remain after Eratosthenes’ sieving
procedure is carried out. More generally, let us count the number of positive

109
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integers up to x remaining after the deletion (or “sifting out”) of the multi-
ples of all primes not exceeding z, where z is a parameter at our disposal; in
Eratosthenes’ sieve, z =

√
x. We use π(x, z) to denote this quantity, i.e.,

π(x, z) := |{n ≤ x : p | n⇒ p > z}.

Then for any z,
π(x) ≤ z + π(x, z),

and
π(x, x1/2) = π(x)− π(

√
x) + 1.

Our estimate of π(x, z) proceeds by successive approximation. We begin
with the total number bxc of positive integers not exceeding x, and then for
each prime p ≤ z we subtract off the number of multiples of p:

bxc −
∑

p1≤z

⌊
x

p1

⌋

.

This counts correctly those n with at most one prime factor, but those n with
two or more prime factors p ≤ z have been subtracted off twice. Hence, we add
these back in to obtain our next approximation,

bxc −
∑

p1≤z

⌊
x

p1

⌋

+
∑

p1<p2≤z

⌊
x

p1p2

⌋

.

But now those integers divisible by three primes p ≤ z have been added back in
too many times; for instance, if n has exactly three prime divisors not exceeding
z, it is counted with weight 1− 3 + 3 > 0. Thus we should subtract off a term
corresponding to the integers divisible by three primes p ≤ z; we would then
find ourselves needing to add a term corresponding to integers divisible by four
such p, etc. Continuing in this manner, we are led to the formula

π(x, z) = bxc −
∑

p1≤z

⌊
x

p1

⌋

+ · · ·+ (−1)r
∑

p1<···<pr≤z

⌊
x

p1 . . . pr

⌋

. (3.1)

Note that if we set
P :=

∏

p≤z
p,

we can put this in the alternate form

π(x, z) =
∑

d|P
µ(d)

⌊x

d

⌋

. (3.2)

This line of reasoning, attributed to Legendre, can be tightened into a proof
of (3.1). For the time being, we assume (3.1), postponing a rigorous justification
to §3.3, where we shall establish a more general result.
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3.1.3 Consequences

We now have an exact formula for π(x, z). Unfortunately this exact formula is a
bit unsatisfying, because it seems to leave the most natural question unanswered:
how large is π(x, z)? Can we transition from our formula to an estimate?

Sums involving the greatest-integer function are generally hard to work out
directly, so we drop the greatest integer signs in (3.2) and transfer the incurred
error to a separate sum. This is advantageous, as the “main term” can now be
reexpressed as a product:

π(x, z) = x
∑

d|P

µ(d)

d
+
∑

d|P
µ(d)

(⌊x

d

⌋

− x

d

)

= x
∏

p≤z

(

1− 1

p

)

+
∑

d|P
µ(d)

(⌊x

d

⌋

− x

d

)

= x
∏

p≤z

(

1− 1

p

)

+O
(

2π(z)
)

;

(3.3)

here the final estimate, understood to hold with an absolute implied constant,
comes from noting that each of the τ(P ) = 2π(z) terms in the sum has magnitude
bounded by 1.

How useful is estimate (3.3)? Suppose first that z is fixed while x is tending
to infinity; then the error term in (3.3) is Oz(1) and we obtain the asymptotic
formula π(x, z) ∼ x∏p≤z(1− 1/p). The same asymptotic estimate holds if z is
not fixed, but instead is tending to infinity with x sufficiently slowly. Whenever
z = z(x)→∞, Mertens’ theorem implies

x
∏

p≤z
(1− 1/p) ∼ e−γx/ log z (x→∞). (3.4)

If this z = z(x) satisfies z ≤ log x whenever x is sufficiently large, then the
O-term in (3.3) is � 2z � xlog 2, which is of smaller order than the main term
x/ log z. Consequently, the asymptotic formula π(x, z) ∼ e−γx/ log z holds in
this case as well. Fixing the choice z = log x, we obtain the corollary

π(x) ≤ π(x, log x) + log x ∼ e−γ x

log log x
,

which provides another proof that the primes have density 0.
We have yet to treat the case corresponding to Eratosthenes’ sieve, that of

z =
√
x. In this case, the bound 2π(

√
x) for the “error term” dwarfs the value of

the “main term,”1

x
∏

p≤x1/2
(1− 1/p) ∼ 2e−γx/ log x = (1.229 . . . )x/ log x, (3.5)

so that we cannot prove the asymptotic formula by this method. In fact, the
prime number theorem implies

π(x,
√
x) = π(x)− π(

√
x) + 1 ∼ x/ log x, (3.6)

so that it is not even true that π(x, x1/2) ∼ x∏p≤x1/2(1− 1/p).
We will discuss to what extent this difficulty can be overcome in §3.1.5.

1For example, Chebyshev’s results imply 2π(
√

x) ≥ 2
3√

x for all large x.
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3.1.4 General Sieving Situations

The problem treated in the last section is of the following form: Given a finite
sequence of integers A and a finite set of primes P, estimate the number S(A,P)
of terms of A divisible by no prime p ∈ P. For example, if

A := {n ≤ x}, P = {p ≤ z}, (3.7)

then S(A,P) is what we have been calling π(x, z).
Many problems in number theory fit into this framework. For example, let

x be a positive real number and z a parameter to be chosen later, and set

A := {n(n+ 2) : n ≤ x}, P = {p ≤ z}. (3.8)

If n, n + 2 are both prime, then either n ≤ z or both n, n + 2 have only prime
factors exceeding z. Consequently,

π2(x) ≤ S(A,P) + z. (3.9)

Since n and N − n are both prime if all their prime factors exceed
√
x+ 2, in

the particular case z =
√
x+ 2 we additionally have

0 ≤ π2(x)− S(A,P) ≤ z. (3.10)

Estimates for S(A,P) are thus intimately connected with the quantative form
of the twin prime conjecture (see Chapter 1, §1.8).

The sieve problem in its general form is too vague to be tractable, so it
is necessary to make a few further assumptions. We assume A has “approxi-
mately” X elements and that divisibility by distinct primes p ∈ P constitute
“approximately” mutually independent events, each occurring with “approxi-
mate” probability α(p). (All of this will be made precise in §3.2.) In this case,
it is natural to expect

S(A,P) ≈ X
∏

p∈P
(1− α(p)). (3.11)

The goal of sieve theory, from our perspective in this chapter, is to quantify
and then to justify such approximations, in as wide a range of circumstances as
possible.

In the classical situation described by (3.7), it is reasonable to approximate
the number of integers n ≤ x by x and the probability such an integer is divisible
by p by 1/p. Our expectation translates into the guess π(x, z) ≈ x∏p≤z(1−1/p).
We have seen that when z is constant or slow-growing this holds as an asymptotic
estimate, but that for z =

√
x, the case originally of interest, the estimate is off

by a constant factor. Nevertheless, the approximation sign in (3.11) correct if
read as an assertion that both sides have the same order of magnitude.

For another example, consider the situation described by (3.8). We again
approximate |A| by x. This time the probability that a term of the sequence
{n(n+ 2)}n≤x is divisible by the prime p is approximately ω(p)/p, where

ω(p) =

{

1 if p = 2,

2 otherwise.
(3.12)
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(So that ω(p) counts the number of solutions (mod p) to n(n+2) ≡ 0 (mod p).)
Assuming z = z(x) tends to infinity with x, our approximation asserts (cf.
Exercise 3.1.3)

S(A,P) ≈ x
∏

p≤z
(1− ω(p)/p) ∼ 2C2e

−2γ x

log2 z
, (3.13)

where
C2 =

∏

p>2

(
1− (p− 1)−2

)
(3.14)

is the twin prime constant. Using Legendre’s methods (cf. Exercise 3.3.4), this
approximation can be proved to hold as an asymptotic formula for z small (say
z ≤ 1

2 log x) and x tending to infinity; probably no method can establish the

same for z =
√
x+ 2, as in combination with (3.10) this would contradict the

quantitative form of the twin prime conjecture.

3.1.5 Legendre, Brun and Hooley; oh my!

We have already stated that the goal of sieve theory, for us, is to quantify and
to justify estimates of the form

S(A,P) ≈ X
∏

p∈P
(1− α(p)).

We can get a feel for the respective power of the three sieve methods of this
chapter if we consider what they say about the particular estimate

π(x, z) ≈ x
∏

p≤z
(1− 1/p)

corresponding to our initial problem. As we have noted previously, Legendre’s
method of successive approximation shows this is valid as an asymptotic formula
for z = log x. The first improvement on Legendre’s formula, Brun’s pure sieve,
allows one to prove the same for any z = z(x) → ∞ satisfying the inequality
z(x) ≤ x1/10 log log x (for large x); in particular, choosing z as large as possible
and referring to (3.4) shows

π(x) ≤ π(x, z) + z � x

log x
log log x. (3.15)

Whereas the other methods yield asymptotic formulae for z in a certain lim-
ited range, the powerful Brun-Hooley sieve additionally allows one to obtain
upper and lower bounds for π(x, z) for z as large as a power of x. The up-
per bound aspect permits recovery of Chebyshev’s estimate π(x) � x/ log x.2

The lower bound aspect is also interesting; it permits deduction of bounds like
π(x, x1/1000) � x/ log x. This does not translate into a lower bound on the
number of primes up to x. But because an integer up to x all of whose prime

2Take this with a grain of salt. In the derivation, we require the results of Mertens, which
in turn rest on those of Chebyshev.
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factors exceed x1/1000 can have at most 1000 prime factors, it does give us a
lower bound on the number of 1000-almost primes up to x, where an r-almost
prime is an integer with no more than r prime divisors, counting multiplicity.

This might seem a bit silly because we already have a lower bound for π(x)
of the correct order of magnitude. But the general sieve framework is rather
flexible, and therein lies the allure of this approach. We have already seen
that sieve methods can be adapted to yield information about the twin prime
conjecture. Developing these ideas, Brun used his pure sieve to prove (in analogy
with (3.15))

π2(x)� x

log x
(log log x)2. (3.16)

This is off by a factor of (log log x)2 from the conjectured order of magnitude,
but it still has profound implications. One such is that

∑

p 1/p, restricted to
twin primes p, is either a finite sum or a convergent infinite series.

To remove the unwanted factor (log log x)2 from (3.16), Brun required the
complicated combinatorial apparatus of his full sieve. We will reach the same
goal via the much simpler Brun-Hooley sieve. The same method will allow
us to prove the following two deep theorems of Brun ([Bru20]; see [Wan84]
for an English translation), approximations to the twin prime and Goldbach
conjectures respectively:

• There are infinitely many pairs of 9-almost primes n, n+ 2.

• Every large even integer N is a sum of two 9-almost primes.

In the next section, we formally introduce some notions and notations arising
in the general sieving situation. We then discuss the first of our sieve methods,
that of Eratosthenes-Legendre. This is a straightforward adaptation of Leg-
endre’s method of successive approximation to the general sieving situation.
As promised, we present a rigorous justification of Legendre’s manipualtions
via the well-known Principle of Inclusion-Exclusion from enumerative combina-
torics. After giving a few elementary applications, we turn to a discussion of
Brun’s pure sieve, so-named because of its purely combinatorial nature. Indeed,
it rests on the purely combinatorial observation that the approximations in Leg-
endre’s method are alternately over and under-estimates. Despite being an easy
variant on Legendre’s method, it is much more powerful, which we illustrate by
proving the aforementioned theorem of Brun on the sum of the reciprocals of
the twin primes. We conclude with a discussion of Hooley’s elegant and surpris-
ingly powerful “almost-pure” sieve. Our treatment is based on Hooley’s original
article [Hoo94] and the recent exposition of Ford & Halberstam [FH00].

3.1.6 Further Reading

We make no claims to comprehensiveness in this chapter, rather the opposite.
For a thorough discussion of sieve methods, the reader can consult the clas-
sic text of Halberstam & Richert [HR74] or the recent monograph of Greaves
[Gre01], though the novice should be warned that neither makes for particularly
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pleasant bedtime reading. The remarkably readable and illuminating notes of
Ben Green [Gre] on Brun’s pure sieve and the Selberg sieve are strongly urged on
the reader. Another accessible reference for these (and more advanced topics)
is Odlyzko’s senior thesis [Odl71].

3.1.7 Exercises

Exercise 3.1.1 (An Alternate Derivation of the Bateman-Horn Heuristic; cf.
[Pól59]). In this section we saw that the natural but naive guess for the number
of primes up to x, viz.

x
∏

p≤x1/2

(

1− 1

p

)

, (3.17)

exceeds π(x) by the multiplicative factor 2e−γ(1 + o(1)) (cf. (3.5), (3.6)).

a) Using the PNT and Mertens’ theorem, show that if the exponent 1/2 on
x is replaced with e−γ , then one obtains the correct asymptotic. That is,
prove that

x
∏

p≤xe−γ

(

1− 1

p

)

∼ x

log x
.

b) Let f1, . . . , fk be polynomials satisfying the conditions of the Bateman-
Horn conjecture (see §1.8.3), and let us attempt to estimate the number of
positive values not exceeding x at which the fi are simultaneously prime.
Using ωf (p) to denote the number of roots of a polynomial f over Z/pZ,
the estimate corresponding to (3.17) is

x
∏

p

(

1− ω∗(p)

p

)

, ω∗(p) =







ωf1...fk
(p) if p ≤ x 1

2di ,

ωfifi+1...fk
(p) if x

1
2di−1 < p ≤ x 1

2di ,

0 if p > x
1
2dk ;

here di denotes the degree of fi, and the di are assumed to be nondecreas-
ing. (This is probably easiest to first grok in the special case k = 1.)

Show that if 1
2 is replaced by e−γ in the definition of ω∗, then one obtains

the asymptotic formula (1.52) of the Bateman-Horn conjecture. (You
should assume that the infinite product (1.53) defining the “correction
factor” of that conjecture always converges.)

Exercise 3.1.2. Use the elementary lower bound (valid for z ≥ 1)

∏

p≤z

(

1− 1

p

)−1

=
∏

p≤z

∞∑

j=0

1

pj
≥
∑

n≤z

1

n
≥ log z (3.18)

to deduce that with π(x, z) as above,

π(x, z) ≤ x

log z
+O(xlog 2). (3.19)
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Thus obtain the bound

π(x)� x

log log x

without Mertens’ theorem.

Exercise 3.1.3. Using Mertens’ theorem, establish that with ω(p) as in (3.12)
and C2 as in (3.14),

∏

p≤z(1− ω(p)/p) ∼ 2C2e
−2γ/ log2 z (z →∞).

Exercise 3.1.4. Let d be a positive integer. Show that the number of integers in
any interval (Y, Y +X] divisible by d is X/d+O(1), where the implied constant
is absolute. Use this to prove that for every X ≥ 3, the number of primes in
any interval of the form (Y, Y +X] (where Y is nonnegative) is O(X/ log logX),
where the implied constant is absolute.

3.2 The General Sieve Problem: Notations and
Preliminaries

Probability is not a notion of pure mathematics, but of philosophy
or physics. – G.H. Hardy & J.E. Littlewood, Some Problems of
Partitio Numeronum, III [HL22]

The general sieve problem (for us) takes the following form: Given a finite
sequence A = {ai} of integers and a finite set of primes P, estimate the quantity

S(A,P) := |{a ∈ A : gcd(a, P ) = 1}|,

where P :=
∏

p∈P p.
In many situations, the sifting set of primes arises by truncating of an infinite

set of primes. Consequently, it is expedient to allow the set of primes P to be
infinite and to introduce special notation indicating that we sieve only by those
primes p ∈ P with p ≤ z. We thus define

S(A,P, z) := |{a ∈ A : gcd(a, P (z)) = 1}|,

where

P (z) :=
∏

p∈P
p≤z

p.

Thus S(A,P, z) = S(A,P ∩ [2, z]).
We use the notation Ad to denote the number of terms of A divisible by d,

i.e.,

Ad = |{a ∈ A : d | a}|.
The letter X denotes an approximation to the size of A. We assume the

existence of a multiplicative function α taking values in [0, 1] for which

Ad := Xα(d) + r(d) (3.20)
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for each d | P (or each d | P (z), as the case may be). In practice, we choose X
and α, and we define r(d), for d | P , in order that equation (3.20) holds.

To see how this corresponds to the explanation of the introduction, note
that (3.20) asserts the probability an element of A is divisible by d is “approxi-
mately” α(d), while the multiplicativity of α says that the events corresponding
to divisibilities by primes p ∈ P are “approximately” mutually independent.

3.3 The Sieve of Eratosthenes-Legendre and its
Applications

3.3.1 The Principle of Inclusion-Exclusion

Any rigorous study of sieve methods begins with the following fundamental
principle, a well-known result from enumerative combinatorics:

Theorem 3.3.1 (Principle of Inclusion-Exclusion). Let X be a nonempty,
finite set of N objects, and let P1, . . . , Pr be properties elements of X may have.
For any subset I ⊂ {1, 2, . . . , r}, let N(I) denote the number of elements of X
that have each of the properties indexed by the elements of I. Then with N0

denoting the number of elements of X with none of these properties, we have

N0 =
r∑

k=0

(−1)k
∑

I⊂{1,2,...,r}
|I|=k

N(I) =
∑

I⊂{1,2,...,r}
(−1)|I|N(I). (3.21)

Proof. Suppose x ∈ X has exactly l of these properties. If l = 0, then x is
counted only once, in the term N(∅). On the other hand, if x has 1 ≤ l ≤ r
properties, then the number of k element subsets I for which x is counted in
N(I) is exactly

(
l
k

)
, and the total weight with which

r∑

k=0

(−1)k
∑

I⊂{1,2,...,r}
|I|=k

N(I)

counts x is given by
l∑

k=0

(−1)k
(
l

k

)

= (1− 1)l = 0,

by the binomial theorem.

3.3.2 A First Sieve Result

The Principle of Inclusion-Exclusion can be applied immediately to the general
situation of §3.2. As may be expected from the introduction, the utility of the
resulting estimates is crippled by our need to choose parameters in such a way
as to keep the error terms in check. Nevertheless, the bounds obtained are still
powerful enough to yield interesting consequences.
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Theorem 3.3.2 (Sieve of Eratosthenes-Legendre).

S(A,P) = X
∏

p∈P
(1− α(p)) +

∑

d|P
µ(d)r(d).

Proof. Let p1, . . . , pr be a list of the primes in P, and for each i let Pi be the
property of being divisible by pi. For every d | P , there are Xα(d) + r(d) terms
a ∈ A divisible by d. The number of a ∈ A divisible by no prime p ∈ P is, by
the Principle of Inclusion-exclusion,

r∑

k=0

(−1)k
∑

I⊂{1,2,...,r}
|I|=k

N(I) =

r∑

k=0

(−1)k
∑

d|P
ν(d)=k

Ad

=
r∑

k=0

∑

d|P
ν(d)=k

µ(d) (Xα(d) + r(d))

= X
∑

d|P
µ(d)α(d) +

∑

d|P
µ(d)r(d)

= X
∏

p∈P
(1− α(p)) +

∑

d|P
µ(d)r(d),

where in the last line we have used the multiplicativity of α to express the sum
as a product.

As a first application, we prove:

Corollary 3.3.3. Let P be a set of prime numbers, and let M(P) denote the
set of integers n divisible by some prime p ∈ P. Then M(P) has natural density
1−∏p∈P (1− 1/p).

Proof. Let S denote the complementary set of integers divisible by no prime
p ∈ P. Then with A := {n ≤ x}, we have

S(x) ≤ S(A,P, z) (3.22)

for any choice of z. To estimate S(A,P, z) we take

X = x, α(n) = 1/n (n = 1, 2, . . . ),

and note that with this choice of X and α, the remainders r(d) satisfy |r(d)| ≤ 1
for every d | P . Consequently, choosing z = log x,

S(A,P, log x) = x
∏

p∈P
p≤log x

(1− 1/p) +O(xlog 2) (3.23)

=
(∏

p∈P
(1− 1/p) + o(1)

)

x = (C + o(1))x, (3.24)
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say. We now take two cases, according as C is vanishing or nonvanishing. In the
former case, (3.22) coupled with (3.24) implies S has density 0, so that M(P)
has density 1, in accordance with the claim of the corollary. To treat the latter
case, we begin with the observation that

S(x)− S(A,P, z)� |{n ≤ x : there exists p ∈ P, z < p ≤ x, p | n}|. (3.25)

The claim will follow from (3.24) as soon as we show the second term on the
right hand side of (3.25) is o(x). But this term is bounded above by

∑

p∈P
z<p≤x

x

p
≤ x

∑

p∈P
p>z

1

p
= o(x);

the final estimate here derives from the convergence of
∑

p∈P 1/p, which in turn
follows from the nonvanishing of C.

3.3.3 Three Number-Theoretic Applications

We now turn our attention to three problems in number theory which can be
attacked by the simple methods we have developed thus far. None of the results
we prove are the best of their kind, but the proofs are simple and the statements
fairly striking.

Theorem 3.3.4. The following sets have density zero:

i. the set of integers n > 1 for which

4/n = 1/x+ 1/y + 1/z (3.26)

has no solution in positive integers x, y, z,

ii. the set of integers expressible as a sum of two squares,

iii. the set of odd perfect numbers.

It is a well-known conjecture that the exceptional set described in part iii)
is empty. The same conjecture for the set described in i) is ascribed to Erdős
& Strauss. We will deduce Theorem 3.3.4 from the following lemma, which in
turn is a consequence of Theorem 3.3.3:

Lemma 3.3.5. The set of positive integers divisible by no prime p ≡ 3 (mod 4)
has density 0.

Proof. We know from either the general results of Chapter 2 or from Chapter
1, Exercise 1.9.3 that

∑

p≤x
p≡3 (mod 4)

log p

p
=

1

2
log x+O(1).
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By partial summation (the proof is essentially the same as when deriving the
estimate for

∑

p≤x 1/p given in §5 of Chapter 1),

∑

p≤x
p≡3 (mod 4)

1

p
=

1

2
log log x+ C +O

(
1

log x

)

. (3.27)

In particular, the sum diverges as x→∞. Hence
∏

p≡3 (mod 4)(1−1/p) diverges
to 0, and the result follows from Corollary 3.3.3.

Proof of Theorem 3.3.4, Part I. It suffices to show that (3.26) is solvable if n
possesses a prime divisor p = 4k − 1 ≡ 3 (mod 4). In this case write n =
(4k − 1)q. Then the result follows from the algebraic identity

4

q(4k − 1)
=

1

2qk
+

1

2qk
+

1

q(4k2 − k)
.

Actually, this shows that 4/n can almost always be written as a sum of two unit
fractions, since we may write 1/(2qk) + 1/(2qk) = 1/qk,

Exercise 3.3.1. Prove that there are infinitely many positive integers n for which
4/n = 1/x+ 1/y is not solvable in positive integers x, y.

Exercise 3.3.2. Prove that (3.26) is solvable for every positive integer n in (not
necessarily positive) integers x, y, z.

Hint: Use the identity 4/(4k−1) = 1/(2k)+1/(2k)+1/(4k2−k), implicit in
the above proof, as well as an analogous identity with 4k−1 replaced by 4k+1.

Schinzel has shown [Sch00] that

1

aT + b
=

4

A(T )
+

4

B(T )
+

4

C(T )

is solvable in polynomials A(T ), B(T ), C(T ) ∈ Z[T ] with positive leading coef-
ficients only if b is a not a quadratic residue (mod a). Thus it is not possible
to prove the original 4/n conjecture by the method of this exercise. The best
known upper estimate for the exceptional set in the 4/n problem is due to
Vaughan [Vau70], who showed that the number of n ≤ x for which (3.26) is not
solvable is

� x exp(−C log2/3 x)

for a positive constant C. For the proof of a more general result (with 4/n
replaced by a/n), see [Nar86, §1.4].

Proof of Theorem 3.3.4, Part II. Let R(x) denote the counting function of the
set of of sums of two squares. A positive integer can be written as a sum of two
coprime squares precisely when it is divisible by neither 4 nor any prime p ≡ 3
(mod 4). If A(x) denotes the counting function of such numbers, then

R(x) ≤ A(x) +A(x/12) +A(x/22) + . . . . (3.28)
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Lemma 3.3.5 implies A(x) = o(x). Now given ε > 0, choose a positive integer
N such that A(x) < εx/4 for x > N . Thinking of x as large, break the sum on
the right hand side of (3.28) into two parts according as x/k2 > N or x/k2 ≤ N .
The first of the two resulting sums is bounded by

∞∑

k=1

ε
x/k2

4
=
ε

4
ζ(2)x <

ε

2
x.

Every term in the second sum is bounded by A(N), and there are no more than√
x nonzero terms. Thus,

R(x) ≤ εx/2 +A(N)
√
x < εx

for large x. As ε > 0 was arbitrary, the result follows.

A theorem of Landau (independently discovered by Ramanujan) describes
the precise asymptotic behavior of R(x) (for the proof, see [LeV02, vol. II,
§7-5]):

R(x) =
1√
2




∏

p≡3 (mod 4)

(

1− 1

p2

)




−1/2

x√
log x

+O

(
x

log3/2 x

)

.

Proof of Theorem 3.3.4, Part III. We prove that every odd perfect number n is
of the form pa2, where p is a prime with p ≡ 1 (mod 4). Since such integers are
sums of two squares, the result follows from part ii).

Let n = pe11 . . . pek

k be the canonical factorization of n into primes, so that

2n = σ(n) =

k∏

i=1

(
1 + pi + p2

i + · · ·+ pei
i

)
.

Because 2‖2n, exactly one of the factors on the right hand side is divisible by
2, and that factor is divisible only by 21. Looking mod 2, we see that exactly
one of the ei is odd, and that for this i,

1 + pi + p2
i + · · ·+ pei

i ≡ 2 (mod 4).

If pi ≡ 3 (mod 4), then the left hand side is congruent to (1+3)+· · ·+(1+3) ≡ 0
(mod 4), a contradiction. Thus pi ≡ 1 (mod 4), and n = pia

2, where

a = p
(ei−1)/2
i

∏

1≤j 6=i≤k
p
ej/2
j .

The best upper bound on the number of perfect numbers up to x is due to
Wirsing [Wir59]. Improving on earlier joint work with Hornfeck, he established
the upper estimate O(xc/ log log x), where c is an absolute positive constant and
the estimate holds for, say, x ≥ 3. In particular, the number of odd perfect
numbers not exceeding x is O(xε) for every ε > 0.
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3.3.4 Exercises

Exercise 3.3.3. Show that

∑

d|n,d|P
µ(d) =

{

1 if gcd(n, P ) = 1,

0 otherwise.

Deduce that

S(A,P) =
∑

a∈A

∑

d|n,d|P
µ(d).

Obtain another proof of Theorem 3.3.2 by reversing the order of summation.

Exercise 3.3.4. Let A := {n(n + 2)}1≤n≤x and let P be the set of all primes.
Show that if z = z(x)→∞ as x→∞ while z(x) ≤ 1

2 log x for all large x, then

S(A,P, z) ∼ 2C2e
−2γx/ log2 z (x→∞).

Here

C2 :=
∏

p>2

(
1− (p− 1)−2

)
≈ 1.3202 . . . (3.29)

is the twin-prime constant.

Exercise 3.3.5. The method used to prove Corollary 3.3.3 may be profitably
adapted to the study of the distribution of squarefree numbers. Illustrate this
by proving the following three theorems:

a) The number of squarefree n ≤ x is asymptotic to x/ζ(2)(= 6x/π2) as
x→∞.

b) The number of pairs of squarefree integers n, n + 2 with 1 ≤ n ≤ x is
asymptotic to x

∏

p(1− 2/p2) as x→∞.

c) The number of representations of the positive integer n as a sum of two
positive squarefree integers is asymptotic to

n
∏

p

(

1− 2

p2

)
∏

p2|n

p2 − 1

p2 − 2
(n→∞).

Exercise 3.3.6. Show that n and φ(n) have a nontrivial common divisor for
almost every n.

Exercise 3.3.7. Let S = {si} be a sequence of integers, and let M(S) denote
the “set of multiples” of S, i.e., the set of integers n divisible by some s ∈ S.
When S is a sequence of distinct primes, Corollary 3.3.3 tells us the density of
M(S).

The existence of this density is not obvious a priori. In this exercise, we show
the density of M(S) exists under the hypothesis that

∑
s−1 converges. We also

recover the result of Corollary 3.3.3 in the case when
∑

p∈P 1/p converges.
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a) Show this density exists if S = {si}1≤i≤n is a finite sequence. [Hint: Show
that whether n ∈ M(S) is determined by a congruence condition on n
(mod

∏

s∈S s).] Thus we may assume S is infinite.

b) For each j, define Dj as the set of positive integers divisible by sj but not
by si for any i < j, and let Dj denote the density of Dj . Use the method
of part a) to show Dj always exists.

c) Show that Dj ≤ 1/sj ; thus
∑∞
j=1Dj converges. We will show this

converges to d(M(S)), which is what one expects owing to the relation
M(S) = ∪̇∞j=1Dj .

d) Show that for each n, d(M(S)) ≥∑n
j=1Dj . Thus d(M(S)) ≥∑∞

j=1Dj .

e) Show that
lim
j→∞

d(M(S) \ ∪nj=1Dj) = 0.

f) Use the previous two parts to deduce d(M(S)) =
∑∞
j=1Dj .

g) Recover the result of Corollary 3.3.3 in the case when
∑

p∈P 1/p converges.

A set S for which M(S) possesses a natural density is called a Besicovitch set ,
in honor of A.S. Besicovitch, who gave the first example [Bes31] of a set without
this property.

Exercise 3.3.8. Using the Sieve of Eratosthenes-Legendre and the estimate
(3.27), show that there are � x/

√
log log x positive integers not exceeding x

with no prime divisor p ≡ 3 (mod 4). What implications does this have for the
exceptional sets described in Theorem 3.3.4?

3.4 Brun’s Simple Pure Sieve

Our heuristic derivation of Legendre’s formula for π(x) proceeded by successive
approximation: we began by taking the total number of positive integers not
exceeding x, thought of as a 0th approximation, then subtracted those divisible
by any single prime p ≤ √x, then added back those divisible by two such, etc.
We noticed that every even step seemed to produce an overestimate, while every
odd step produced an underestimate. This observation, suitably generalized,
forms the heart of Brun’s pure sieve.

3.4.1 Preparation

To prove the appropriate generalization, we first need a technical lemma on
alternating sums of symmetric functions.

Recall that if a1, . . . , an is a (possibly empty) sequence of n ≥ 0 elements
belonging to a commutative ring, we define (for k ≥ 0) the kth elementary
symmetric function σk(a1, . . . , an) as the sum of all possible

(
n
k

)
products of the

ai taken k at a time. We adopt the usual conventions about empty sums and
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products, so that when n = 0, σ0 = 1 and σk = 0 for k > 0. To take a less
pathological example, when n = 2, one has

σ0(a1, a2) = 1, σ1(a1, a2) = a1 + a2, σ2(a1, a2) = a1a2,

and σk(a1, a2) = 0 for k > 2.
The following lemma on alternating sums of symmetric functions appears in

[Hoo94] (though is presumably much older):

Lemma 3.4.1. Let a1, . . . , an be a finite (possibly empty) sequence of real num-
bers from [0, 1]. Then

m∑

k=0

(−1)kσk(a1, . . . , an)−
n∏

j=1

(1− aj) (3.30)

is nonnegative or nonpositive according as m is even or odd, respectively.

Remark. When m = n, the sum appearing above is exactly the formal expansion
of the subtracted product; consequently, equality holds in (3.30) for k ≥ m.

Proof. We induct on the length n of the sequence. When n = 0, the product

P :=
n∏

i=1

(1− ai)

appearing in (3.30) is empty so takes the value 1, while

m∑

k=0

(−1)kσk = 1− 0 + 0− · · · ± 0 = 1.

Hence (3.30) is 0 for every m, and the result follows in this case.
Now assume the result holds for each sequence of n real numbers in [0, 1]

(and each m) and assume a1, . . . , an+1 is a given sequence of n+1 real numbers
from the same interval. By the induction hypothesis, it suffices to prove

(
m∑

k=0

(−1)kσk(a1, . . . , an+1)−
n+1∏

i=1

(1− ai)
)

−
(

m∑

k=0

(−1)kσk(a1, . . . , an)−
n∏

i=1

(1− ai)
)

(3.31)

is nonnegative or nonpositive according as whether m is even or odd respectively.
This is true for m = 0, since in this case the expression (3.31) simplifies to

n∏

i=1

(1− ai)−
n+1∏

i=1

(1− ai) = an+1

n∏

i=1

(1− ai),
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which is nonnegative as a1, . . . , an+1 ∈ [0, 1]. When m > 0, we recognize (3.31)
as

m∑

k=1

(−1)k (σk(a1, . . . , an+1)− σk(a1, . . . , an)) + Pan+1

=

m∑

k=1

(−1)kan+1σk−1(a1, . . . , an) + Pan+1

=an+1

(

P −
r−1∑

k=0

(−1)kσk(a1, . . . , an)

)

.

Since an+1 ≥ 0, the result follows from the induction hypothesis.

An important special case occurs when n is a positive integer and a1 = a2 =
· · · = an = 1. Then

∏n
i=1(1−ai) = (1−1)n = 0, while σk(1, . . . , 1) =

(
n
k

)
. Thus

Lemma 3.4.1 has the following consequence:

Lemma 3.4.2. Let n be a positive integer. Then the alternating sum

m∑

k=0

(−1)k
(
n

k

)

is nonnegative or nonpositive according as m is even or odd.

Remark. For the applications of this section, we only need Lemma 3.4.2. Thus
it is of interest to note that Lemma 3.4.2 admits a simple proof independent of
Lemma 3.4.1. Indeed, by induction on m, one can easily prove the identity

m∑

k=0

(−1)k
(
n

k

)

= (−1)m
(
n− 1

m

)

. (3.32)

Alternately, (3.32) follows by comparing the coefficient of xm in both sides of
the formal power series identity (1−x)n−1 = (1−x)−1(1−x)n. See also Exercise
3.4.1.

We now use Lemma 3.4.2 to establish the following variant of the Principle
of Inclusion-Exclusion:

Theorem 3.4.3 (Bonferroni Inequalities). Let X be a nonempty, finite set
of N objects, and let P1, . . . , Pr be properties elements of X may have. For any
subset I ⊂ {1, 2, . . . , r}, let N(I) denote the number of elements of X that have
each of the properties indexed by the elements of I. Let N0 denote the number
of elements of X with none of these properties. Then if m is a nonnegative even
integer,

N0 ≤
m∑

k=0

(−1)k
∑

I⊂{1,2,...,r}
|I|=k

N(I), (3.33)
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while if m is a nonnegative odd integer,

N0 ≥
m∑

k=0

(−1)k
∑

I⊂{1,2,...,r}
|I|=k

N(I). (3.34)

Proof. Suppose that x ∈ X has exactly l of the properties P1, . . . , Pr. If l = 0,
then x is counted once by both N0 and the right hand sum above (corresponding
to when I = ∅). If l ≥ 1, then x is not counted at all by N0, and is counted
with weight

m∑

k=0

(−1)k
(
l

k

){≥ 0 if m is even,

≤ 0 otherwise,

by Lemma 3.4.2. Summing up the contributions over x ∈ X gives the result.

3.4.2 A Working Version

Corollary 3.4.4 (Brun’s Simple Pure Sieve, general form). With the
notation of §3.2, we have for every nonnegative even integer m,

∑

d|P,ν(d)≤m−1

µ(d)Ad ≤ S(A,P) ≤
∑

d|P,ν(d)≤m
µ(d)Ad.

Proof. As in the proof of Theorem 3.3.2, let p1, . . . , pr be a list of the primes
p ∈ P, and let Pi be the property of being divisible by pi. We aim to estimate
the number S(A,P) of elements of A possessing none of the Pi. The right hand
inequality for S(A,P) follows easily from (3.33). If m = 0, then the left hand
inequality is trivial, while if m > 0 then m−1 is a nonnegative odd integer, and
the left hand inequality follows from (3.34).

We can make this more useful, at the cost of sacrificing generality, by sub-
stituting Ad = Xα(d) + r(d) and estimating the resulting terms. With a bit of
manipulation, we arrive at the following:

Theorem 3.4.5 (Brun’s Simple Pure Sieve). For every even integer m ≥ 0,

S(A,P) = X
∏

p∈P
(1− α(p)) +O

(
∑

d|P,ν(d)≤m
|r(d)|

)

+O

(

X
∑

d|P,ν(d)≥m
α(d)

)

.

Here the implied constants are absolute.

Proof. From Corollary 3.4.4,

S(A,P) =
∑

d|P,ν(d)≤m
µ(d)Ad +O

(
∑

d|P,ν(d)=m
Ad

)

=
∑

d|P,ν(d)≤m
µ(d)(Xα(d) + r(d)) +O

(
∑

d|P,ν(d)=m
Ad

)

= X
∑

d|P,ν(d)≤m
µ(d)α(d) +O

(
∑

d|P,ν(d)≤m
|r(d)|

)

+O

(
∑

d|P,ν(d)=m
Ad

)

.
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Writing Ad = Xα(d) + r(d), we see the last of these error terms is

� X
∑

d|P,ν(d)=m
α(d) +

∑

d|P,ν(d)=m
|r(d)|;

hence,

S(A,P)

= X
∑

d|P,ν(d)≤m
µ(d)α(d) +O

(
∑

d|P,ν(d)≤m
|r(d)|

)

+O

(

X
∑

d|P,ν(d)=m
α(d)

)

.

(3.35)

In order to handle the main term appearing here, we add back in the terms of
the sum corresponding to divisors d of P with ν(d) > m; we can then estimate
the main term as X

∏

p∈P (1− α(p)), but at the cost of introducing an error
which is

� X
∑

d|P,ν(d)>m
α(d).

This error can be combined with the last error term appearing in (3.35) to yield

S(A,P) = X
∏

p∈P
(1− α(p)) +O

(
∑

d|P,ν(d)≤m
|r(d)|

)

+O

(

X
∑

d|P,ν(d)≥m
α(d)

)

,

exactly as the theorem asserts.

3.4.3 Application to the Twin Prime Problem (outline)

The most famous application of Brun’s pure sieve is Brun’s own 1919 contribu-
tion [Bru19a] to the twin prime problem:

Theorem 3.4.6. As x→∞,

π2(x)� x

log2 x
(log log x)2.

The upper estimate differs from what we expect to be true by the presence of
the log log x factor. We shall later remedy this defect. Nevertheless, it is worth
noting that the estimate of Theorem 3.4.6 is already sharp enough to imply the
following striking result:

Corollary 3.4.7. If there are infinitely many primes p such that p + 2 is also
prime, then the sum

∑

p

1

p
,

taken over all such primes, converges.
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Proof. By Theorem 3.4.8, π2(x) � x/ log3/2 x as x → ∞. It follows that the
same estimate holds, with perhaps a different implied constant, in the range
x ≥ 3. Letting pn denote the nth prime p for which p+ 2 is also prime, we see
that for n ≥ 1,

n = π2(pn)� pn/ log3/2 pn,

so that

pn � n log3/2 pn ≥
1

2
(n+ 1) log3/2 (n+ 1).

The comparison and integral tests together now imply that
∑∞
n=1 p

−1
n converges,

which is the assertion of the corollary.

We now prove Theorem 3.4.6 as an easy consequence of the following esti-
mate, which is more directly amenable to an approach via sieve methods:

Theorem 3.4.8. Define

π2(x, z) := |{n ≤ x : p | n(n+ 2) =⇒ p > z}|.
Suppose z = z(x) → ∞ as x → ∞ while z(x) ≤ x1/20 log log x for all large x.
Then

π2(x, z) ∼ 2C2e
−2γx/ log2 z (x→∞).

Deduction of Theorem 3.4.6. For any choice of the parameter z,

π2(x) ≤ z + π2(x, z);

indeed, if p and p + 2 are both prime, then either p ≤ z or both p, p + 2 have
no prime factors not exceeding z. Now take z = z(x) = x1/20 log log x. Then
Theorem 3.4.8 implies that as x→∞,

π2(x)� x1/20 log log x +
x

log2 x
(log log x)

2 � x

log2 x
(log log x)

2
.

3.4.4 Proof of Theorem 3.4.8

Recall the appropriate set of sieving parameters for the twin prime problem:

A := {an = n(n+ 2), n ≤ x}, P := {all primes p}.
We aim to estimate S(A,P, z), which is the π2(x, z) of Theorem 3.4.8.

For our approximation X to the size of A, we take X = x. For our ap-
proximation α to the probability an element of A is divisible by d, we take
α(d) = ω(d)/d, where ω is defined by

ω(N) := |{a ∈ Z/NZ : a(a+ 2) = 0}|.
(The multiplicativity of ω, and consequently α, comes from the Chinese Re-
mainder Theorem.) In order to estimate the remainder terms

r(d) : = Ad −Xα(d)

= |{n ≤ x : n(n+ 2) ≡ 0 (mod d)}| − xω(d)/d (d | P ), (3.36)

we need the following lemma:
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Lemma 3.4.9. Let a1, . . . , ak be k distinct residue classes (mod d), where d is
a positive integer. Then if x is any positive real number, the number of positive
integers not exceeding x falling into any of the given residue classes is kx/d+θ,
where |θ| ≤ k.
Proof. Each block of d consecutive positive integers not exceeding x contains k
integers falling into the given congruence classes, and there are between bx/dc
and dx/de such blocks.

Lemma 3.4.9 applied to (3.36) implies the remainder terms r(d) satisfy

|r(d)| ≤ ω(d) =
∏

p|d
ω(p) ≤ 2ν(d) (d | P ).

Substituting the values of our sieving parameters into Theorem 3.4.5 shows

π2(x, z) =

x
∏

p≤z
(1− α(p)) +O

(
∑

d|P,ν(d)≤m
2ν(d)

)

+O

(

x
∑

d|P,ν(d)≥m
α(d)

)

, (3.37)

for any choice of the nonnegative even integer m. We now think of x as large,
and we set

m := 10 blog log zc .
Note that as x gets large, so does z, and hence so does m.

By (3.37), to prove Theorem 3.4.8 it will suffice to establish that the following
three estimates hold with this choice of m:

i. As x→∞ (so that z →∞ as well),

x
∏

p≤z
(1− α(p)) ∼ 2C2e

−2γ x

log2 z
.

ii. For all large x,

E1 :=
∑

d|P,ν(d)≤m
2ν(d)

satisfies E1 ≤ 2x1/2 = o(x/ log2 z).

iii. As x→∞, we have

E2 := x
∑

d|P,ν(d)≥m
α(d)� x/ log5 z = o(x/ log2 z).

Proof of I). As x→∞ (so that z →∞ as well), we see using using the definition
(3.14) of C2 and Mertens’ theorem that

x
∏

p≤z
(1− α(p)) =

1

2
x
∏

2<p≤z
(1− 2/p) (3.38)

= x



2
∏

2<p≤z

1− 2/p

(1− 1/p)2




∏

p≤z
(1− 1/p)2 ∼ 2C2e

−2γ x

log2 z
.
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Proof of II). For large x,

E1 =
∑

d|P,ν(d)≤m
2ν(d) =

m∑

k=0

2k
(
π(z)

k

)

≤
m∑

k=0

(2π(z))k

≤
m∑

k=−∞
(2π(z))k = (2π(z))m

1

1− 1
2π(z)

≤ 2(2π(z))m ≤ 2zm,

since π(z) ≤ z/2 once x is large. Thus

E1 ≤ 2z10 log log z ≤ 2z10 log log x ≤ 2x1/2.

This is certainly o(x/ log2 z), since since the trivial inequality z ≤ x implies

x1/2

x/ log2 z
≤ x1/2

x/ log2 x
=

log2 x

x1/2
→ 0.

Proof of III). We begin by rewriting E2 in the form

E2 = x
∑

k≥m

∑

d|P
ν(d)=k

α(d).

The inner sum can be rewritten as

∑

d|P
ν(d)=k

α(d) =
∑

p1<p2<···<pk≤z
α(p1)α(p2) . . . α(pk) ≤ 1

k!

(
∑

p≤z
α(p)

)k

,

because in the “multinomial expansion” of the kth power on the right hand side,
each term α(p1) · · ·α(pk) appears with coefficient k!. We estimate

∑

p≤z α(p)
by recalling (cf. (1.40)) that for large z,

∑

p≤z

1

p
≤ log log z + c,

where c is an absolute constant. Since α(p) ≤ 2/p for every p,

∑

k≥m

1

k!

(
∑

p≤z
α(p)

)k

≤
∑

k≥m

1

k!
(2 log log z + 2c)k. (3.39)

The ratio of the (k + 1)th term in this series to the kth is given by

2 log log z + 2c

k + 1
≤ 2 log log z + 2c

10 blog log zc+ 1
≤ 1/2,
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for large enough z, hence for large enough x. Consequently, for such x the right
hand sum of (3.39) is bounded above by twice its first term. Because

em = 1 +m+m2/2! +m3/3! + · · · ≥ mm/m!,

we have m! ≥ (m/e)m, so that

∑

k≥m

1

k!

(
∑

p≤z
α(p)

)k

≤ 2

(
2e log log z + 2ce

m

)m

.

Since m = 10 blog log zc, the parenthesized expression on the right is eventually
smaller than any constant exceeding 2e/10; in particular, it is eventually smaller
than 3/5. It follows that for large x,

E2 ≤ 2x(3/5)m = 2x(3/5)10blog log zc

≤ 2(5/3)10x(3/5)10 log log z � x/ log5 z,

since 10 log (3/5) < −5. Thus E2 = o(x/ log2 z) as well.

Remark. In our proof of Theorem 3.4.8, we needed two results of Mertens,
namely

∑

p≤x

1

p
≤ log log x+O(1),

∏

p≤x

(

1− 1

p

)

∼ e−γ

log x
.

We leave it as an exercise to show that if we are only interested in the upper
bound for π2(x) given by Theorem 3.4.6, then the following weaker estimates
suffice:

∑

p≤x

1

p
� log log x,

∏

p≤x

(

1− 1

p

)

≤ 1

log x
(x ≥ x0).

The second of these has already been given a simple proof (cf. (3.18)) indepen-
dent of Chebyshev’s results. For a simple, direct proof of the first, see Exercise
3.4.5.

3.4.5 Exercises

Exercise 3.4.1. Show that the binomial coefficients
(
n
k

)
increase up to the middle

term (or pair of middle terms, if n is odd) and then decrease. Use this to give
another proof of Lemma 3.4.2.

Suggestion: To handle the case of Lemma 3.4.2 when m > bn/2c, use the
symmetry of the binomial coefficients and the relation

∑n
k=0(−1)k

(
n
k

)
= 0 (for

n ≥ 1).

Exercise 3.4.2. For N a nonzero even integer, define

πN (x) := |{p ≤ x : p, p+N are both prime}|.
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Show that for each such N ,

πN (x)�N
x

log2 x
(log log x)2

for x ≥ 3. Deduce that for any fixed M , the number of primes up to x within
M of another prime is OM (x(log log x)2/ log2 x) as x→∞.

Exercise 3.4.3. Show that the number of p ≤ x with p, p+ 2, p+ 6 all prime is

� x

log3 x
(log log x)3.

[Hint: Imitate the proof of Theorem 3.4.8 with z = z(x) tending to infinity in
the range z(x) ≤ x1/30 log log x, and m modified appropriately.] Can you prove a
general theorem on simultaneous prime values of k linear polynomials?

Exercise 3.4.4. Extend the result of Theorem 3.4.8 by showing that

π2(x, z) ∼ 2C2e
−2γ x

log2 z
(x→∞),

uniformly for 2 ≤ z ≤ x1/20 log log x. Hint: Modify the proof of Theorem 3.4.8 to
show this is true in the range log log x ≤ z ≤ x1/20 log log x, and for the remaining
range estimate π2(x, z) using the sieve of Eratosthenes-Legendre.

Exercise 3.4.5 (Brun [Bru17]). For x ≥ 2, define N = N(x) as the number of
positive n ≤ x with a prime divisor p satisfying

√
x < p ≤ x.

a) Noting that any n ≤ x has at most one such prime divisor p, show that
N ≥∑√

x<p≤x bx/pc.

b) Conclude from the trivial upper bound N ≤ x that
∑√

x<p≤x 1/p ≤ 2.

c) Show that if M is the smallest integer with x1/2M

< 2, then
∑

p≤x 1/p ≤
2M . Deduce that

∑

p≤x 1/p ≤ 2(log2 log2 x+ 1).

3.5 The Brun-Hooley Sieve

3.5.1 The Sifting Function Perspective

Before presenting the Brun-Hooley sieve in the succeeding sections, it is helpful
to revisit the preceding results from a slightly different perspective. Keeping
the notation of §3.2, we introduce the sifting function

s(n) :=

{

1 if gcd(n, P ) = 1,

0 otherwise.
(3.40)

Then
S(A,P) =

∑

a∈A
s(a). (3.41)
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The Sieve of Eratosthenes is recovered by noticing that the fundamental prop-
erty of the Möbius function implies a nontrivial representation for s(n), namely

s(n) =
∑

d|n,d|P
µ(d). (3.42)

Substituting this expression into (3.41) and interchanging the order of summa-
tion, we easily arrive at Theorem 3.3.2. Proceeding similarly, we could rederive
Brun’s method from the following lemma:

Lemma 3.5.1. Let n be an integer. The expression
∑

d|n,d|P
ν(d)≤m

µ(d)−
∑

d|n,d|P
µ(d) (3.43)

is nonnegative or nonpositive according as the nonnegative integer m is even or
odd.

Not surprisingly, the proof of Lemma 3.5.1 is essentially the one we have
already given of the Bonferroni inequalities of the last section. Namely, if we
suppose that n is divisible by exactly l primes p ∈ P, then by Lemma 3.4.1,

∑

d|n,d|P
ν(d)≤m

µ(d) =
m∑

k=0

(−1)k
(
l

k

)







= 1 if l = 0 (i.e., if gcd(n, P ) = 1),

≥ 0 if l ≥ 1,m even,

≤ 0 if l ≥ 1,m odd,

and the result is readily deduced from (3.40) and (3.42).
We note the following consequence of Lemma 3.5.1 for later use:

Lemma 3.5.2. If n,m are integers with m nonnegative and even, then

0 ≤
∑

d|n,d|P
ν(d)≤m

µ(d)−
∑

d|n,d|P
µ(d) ≤

∑

d|n,d|P
ν(d)=m+1

1.

Exercise 3.5.1. Prove the following identity, valid also for odd m, from which
the truth of Lemma 3.5.2 is immediate: With p−(d) denoting the smallest prime
divisor of d,

∑

d|n,d|P
ν(d)≤m

µ(d)−
∑

d|n,d|P
µ(d) = (−1)m

∑

d|n,d|P
ν(d)=m+1

p−(d)=p−(gcd(n,P ))

1.

3.5.2 The Upper Bound

The Brun-Hooley method takes two forms, depending on whether we are after
upper or lower bounds. Here we describe the simpler upper bound method. We
suppose the sifting set P to be partitioned into r disjoint sets,

P =
⋃̇r

j=1
Pi.
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Then n is divisible by no prime p ∈ P precisely when n is divisible by no prime
p ∈ Pj for every 1 ≤ j ≤ r. Consequently, setting

Pj :=
∏

p∈Pj

p,

and invoking Lemma 3.5.1 (with Pj , Pj in place of P, P ) we see that

s(n) =
∑

d|n,d|P
µ(d) =

r∏

j=1

∑

dj |n,dj |Pj

µ(d)

≤
r∏

j=1

∑

dj |n,dj |Pj

ν(dj)≤mj

µ(dj),

for any choice of nonnegative even integers m1, . . . ,mr. Referring to (3.41), we
obtain the upper bound

S(A,P) ≤
∑

d1,...,dr

dj |Pj ,ν(dj)≤mj

µ(d1) · · ·µ(dr)Ad1...dr

= X
∑

d1,...,dr

dj |Pj ,ν(dj)≤mj

µ(d1) . . . µ(dr)α(d1) . . . α(dr)

+
∑

d1,...,dr

dj |Pj ,ν(dj)≤mj

µ(d1) . . . µ(dr)r(d1 . . . dr).

= X

r∏

j=1

∑

dj |Pj

ν(dj)≤mj

µ(dj)α(dj) +
∑

d1,...,dr

dj |Pj ,ν(dj)≤mj

µ(d1) . . . µ(dr)r(d1 . . . dr).

(3.44)

This is, essentially, the Brun-Hooley upper bound. To make this more amenable
in applications, it is useful to replace the first term of (3.44), which we think of as
the main term, with something more easily comparable with X

∏

p∈P(1−α(p)).
This can be accomplished by replacing the terms of the product with something
more easily comparable with

∏

p∈Pj
(1−α(p)). For this, we utilize Lemma 3.4.1,

which implies that for each 1 ≤ j ≤ r,

0 ≤
∑

dj |Pj

ν(dj)≤mj

µ(dj)α(dj)−
∏

p∈Pj

(1− α(p)) ≤
∑

dj |Pj

ν(dj)=mj+1

α(dj).

Thus, if we set

∏(j)
:=

∏

p∈Pj

(1− α(p)),
∑(j)

:=
∑

dj |Pj

ν(dj)=mj+1

α(dj), (3.45)
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then

X

r∏

j=1

∑

dj |Pj

ν(dj)≤mj

µ(dj) ≤ X
r∏

j=1

(
∏(j)

+
∑(j)

)

= X
∏

p∈P
(1− α(p))

r∏

j=1

(

1 +
∑(j)/ ∏(j)

)

,

provided the division makes sense, i.e., provided α(p) < 1 for each p ∈ P. We
henceforth assume (as will be the case in all our applications) that this inequality
holds.

Recalling that 1 + T ≤ exp(T ) (which for nonnegative T is immediate from
the series expansion for exp(T )) and estimating the remainder term of (3.44)
trivially, we arrive at:

Theorem 3.5.3 (Brun-Hooley Sieve, Upper Bound). Let P = ˙⋃r
j=1Pj

be a partition of P. Suppose that α(p) < 1 for each p ∈ P. For any choice of
nonnegative even integers m1, . . . ,mr, we have

S(A,P) ≤ X
∏

p∈P
(1− α(p)) exp





r∑

j=1

(
∑(j)/ ∏(j)

)




+O

(
∑

d1,...,dr

dj |Pj ,ν(dj)≤mj

|r(d1 . . . dr)|
)

, (3.46)

where
∏(j)

and
∑(j)

are defined, for 1 ≤ j ≤ r, by (3.45), and the implied

constant is absolute.

3.5.3 Applications of the Upper Bound

Define r(N) as the number of (ordered) representations of N as a sum of two
primes; equivalently, as the number of ordered prime pairs (p,N−p). In Chapter
1, we conjectured that as N →∞ through even integers,

r(N) ∼ 2C2
N

log2N

∏

p|N,p>2

p− 1

p− 2
.

We now use the Brun-Hooley sieve to establish an upper bound for this quantity
of the conjectured order of magnitude:

Theorem 3.5.4. For every even positive integer N ,

r(N)� N

log2N

∏

p|N

(

1 +
1

p

)

.
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Let N be an even positive integer and define

A := {n(N − n) : 1 ≤ n ≤ N}.

Then taking P as the set of all primes, we have for any positive choice of the
parameter z,

r(N) ≤ 2z + S(A,P, z).
Indeed, if N = n+ (N − n) is any representation of n as a sum of two primes,
then either n or N−n lies in [2, z] or both have no prime factor not exceeding z.
The former case occurs for not more than 2z values of n, and the n for which the
latter hold (which necessarily satisfy 2 ≤ n ≤ N − 2) are counted by S(A,P, z).

We now choose our usual sifting parameters: let X = N , and let α(d) =
ω(d)/d, where

ω(d) := |{n (mod d) : n(N − n) ≡ 0 (mod d)}|;

then

α(p) =

{

1/p if p | N,
2/p if p - N.

(3.47)

Note that as N is even, α(p) < 1 for every prime p. By Lemma 3.4.9,

Ad = Xα(d) + r(d), |r(d)| ≤ ω(d). (3.48)

We think of X = N as varying and we suppose u > 1 is fixed. Our first goal
is to show that if u is large enough,

S(A,P, z)� X
∏

p≤z
(1− α(p)) (X →∞), where z := X1/u.

To apply the Brun-Hooley sieve to this situation we need a partition of
P ∩ [2, z]. We introduce the notation

η = log logX,

and the choice of parameters

K := 1.57, K1 := 1.571. (3.49)

Actually, for the current discussion it is only important that 1 < K < K1,
but this choice will be particularly effective for the lower bound applications of
§3.5.5.

For large X, we have η < z = X1/u, so that if we define R as the minimal
integer with

z1/KR

< η

then R ≥ 1. (Indeed, R→∞ with X.) For such X, we define

zj =







z1/Kj

for 0 ≤ j ≤ R− 1,

η for j = R,

1 for j = R+ 1.
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We choose the partition described by

P ∩ [2, z] =
⋃̇R+1

j=1
Pj ,

Pj : = {p ∈ P : zj < p ≤ zj−1} (1 ≤ j ≤ R+ 1),

and we define the corresponding nonnegative even integers m1, . . . ,mR+1 by

mj = 2j (j = 1, . . . , R), mR+1 =∞.

The symbol∞ means that mR+1 is chosen at least as large as the cardinality
of PR+1. For definiteness, we take mR+1 as the smallest even integer with this
property. In this way, the condition on a divisor d of PR+1 that it have no more
than mR+1 prime divisors is automatically satisfied.

We are now finally in a position to apply the upper-bound (3.46) to our
problem. Because we have chosen mR+1 at least as large as the size of PR+1,

∑(R+1)
=

∑

dR+1|PR+1

ν(dR+1)=mR+1+1

α(dR+1) = 0, (3.50)

being an empty sum. Hence
∑(j)

/
∏(j)

vanishes at j = R+1, and to estimate

the main term of (3.46) it suffices to estimate this ratio for j = 1, . . . , R. The
product in the denominator is handled by the following lemma:

Lemma 3.5.5. As x→∞, we have

∏

x<p≤y

(

1− 2

p

)

=
log2 x

log2 y

(

1 +O

(
1

log x

))

uniformly for y ≥ x.

Proof. Suppose x ≥ 4; then 2/p ≤ 1/2 for each p ≥ x, so that log(1 − 2/p) =
−2/p+O((−2/p)2) with an absolute implied constant, and

∑

x<p≤y
log

(

1− 2

p

)

= −2
∑

x<p≤y

1

p
+O




∑

x<p≤y

1

p2





= −2

(

log
log y

log x
+O

(
1

log x

))

+O

(
1

x

)

= log
log2 x

log2 y
+O

(
1

log x

)

.

Exponentiating gives the result.
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As X →∞, so do each of z1, . . . , zR (since each is at least η). Consequently,
Lemma 3.5.5 implies that for all large X,

∏(j)
=

∏

zj<p≤zj−1

(1− α(p)) ≥
∏

zj<p≤zj−1

(

1− 2

p

)

=
log2 zj−1

log2 zj

(

1 +O

(
1

log zj

))

≥ 1

K2

(

1 +O

(
1

log η

))

≥ 1

K2
1

. (3.51)

The sums are easier to estimate. For 1 ≤ j ≤ R, we have

∑(j)
=

∑

dj |Pj

ν(dj)=mj+1

α(dj) ≤
1

(mj + 1)!

(
∑

p∈Pj

α(p)

)mj+1

≤ 1

(mj + 1)!

(
∑

p∈Pj

2

p

)mj+1

≤ (2 logK1)mj+1

(mj + 1)!

(3.52)

provided X is large enough, since then

∑

zj<p≤zj−1

2

p
= 2 log

log zj−1

log zj
+O

(
1

log zj

)

≤ 2 logK +O

(
1

log η

)

≤ 2 logK1.

Putting (3.51), (3.52) together and recalling (3.50), we find that for large X,

R+1∑

j=1

(
∑(j)/ ∏(j)

)

≤ K2
1

R∑

j=1

(2 logK1)2j+1

(2j + 1)!
≤ K2

1 exp (2 logK1).

This shows the main term of (3.46) is bounded above by a constant multiple of
X
∏

p≤z(1− α(p)). For any fixed u > 1,

X
∏

p≤X1/u

(1− α(p)) =
1

2
X

∏

2<p≤X1/u

(1− 2/p) � X/ log2X (X →∞), (3.53)

so that to obtain the estimate S(A,P, z) � X
∏

p≤z(1 − α(p)) we need only
ensure the sum appearing in the expression for the remainder term,

∑

d1,...,dR+1
dj |Pj ,ν(dj)≤mj

|r(d1 . . . dR+1)|, (3.54)

if of smaller order than X/ log2X. We will show that for an appropriate choice
of u, the sum is � Xδ for a constant δ < 1.
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For this, first note that any product d1 . . . dR+1 appearing as an argument
of r(·) in the sum (3.54) satisfies

d1 . . . dR+1 ≤
(

R∏

j=1

z
mj

j

)

ηη

= X
1
u (
∑R

j=1mj/K
j−1)X log logX log log logX/ logX .

Also,
R∑

j=1

mj

Kj−1
≤

∞∑

j=1

2j

Kj−1
=

2K2

(K − 1)2
= 15.173 . . . .

If we fix a choice of u exceeding this sum, say u = 16, then for large enough
X, d1 . . . dR+1 ≤ Xδ0 for every such product d1 . . . dR+1 and some fixed δ0 < 1.
Now choose ε > 0 with (1 + ε)δ0 < 1. Because (cf. (3.48))

|r(d)| ≤ ω(d) =
∏

p|d
ω(p) ≤ 2ν(d) ≤ τ(d)� dε,

and because each integer admits at most one representation as d1 . . . dR+1 with
di | Pi for each i (because the di are products of primes from disjoint sets), the
sum (3.54) above is

�
∑

n≤Xδ0

nε �
∑

n≤Xδ0

(Xδ0)ε � Xδ0(1+ε) = Xδ,

where δ = (1 + ε)δ0 < 1.
Thus, for all large X,

S(A,P,X 1
16 )� X

∏

p≤X 1
16

(1− α(p))

= X
∏

p≤X 1
16

p-N

(

1− 2

p

)
∏

p≤X 1
16

p|N

(

1− 1

p

)

≤ X
∏

p≤X 1
16

p-N

(

1− 1

p

)2 ∏

p≤X 1
16

p|N

(

1− 1

p

)

= X
∏

p≤X 1
16

(

1− 1

p

)2 ∏

p≤X 1
16

p|N

(

1− 1

p

)−1

� X

log2X

∏

p|N

(

1− 1

p

)−1

.
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Noting that

∏

p|N

(

1− 1

p

)−1/ ∏

p|N

(

1 +
1

p

)

=
∏

p|N

(

1− 1

p2

)−1

≤ ζ(2) <∞,

we conclude that for large X,

S(A,P,X1/16)� X

log2X

∏

p|N

(

1 +
1

p

)

. (3.55)

Consequently, for all large positive even numbers N ,

r(N) ≤ S(A,P,X1/16) + 2X1/16

� X

log2X

∏

p|N

(

1 +
1

p

)

=
N

log2N

∏

p|N

(

1 +
1

p

)

.

This gives the assertion of Theorem 3.5.4 for sufficiently large N , but for
bounded N the theorem is trivial (fiddle with the constant).

The proof we have given applies mutatis mutandis to the generalized prime
twin problem, i.e., the problem of estimating

πN (x) := |{p ≤ x : p, p+N are both prime}|.
Let N be a positive even integer, and define the sequence

A := {n(n+N) : 1 ≤ n ≤ x}.
Then

πN (x) ≤ z + S(A,P, z).
To estimate the last term, we take X = x and choose α(d) = ω(d)/d, where here
ω(d) is the number of solutions to the congruence n(N +n) ≡ 0 (mod d). Then
α(d) is again given by (3.47). If we now choose the other parameters exactly as
before, the same proof as above shows that (3.55) holds for all sufficiently large
X.

Since X = x in our case, this estimate implies that for all positive even
integers N and all x ≥ x0,

S(A,P, x1/16)� x

log2 x

∏

p|N

(

1 +
1

p

)

.

Here the implied constant as well as x0 are independent of N , and we may
assume x0 is at least 2. Thus, for x ≥ x0,

πN (x)� x1/16 +
x

log2 x

∏

p|N

(

1 +
1

p

)

� x

log2 x

∏

p|N

(

1 +
1

p

)

uniformly in N . Since πN (x) is trivially bounded by x0 for 2 ≤ x ≤ x0, regard-
less of N , we can extend this estimate for πN (x) to all x ≥ 2 and all positive
even N , with perhaps a different implied constant. Thus we have shown:
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Theorem 3.5.6. Let N be a positive even integer. Then for x ≥ 2,

πN (x)� x

log2 x

∏

p|N

(

1 +
1

p

)

,

where the implied constant is absolute.

Exercise 3.5.2. Let r∗(n) denote the number of unordered representations of
n as a sum of two primes. Clearly r∗(n) is bounded above by the number of
primes in the interval [n/2, n − 2], with equality holding exactly when n− p is
prime for each prime p with n/2 ≤ p ≤ n − 2. Use the estimate (1.34) with
Theorem 3.5.4 to prove that this upper bound for r∗(n) is attained for at most
finitely many n.

By a marriage of theory and computation, n = 210 has been shown to be
the final example of equality ([DGNP93]).

3.5.4 The Lower Bound

A natural temptation here is is to simply parallel what we did in the upper
bound case. If we suppose m1, . . . ,mr to be r odd integers, then for each j,

∑

dj |n,dj |Pj

ν(dj)≤mj

µ(dj) ≤
∑

dj |n,dj |Pj

µ(dj).

But since it is (generally) not the case that both sides of this are nonnegative
for each 1 ≤ j ≤ r, we cannot simply take the product of both sides over j and
expect the inequality to be preserved.

We thus look elsewhere. If r = 1, then rearranging the right hand inequality
of Lemma 3.5.2 gives a lower bound for s(n) =

∑

d|n,d|P µ(d). The same lemma,
with P, P replaced by Pj , Pj implies that for any choice of nonnegative even
integers m1, . . . ,mr, we have

0 ≤
∑

dj |n,dj |Pj

ν(dj)≤mj

µ(dj)−
∑

dj |n,dj |P
µ(dj) ≤

∑

dj |n,dj |P
ν(dj)=mj+1

1 (1 ≤ j ≤ r). (3.56)

These inequalities allow us to a coax a lower bound for

s(n) =
r∏

j=1

∑

dj |n,dj |Pj

µ(dj) (3.57)

out of the following general inequality:

Lemma 3.5.7 ([FH00, Lemma 1]). Suppose that 0 ≤ xj ≤ yj for 1 ≤ j ≤ r.
Then

x1 . . . xr ≥ y1 . . . yr −
r∑

l=1

(yl − xl)
r∏

j=1
j 6=l

yj .
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Proof. The result holds with equality when r = 1. If it holds for r− 1 for some
r ≥ 2, then

y1 . . . yr − x1 . . . xr = (y1 . . . yr−1 − x1 . . . xr−1)yr + (x1 . . . xr−1)(yr − xr)
≤ (y1 . . . yr−1 − x1 . . . xr−1)yr + (y1 . . . yr−1)(yr − xr)

≤
r−1∑

l=1

(yl − xl)
r∏

j=1
j 6=l

yj + (yr − xr)
r∏

j=1
j 6=r

yj =

r∑

l=1

(yl − xl)
r∏

j=1
j 6=l

yj ,

so that the result follows by induction.

We apply this with

xj :=
∑

dj |n,dj |Pj

µ(dj), yj :=
∑

dj |n,dj |Pj

ν(dj)≤mj

µ(dj).

Equation (3.56) both implies that the hypotheses of Lemma 3.5.7 are satisfied
and gives us an upper bound on the terms yl − xl. Using this bound in Lemma
3.5.7 and recalling (3.57), we obtain

s(n) ≥
r∏

j=1

∑

dj |n,dj |Pj

ν(dj)≤mj

µ(dj)−
r∑

l=1

(
∑

dl|n,dl|Pl

ν(dl)=ml+1

1

) r∏

j=1
j 6=l

(
∑

dj |n,dj |Pj

ν(dj)≤mj

µ(dj)

)

.

Summing over n ∈ A shows

S(A,P) ≥
∑

d1,...,dr

dj |Pj ,ν(dj)≤mj

µ(d1) . . . µ(dr)Ad1...dr

−
r∑

l=1

∑

d1,...,dr

dj |Pj ,ν(dj)≤mj(j 6=l)
dl|Pl,ν(dl)=ml+1

µ(d1) . . . µ(dr)

µ(dl)
Ad1...dr

. (3.58)

Writing Ad = Xα(d) + r(d), the right hand side of (3.58) becomes

X

r∏

j=1

∑

dj |Pj

ν(dj)≤mj

µ(dj)α(dj)−X
r∑

l=1

∑

dl|Pl

ν(dl)=ml+1

α(dl)
∏

j 6=l

∑

dj |Pj

ω(dj)≤mj

µ(dj)α(dj),

(3.59)
up to an error term that is (with an absolute implied constant)

�
∑

dj |Pj(1≤j≤r)
θd1,...,dr

|r(d1 . . . dr)|.
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Here θd1,...,dr
denotes the condition that there exist r − 1 indices j, 1 ≤ j ≤ r,

for which ν(dj) ≤ mj , while the remaining index satisfies ν(dj) ≤ mj + 1.
Now assume, as in the treatment of the upper bound, that α(p) < 1 for each

p ∈ P. Lemma 3.4.1 implies that for each 1 ≤ j ≤ r,
∑

dj |Pj

ν(dj)≤mj

µ(dj)α(dj) ≥
∏

p∈Pj

(1− α(p)) > 0,

so that we may reexpress the main term in (3.59) as

X

(

1−
∑

1≤l≤r

(
∑

dl|Pl

ν(dl)=ml+1

α(dl)
/ ∑

dl|Pl

ν(dl)≤ml

µ(dk)α(dl)

)) r∏

j=1

∑

dj |Pj

ν(dj)≤mj

µ(dj)α(dj)

≥ X
∏

p∈P
(1− α(p))

(

1−
∑

1≤l≤r

(
∑

dl|Pl

ν(dl)=ml+1

α(dl)
/ ∏

p∈Pl

(1− α(p))

))

.

Summarizing, we have proved the following theorem:

Theorem 3.5.8 (Brun-Hooley Sieve, Lower Bound). Let P = ˙⋃r
j=1Pj be

a partition of P. Suppose that α(p) < 1 for each p ∈ P. For any choice of
nonnegative even integers m1, . . . ,mr, we have

S(A,P) ≥ X
∏

p∈P
(1− α(p))



1−
∑

1≤j≤r

(
∑(j)/ ∏(j)

)




+O

(
∑

dj |Pj(1≤j≤r)
θd1,...,dr

|r(d1 . . . dr)|
)

,

where
∏(j)

and
∑(j)

are defined, for 1 ≤ j ≤ r, by (3.45), and the implied

constant is absolute.

3.5.5 Applications of the Lower Bound

We now prove the two remarkable theorems of Brun mentioned in the introduc-
tion: every large even integer is a sum of two 9-almost primes, and there exist
infinitely pairs of 9-almost primes differing by 2.

Our setup for attacking these problems is the same as that used in attacking
the analogous upper bound problems considered in §3.5.3. For the first of these,
we assume N is a positive even integer, and we take A := {n(N − n) : 1 ≤ n ≤
N}. As before, we let P be the set of all primes.

Suppose that we have a positive even integer N and a u > 1 for which

S(A,P, N1/u) > 0. (3.60)
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Then there exists an n, 1 ≤ n ≤ N , such that both n and N − n have all their
prime divisors exceeding N1/u; since both n and N − n are bounded by N ,
each must have at most u prime divisors. We will show that if we choose u large
enough, (3.60) holds for all sufficiently large N (depending on u). Brun’s results
then follow from a quantitative determination of which u are “large enough.”

For the most part, we may choose our sieving parameters as before, so that
X = N and α is given by (3.47). With u as a parameter to be chosen later,
we define the partitions of P ∩ [2, z] as in §3.5.3. However, the choice of the
corresponding nonnegative integers mi requires more care.

To describe this choice, suppose for the moment we have constructed a se-
quence {ni}∞i=1 of nonnegative even integers satisfying the two inequalities

∞∑

j=1

(2 logK1)nj+1

(nj + 1)!
<

1

K2
1

, (3.61)

Γ := 1 +

∞∑

j=1

nj
Kj−1

<∞, (3.62)

where K1,K2 are given by (3.49). We fix u > Γ and define (with the convention
regarding “∞” of §3.5.3)

mj = nj (1 ≤ j ≤ R), mR+1 =∞.
Then for all large X, we have (recalling (3.50), (3.51), (3.52))

R+1∑

j=1

(
∑(j)/ ∏(j)

)

=
R∑

j=1

(
∑(j)/ ∏(j)

)

≤ K2
1

R∑

j=1

∑(j)
≤ K2

1

R∑

j=1

(2 logK1)mj+1

(mj + 1)!
≤ 1− ε

for some fixed ε > 0, by (3.61). This implies the main term in the lower bound

S(A,P) ≥ X
∏

p∈P
(1− α(p))



1−
∑

1≤j≤R+1

(
∑(j)/ ∏(j)

)




+O

(
∑

dj |Pj(1≤j≤r)
θd1,...,dR+1

|r(d1 . . . dR+1)|
)

, (3.63)

is (cf. (3.53))

� X
∏

p≤X1/u

(1− α(p))� X/ log2X (X →∞).

The O-term can be treated much as before; the largest value of d1 . . . dR+1

appearing as an argument of r(·) is bounded above by

X
1
u (1+

∑R
j=1mj/K

j−1)X log logX log log logX/ logX ≤ XΓ/u+o(1) ≤ X(1+Γ/u)/2
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for all large X. Since (1 + Γ/u)/2 < 1, the argument of §3.5.3 implies the
remainder term in (3.63) is O(Xδ) for some constant δ < 1. Thus, with this
choice of parameters, we obtain (3.60) in the stronger form

S(A,P,X1/u)� X/ log2X (X →∞).

It remains to construct a suitable sequence {ni}. It is not hard to see that
(3.61) and (3.62) will be satisfied with the simple choice ni = b + 2(i − 1)
(i ≥ 1), provided the initial even value b is chosen sufficiently large. However,
this construction leads to an unnecessarily bloated value of Γ, so that while we
still obtain a statement of the form “every large even N is a sum of two numbers
with O(1) prime factors,” the implied constant here is larger than we might like.

We can get better results if we use the greedy algorithm in selecting the first
several ni (which are the most important terms as regards the value of Γ). We
begin by choosing as many of the initial ni to be 2 as (3.61) allows, then as
many of the subsequent ni to be 4 as allowed, etc. For example, since

⌊
1/K2

1

(2 logK1)3/3!

⌋

= 3,

we would choose n1, n2, n3 = 2. We then compute
⌊(

1/K2
1 − 3

(2 logK1)3

3!

)/ (2 logK1)5

5!

⌋

to determine the number of subsequent i for which we set ni = 4, etc.
Using a calculator, we find that the sequence obtained begins

n1 = n2 = n3 = 2, n4 = · · · = n10 = 4, n11 = · · · = n24 = 6.

Instead of continuing in this manner, we make the simple choice

n25 = 8 + 2(j − 25) (j ≥ 25).

Then, setting L := 2 logK1,

1

K2
1

−
∞∑

j=1

(2 logK1)nj+1

(nj + 1)!

≥ 1

K2
1

−
3∑

j=1

L3

3!
−

10∑

j=4

L5

5!
−

24∑

j=11

L7

7!
−

∞∑

j=25

L9+2(j−25)

(9 + 2(j − 25))!

≥ 1

K2
1

− 3
L3

3!
− 7

L5

5!
− 14

L7

7!
− L9/9!

1− L2/(11 · 10)
= 0.00003 . . . > 0,

so that (3.61) holds in this case. Also,

Γ = 1 +

3∑

j=1

2

Kj−1
+

10∑

j=4

4

Kj−1
+

24∑

j=11

6

Kj−1
+

∞∑

j=25

8 + 2(j − 25)

Kj−1

= 1 +

3∑

j=1

2

Kj−1
+

10∑

j=4

4

Kj−1
+

24∑

j=11

6

Kj−1
+

2(4K − 3)

K23(K − 1)2
= 7.993 . . . .
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Thus (3.62) holds. Moreover, we see we may in fact take u = 7.995, say. We
thus obtain an even stronger theorem than that stated in the introduction: every
large enough even N may be represented as a sum of two (positive) numbers
each of which has no more than 7 prime divisors, and the number of such
representations is

� X/ log2X = N/ log2N (N →∞).

In like manner, we can show that the number of positive integers n ≤ x for
which n, n + N have no prime divisor not exceeding x1/7.995 is � x/ log2 x as
x → ∞, uniformly in the choice of the positive even integer N . Any such n
satisfies

n ≤ n+N ≤ x+N < (x1/7.995)8

once x is sufficiently large (depending only on N). It follows that for any fixed
even positive integer N , there are

�N x/ log2 x (x→∞)

integers n ≤ x for which n, n+N have no more than 7 prime divisors. Taking
N = 2 gives (a bit more than) Brun’s statement.

We conclude this chapter by mentioning the following remarkable theorem of
Chen [Che73] which, perhaps better than any other result, illustrates the power
of modern sieve methods.

Chen’s Theorem. Every large even number N is the sum of a prime and a
2-almost prime; moreover, denoting by PN (1, 2) the number of primes p ≤ N
for which N − p is a 2-almost prime, we have for even N →∞,

PN (1, 2) ≥ (0.67 + o(1))
N

log2N

∏

p|N,p>2

p− 1

p− 2

∏

p>2

(

1− 1

(p− 1)2

)

.

There are infinitely many primes p for which p + 2 is a 2-almost prime.
Denoting by π1,2(x) the number of such p ≤ x, we have for x→∞,

π1,2(x) ≥ (0.67 + o(1))
∏

p>2

(

1− 1

(p− 1)2

)
x

log2 x
.

Apart from the constant 0.67, these remain the closest approximations to
the Goldbach and twin prime conjectures proven to date. The proof of Chen’s
Theorem is the climax of Halberstam & Richert’s classic book [HR74] on sieve
methods.

Exercise 3.5.3. By modifying the proof given in this section, show that the
number of representations of N as a sum of two 7-almost primes is

� N

log2N

∏

p|N,p>2

p− 1

p− 2
.
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3.5.6 Exercises: Further Applications of the Brun-Hooley
Sieve

Exercise 3.5.4 (Brun). Prove the following theorems of Brun, announced in
[Bru19b]:

a) Every arithmetic progression a (mod q) with gcd(a, q) = 1 contains in-
finitely many 5-almost primes. (Naturally, Dirichlet’s theorem is off-limits
here.)

b) If x is sufficiently large, there is always an 11-almost prime in the interval
(x, x+

√
x].

Suggestion: Imitate the lower bound applications of the text, including the
selection of the first several mj by the greedy algorithm, but begin instead with
the values K = 2.49,K1 = 2.50.

Exercise 3.5.5 (Hardy & Littlewood [HL22]). Show that

π(y + x)− π(y)� x

log x

for y ≥ 0, x ≥ 2. Here the implied constant is absolute.

See Lemma 4.3.6 for a more explicit result.

The next two exercises concern a generalization of the upper bound results
of §3.5.3 to several linear polynomials.

Exercise 3.5.6. Let fi(T ) = aiT + bi, 1 ≤ i ≤ k be a family of k linear polyno-
mials with integer coefficients. Suppose that (ai, bi) = 1 for i = 1, . . . , k, and
that no fi is an integral multiple of any other.

a) Show that

E :=
k∏

i=1

ai
∏

1≤i<j≤k
(aibj − ajbi) 6= 0.

b) Define, for positive integral d,

ω(d) := |{n (mod d) :

k∏

i=1

fi(n) ≡ 0 (mod d)}|.

Show that ω is multiplicative, ω(p) ≤ k for every prime p, and ω(p) = k
if and only if p | E.

Exercise 3.5.7 (continuation). Now suppose that, with the notation of the pre-

ceding problem, ω(p) < p for all primes p, i.e., that
∏k
i=1 fi has no fixed prime

divisor.
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a) Let

A :=

{
k∏

i=1

fi(n) : 1 ≤ n ≤ x
}

.

Let P be the set of all primes. Show that for x ≥ 2,

S(A,P, x1/16)� x

logk x

∏

p|E
(1 + 1/p)

p−ω(p)
,

where the implied constant depends only on k.

b) Let πf1,...,fk
(x) denote the number of n ≤ x such that |fi(n)| is prime for

each i = 1, 2, . . . , k. Show that for any z > 0,

πf1,...,fk
(x) ≤ S(A,P, z) + k(2z + 1).

Deduce from part a) that for x ≥ 2,

πf1,...,fk
(x)� x

logk x

∏

p|E
(1 + 1/p)

p−ω(p)
,

where the implied constant depends only on k.

c) Using part b), rederive the results of §3.5.3.

The estimates we obtained in this chapter for the generalized twin prime
problem were based on estimating the number of n ≤ x not falling into either
residue class 0,−N (mod p) for any p ≤ xε, for a certain ε > 0. Similarly, our
estimates for r(N) were based on “sieving out” the residue classes 0,−N for
each prime p ≤ N ε. In both these cases, our estimates were facilitated by the
existence of a sequence {an} indexed by the positive integers up to x (or up to
N) with the property that p | an if and only if n falls into one of the singled-out
congruence classes. Many sieve applications can be viewed in a similar light;
the next exercise formulates two useful and oft-applied results along these lines:

Exercise 3.5.8. Let k be a positive integer.

a) Let A > 0. Suppose that to each prime p ≤ xA, we associate kp ≤ k
residue classes mod p. The number of positive integral n ≤ x avoiding all
of these residue classes is

�k,A x
∏

p≤xA

(

1− kp
p

)

(x > 0),

uniformly in the particular choice of residue classes.

b) There exists B = B(k) > 0 with the following property: if we choose
kp ≤ k residue classes mod p for each prime p ≤ xB, then the number of
positive integral n ≤ x avoiding all these classes is

�k x
∏

p≤xB

(

1− kp
p

)

(x→∞),

uniformly in the particular choice of residue classes.
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Hint: Use the Chinese Remainder Theorem to construct a polynomial f for
which p | f(n) precisely when n falls into one of the kp chosen residue classes
mod p.

Exercise 3.5.9. Using the lower bound estimate provided by part b) of the
preceding exercise, show that a polynomial f(T ) ∈ Z[T ] of degree k ≥ 1 with no
fixed prime divisor represents infinitely many integers with O(1) prime factors
(counted with multiplicity), where the implied constant depends only on k.
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Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1986. MR
90e:11002

[Odl71] Andrew M. Odlyzko, Sieve methods, senior thesis, California
Institute of Technology, 1971, available for online viewing at
http://auditorymodels.org/jba/BOOKS Historical/.
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Chapter 4

An Elementary Proof of the
Prime Number Theorem

No elementary proof of the prime number theorem is known,
and one may ask whether it is reasonable to expect one. Now we
know that the theorem is roughly equivalent to a theorem about an
analytic function, the theorem that Riemann’s zeta function has no
roots on a certain line. A proof of such a theorem, not fundamentally
dependent on the theory of functions, seems to me extraordinarily
unlikely. It is rash to assert that a mathematical theorem cannot
be proved in a particular way; but one thing seems quite clear. We
have certain views about the logic of the theory; we think that some
theorems, as we say lie deep and others nearer to the surface. If
anyone produces an elementary proof of the prime number theorem,
he will show that these views are wrong, that the subject does not
hang together in the way we have supposed, and that it is time for
the books to be cast aside and for the theory to be rewritten. – G.H.
Hardy

4.1 Introduction

We mentioned in Chapter 1 that the prime number theorem, i.e., the assertion
that

π(x) = (1 + o(1))
x

log x
(x→∞), (4.1)

was first established by Hadamard and de la Vallée Poussin (independently) in
1896, using methods of complex analysis and the ingenious ideas of Riemann
forty years prior.

By the time the next forty years had passed, the analytic information re-
quired for the proof of the prime number theorem had been reduced to the
nonvanishing of Riemann’s function ζ(s) on the line <(s) = 1; e.g., we quote
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(without proof) the following general “Tauberian theorem” (which the reader
unfamiliar with complex analysis can safely skip):

Theorem (Wiener-Ikehara, 1931). Let
∑∞
n=1 f(n)n−s be a Dirichlet series

with nonnegative coefficients, convergent for <(s) > 1. Let F be the (analytic)
function defined by the series in this region, and suppose F can be extended to
a function analytic on an open set containing <(s) ≥ 1, except possibly for a
simple pole at s = 1 with residue r ≥ 0. Then

1

x

∑

n≤x
f(n) = (c+ o(1))x (x→∞).

Now partial summation shows that (Exercise 4.1.1)

ζ(s) =
1

s− 1
+ 1− s

∫ ∞

1

{x}
xs+1

dx (4.2)

in the region <(s) > 1. The final term on the right is analytic in all of <(s) > 0,
so this defines an analytic continuation of ζ to the half-plane <(s) > 0, except
for a simple pole at s = 1 with residue 1. Since ζ has no zeros for <(s) > 1 (by
the Euler-product expansion, for instance), if one can show ζ has no zeros on
<(s) = 1, then −ζ ′/ζ analytically continues to an open set containing <(s) ≥ 1,
except for a simple pole at s = 1 with residue 1. Since (see Exercise 4.1.2)

−ζ
′

ζ
(s) =

∞∑

n=1

Λ(n)

ns
(<(s) > 1),

Wiener-Ikehara then yields

ψ(x) :=
∑

n≤x
Λ(n) = (1 + o(1))x,

an assertion we saw was equivalent to the prime number theorem in Chapter 1
(see Corollary 1.5.5). Conversely, and more easily, if ζ does have zeros on the
line <(s) = 1, then the prime number theorem cannot hold (again, see Exercise
4.1.2).

With this connection in mind, it is not hard to understand Hardy’s remarks
or to appreciate the later sensation resulting from Erdős and Selberg’s 1949
derivations of the prime number theorem by totally elementary means ([Erd49],
[Sel49]). Both Erdős and Selberg start with the Selberg symmetry formula,
proved by Selberg in March of 1948:

θ(x) log x+
∑

p≤x
log (p)θ(x/p) = 2x log x+O(x) (x ≥ 1). (4.3)

This compact formula encapsulates a surprising amount of information about
primes, including (ultimately) the prime number theorem itself. As an example
of a result we can quickly skim off the top, note that if we define

a := lim inf
x→∞

θ(x)

x
, A := lim sup

x→∞

θ(x)

x
, (4.4)
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and divide the symmetry formula by x log x, we immediately obtain A ≤ 2 (so
we recover a Chebyshev-type upper bound). Only a little more work is required
to see that in fact a + A = 2 (Exercise 4.1.4). We shall not say more about
the symmetry formula or the clever ways Erdős and Selberg derived the prime
number theorem from it, referring the reader instead to H.N. Shapiro’s carefully
crafted and well-motivated treatment [Sha83, Chapter 10]. For a historical
viewpoint, see [Gol03].

Since 1949, a large number of papers have appeared presenting elementary
proofs of the prime number theorem. Most are simplifications or variations on
themes already present in Erdős and Selberg’s work and employ the symmetry
formula or a structurally-similar analog. The two exceptions to date are the
proofs of Daboussi [Dab84] and Hildebrand [Hil86]. The goal of this chapter is
a complete, reasonably self-contained exposition of Hildebrand’s proof.

In the next three sections, we acquaint the reader with certain preliminary
well-known results whose proofs were omitted from Hildebrand’s original paper.
Thus, in §4.2, we prove Landau’s result (see [Lan06, §2]) that the prime number
theorem is equivalent to

M∗(x) :=
1

x

∑

n≤x
µ(n) = o(1) (x→∞). (4.5)

In §4.3, we derive by means of the Selberg sieve that there are at most (2 +
o(1))y/ log y primes in an interval of length y (as y →∞), and in §4.4 we state
and prove the Turán-Kubilius inequality for strongly additive functions. We
sometimes digress briefly to discuss interesting related results not required for
the proof of the PNT, e.g., the Brun-Titchmarsh Theorem and Erdős’ multipli-
cation table theorem.

With those preparations out of the way, we proceed to describe the lemmas
endemic to Hildebrand’s proof, concluding that section with a demonstration
that (4.5) follows from a Fundamental Lemma stating that M∗ varies slowly
over large intervals. In the final section we give the proof of this Fundamental
Lemma, thereby completing the proof of the prime number theorem.

4.1.1 Exercises

Exercise 4.1.1. Prove (4.2) by computing
∫
t−sdA(t) for A(x) =

∑

n≤x 1.

The next two exercises assume some familiarity with complex analysis.

Exercise 4.1.2. Let Z(s) := −ζ ′(s)/ζ(s). Because
∑
n−s is a series of analytic

functions uniformly convergent on compact subsets of <(s) > 1, term-by-term
differentiation is permissible, and

−ζ ′(s) =

∞∑

n=1

log n

ns
(<(s) > 1).
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The relation
∑

d|n Λ(d) = log n implies

∞∑

n=1

log n

ns
=

( ∞∑

n=1

Λ(n)

ns

)( ∞∑

n=1

1

ns

)

(<(s) > 1),

because all the involved Dirichlet series converge absolutely in this region. Hence

Z(s) =
∞∑

n=1

Λ(n)

ns
(<(s) > 1).

a) Prove that for <(s) > 1,

Z(s) =
s

s− 1
+ s

∫ ∞

1

(ψ(t)− t) dt

ts+1
.

b) Assuming ψ(t) = t + o(t) (the PNT), show that the inner integral is
o(1/(σ − 1)), as σ := <(s) ↓ 1 (uniformly in s). Conclude that for fixed
t 6= 0, one has

lim
σ↓1

(σ − 1)|Z(σ + it)| = 0.

c) On the other hand, show that if ζ has a zero of order m ≥ 0 at 1 + it (so
that necessarily t 6= 0), then

lim
σ↓1

(σ − 1)Z(σ + it) = −m.

Combining the results of b) and c), we see ζ has no zeros on the line <(s) = 1
if the prime number theorem holds.

Exercise 4.1.3. Observe that for <(s) > 1,

1

ζ(s)
=
∏

p

(

1− 1

ps

)

=

∞∑

n=1

µ(n)

ns
.

a) Show that in the same region, one has the representation

∞∑

n=1

µ(n)

ns
= s

∫ ∞

1

M(t)

ts+1
dt,

where M(x) :=
∑

n≤x µ(n).

b) Assume M(x) = o(x). Prove that the integral here is o(1/(σ − 1)) as
σ := <(s) ↓ 1 (uniformly in s). Use this to show ζ−1 has no poles on the
line <(s) = 1, so that ζ is zero-free on <(s) = 1.

c) Assume M(x) = O(x1/2+ε) for a certain ε > 0; prove that ζ−1 is regular for
<(s) > 1/2 + ε, so that ζ has no zeros there. In particular, if this estimate
on M holds for each ε > 0, then ζ is zero-free to the right of <(s) = 1/2,
i.e., the Riemann hypothesis holds. In fact, Littlewood showed that the
Riemann hypothesis is equivalent to this statement about M (see [Lan69,
Satz 481]).
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d) Riemann himself calculated several zeros of ζ on the line <(s) = 1/2.
Assuming only that ζ has at least one zero on this line, use the method
of b) to disprove the hypothetical estimate M(x) = o(x1/2).

Exercise 4.1.4. Assume Selberg’s fundamental formula (4.3). Show that a+A =
2, where a,A are given by (4.4).

Suggestions: Let (xn)n≥1 be a sequence of positive real with xn → ∞ and
θ(xn)/xn → A. By combining the fundamental formula with the familiar esti-
mate

∑

p≤x

log p

p
∼ log x,

show that a+A ≤ 2. Choosing instead a sequence (x′n)n≥1 with θ(x′n)/x′n → a,
show that a+A ≥ 2.

Exercise 4.1.5. Recall that the Farey sequence FN of order N is the list of
reduced fractions between 0 and 1 (inclusive) with denominator bounded by
N , taken in increasing order. Assuming the result of Landau mentioned in the
introduction, prove that the prime number theorem is equivalent to the estimate

S(N) :=
∑

p/q∈FN

cos 2π
p

q
= o(N).

Hint: Establish the identity

µ(n) =
∑

1≤a≤n
gcd(a,n)=1

e2πia/n

and use it to relate S(N) to M(N).

4.2 Some Statements Equivalent to the Prime
Number Theorem

For positive real numbers x, define

M(x) :=
∑

n≤x
µ(n), U(x) :=

∑

n≤x

µ(n)

n
, V (x) :=

∑

n≤x

µ(n) log n

n
.

Note that M∗(x), as defined by (4.5), is simply M(x)/x.

Theorem 4.2.1 (Landau). The following are equivalent:

i. ψ(x) ∼ x,

ii. M(x) = o(x),

iii. U(x) = o(1),
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iv. V (x) = o(log x).

For the equivalence of the first three, see Landau’s doctoral dissertation
[Lan99] as well as his paper [Lan06]. The equivalence of iii) and iv) is proved
in [Lan53, §156].

As we saw in Chapter 1 (see §1.5), the estimate ψ(x) ∼ x is equivalent to
the prime number theorem, so that the same holds for each of the other items
in the theorem statement.

4.2.1 An Inversion Formula and its Consequences

Theorem 4.2.2 (Generalized Möbius Inversion Formula). Let F,G be
functions defined on the positive real axis and vanishing on (0, 1). Suppose that

F (x) =
∑

n≤x
G(x/n) (x > 0). (4.6)

Then
G(x) =

∑

n≤x
µ(n)F (x/n) (x > 0). (4.7)

Proof. Both sides of (4.7) vanish for 0 < x < 1, and for x ≥ 1 we have

∑

n≤x
µ(n)F (x/n) =

∑

n≤x
µ(n)

∑

m≤x/n
G(x/mn)

=
∑

mn≤x
µ(n)G(x/mn)

=
∑

k≤x
G(x/k)

∑

d|k
µ(d)

= G(x).

Remark. If f, g are arithmetic functions, we may extend f, g to the positive real
axis by defining them to vanish at nonintegral values. Then (one direction of)
the Möbius inversion formula falls out of the above theorem.

Lemma 4.2.3. As x→∞, we have both

U(x) = O(1), (log x)U(x) = V (x) +O(1).

Proof. We take G(x) = 1 for x > 1; then (4.6) holds for F (x) = bxc, so that
(4.7) shows

1 =
∑

n≤x
µ(n)

⌊x

n

⌋

= xU(x) +O(x).

Dividing by x gives the first estimate of the lemma. For the second, take G(x) =
x for x > 1; then

F (x) =
∑

n≤x

x

n
= x log x+ γx+O(1)
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for x ≥ 1, whence

x = G(x) =
∑

n≤x
µ(n)

(x

n
log

x

n
+ γ

x

n
+O(1)

)

= x log x
∑

n≤x

µ(n)

n
− x

∑

n≤x

µ(n) log n

n
+ γx

∑

n≤x

µ(n)

n
+O(x)

= (x log x)U(x)− xV (x) + xU(x) +O(x)

= (x log x)U(x)− xV (x) +O(x),

using the estimate U(x) = O(1) that we just established. Dividing by x and
rearranging completes the proof.

4.2.2 An Estimate of Dirichlet

We need an estimate on the summatory function of τ :

Lemma 4.2.4 (Dirichlet). As x→∞,

∑

n≤x
τ(n) = x log x+ (2γ − 1)x+O(x1/2).

Proof. Observe that

T (x) :=
∑

n≤x
τ(n) =

∑

n≤x

∑

ab=n

1 =
∑

ab≤x
1,

i.e., T = T (x) is just the number of lattice points (with positive integral coordi-
nates) beneath the hyperbola ab = x. Such lattice points either satisfy a ≤ √x
or b ≤ √x, so that

T = T1 + T2 − T3,

where

T1 = |{(a, b) : a ≤ √x : ab ≤ x}|,
T2 = |{(a, b) : b ≤ √x : ab ≤ x}|,
T3 = |{(a, b) : a ≤ √x, b ≤ √x, ab ≤ x}|.

Now T3 = b√xc2 = x+O(
√
x), while

T2 = T1 =
∑

a≤√
x

∑

b≤x/a
1 =

∑

a≤√
x

bx/ac = x
∑

a≤√
x

1

a
+O(

√
x)

= x(log x1/2 + γ +O(x−1/2)) +O(x1/2)

=
1

2
x log x+ γx+O(x1/2).

The result follows.



158 CHAPTER 4. THE PRIME NUMBER THEOREM

4.2.3 Proof of the Equivalences

We will prove

U(x) = o(1)⇒M(x) = o(x)⇒ ψ(x) ∼ x
⇒ V (x) = o(log x)⇒ U(x) = o(1).

(This corresponds to 3 ⇒ 2 ⇒ 1 ⇒ 4 ⇒ 3.) Of course the implication of main
interest for us is

M(x) = o(x) =⇒ ψ(x) ∼ x,

since it is the former statement which we shall ultimately establish.

Proof [U(x) = o(1)⇒M(x) = o(x)]. This is a straightforward partial summa-
tion:

M(x) =

∫ x

1/2

t dU(t) = xU(x)−
∫ x

1

U(t) dt

= o(x)−
∫ x

1

o(1) dt = o(x).

Proof [M(x) = o(x)⇒ ψ(x) ∼ x]. This is the most difficult of all the implica-
tions. Our strategy will be to write

ψ(x)− x =
∑

qd≤x
µ(q)f(d) +O(1)

for a certain function f , and then to use the relation M(x) = o(x) to show the
right hand sum here is also o(x) as x→∞.

To construct such an f , recall the identities

Λ(n) =
∑

d|n
µ(d) log

n

d
, 1 =

∑

d|n
µ(d)τ(d),

⌊
1

n

⌋

=
∑

d|n
µ(d);

these should all be familiar, except possibly the second, which however follows
quickly from Möbius inversion. Using these relations, we find that for any
constant C and any x ≥ 1, we have

ψ(x)− [x] + C =
∑

n≤x

∑

d|n
µ(d)

(

log
n

d
− τ(n/d) + C

)

=
∑

qd≤x
µ(d) (log(q)− τ(q) + C) . (4.8)

We can thus take, for any constant C,

f(n) = log n− τ(n) + C;
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however, it is convenient to choose C so that the partial sums of f are small.
By Dirichlet’s estimate for

∑

n≤x τ(n), if we choose C = 2γ, then

F (x) :=
∑

n≤x
f(n) ≤ B√x,

for some constant B and each x ≥ 1.
With f defined with respect to this C, we proceed to show

∑

qd≤x
µ(d)f(q) = o(x). (4.9)

Let a, b ≥ 1 with ab = x; we shall specify a and b more precisely later. Then we
can rewrite

∑

qd≤x
µ(d)f(q) =

∑

n≤a
µ(n)F (x/n) +

∑

n≤b
f(n)M(x/n)−M(a)F (b). (4.10)

Indeed, each lattice points (q, d) underneath the hyperbola qd ≤ x either satisfies
q ≤ a or d ≤ b, and is taken into account by either the first or the second sum.
Those which satisfy both are counted twice, and these are subtracted off in the
term M(a)Y (b).

The first sum on the right hand side of (4.10) is bounded in absolute value
by

B
∑

n≤a

√

x/n = B
√
x
∑

n≤a

1√
n

≤ B√x
(

1 +

∫ a

1

dt√
t

)

≤ 2B
√
x
√
a = 2B

x√
b
,

recalling that ab = x. Now fix b = b(ε) ≥ 1 large enough that

2B/
√
b < ε. (4.11)

So we can bound the first term on the right hand side of (4.10):

∣
∣
∣
∣
∣
∣

∑

n≤x
µ(n)F (x/n)

∣
∣
∣
∣
∣
∣

< εx.

To estimate the second term, choose c = c(ε,K) large enough that x/n > c
implies |M(x/n)| < (ε/K)x/n, where K is a constant to be specified shortly.
Then if x > bc, one has x/n > c for each n ≤ b, so that the second term is
bounded above in absolute value by

ε

K

∑

n≤b
|f(n)|/n.
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So if we take K :=
∑

n≤b |f(n)|/n, then the second term is majorized by εx.
Note that K, and hence c, depends only on ε.

For the third term, we note

|M(a)F (b)| ≤ a(B
√
b) ≤ ab B√

b
< εx,

by (4.11). It follows that the entire right hand side of (4.10) is bounded in
absolute value by 3εx for x > bc, where b, c depend only on ε. Since ε was
arbitrary, (4.9) follows.

Remark. The way we began this proof looks mysterious, but it can be motivated
by looking at appropriate Dirichlet series: the assertion ψ(x) ∼ x says that the
average of the coefficients of the Dirichlet series Z(s) of Exercise 4.1.2 is 1, i.e.,
that the average of the coefficients of Z(s)− ζ(s) is 0. But

Z(s)− ζ(s) = −ζ
′

ζ
− ζ = (−ζ ′ + ζ2)

1

ζ
.

Now compute the coefficients of −ζ ′ + ζ2 and of 1/ζ and multiply the Dirichlet
series to obtain (4.8), without the constant C.

Proof [ψ(x) ∼ x⇒ V(x) = o(log x)]. In Chapter 2, we observed already that

Λ(n) =
∑

d|n
µ(d) log

n

d
= −

∑

d|n
µ(d) log d,

so that Möbius inversion implies

µ(n) log n = −
∑

d|n
Λ(d)µ(n/d).

Hence

V (x) =
∑

n≤x

µ(n) log n

n
= −

∑

n≤x

1

n

∑

d|n
Λ(d)µ(n/d)

= −
∑

dd′≤x

Λ(d)

d

µ(d′)
d′

= −
∑

d≤x

Λ(d)

d
U(x/d).

Now write ψ(x) = x + R(x), so that the assumption ψ(x) ∼ x implies R(x) =
o(x). Then we can rewrite this final sum in the form

∑

d≤x

ψ(d)− ψ(d− 1)

d
U(x/d) =

∑

d≤x

1

d
U(x/d) +

∑

d≤x

R(d)−R(d− 1)

d
U(x/d).

The first sum on the right can be explicitly evaluated:

∑

d≤x

1

d

∑

d′≤x/d

µ(d′)
d′

=
∑

dd′≤x

µ(d)

dd′
=
∑

n≤x

1

n

∑

d|n
µ(d) = 1,
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for x > 1, so this first sum is certainly o(log x). Handling the second is a bit
trickier. We can reexpress it, as in partial summation, by

R(bxc)
bxc +

∑

d≤x−1

R(d)

d

(

U
(x

d

)

− U
(

x

d+ 1

))

+
∑

d≤x−1

R(d)

d(d+ 1)
U

(
x

d+ 1

)

.

The first term is o(1). Keeping in mind that U(x) = O(1), the last term here is
seen to be

�
∑

d≤x−1

|R(d)|
d(d+ 1)

=
∑

d≤x−1

o(d)

d(d+ 1)

=
∑

d≤x−1

o

(
1

d+ 1

)

= o




∑

d≤x

1

d



 = o(log x),

so all the difficulty lies in establishing the estimate o(log x) for the second term.
This sum is bounded, in absolute value, by

∑

d≤x−1

|R(d)|
d

∑

x/(d+1)<n≤x/d

1

n
, (4.12)

so it will suffice to show (4.12) is o(log x).

For this let ε > 0 be given, and choose a positive integer x0 sufficiently large
that |R(d)|/d < ε for d ≥ x0. We split the sum (4.12) at x0 and estimate the
two pieces. Let B = B(ε) be an upper bound for |R(d)|/d for d ≤ x0; then the
first piece of the sum (taken over d < x0) is majorized in absolute value by

B
∑

D≤x−1

∑

x/(d+1)<n≤x/d

1

n
= B

∑

x/x0<n≤x

1

n
≤ B(log x0 + 1) < ε log x,

for sufficiently large x (depending on ε). Similarly, the second piece is bounded
in absolute value by

ε
∑

x/bxc<n≤x/x0

1

n
≤ ε

(

log
x

x0
+ 1

)

< 2ε log x

for x sufficiently large. It follows that the sum in (4.12) is bounded by 3ε log x
for x > x1(ε), say. As ε was arbitrary, the estimate o(x log x) follows.

Proof [V(x) = o(log x)⇒ U(x) = o(1)]. By Lemma 4.2.3,

U(x) =
V (x)

log x
+O

(
1

log x

)

= o(1) +O

(
1

log x

)

= o(1).
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4.2.4 Exercises

Exercise 4.2.1. Let f(n) be an arithmetic function and suppose
∑∞
n=1 f(n)/n

converges. Prove that
∑

n≤x f(n) = o(x). Note that this generalizes the proof
that U(x) = o(1) implies M(x) = o(x).

Exercise 4.2.2 (continuation). Using the result of the previous exercise, prove
that the prime number theorem follows from the convergence of

∞∑

n=1

Λ(n)− 1

n
. (4.13)

Exercise 4.2.3 (continuation).

a) Prove that for x ≥ 1,

∑

n≤x

Λ(n)− 1

n
=
∑

qd≤x

µ(d)f(q)

qd
− 2γ,

where f is given (as before) by

f(n) = log n− τ(n) + 2γ.

b) By the hyperbola method, we can reexpress

∑

qd≤x

µ(d)f(q)

qd
=
∑

q≤y

f(q)

q
U(x/q) +

∑

d≤x/y

µ(d)

d
G(x/d)−G(y)U(x/y),

(4.14)
where

G(z) :=
∑

k≤z

f(k)

k

and 1 ≤ y ≤ x. Prove that G(z) = C+O(1/
√
z) for an appropriate choice

of constant C.

c) Assume the prime number theorem in the form U(x) = o(1). By first
fixing y and letting x→∞ in (4.14), then letting y →∞, conclude that

∑

qd≤x

µ(d)f(q)

qd
= o(1),

and hence that the infinite sum (4.13) has the value −2γ.

d) Deduce from this that

∑

n≤x

Λ(n)

n
= log x− γ + o(1).
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Exercise 4.2.4. Liouville’s λ function is defined as the completely multiplicative
function with λ(p) = −1 for every prime p. Show that

λ(n) =
∑

d2|n
µ(n/d2)

and use this to prove

L(x) :=
∑

n≤x
λ(n) =

∑

d≤√
x

M(x/d2). (4.15)

Deduce that M(x) = o(x) implies L(x) = o(x). The latter has the following
pleasant interpretation: the probability an integer has an even number of prime
factors (counted with multiplicity) is precisely 1/2.

Exercise 4.2.5 (continuation). By using either (4.15) or proceeding directly,
prove that

M(x) =
∑

d≤√
x

µ(d)L(x/d2).

Deduce that L(x) = o(x) implies M(x) = o(x). Taken with the result of the
previous exercise, this shows L(x) = o(x) is equivalent to M(x) = o(x), and
hence to the prime number theorem.

4.3 An Upper Bound on π(x + y)− π(x)

Our aim here is to establish the next lemma, which is the only result of this
section we shall need in the proof of the PNT.

Lemma 4.3.1. As y →∞,

π(x+ y)− π(x) ≤ (2 + o(1))
y

log y

uniformly for x ≥ 1.

Remark. It must be emphasized that though we present this as a lemma in
a proof of the prime number theorem, it is not itself as a corollary of that
theorem. As illustration, let us try to derive a bound on π(x+ y)− π(x) from
the hypothetical estimate π(x) = li(x) + O(x1/2 log x), a very strong form of
the prime number theorem known to be equivalent to the Riemann hypothesis.
Then, assuming say that y ≤ x, the reader can check

li(x+ y)− li(x) =

∫ x+y

x

dt

log t
= (1 + o(1))

y

log x
(x→∞);

one consequence is that if y = y(x) ≤ x tends to infnity in such a way that
(log2 x)x1/2/y tends to 0, then π(x + y) − π(x) ∼ y/ log x (as x → ∞). So far
so good. On the other hand, suppose we wish to take y smaller than x1/2, say
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y = y(x) = log100 x; then this version of the prime number theorem provides
no bound on the number of primes in (x, x + y] other than the trivial bound

O(x1/2 log1/2 x), which is larger than the number of integers in the interval!
Indeed, even the expected asymptotic π(x + y) − π(x) ∼ y/ log x is known to
be false for this choice of y (see [Mai85]). In these situations, Lemma (4.3.1)
provides useful information.

Our strategy in proving this will be as follows: instead of directly estimating
the number of primes in the interval (x, x + y], we will estimate instead the
number of integers in the interval (x, x+ y] all of whose prime factors exceed z,
where z is some parameter to be chosen later. The desired estimate will then
follow from the inequality

π(x+ y)− π(x) ≤ z + |{x < n ≤ x+ y : p | n⇒ p > z}|, (4.16)

which reflects that a prime in the interval (x, x + y] is either bounded by z or
has no prime factors not exceeding z.

Those who have read Chapter 3 will immediately recognize this estimation
as a sieving problem, corresponding to the choice

A := {n : x < n ≤ y}, P = {all primes}. (4.17)

Indeed, the rightmost term of (4.16) is what in Chapter 3 was defined as
S(A,P, z): the number of elements of A divisible by no prime p ∈ P not ex-
ceeding z. Not surprisingly, we will ultimately prove Lemma 4.3.1 by applying
a suitable upper bound sieve method, that of Selberg (introduced in [Sel47]).
Note that the Brun-Hooley sieve of the last chapter can be used in this capacity
also, but yields a bound of the form

π(x+ y)− π(x) ≤ (C + o(1))
x

log x
,

where it seems impossible to obtain C = 2. Unfortunately, C ≤ 2 is essential to
the proof of 4.5.2.

4.3.1 Preparatory Lemmas

Lemma 4.3.2. Let a1, . . . , an be positive real numbers, and let

Q(x1, . . . , xn) := a1x
2
1 + a2x

2
2 + · · ·+ anx

2
n.

The minimum value of Q, subject to the linear constraint

b1x1 + · · ·+ bnxn = 1,

with the bi given real numbers not all vanishing, is given by (
∑n
i=1 b

2
i /ai)

−1.
Moreover, this minimum value is uniquely attained at the point

xi =
bi/ai

∑n
i=1 b

2
i /ai

(i = 1, . . . , n).
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Proof. By the Cauchy-Schwarz inequality,

1 =

(
n∑

i=1

bia
−1/2
i · a1/2

i xi

)2

≤
(

n∑

i=1

b2i a
−1
i

)(
n∑

i=1

aix
2
i

)

. (4.18)

Equality is attained in (4.18) precisely when there exists a real number t0 with

a
1/2
i xi = t0

bi√
ai

(i = 1, . . . , n), (4.19)

equivalently
xi = t0bi/ai (i = 1, . . . , n). (4.20)

Supposing the xi are such that equality holds here, we have

1 =

n∑

i=1

bixi =

n∑

i=1

t0
b2i
ai
,

which forces t0 = (
∑n
i=1 b

2
i /ai)

−1. Solving for the xi from (4.20) yields

xi =
bi/ai

∑n
i=1 b

2
i /ai

. (4.21)

Since this choice of the xi can be directly checked to satisfy (4.19) with the given
value of t0, it follows it does indeed give the minimum value. Its uniqueness in
this respect finally follows now from (4.21).

Lemma 4.3.3 (Möbius Inversion, Dual Form). Let D be a finite set of
positive integers with the property that if d ∈ D and d′ | d, then d′ ∈ D. Suppose
f, g are complex-valued functions defined on D. Then

f(n) =
∑

d∈D
n|d

g(d)⇐⇒ g(n) =
∑

d∈D
n|d

µ(d/n)f(d).

Proof. We prove the forward implication, leaving the other direction to the
reader. The proof consists of writing everything out. If n ∈ D,

∑

n|d
d∈D

µ(d/n)f(d) =
∑

n|d
d∈D

µ(d/n)
∑

d|d′
d′∈D

g(d′)

=
∑

n|d′
d′∈D

g(d′)
∑

d|d′,n|d
d∈D

µ(d/n) =
∑

n|d′
d′∈D

g(d′)
∑

k|d′/n
nk∈D

µ(k).

But if k | d′/n, then nk | d′ ∈ D; since D is divisor-closed, the condition nk ∈ D
is automatic. It follows that the final inner sum vanishes unless d′/n = 1, where
it takes the value 1, so that the entire above expression simplifies to g(n).
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Remark. The usual Möbius inversion formula also holds for functions on finite
divisor-closed sets (even arbitrary divisor closed sets). It is worth saying a word
about the connection between this usual inversion formula and what we have
been calling its dual.

We suppose D finite. We can view Möbius inversion as a statement about
linear maps, namely that

T : f →



n 7→
∑

d|n
f(d)



 , S : g →



n 7→
∑

d|n
g(d)µ(n/d)





are mutually inverse linear transformations of the vector space V of complex-
valued functions on D. Similarly, the dual Möbius inversion formula states that
T ′ and S′ are inverse, where T ′ and S′ are defined analogously. Linear algebra
shows that T ◦S = id if and only if S ◦ T = id, i.e., one direction of the Möbius
inversion formula implies the other, and similarly for the dual formula.

Now let (ed)d∈D be a basis of characteristic functions of elements of D. Then
the matrix of T ′ with respect to this basis is the transpose of that of T , while
the matrix of S′ is the transpose of that of S. It follows that T is the inverse of
S if and only if T ′ is the inverse of S′; i.e., the Möbius inversion formula holds
if and only if the dual Möbius inversion formula holds.

4.3.2 Proof of Lemma 4.3.1 by Selberg’s sieve

We will use notation consistent with Chapter 3, as this will facilitate the reader’s
adapting our results to a more general sieving situation (see §4.3.3):

We let A (respectively P) denote the finite sequence of integers (respectively
finite set of primes) given by (4.17). Given a parameter z, we let

P := P (z) =
∏

p≤z
p,

and we write
S(A,P, z) = |{a ∈ A : gcd(a, P ) = 1}|.

We let
Ad = |{a ∈ A : d | a}|.

Then, for any d | P (indeed, for any positive integer d), we have

Ad =

⌊
x+ y

d

⌋

−
⌊x

d

⌋

=
y

d
+ r(d),

where |r(d)| ≤ 1.
The proof begins in earnest with the observation that

S(A,P, z) ≤
∑

a∈A

(
∑

d|a
d|P

λ(d)

)2
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for any real-valued function λ defined on the divisors of P with λ(1) = 1. This
can be seen by noting that the inner sum majorizes the characteristic function
of the integers a prime to P . Expanding and reversing the order of summation
shows

S(A,P, z) ≤
∑

d1,d2|P
λ(d1)λ(d2)

∑

a∈A
d1|a,d2|a

1 =
∑

d1,d2|P
λ(d1)λ(d2)A[d1,d2].

= X
∑

d1,d2|P

λ(d1)λ(d2)

d1d2
+

∑

d1,d2|P
λ(d1)λ(d2)r([d1, d2]) = XQ+R,

say. We think of XQ as the main term and R as an error term we wish to
control, and we attempt to choose λ so that Q is small. In order to keep the
error term R in check, we tack on the requirement that λ(d) = 0 for d > w,
where w ≥ 1 is a parameter to be chosen later.

As things stand, Q is a homogeneous degree 2 polynomial (quadratic form)
in the λ(d) (for d | P ). We would like to make this a diagonal quadratic form,
because we know how to minimize those (by Lemma 4.3.2). To this end, we
rewrite

Q =
∑

d1,d2|P

λ(d1)λ(d2)

d1d2
gcd(d1, d2),

and use the identity

n =
∑

k|n
φ(k) (4.22)

to reexpress

Q =
∑

d1,d2|P

λ(d1)λ(d2)

d1d2

∑

k|(d1,d2)
φ(k)

=
∑

k|P
φ(k)

∑

d1,d2|P
k|d1,d2

λ(d1)λ(d2)

d1d2
=
∑

k|P
φ(k)

(
∑

d|P
k|d

λ(d)

d

)2

=
∑

k|P
φ(k)y(k)2,

(4.23)

where

y(k) :=
∑

d|P
k|d

λ(d)

d
. (4.24)

Note that while we defined y in terms of λ, we can recover λ from y, since
Lemma 4.3.3 applied to the divisor closed set D = {d | P} shows

λ(k)

k
=
∑

d|P
k|d

µ(d/k)y(d). (4.25)
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The reverse implication of the same lemma shows that given any values y(k)
(for k | P ), there is way of defining λ(d) (for d | P ) which yields the given values
y(k), namely, just define λ by (4.25).

The constraint on λ that λ(1) = 1 is equivalent, by (4.25), to the constraint

∑

d|P
µ(d)y(d) = 1,

while (4.25) and (4.24) together imply that λ(d) = 0 for d > w if and only if
y(d) = 0 for d > w. We thus want to minimize the diagonal form

∑

d|P
d≤w

φ(d)y(d)2, given
∑

d|P
d≤w

µ(d)y(d) = 1,

and we are in the exact situation of Lemma 4.3.2. The minimum value is 1/D,
where

D = D(z, w) :=
∑

d|P,d≤w

µ(d)2

φ(d)
=

∑

d|P,d≤w

1

φ(d)
,

and this minimum is attained (uniquely, in fact) when

y(d) =
µ(d)

Dφ(d)
(d | P, d ≤ w),

hence when (see (4.25))

λ(k) =
k

D

∑

d|P,k|d
d≤w

µ(d/k)µ(d)

φ(d)
(4.26)

for k | P, k ≤ w. So choose λ(k) according to (4.26) for k | P, k ≤ w and define
λ(k) = 0 for k | P, k > w. Actually, as (4.26) already vanishes for k > w, we
can express our choice more succinctly by saying λ is always given by (4.26).

To complete our bound on S(A,P, z) it is also necessary to estimate R.
Since |r| ≤ 1,

|R| ≤
∑

d1,d2|P
|λ(d1)||λ(d2)| ≤

(
∑

k|P
|λ(k)|

)2

=

(
∑

k|P,k≤w
|λ(k)|

)2

.

But

|λ(k)| =
∣
∣
∣
∣
∣

k

D

∑

d|P,k|d
d≤w

µ(d/k)µ(d)

φ(d)

∣
∣
∣
∣
∣
≤ k

D

∑

d|P,k|d
d≤w

1

φ(d)
(4.27)

≤ k

Dφ(k)

∑

d′|P,d′≤w

1

φ(d′)
=

k

φ(k)
, (4.28)
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where to transition between (4.27) and (4.28), we have written d = kd′ and
noted that since d is squarefree, necessarily (k, d′) = 1, so that φ(d) = φ(k)φ(d′).
Substituting above shows

|R| ≤
∑

k|P,k≤w

k2

φ(k)2
≤ w2

∑

k|P,k≤w

1

φ(k)2
≤ w2D2 = (wD)2. (4.29)

Since Q = 1/D for our choice of λ, we have shown:

Lemma 4.3.4. In the sieving situation of this section,

S(A,P, z) ≤ XQ+R ≤ X/D + (wD)2. (4.30)

We now need an estimate for D:

Lemma 4.3.5. Let D = D(z, w) =
∑

d|P,d≤w 1/φ(d). Then for w ≥ z ≥ 2, we
have

log z ≤ D(z, w) ≤ C log z

for some absolute constant C.

Proof. For the upper bound, observe

D ≤
∑

d|P

1

φ(d)
≤
∏

p≤z
(1 + 1/φ(p)) =

∏

p≤z
(1− 1/p)−1 � log z,

by Mertens’ theorem. The lower bound comes from noting that

D(z, w) ≥ D(z, z) =
∑

d|P,d≤z

1

φ(d)

=
∑

d≤z
µ(d) 6=0

∏

p|d

(
1

p
+

1

p2
+ . . .

)

≥
∑

d≤z

1

d
≥ log z.

Note that because P is the set of all primes, d | P whenever the squarefree
number d satisfies d ≤ z.

It is now a simple matter obtain the stated bound on π(x+ y)− π(y):

Proof of Lemma 4.3.1. By Lemmas 4.3.4 and 4.3.5,

S(A,P, z) ≤ X/D + (wD)2 ≤ y/ log z +O(w2 log2 z).

Taking z = w = y1/2/ log2 y, we find

S(A,P, z) ≤ y
1
2 log y − 2 log log y

+O

(
y

log2 y

)

≤ (2 + o(1))
y

log y
.

as y →∞. Since z = o(y/ log y), the proof is completed by recalling

π(x+ y)− π(x) =≤ z + S(A,P, z).
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4.3.3 A General Version of Selberg’s Sieve (optional)

Now consider a more general sifting situation: Let A be a finite sequence of
integers, P a finite set of primes, and suppose

Ad : = |{a ∈ A : d | a}| = X
ω(d)

d
+ r(d) (d | P ),

where X is an approximation to the number of elements of A, ω is a multi-
plicative function taking positive values on divisors of P :=

∏

p∈P p, and r is a
function defined on the divisors of P which we think of as a remainder term.
Moreover, suppose this remainder term satisfies

|r(d)| ≤ ω(d) (d | P ),

as is the case in the applications of the last chapter.
We leave it as an exercise to adapt our former argument to prove:

Theorem 4.3.6 (Selberg’s Upper Bound Sieve). For each w ≥ 1,

S(A,P) ≤ X/D + (wD)2,

where

D = D(P,w) =
∑

d|P,d≤w

1

f(d)
,

and

f(k) =
∑

d|k

dµ(k/d)

ω(d)
.

It may help to note the identity

g(a)g(b) = g((a, b))g([a, b]),

valid for any multiplicative function g.

Remark. If we compare the theorem with Lemma 4.3.4, we see our f is playing
the former role of φ. The explanation for this is that diagonalizing our quadratic
form by our previous procedure now requires a function f with

k

ω(k)
=
∑

d|k
f(d) (k | P ).

In the special case considered before, ω(k) ≡ 1, and we simply ‘recalled’ the
well-known identity (4.22). In general there is no analogous well-known identity;
this is not problematic, as f can be directly constructed by Möbius inversion
(appropriately generalized to pairs of functions defined on arbitrary divisor-
closed sets).

The next exercise gives an important application refining and generalizing
Lemma 4.3.1 to primes in arithmetic progressions:
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Exercise 4.3.1 (Brun-Titchmarsh).

a) Prove that there exists a positive absolute constant c with the property
that if y/q ≥ c, then

π(x+ y; q, a)− π(x; q, a) ≤ 2y

φ(q) log y
q

+O

(

y

φ(q)

log log y
q

log2 y
q

)

uniformly for gcd(a, q) = 1 and q ≥ 1.

Suggestions: Take

A = {x < n ≤ x+ y : n ≡ a (mod q)}, P = {p ≤ z : p - q};

then with X = y/q, one has Ad = X/d + r(d) with |r(d)| ≤ 1 for each
d | P . (So the hypotheses of Theorem 4.3.6 are satisfied with ω ≡ 1.)
Arguing as before, show that (with an absolute constant C)

∑

d≤z
gcd(d,q)=1

1

d
≤ D = D(P,w) ≤ C log z (2 ≤ z ≤ w),

and note that the left hand side can be estimated from below by observing

q

φ(q)

∑

d≤z
gcd(d,q)=1

1

d
=
∏

p|q

(

1− 1

p

)−1 ∑

d≤z
gcd(d,q)=1

1

d
≥
∑

d′≤z

1

d′
≥ log z.

Therefore

S(A,P) ≤ X
φ(q)
q log z

+O(w2 log2 z) =
y

φ(q) log z
+O(w2 log2 z);

now choose z = w = X1/2/ log2X.

b) Use the result of a) to prove that

π(x+ y; q, a)− π(x; q, a)� y

φ(q) log y
q

,

with an absolute implied constant, uniformly for (a, q) = 1 and y > q. In
particular (taking x = 0),

π(y; q, a)� y

φ(q) log y
q

for (a, q) = 1 and y > q.

Hint: the result is trivial (why?) if y/q is absolutely bounded, so you may
assume y/q is large.
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Exercise 4.3.2. Define the natural density of a set of primes P (relative to the
set of all primes) as the limit

lim
x→∞

|P ∩ [1, x]|
/ x

log x
,

if it exists. Then the prime number theorem asserts that the set of all primes
has density 1, and the PNT for arithmetic progressions asserts that the set of
primes p ≡ a (mod q) has density 1/φ(q) whenever gcd(a, q) = 1.

Assuming the PNT for arithmetic progressions, prove that the set P of
primes p for which p − 1 is squarefree has density

∏

q(1 − 1
q(q−1) ), where the

product is over all primes q.
Hint: Approximate P (from “above”) by the sets Pz, where Pz is the set of

primes p for which p− 1 is not divisible by q2 for any q ≤ z. Use the PNT for
APs to compute the density of each Pz and use the Brun-Titchmarsh inequality
to bound above the counting function of Pz \ P.

Our discussion of Selberg’s sieve follows Ben Green’s excellent notes [Gre].
Green gives a number of interesting applications, including an application to
small prime gaps and another derivation of the upper bounds for r(n) and
πN (x) obtained (by the Brun-Hooley sieve) in the last chapter. In addition
to the general references cited in Chapter 3, we recommend to the reader the
particularly pithy introductory account of Selberg’s sieve given in [Elk03].

4.4 The Turán-Kubilius Inequality

Recall that an arithmetic function f is called additive if f(ab) = f(a) + f(b)
whenever a and b are relatively prime and is called strongly additive if in addition
f(pk) = f(p) for every prime power pk (p prime, k a positive integer). Note
that f is strongly additive if and only if

f(n) =
∑

p|n
f(p)

for each positive integer n.

Lemma 4.4.1 (Turán-Kubilius Inequality [Kub62]). Let f be a strongly
additive real-valued function. Then

∑

n≤x

∣
∣
∣
∣
∣
∣

f(n)−
∑

p≤x

f(p)

p

∣
∣
∣
∣
∣
∣

2

� x
∑

p≤x

|f(p)|2
p

(4.31)

for every real x. Here the implied constant is absolute.

Proof. It is convenient to introduce the notation

A(x) :=
∑

p≤x
p−1f(p), B(x) :=




∑

p≤x
p−1|f(p)|2





1/2

,
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so that the desired inequality becomes

∑

n≤x
|f(n)−A(x)|2 � xB(x)2.

It is no loss of generality to assume that f is nonnegative. To see this,
assume (4.31) known for nonnegative functions, and introduce f1, f2 defined by

f1(p) =

{

f(p) if f(p) ≥ 0,

0 if f(p) < 0,
f2(p) =

{

0 if f(p) ≥ 0,

−f(p) if f(p) < 0,

and extended to be strongly additive. Let Ai and Bi be defined as A and B
were above, but with f replaced by fi (i = 1, 2). Then f1, f2 are nonnegative
strongly additive functions, f = f1 − f2, and

∑

n≤x
|f(n)−A(x)|2 =

∑

n≤x
|(f1(n)−A1(x))− (f2(n)−A2(x))|2

≤ 2

2∑

i=1

∑

n≤x
|fi(n)−Ai(x)|2

� x(B1(x)2 +B2(x)2) = xB(x)2,

so that (4.31) follows in general (in fact the proof shows we may take twice the
original implied constant).

We now proceed to the proof, under the assumption that f is nonnegative.
We may assume x is an integer and at least 2. Expanding out the square shows
the left hand side of (4.31) is given by

∑

n≤x
f(n)2 − 2A(x)

∑

n≤x
f(n) + xA(x)2.

Let us examine these terms in turn. With p, q denoting primes, we have

∑

n≤x
f(n)2 =

∑

n≤x

(
∑

p|n
f(p)

)(
∑

q|n
f(q)

)

=
∑

p,q≤x
f(p)f(q)

∑

n≤x
p,q|n

1

=
∑

pq≤x
p6=q

f(p)f(q)

⌊
x

pq

⌋

+
∑

p≤x
f(p)2

⌊
x

p

⌋

≤ x
∑

pq≤x
p6=q

f(p)f(q)

pq
+ x

∑

p≤x

f(p)2

p
≤ xA(x)2 + xB(x)2.
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In a similar manner, we find

∑

n≤x
f(n) =

∑

p≤x
f(p)

⌊
x

p

⌋

≥ x
∑

p≤x

f(p)

p
−
∑

p≤x
f(p) = xA(x)−

∑

p≤x
f(p),

so that
−2A(x)

∑

n≤x
f(n) ≤ −2xA(x)2 + 2A(x)

∑

p≤x
f(p).

Adding our three terms reveals

∑

n≤x
|f(n)−A(x)|2 ≤ xB(x)2 + 2A(x)

∑

p≤x
f(p).

Now matters can be settled by using the Cauchy-Schwarz inequality to show
the second term on the right hand side is O(xB(x)2). Indeed,

2A(x)
∑

p≤x
f(p)�

∑

p≤x

f(p)

p

∑

p≤x
f(p)

=
∑

p≤x

f(p)

p1/2

1

p1/2

∑

p≤x

f(p)

p1/2
p1/2

�




∑

p≤x

f(p)2

p





1/2


∑

p≤x

1

p





1/2


∑

p≤x

f(p)2

p





1/2


∑

p≤x
p





1/2

� B(x)




∑

2≤n≤x

1

n





1/2

B(x) (xπ(x))
1/2 � xB(x)2

on recalling the estimates

∑

2<n≤x
1/n� log x, π(x)� x/ log x (x ≥ 2).

Exercise 4.4.1. Show that the same estimate holds, with the same implied con-
stant, if f is complex-valued.

4.4.1 Exercises: The Orders of ν and Ω (optional)

Recall that ν(n) denotes the number of distinct prime factors of n and Ω(n)
denotes the number of prime factors of n counted with multiplicity. Thus if
n = pe11 p

e2
2 . . . pek

k (with distinct primes), then

ν(n) = k, Ω(n) = e1 + e2 + · · ·+ ek.
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Note that ν is strongly additive (in the sense introduced above) and Ω is com-
pletely additive:

Ω(mn) = Ω(m) + Ω(n)

for any positive integers m,n.
The first inequality of Turán-Kubilius type appears in [Tur34], in the guise

of the particular estimate
∑

n≤x
(ν(n)− log log x)2 = O(x log log x). (4.32)

In the next few exercises we prove this estimate and explore some of its conse-
quences, ending with a proof of Erdős’ Multiplication Table Theorem.

Exercise 4.4.2 (Mean Values of ν,Ω). Show that as x→∞, one has
∑

n≤x
ν(n) = x log log x+ C1x+O(x/ log x),

∑

n≤x
Ω(n) = x log log x+ C2x+O(x/ log x)

for some constants C1, C2.

Exercise 4.4.3. Use the Turán-Kubilius inequality to establish (4.32).

One implication of (4.32) is that both ν and Ω seldom differ substantially
from this average value. This is quantified in the following exercise:

Exercise 4.4.4. Let κ(x) be a function tending to infinity with x. Using (4.32),
show that

|{n ≤ x : |ν(n)− log log x| > κ(x)(log log x)1/2}| = o(x) (x→∞). (4.33)

Using the estimate
∑

n≤x
(Ω(n)− ω(n))� x,

which derives from 4.4.2, deduce

|{n ≤ x : Ω(n)− ν(n) > (log log x)1/2}| = O
(

x/(log log x)1/2
)

= o(x).

Conclude that (4.33) remains valid with ν replaced by Ω.

Exercise 4.4.5 (Erdős [Erd60]). Let M(N) denote the number of distinct ele-
ments in the N ×N multiplication table: i.e.,

M(N) = |{mn : 1 ≤ m,n ≤ N}|.
Thus M(N) ≤ N2 trivially, and in fact commutativity of multiplication yields
the stronger bound

M(N) ≤
(
N

2

)

+N =
N2 +N

2
,

so that lim supN→∞M(N)/N2 ≤ 1/2. Here we use the result of the last exercise
to show M(N)/N2 → 0.
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a) From the previous exercise we have
∣
∣
∣
∣

{

n ≤ N : |Ω(n)− log logN | > 1

4
log logN

}∣
∣
∣
∣

= o(N).

Using this result, show that
∣
∣
∣
∣

{

(a, b) : 1 ≤ a, b ≤ N, and |Ω(ab)− 2 log logN | > 1

2
log logN

}∣
∣
∣
∣

= o(N2).

b) On the other hand, show that
∣
∣
∣
∣

{

n ≤ N2 : |Ω(ab)− log logN | > 1

4
log logN

}∣
∣
∣
∣

= o(N2).

c) By combining a) and b), prove that M(N) = o(N2).

Exercise 4.4.6 (Schroeppel). Establish the elementary lower bound

M(N)� N2/ logN (N →∞).

Suggestion: Consider products pm, where N/2 < p ≤ N is prime and m ≤ N
is arbitrary. Keep in mind that π(N)− π(N/2)� N/ logN , as proved in §1.5.

4.5 Hildebrand’s Lemmata

4.5.1 Preliminary Lemmas

The upper bound of Lemma 4.3.1 quickly translates into an upper bound for
the sum of log p/p taken over intervals (x, x+ y]:

Corollary 4.5.1. Let B > 1 be a fixed positive real number. As y → ∞, we
have

∑

x<p≤x+y

log p

p
≤ (2 + o(1)) log

x+ y

y
,

uniformly for y ≤ x ≤ By.
Proof. Assuming k large, we partition the interval (x, x + y] into k = k(y) =
blog yc subintervals

Ij := (xj , xj + y/k], xj = x+ jy/k (j = 0, . . . , k − 1).

Since log t/t is eventually decreasing, as y →∞ we have

∑

x<p≤x+y

log p

p
≤
k−1∑

j=0

log xj
xj

∑

p∈Ij

1

≤ (2 + o(1))

k−1∑

j=0

log xj
xj

y/k

log (y/k)
.
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But since

y ≤ x ≤ xj ≤ x+ y ≤ (B + 1)y,

one has

log xj ≤ log (B + 1)y = (1 + o(1)) log y,

log (y/k) ≥ log y − log log y ≥ (1 + o(1)) log y,

which leads to the estimate

∑

x<p≤x+y

log p

p
≤ (2 + o(1))

k−1∑

j=0

1

x+ jy/k

y

k
. (4.34)

The temptation to compare this Riemann sum to the corresponding integral is
one we cannot resist. Keeping in mind that x+ jy/k is a decreasing function of
j ≥ 0 (once x and y are given), we see

k−1∑

j=0

1

x+ jy/k
=

y

kx
+

k−1∑

j=1

1

x+ jy/k

≤ y

kx
+

∫ x+y k−1
k

x

dt

t

≤ y

kx
+

∫ x+y

x

dt

t
=

y

kx
+ log

x+ y

y
.

Since y/kx ≤ 1/k = o(1) and log x+y
y ≥ log 2,

k−1∑

j=0

1

x+ jy/k
≤ y/kx+ log

x+ y

y
= (1 + o(1)) log

x+ y

y
.

Substituting into (4.34) finishes the proof.

Lemma 4.5.2. Let ε > 0, and let x, x′ ≥ 3. There exists λ, 1 ≤ λ ≤ λ0, for
which

∑

y<p≤(1+ε)y

log p

p
≥ δ (4.35)

for both y = λx and y = λx′. Here δ = δ(ε) > 0 and λ0 = λ0(ε) is a positive
integer.

Remark. It is a consequence of the prime number theorem that actually (4.35)
holds for all large y, for an appropriate δ = δ(ε). For example, this follows from
the result of Exercise 4.2.3 (though there are more direct demonstrations).

Proof. We may suppose 0 < ε ≤ 1. We let ε1 := ε/3, and we define the sequence
(xi)i≥0 by xi = x(1 + ε1)i. We let δ be a positive parameter whose value will
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be chosen later, and we define I = I(δ, x) as the set of nonnegative indices for
which

∑

xi<p≤(1+ε1)xi

log p

p
≥ δ. (4.36)

We also define
I := {i ≥ 0 : i ∈ I or i+ 1 ∈ I}.

Note that because
(1 + ε1)2 = 1 + 2ε1 + ε21 ≤ 1 + ε,

the inequality (4.35) holds for y = xi whenever i ∈ I.
For an interval A ⊂ R, we define

N(A) := |A ∩ I|, N(A) := |A ∩ I|.

Our strategy will be as follows: we will show that if δ is sufficiently small,
depending only on ε, then we can find a positive integer i0 = i0(ε) with the
property that N([0, i0)) > i0/2, regardless of the particular x ≥ 3 with respect
to which I is defined. Applying this observation to the given x and x′, we see

there must exist an i, 0 ≤ i < i0, with i ∈ I ∩ I ′, where I is defined with respect

to x and where I
′

is analogously defined with respect to x′. We can then take
λ0 = (1 + ε1)i0 and λ = (1 + ε1)i in the statement of the lemma.

To carry out this strategy we start by looking for a lower bound on N([i, i+
g)], where i, g are integers with i ≥ 0 and g ≥ 1. By a result of Mertens’ (see
(1.38)),

∑

xi<p≤xi+g

log p

p
= g log

xi+g
xi

+O(1) = g log(1 + ε1) +O(1), (4.37)

with absolute implied constants. But by Corollary 4.5.1 with B = ε−1
1 , we have

(writing N = N([i, i+ g))),

∑

xi<p≤xi+g

log p

p
=

g−1
∑

j=0

∑

xi+j<p≤xi+j+1

log p

p

≤ 2N log (1 + ε1) + (g −N)δ + o(g)

≤ 2N log (1 + ε1) + gδ + o(g), (4.38)

where the term o(g) describes the behavior as g → ∞, and is uniform in both
x ≥ 3 and i ≥ 0. Comparing (4.37) and (4.38), we deduce

N([i, i+ g)) ≥ g
(

1

2
− δ

2 log (1 + ε1)
+ o(1) +O

(
1

g log (1 + ε1)

))

.

If δ ≤ ε/6, the right hand side becomes positive for sufficiently large g (for any
choice of δ in this range and any value of i ≥ 0), since

log(1 + ε1) =

∫ 1+ε1

1

dt

t
≥ ε1

1

1 + ε1
=

ε

3 + ε
≥ ε

4
.
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Fix a positive integer g = g(ε) large enough that this is so. Then we have shown
every interval [i, i+ g) (with i ≥ 0) contains an element of I, provided δ ≤ ε/6.
We assume this inequality on δ holds in what follows.

Now suppose i0 > 6g. We consider two cases, according as the inequality

N([0, i0))−N([0, i0)) ≤ i0/3g.
holds or not. If it does, then there are at most i0/3g + 1 blocks of consecutive
indices i ≤ i0 not belonging to I (since the endpoints of all such blocks not
terminating at i0 are counted by the left hand side). But by what was said
above, any such block has length at most g. It follows that

N([0, i0)) ≥ N([0, i0)) ≥ i0 − g(i0/3g + 1) > i0/2.

Now suppose the inequality fails. Then

N([0, i0)) > N([0, i0) +
i0
3g

≥ i0
(

1

2
+

1

3g
− δ

2 log (1 + ε1)
+ o(1) +O

(
1

i0 log(1 + ε1)

))

.

In this case we see that if δ = δ(ε) is chosen sufficiently small, then N([0, i0)) >
i0/2 once i0 is large. Any such large i0 (that also exceeds 6g) completes the
proof, by our earlier remarks.

4.5.2 The Fundamental Lemma

The proof that M∗(x) = o(1) is achieved by means of our next result, whose
proof occupies the entire next section:

Fundamental Lemma. Let η(x) be a nonnegative function with η(x) → 0 as
x→∞. Then

M∗(x)−M∗(x′) = o(1)

as x→∞, uniformly for x ≤ x′ ≤ x1+η(x).

Proof of the Prime Number Theorem (in the form M∗(x) = o(1)). Let η(x) =
(log x)−1/2. Now

∫ x1+η

x

M∗(x′)
x′

dx′ =

∫ x1+η

x

M∗(x) + o(1)

x′
dx′ = (η log x)M∗(x) + o(η log x),

so that

M∗(x) =
1

η log x

∫ x1+η

x

M∗(x′)
x′

dx′ + o(1)

=
1

η log x

∫ x1+η

x

1

x′2
∑

n≤x′

µ(n) dx′ + o(1)

=
1

η log x

∑

n≤x′

µ(n)

∫ x1+η

max{x,n}

dx′

x′2
+ o(1)
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Evaluating the integral, this becomes

1

η log x

∑

n≤x′

µ(n)

(
1

max{x, n} −
1

x1+η

)

+ o(1)

=
1

η log x

∑

x<n≤x′

µ(n)

n
− M∗(x′)
η(log x)x1+η

+
M∗(x)

ηx log x
+ o(1)

=
1

η log x

∑

x<n≤x′

µ(n)

n
+ o(1),

but the final sum here is bounded (see Lemma 4.2.3), so the entire expression

is o(1). Note that the choice η = log−1/2 x is made to ensure η log x→∞.

4.6 Proof of The Fundamental Lemma

4.6.1 Preparation

The next lemma provides the identity on which Hildebrand’s proof is based. It
is a consequence of the Turán-Kubilius inequality.

Lemma 4.6.1. Let P be a set of primes p ≤ x, where x > 0. Then

(
∑

p∈P

1

p

)

M∗(x) = −
∑

p∈P

M∗(x/p)

p
+O

((
∑

p∈P

1

p

)1/2
)

, (4.39)

where the implied constant is absolute.

Proof. Let p be any prime. Then for nonnegative x,

∑

n≤x
p|n

µ(n) =
∑

pn′≤x
µ(pn′) = µ(p)

∑

n′≤x/p
p-n′

µ(n′)

= −
(
∑

n′≤x/p
µ(n′) +O(x/p2)

)

= −x
p
M∗(x/p) +O(x/p2).

Now divide by x and sum over p ∈ P. Reversing the order of summation of the
left hand side then yields

1

x

∑

n≤x
µ(n)νP(n) =

1

x

∑

p∈P

∑

n≤x
p|n

µ(n)

= −
∑

p∈P

M∗(x/p)

p
+O

(
∑

p∈P

1

p2

)

.
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Subtracting this from the obvious relation

1

x

∑

n≤x
µ(n)

∑

p∈P

1

p
= M∗(x)

∑

p∈P

1

p
,

we find

M∗(x)
∑

p∈P

1

p
+
∑

p∈P

1

p
M∗(x/p) = − 1

x

∑

n≤x
µ(n)



νP(n)−
∑

p∈P

1

p



+O

(
∑

p∈P

1

p2

)

.

By the Cauchy-Schwarz and Turán-Kubilius Inequalities (the latter applied with
f = νP), we see the first term on the right hand side is

� 1

x
x1/2






∑

n≤x

∣
∣
∣
∣
∣
∣

νP(n)−
∑

p∈P

1

p

∣
∣
∣
∣
∣
∣

2





1/2

� 1

x
x1/2x1/2

(
∑

p∈P

1

p

)1/2

=

(
∑

p∈P

1

p

)1/2

.

Since also

∑

p∈P

1

p2
=
∑

p∈P

1

p1/2

1

p3/2
�
(
∑

p∈P

1

p

)1/2(∑

p∈P

1

p3

)1/2

�
(
∑

p∈P

1

p

)1/2

,

the lemma follows.

We also require a trivial bound on the variation of M∗:

Lemma 4.6.2. For x ≥ 1 and y ≥ 0, we have

M∗(x+ y)−M∗(x)� y + 1

x
.

Proof. Write

M∗(x+ y)−M∗(x) =
1

x+ y

∑

n≤x+y
µ(n)− 1

x

∑

n≤x
µ(n)

� y

x(x+ y)

∑

n≤x
|µ(n)|+ 1

x+ y

∑

x<n≤x+y
|µ(n)| � y

x+ y
+
y + 1

x+ y
� y + 1

x
.

4.6.2 Construction of P ,P ′

We now begin the proof of the Fundamental Lemma.
Fix ε > 0. It suffices to prove that if η > 0 is sufficiently small (depending

on ε), then
|M∗(x)−M∗(x′)| � ε (x ≤ x′ ≤ x1+η)
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with an absolute implied constant, whenever x is sufficiently large (depending
at most on ε, η).

We will prove this roughly as follows: We will select sets of primes P ⊂ [1, x)
and P ′ ⊂ (1, x′]. Then we have the identity (4.39), as well as a corresponding
identity with P replaced by P ′. We will choose our sets P,P ′ so that the right
hand sides of these identities roughly cancel each other, while the sum S of the
reciprocals of the primes in P is roughly the same (large number) as the sum of
the reciprocals of the primes in P ′, say S′. Subtracting one identity from the
other, and dividing by S, we will obtain the required bound on |M∗(x)−M∗(x′)|.

So let 0 < η ≤ 1/2 and suppose 3 ≤ x ≤ x′ ≤ x1+η. Define increasing
sequences (xj)j≥0, (x′j)j′≥0 as follows: let

x0 = x
√
η, x′0 = x0

x′

x
,

and for each j ≥ 0 choose xj+1 in the interval

xj(1 + ε) ≤ xj+1 ≤ λ0xj(1 + ε),

with the property that
∑

y<p≤(1+ε)y

log p

p
≥ δ (4.40)

holds for both y = xj+1 and y = x′j+1 := xj+1(x′/x). Here λ0 = λ0(ε) and
δ = δ(ε) are the constants of Lemma 4.5.2, and the x and x′ of that lemma have
been taken in this application as xj(1 + ε) and x′j(1 + ε) respectively.

Define j0 by xj0 ≤ x < xj0+1, so that j0 ≥ 2 if x is large (in terms of ε), as
we will assume. Now define the intervals

Ij = (xj , xj(1 + ε)], I ′j := (x′j , x
′
j(1 + ε)].

Then Ij , I
′
j (1 ≤ j < j0) are disjoint and contained in (x0, x] and (x′0, x

′] respec-
tively.

Now choose sets of primes P,P ′ with

P ⊂
⋃

1≤j<j0
Ij , P ′ ⊂

⋃

1≤j<j0
I ′j ,

and
∣
∣
∣
∣
∣
∣

∑

p∈P∩Ij

log p

p
− δ

∣
∣
∣
∣
∣
∣

≤ log (xj(1 + ε))

xj
,

∣
∣
∣
∣
∣
∣

∑

p∈P′∩I′j

log p

p
− δ

∣
∣
∣
∣
∣
∣

≤
log (x′j(1 + ε))

x′j
.

(4.41)
This is possible because originally (4.40) holds (for y = xj , x

′
j) and discarding

a prime p ∈ Ij shifts the value of
∑

p∈P∩Ij
log p/p by at most log (xj(1 + ε))/xj

(and similarly for I ′j).
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4.6.3 Estimation of S, S ′

Define

S :=
∑

p∈P

1

p
, S′ :=

∑

p∈P′

1

p
.

We would like to estimate S and S′, but the information we are initially
given is about

∑
log p/p, not about

∑
1/p. However,

∑

1≤j<j0

1

log (xj(1 + ε))

∑

p∈P∩Ij

log p

p
≤ S ≤

∑

1≤j<j0

1

log xj

∑

p∈P∩Ij

log p

p
, (4.42)

from which it follows that

S −
∑

1≤j<j0

1

log xj

∑

p∈P∩Ij

log p

p
�

∑

1≤j<j0

(
1

log xj
− 1

log (xj(1 + ε))

)
∑

p∈P∩Ij

log p

p

�
∑

1≤j<j0

1

log xj log (xj(1 + ε))

∑

p∈P∩Ij

log p

p

� 1

log x0

∑

1≤j<j0

1

log (xj(1 + ε))

∑

p∈P∩Ij

log p

p

� S

log x0
. (4.43)

Recalling the right-hand inequality of (4.42), we conclude

S =

(

1 +O

(
1

log x0

))
∑

1≤j<j0

1

log xj

∑

p∈P∩Ij

log p

p
(4.44)

Similarly,

S′ −
∑

1≤j<j0

1

log x′j

∑

p∈P′∩I′j

log p

p
� S′

log x′0
� S′

log x0
, (4.45)

and

S′ =

(

1 +O

(
1

log x0

))
∑

1≤j<j0

1

log x′j

∑

p∈P′∩I′j

log p

p
.

But for each j, 1 ≤ j < j0,

∑

p∈P∩Ij

log p

p
= δ

(

1 +O

(
1

δ

log (xj(1 + ε))

xj

))

.

In particular, since log (xj(1 + ε))/xj � 1/ log xj � 1/ log x0, there is a positive
absolute constant A with

δ

(

1− A

log x0

)

≤
∑

p∈P∩Ij

log p

p
≤ δ

(

1 +
A

log x0

)

(1 ≤ j < j0),
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so that from (4.44),

S =

(

1 +O

(
1

log x0

))(

1 +O

(
1

δ log x0

))
∑

1≤j<j0

δ

log xj

=

(

1 +O

(
1

δ log x0

))
∑

1≤j<j0

δ

log xj
(4.46)

Similarly,

S′ =

(

1 +O

(
1

δ log x0

))
∑

1≤j<j0

δ

log x′j
. (4.47)

Since

0 <
log x′j − log xj

log xj
=

log x′/x
log xj

≤ η log x

log x0
=
√
η,

we have

1 ≤
∑

1≤j<j0

δ

log xj

/ ∑

1≤j<j0

δ

log x′j
≤ 1 +

√
η;

dividing (4.46) by (4.47), we find that for large x0 (“large” depending on ε)

S/S′ =

(

1 +O

(
1

δ log x0

))

(1 +O (
√
η)) =

(

1 +O (
√
η) +O

(
1

δ log x0

))

.

(4.48)
Hence if η is sufficiently small and x0 sufficiently large (depending only on ε),

1/2 ≤ S/S′ ≤ 2. (4.49)

We will need a lower bound on S and S′ in what follows. Such a bound can
now be obtained from (4.46) and (4.49), which together imply that for large x0

(depending only on ε),

S′ � S �ε

∑

1≤j<j0

1

log xj

≥
∑

1≤j<j0

1

log x0 + j log (λ0(1 + ε))

≥
∑

0≤j≤j0

1

log x0 + j log (λ0(1 + ε))
− 2

log x0

≥
∫ j0+1

0

dt

log x0 + t log (λ0(1 + ε))
− 2

log x0

≥ 1

log (λ0(1 + ε))
log

log x

log x0
− 2

log x0

≥ 1

log (λ0(1 + ε))
log

1√
η
− 2

log x0
. (4.50)
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4.6.4 Estimation of SM∗(x)− S ′M∗(x′)

Now apply Lemma 4.6.1 to P and to P ′ and subtract to obtain

SM∗(x)− S′M∗(x′)

= −
∑

1≤j<j0




∑

p∈P∩Ij

M∗(x/p)

p
−

∑

p∈P′∩I′j

M∗(x′/p)
p



+O(
√
S).

The error in replacing M∗(x/p) with M∗(x/xj) above can be bounded using
Lemma 4.6.2 as

�
∑

1≤j<j0

∑

p∈P∩Ij

1

p

x/xj − x/p+ 1

x/p
=

∑

1≤j<j0

∑

p∈P∩Ij

p/xj − 1 + p/x

p

�
∑

1≤j<j0

∑

p∈P∩Ij

(1 + ε)− 1 + p/x

p
� εS +

1

x

∑

p∈P
1� εS +O

(
1

log x

)

.

Keeping in mind that S � S′, we see the same upper estimate holds for the
error incurred when replacing M∗(x′/p) by M∗(x′/x′j), so that

SM∗(x)− S′M∗(x′) = −
∑

1≤j<j0

M∗(x/xj)

xj




∑

p∈P∩Ij

1

p
−

∑

p∈P′∩I′j

1

p





+O

(√
S + εS +

1

log x

)

.

Since |M∗| ≤ 1, the estimates (4.43) and (4.45) now imply

SM∗(x)− S′M∗(x′) = −
∑

1≤j<j0

M∗(x/xj)

xj




∑

p∈P∩Ij

log p

p
−

∑

p∈P′∩I′j

log p

p





+O

(√
S + εS +

1

log x
+

S

log x0

)

.

But the inequalities (4.41) governing the selection of P,P ′ imply

∑

1≤j<j0

M∗(x/xj)

xj




∑

p∈P∩Ij

log p

p
−

∑

p∈P′∩I′j

log p

p





�
∑

1≤j<j0

1

log xj

(

log (xj(1 + ε))

xj
+

log (x′j(1 + ε))

x′j

)

�
∑

1≤<j0

1

log xj

(
log xj
xj

)

� j0
x0
.
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Hence

SM∗(x)− S′M∗(x′)� j0
x0

+
√
S + εS +

1

log x
+

S

log x0
.

Finally, using (4.48), we see

S − S′ � S′√η +
S′

δ log x0
� S
√
η +

S

δ log x0
,

so that

SM∗(x)− SM∗(x′)� j0
x0

+
√
S + εS +

1

log x
+

S

log x0
+

S

δ log x0
+
√
η.

4.6.5 Denouement

Dividing by S we have shown

|M∗(x)−M∗(x′)| � ε+
j0
x0S

+
1√
S

+
1

S log x
+

1

log x0
+

1

δ log x0
+
√
η

� ε+
j0
x0S

+
1√
S

+

√
η

S log x0
+

1

log x0
+

1

δ log x0
+
√
η.

(4.51)

We now choose η sufficiently small and x sufficiently large that the right
hand side of (4.51) is O(ε). But let us be more precise about this:

At various points in the argument we have been content to say that certain
O-estimates hold if x0 is sufficiently large and η sufficiently small, both in terms
of ε. That is, there are constants N0 = N0(ε) > 3, say, and η0 = η0(ε) > 0, such
that our estimates are valid (e.g., the implied constants can be “filled in”) once
x0 > N0, say, and η < η0.

We now fix an η < η0 with the further property that

max{1/S, 1/
√
S,
√
η} < ε

for any choice of parameters with x0 > N0(ε). (That this is possible follows
from (4.50).) We can now find an N1 = N1(η, ε) > N0 with the property that
each term on the right hand side of (4.51) is bounded by ε provided x0 > N1.
The only term for which this is not immediately clear is j0/x0S, but this follows
since

j0
x0
≤ 1

x0

log (x′/x)

log(1 + ε)
≤ 1

x0

η log x

log(1 + ε)
=

log x0

x0

√
η

log(1 + ε)
.

Finally, pick N2 so that x > N2 implies x
√
η > N1. It follows that for any

x > N2, the right hand side of (4.51) is O(ε) with an absolute implied constant.

Exercise 4.6.1. Modify Hildebrand’s proof to directly establish that L(x) :=
∑

n≤x λ(n) = o(x), where λ is the arithmetic function defined in Exercise 4.2.4.
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Chapter 5

A Potpourri of Additive
Number Theory

5.1 Introduction

Problems relating to the addition of sets of integers belong to the realm of “ad-
ditive number theory.” In this chapter we survey some representative problems
in an effort to impart the flavor of this rich subject.

If A1, . . . ,Ah are subsets of a given additive semigroup, we define the sumset

A1 + · · ·+Ah := {a1 + · · ·+ ah : a1 ∈ A1, . . . , ah ∈ Ah}.

For a single subset A, the h-fold sumset is defined by1

hA := A+ · · ·+A
︸ ︷︷ ︸

h times

.

A natural question to ask when studying sumsets is how the “size” of the
sumset A+ B compares to that of the component summands A and B. If A,B
are nonempty, finite subsets of Z, then it is straightforward (see Exercise 5.1.1)
to verify the inequality

|A+ B| ≥ |A|+ |B| − 1, (5.1)

and to give an example showing this is best possible. A far deeper theorem of
Cauchy [Cau13] asserts that (5.1) continues to hold if A,B are subsets of Fp,
subject to the obvious necessary condition that |A|+ |B| − 1 ≤ p. We shall give
two proofs of this, the first employing recent ideas of Alon, Nathanson & Rusza
[ANR95] and the second a classical argument of I. Chowla [Cho35]. Related
results and applications are also discussed.

Another major strand in the web of additive number theory is the study of
additive bases. If A is a subset of an additive semigroup S, then we call A a

1Do not confuse this with the dilation h ×A := {ha : a ∈ A}.

191



192 CHAPTER 5. A POTPOURRI OF ADDITIVE NUMBER THEORY

basis of finite order if hA = S for some positive integer h, i.e., if every element
of S can be expressed as a sum of h (not necessarily distinct) elements of A.
The least h with this property is called the order of the basis. We say that A is
an asymptotic basis of finite order if S \hA is finite for some positive integer h,
i.e., if all but finitely many elements of S are the sum of h elements of A. The
minimal h is called the order of the asymptotic basis.

As an illustration, the set of nonnegative squares forms a basis for the natural
numbers of order at most 4, by a well-known theorem of Lagrange. Since every
n ≡ 7 (mod 8) actually requires four squares in its representation, this set is
neither a basis nor an asymptotic basis of order less than 4.

One method of studying bases is to return to the question we asked before
about the size of a sumset versus the size of the summands. For example, we
shall deduce from the above theorem of Cauchy that the set of kth powers always
forms a basis of Fp of order at most k. This is a (mod p) analog of Waring’s
Problem.

When studying additive bases for the natural numbers, the role of “size”
in this strategy must be replaced by some notion of “thickness.” A convenient
measure of thickness for such problems is the Schnirelmann density , defined for
sets of natural numbers A by

δ(A) := inf
n=1,2,...

A(n)

n
.

Note that for any set A ⊂ N, one has 0 ≤ δ(A) ≤ 1, and δ(A) = 1 if and only if
{1, 2, 3, . . . } ⊂ A. A deep theorem of Mann [Man42] asserts that for sets A,B
of natural numbers, both of which contain 0, one has

δ(A+ B) ≥ min{δ(A) + δ(B), 1}.

It follows that if 0 ∈ A and δ(A) > 0, then A is a basis of finite order. This
criterion was first observed by Schnirelmann around 1930, who gave a proof
independent of Mann’s theorem. Both Schnirelmann’s ideas and the proof of
Mann’s theorem are discussed in this chapter.

We also follow Schnirelmann [Sch33] in using his criterion to prove the fol-
lowing beautiful result: There exists an absolute constant C with the property
that every integer n > 1 is a sum of at most C primes. The analytic input
needed for the proof is the upper bound of Chapter 3 for r(N), the number of
ordered representations of N as a sum of two primes, which is used to establish
that the set {p+ q : p, q prime} has positive lower density.

Similar ideas allow us to prove Romanov’s theorem [Rom34] that for each
fixed a ≥ 2, a positive proportion of the positive integers can be written in
the form p + ak. When a = 2, Romanov asked if perhaps all large enough
odd integers admit such a representation. This was disproved in 1950 by Erdős
[Erd50] and van der Corput [vdC50], who independently showed that a positive
proportion of the odd integers could not be so represented. We give Erdős’
proof here. A simpler proof that there are infinitely many odd integers that do
not admit such a representation was given by Crocker [Cro61], who showed this
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holds for 22n−5 for each n ≥ 3. He later showed [Cro71] that 22n−1 (for n ≥ 3)
cannot be written as the sum of a prime and two distinct positive powers of 2.
By combining the “covering congruence” method of Erdős with his construction,
he was able to produce infinitely many positive integers that cannot be written
as the sum of a prime and two positive powers of 2, distinct or otherwise.
Regrettably, this final construction is too complicated to be reproduced here.

Finally, we turn to the intersection of combinatorial and additive number
theory and discuss a theorem proved by Schur [Sch16] in his investigations on
Fermat’s last theorem: Given any k-coloring of the positive integers, there is
always a monochromatic solution to x − y = z; moreover, this holds if one
restricts the coloring to {1, 2, . . . , bk!ec}. We present a simple graph-theoretic
proof of Schur’s theorem as presented by Mirsky [Mir75], discuss the sharpness
of the bound bk!ec, and give Schur’s original application of this result to the
nontrivial solvability of the Fermat congruence xm+ym ≡ zm (mod p) for large
p (i.e., p > p0(m)).

5.1.1 Exercises

Exercise 5.1.1. Let A,B be nonempty subsets of Z. Show that |A + B| ≥
|A| + |B| − 1 and give an example of sets A,B for which equality holds. Can
you determine all cases where equality holds?

Exercise 5.1.2. Show that if A is a basis of order h0, then hA = N for every
h ≥ h0. Similarly, if A is an asymptotic basis of order h0, then N \ hA is finite
for every h ≥ h0.

Exercise 5.1.3. Fix an integer r ≥ 2. For a set A of natural numbers, let Â
denote the set of integers of the form

∑

i∈A dir
i, where 0 ≤ di ≤ r− 1 and only

finitely many di are nonzero.

Show that if N := ∪̇ki=1Ai is a partition of the natural numbers into k sets,
then B := ∪ki=1Âi is a basis of order k.

Exercise 5.1.4.

a) Show that if B ⊂ N is a basis of order k, then B(x) �k x
1/k as x → ∞,

uniformly in the particular choice of B.

b) Using the previous exercise, show that for each fixed positive integer k,
there exists a basis B of order k whose counting function satisfies B(x)�
x1/k as x→∞.

Exercise 5.1.5. Show that every sufficiently large positive integer is a sum of
two composite positive integers. More generally, show that for each k, every
large positive integer is a sum of two positive integers with at least k distinct
prime factors.

Exercise 5.1.6 (Euler). Exhibit an odd integer greater than 3 which cannot be
represented as the sum of prime and a positive power of 2.

Exercise 5.1.7 (Nathanson [Nat80]). If A is a set of positive integers, let FS(A)
denote the collection of all nonempty finite sums of elements of A.
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a) Show that if A contains arbitrarily long runs of consecutive integers, then
there is an infinite set B ⊂ A with FS(B) ⊂ A.

b) Show that the hypothesis of part a) is satisfied if d(A) = 1.

5.2 Sumsets over Z/mZ and Fq

We begin with a presentation of the “polynomial method” of Alon, Nathanson
& Rusza [ANR95] for attacking additive problems, beginning with their proof
of Cauchy’s lower-bound theorem on the size of sumsets over Fp.

Cauchy’s theorem implies that if A is a nonempty subset of Fp, then

|{a1 + a2 : a1, a2 ∈ A}| ≥ min{p, 2|A| − 1}.

In the 1960s, Erdős and Heilbronn conjectured that if one imposes the extra
condition that a1 6= a2, then the corresponding inequality holds with the lower
bound replaced by min{p, 2|A| − 3}. The family of examples A = {0, 1, . . . , k−
1}, where p ≥ 2k − 3, illustrates that this is best possible if true. As we shall
see, within the framework set up by Alon, Nathanson & Rusza, the proof of this
conjecture is no more difficult than the proof of Cauchy’s classical theorem.

Finally, we present Chowla’s generalization of Cauchy’s theorem to compos-
ite moduli and apply these ideas to Waring’s Problem for residues, proving that
the set of kth powers forms an additive basis of order at most k modulo any
prime p.

5.2.1 The Polynomial Method of Alon, Nathanson, Rusza

Lemma 5.2.1 (Alon & Tarsi [AT92]). Let A,B be nonempty subsets of a
field F with |A| = k, |B| = l. Let f(X,Y ) ∈ F [X,Y ] be a polynomial of degree
at most k − 1 in X and l − 1 in Y . If f(a, b) = 0 for all a ∈ A, b ∈ B, then
f(X,Y ) is identically 0.

Proof. We make repeated use of the well-known fact that a nonzero univariate
polynomial over F cannot have more roots than its degree. Write

f(X,Y ) =
∑

fijX
iY j =

k−1∑

i=0

vi(Y )Xi,

where vi(Y ) =
∑l−1
j=0 fijY

j . For any fixed b ∈ B, f(X, b) is a polynomial in X
of degree at most k − 1 with at least k distinct roots. Consequently, vi(b) = 0
for each 0 ≤ i ≤ k − 1.

This implies that for 1 ≤ i ≤ k − 1, vi(Y ) is a polynomial of degree at
most l− 1 with at least l distinct roots. Hence vi(Y ) is identically 0 for each i.
Referring to the definition of vi(Y ) shows that fij vanishes for each i, j, so that
f(X,Y ) is identically 0 as was to be shown.
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Lemma 5.2.2. Let A be a nonempty finite subset of a field F , and let |A| = k.
For every m ≥ 0, there is a polynomial rm(X) ∈ F [X] of degree at most k − 1
such that rm(a) = am for all a ∈ A.

Proof. Let t(X) =
∏

a∈A (X − a), and let rm(X) be the unique polynomial of
degree at most k − 1 with Xm ≡ rm(X) (mod t(X)).

Theorem 5.2.3 (Cauchy [Cau13], Davenport [Dav35]). Let F = Z/pZ
with p prime. Let A,B be nonempty subsets of F , and let C = A+ B. Then

|C| ≥ min{p, |A|+ |B| − 1}. (5.2)

Proof. Without loss of generality we may assume k + l − 1 ≤ p, for otherwise
l′ := p− k + 1 satisfies 1 ≤ l′ < l, and we may replace B with a subset B′ ⊂ B
of size l′.

In this case, (5.2) asserts that |C| ≥ k + l − 1. Suppose otherwise, and let
w be the nonnegative integer defined by w + |C| = k + l − 2. Consider the
polynomial

f(X,Y ) := (X + Y )w
∏

c∈C
(X + Y − c) ∈ F [X,Y ].

Then f(X,Y ) has total degree k + l − 2, the values f(a, b) vanish for each
a ∈ A, b ∈ B, and the coefficient of Xk−1Y l−1 is

(
k + l − 2

k − 1

)

6≡ 0 (mod p), (5.3)

since k + l − 2 ≤ p− 1.
Our strategy will be to transform f into a polynomial f∗ of degree at most

k − 1 in X and l − 1 in Y for which

f∗(a, b) = f(a, b) = 0 (a ∈ A, b ∈ B), (5.4)

and for which the coefficient of Xk−1Y l−1 is unchanged. By Lemma 5.2.1, we
must have f∗(X,Y ) identically zero, but this contradicts (5.3).

To effect this transformation, choose (by Lemma 5.2.2) for every m,n ≥ 1,
univariate polynomials rm(X), sn(Y ) of degree at most k − 1 and l − 1 respec-
tively, with rm(a) = am for each a ∈ A and sn(b) = bn for each b ∈ B. Replace
every monomial XmY n for which m > k − 1 with rm(X)Y n. Since m > k − 1
implies n < l− 1, and since rm(X) is a polynomial of degree at most k− 1, this
has the effect of replacing XmY n with a (weighted) sum of monomials XiY n

with 0 ≤ i ≤ k − 1. Similarly, if we now replace every monomial XmY n with
n > l−1 with Xmsn(Y ), then XmY n has been replaced with a sum of monomi-
als XmY i with 0 ≤ i ≤ l−1. The polynomial f∗(X,Y ) resulting from these two
transformations is of degree at most k − 1 in X and l− 1 in Y , and (5.4) holds
by the choice of rm, sn. Moreover, the coefficient of Xk−1Y l−1 is unchanged,
since this monomial does not appear in any of the polynomials rm(X)Y n or
Xmsn(Y ). The result follows.
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Vosper [Vos56] has shown that equality holds in Theorem 5.2.3 if and only
if one of the following is true:

i. |A|+ |B| > p,

ii. min{|A|, |B|} = 1,

iii. there exists c ∈ Z/pZ such that A = {c− b′ : b′ ∈ Bc}, where Bc denotes
the complement of B,

iv. A,B are arithmetic progressions with the same common difference.

Exercise 5.2.1. Show that the four conditions above are sufficient for equality
to hold in Theorem 5.2.3.

As a simple application of Cauchy’s theorem, the reader is asked to tackle:

Exercise 5.2.2. Let p be prime and let N be the set of quadratic nonresidues
(mod p). Show that |N −N| ≥ p− 2 and that if c /∈ N −N , then ck2 /∈ N −N
for every nonzero k (mod p). Conclude that N −N is all of Z/pZ for p ≥ 7.

The same method used to prove Theorem 5.2.3 also yields:

Theorem 5.2.4 (Alon, Nathanson, Ruzsa [ANR95]). Let F = Z/pZ with
p prime. Let A,B be nonempty subsets of F with |A| 6= |B|, and let

C := {a+ b : a ∈ A, b ∈ B, a 6= b}.

Then
|C| ≥ min{p, |A|+ |B| − 2}.

Proof. Let A = k, B = l. Without loss of generality we may assume k+l−2 ≤ p,
for otherwise l′ := p − k + 2 satisfies 2 ≤ l′ < l, and we may replace B with a
subset B′ ⊂ B of size l′.

In this case, (5.2) asserts that |C| ≥ k + l − 2. Suppose otherwise, and let
w be the nonnegative integer defined by w + |C| = k + l − 3. Consider the
polynomial

f(X,Y ) := (X − Y )(X + Y )w
∏

c∈C
(X + Y − c) ∈ F [X,Y ].

Then f(X,Y ) has total degree k + l − 2, the values f(a, b) vanish for all a ∈
A, b ∈ B, and the coefficient of Xk−1Y l−1 is

(
k + l − 3

k − 2

)

−
(
k + l − 3

l − 2

)

=
(k − l)(k + l − 3)!

(k − 1)!(l − 1)!
6≡ 0 (mod p), (5.5)

since 1 ≤ k, l ≤ p and k + l − 3 ≤ p − 1. The remainder of the proof is as in
Theorem 5.2.3.

As a corollary, we deduce the conjecture of Erdős & Heilbronn, which was
first proven by da Silva & Hamidoune [DdSH94] by a much more complicated
method:
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Corollary 5.2.5 (Dias da Silva & Hamidoune). Let F = Z/pZ, where p is
a prime number. Let A ⊂ F with |A| = k ≥ 2. Then with 2ˆA denoting the set
of all sums of two distinct elements of A, we have

|2ˆA| ≥ min{p, 2k − 3}.

Proof. Arbitrarily choose a ∈ A and apply Theorem 5.2.4 with A as given and
B := A \ {a}.

Exercise 5.2.3 (Alon, Nathanson, Ruzsa [ANR95]). Let A,B be nonempty sub-
sets of F = Z/pZ with |A| = k and |B| = l. Let C = {a + b : a ∈ A, b ∈
B, ab 6= 1}. Show that |C| ≥ min{p, k + l − 3}. Hint: Proceed as in the proofs
of Theorems 5.2.3 and 5.2.4, taking (with w + |C| = k + l − 4)

f(X,Y ) = (XY − 1)(X + Y )w
∏

c∈C
(X + Y − c).

Exercise 5.2.4. Show that the results of Theorem 5.2.3, Theorem 5.2.4 and
Corollary 5.2.5 remain true for any field F , with p = char(F ) if char(F ) < ∞
and p =∞ otherwise.

5.2.2 Chowla’s Sumset Addition Theorem

Theorem 5.2.6 (Chowla [Cho35]). Let A,B be nonempty subsets of Z/mZ
with |A| = k, |B| = l. Then if 0 ∈ B and every nonzero b ∈ B is an element of
Z/mZ∗, then C := A+ B satisfies

|C| ≥ min{m, l + k − 1}. (5.6)

Proof. The proof is by induction on l, the case l = 1 being trivial. Suppose now
the result is known for all l′ < l with l > 1, and let A,B be as in the theorem
statement. As in the proof of Theorem 5.2.3, we may assume that l+k−1 ≤ m,
and we may also assume that k < m.

We first claim that A + B 6⊂ A. Otherwise, for each fixed b ∈ B the map
a+ b 7→ a would be a permutation of A. In particular, we would have

∑

a∈A
(a+ b) =

∑

a∈A
a, so that kb ≡ 0 (mod m). (5.7)

But since l > 1, we can choose 0 6= b ∈ B; then b ∈ Z/mZ∗, so that (5.7) implies
k ≡ 0 (mod m), contradicting that k < m.

We may thus choose a ∈ A for which B′′ := {b ∈ B : a + b 6∈ A} 6= ∅. Set
A′ := A ∪ (a + B′′),B′ := B \ B′′. Then 1 ≤ |B′| < |B| = l, |A′| + |B′| = l + k,
and

A′ + B′ = (A ∪ (a+ B′′)) + B \ B′′ ⊂ (A+ B) ∪ ((a+ B \ B′′) + B′′) ⊂ A+ B,

since a+ B \ B′′ ⊂ A by the choice of B′′.
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5.2.3 Waring’s Problem for Residues

An 18th century conjecture of Waring, which we shall prove in Chapter 7, asserts
that the set of kth powers is a basis of finite order for the natural numbers (for
each k ≥ 1). The analogous conjecture for Z/mZ is trivially true but the
question of obtaining a nontrivial estimate for the order g(k,m) of the basis is
still of interest.

As a simple application of Theorem 5.2.3, we now prove:

Theorem 5.2.7. Let k be a positive integer. For every prime p, we have
g(k, p) ≤ [F∗

p : F∗
p
k]. In particular, g(k, p) ≤ k.

Proof. Let l denote the index in question and P denote the set of kth powers.
Then Theorem 5.2.3 implies

|P + · · ·+ P
︸ ︷︷ ︸

l times

| ≥ min{l|P | − l + 1, p}.

Since

l|P | − l + 1 = l ((p− 1)/l + 1)− l + 1 = p,

the result follows.

Actually g(k, p) ≤ 2 for all sufficiently large p; in fact p > (k − 1)4 suffices.
This may be deduced from [IR90, Chapter 8, Theorem 5]. The same theorem
implies that if a1, . . . , ar, b are (fixed) integers with the ai nonvanishing, then
the congruence

a1x
k
1 + a2x

k
2 + · · ·+ arx

k
r = b

is solvable for all sufficiently large p, and in fact the number of solutions tends
to infinity with p. For an elementary proof that g(3, p) ≤ 2 for p > 7, see [LS89].

The accessible papers of C. Small ([Sma77b], [Sma77a]) contain a “solution”
to Waring’s problem for residues. His papers include explicit evaluations of
g(k, n), for each of k = 2, 3, 4, and 5, and his method extends to arbitrary k.
His general results are rather complicated; as a sample, we quote the case k = 3:

Theorem (C. Small). Let r ≥ 1 and n > 1 be integers. Then every element
of Z/nZ is a sum of r cubes if and only if one of the following holds:

i. r = 1 and: 9 - n, p2 - n for all primes p ≡ 2 (mod 3), p - n for all primes
p ≡ 1 (mod 3),

ii. r = 2 and 9 - n, 7 - n,

iii. r = 3 and 9 - n,

iv. r ≥ 4 (and no condition on n).
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5.2.4 Exercises: More on Waring’s Problem for Residues

Exercise 5.2.5. Show that if k = p− 1 or k = (p− 1)/2, then g(k, p) = k.

Exercise 5.2.6.

a) Show that g(k,m) = maxpe‖m g(k, pe).

b) Show that if m is squarefree, the kth powers (mod m) are a basis of order
at most k.

Exercise 5.2.7. Prove Theorem 5.2.7 without citing the the Cauchy-Davenport-
Chowla Theorem. Proceed as follows: Define

Gi := {x ∈ Fp : x is a sum of i kth powers}.

Then

Fkp = G1 ⊂ G2 ⊂ · · · , (5.8)

and Gi = Fp for all large i.

a) Show that if x ∈ Gi+1 \ Gi, then xy ∈ Gi+1 \ Gi for each nonzero kth
power y.

b) Show that if Gi ( Gi+1, then |Gi+1| ≥ |Gi|+ (p− 1)/l.

c) Conclude that the chain (5.8) stabilizes after at most l− 1 strict contain-
ments, and use this to deduce Theorem 5.2.7.

Exercise 5.2.8. Let F be a finite field and let k be a positive integer. Let E ⊂ F
be the set of elements expressible as a sum of finitely many kth powers.

a) Show that E is a subfield of F .

b) Show that E is a proper subfield of F if and only if k is divisible by
[F ∗ : K∗] for some proper subfield K ( F .

c) Show that with l = [E∗ : F ∗k], every element of E is a sum of l kth
powers.

Exercise 5.2.9. Let q be a prime power and let k be a positive integer. Suppose
Z/qZ∗ is cyclic. Using Theorem 5.2.6, show that for s ≥ p(k, φ(q))/(p− 1), the
congruence

xk1 + xk2 + · · ·+ xks ≡ n (mod q)

is solvable in integers xi with (x1, q) = 1, for every integer n.

If Z/qZ∗ is not cyclic, so that q = 2t with t ≥ 3, show the same holds for
s ≥ 2 if k is odd, and for s ≥ 4(q/4, k) if k is even.
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5.3 The Density of Sumsets

5.3.1 Schnirelmann Density and Additive Bases

We now investigate sufficient conditions for a set A to be a basis (or asymptotic
basis) of finite order. Our results are most conveniently expressed in terms of
the so-called Schnirelmann density, defined for sets A ⊂ N by

δ(A) := inf
n=1,2,...

A(n)

n
. (5.9)

Exercise 5.3.1. Determine the Schnirelmann density of each of the following
sets: a) the set of squares, b) the set of primes, c) the set of primes together
with 1, and d) the set of natural numbers n ≡ a (mod q) (where a, q are any
integers with q > 0).

Schnirelmann density is rather less natural than the upper and lower den-
sities we have discussed before. Both of the latter are translation-invariant
and are unaffected by the removal or addition of finitely many elements. The
Schnirelmann density possesses neither of these properties: the set of natural
numbers has Schnirelmann density 1, but N \ {1} has density 0. Indeed, any
set A ⊂ N with 1 /∈ A has Schnirelmann density 0.

Exercise 5.3.2. Establish the following equivalence, which will be used later in
this section:

δ(A) > 0⇐⇒ 1 ∈ A and d(A) > 0.

Despite its flaws, Schnirelmann density turns out to be the “proper” measure
of size in many additive problems.

Lemma 5.3.1. Let A,B ⊂ N with 0 ∈ A, 0 ∈ B. If A(n) + B(n) ≥ n for the
integer n ≥ 0, then n ∈ A+ B.

Proof. If n ∈ A or n ∈ B, this follows from 0 ∈ A ∩ B. Otherwise A(n) =
A(n− 1), B(n) = B(n− 1), and we may write

A′ := A ∩ [1, n− 1] = {a1 < · · · < aA(n)},
B′ := B ∩ [1, n− 1] = {b1 < · · · < bB(n)}.

Consider the following list of integers from the interval [1, n− 1]:

a1, . . . , aA(n), n− b1, . . . , n− bB(n).

There are A(n) +B(n) > n− 1 terms on this list but only n− 1 integers in the
range [1, n − 1]; this implies that for some i, j, we have ai = n − bj . But then
n = ai + bj ∈ A+ B.

As a consequence, we see:

Corollary 5.3.2. Suppose A ⊂ N , 0 ∈ A and δ(A) ≥ 1/2. Then A+A = N.
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Indeed, the hypothesis implies A(n) + A(n) ≥ n/2 + n/2 ≥ n for every
nonnegative integer n.

From this we easily conclude that for a subset A ⊂ N with 0 ∈ A to be a
basis of finite order, it is sufficient that δ(hA) ≥ 1/2 for some positive integer
h. Indeed, in this case

(2h)A = hA+ hA = N (5.10)

by Corollary 5.3.2, so that A is a basis of order not exceeding 2h. This suggests
that we study the density of sets of the form hA, or more generally the density
of sumsets A1 + · · ·+Ak.

Lemma 5.3.3. If A,B ⊂ N with 0 ∈ A, 0 ∈ B, then

δ(A+ B) ≥ δ(A) + δ(B)− δ(A)δ(B). (5.11)

Proof. Let n be a positive integer, and let 1 = a1 < a2 < · · · < aA(n) ≤ n be a
list of the elements of A∩ [1, n]. Between ai and ai+1, there is a gap containing
gi := ai+1 − ai − 1 numbers. But this gap contains at least B(gi) elements of
A+ B, since if b ∈ B ∩ [1, gi] then ai + b ∈ A+ B. Because 0 ∈ B, we also have
A ⊂ A+ B, whence

(A+B)(n) ≥ A(n) +
∑k

i=1
B(gi) ≥ A(n) + δ(B)

∑k

i=1
gi

= A(n) + δ(B)(n−A(n)) = A(n)(1− δ(B)) + nδ(B)

≥ n(δ(A)− δ(A)δ(B) + δ(B)).

Thus, (A + B)(n)/n ≥ δ(A) + δ(B) − δ(A)δ(B). As n was arbitrary, (5.11)
follows.

Lemma 5.3.3 asserts that

1− δ(A+ B) ≤ (1− δ(A))(1− δ(B)).

This is easily extended by induction to the following corollary, whose proof is
left to the reader:

Corollary 5.3.4. If A1, . . . ,Ak ⊂ N (k ≥ 2) and 0 ∈ A1 ∩ · · · ∩ Ak, then

1− δ(A1 + · · ·+Ak) ≤
k∏

i=1

(1− δ(Ai)).

In particular, if A ⊂ N and 0 ∈ A, then

δ(kA) ≥ 1− (1− δ(A))k.

Theorem 5.3.5 (Schnirelmann’s Basis Theorem [Sch33]). Let A ⊂ N,
0 ∈ A, and suppose δ(A) > 0. Then A is a basis of finite order.



202 CHAPTER 5. A POTPOURRI OF ADDITIVE NUMBER THEORY

Proof. We have δ(kA) ≥ 1/2 as soon as

1− (1− α)k ≥ 1/2,

which occurs as soon as k ≥ (− log 2)/ log(1 − α). Referring to (5.10) finishes
the proof. In fact, we see that 2hA = N for

h := max{d− log 2/ log(1− α)e, 1}. (5.12)

Exercise 5.3.3 (Landau [Lan30]). Suppose that 0 ∈ A and α := δ(A) > 0.
Show that A is a basis of order not exceeding 2b1/αc. Hint: If α > 1/2, this
follows from Corollary 5.3.2. If α ∈ (1− log 2, 1/2], use (5.12) and the estimate
− log(1 − α) ≥ − log(log 2). Finally, for α ≤ 1 − log 2, use (5.12) and the
inequality − log(1− α) ≥ α.

Exercise 5.3.4. Let A be a set of integers with δ(A) > 1/2.

a) Prove that every integer > 1 is a sum of two positive elements of A.

b) Show that this hypothesis is satisfied if A is the sequence of squarefree
integers. Hint: First show

∑

p 1/p2 < 1/2. (Compare with Chapter 3,
Exercise 3.3.5.)

Remark. The Schnirelmann density of the squarefree numbers is known to be
53/88 [Rog64], the infimum appearing in the definition (5.9) being attained for
n = 176.

5.3.2 Mann’s Density Theorem

Upon his 1931 return from a foreign tour, Schnirelmann reported that during
a visit with Landau in Göttingen, they had jointly stumbled across a new law
governing the densities of sumsets. Under the same assumptions as Lemma
5.3.3, all the examples they tried suggested that

δ(A+ B) ≥ min{1, δ(A) + δ(B)}.

Proving this held for all such pairs A,B (the “α+β conjecture”) became a target
of vigorous research during the next decade. In 1941, Alfred Brauer offered a
course on additive number theory with the sole aim of presenting all the results
on the problem to date. At the end of the semester, one of the students in the
course, H.B. Mann, discovered a complete proof (see [Man42]).

In this section we present a proof of Mann’s theorem (based on [Nar83,
Chapter 4]) as well as that of a theorem of Lepson to the effect that Mann’s
result is best possible. These results are not needed for the rest of the chapter,
so that this material could be omitted on a first reading.

Mann’s theorem will be an immediate consequence of the following result
on finite sets. The reader may wish to compare its proof with that of Chowla’s
theorem (Theorem 5.2.6).
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Theorem 5.3.6. Let n be a positive integer, and suppose A,B are subsets of
{0, 1, . . . , n} both containing 0. Suppose that for some 0 < c ≤ 1, we have

A(m) +B(m) ≥ cm (5.13)

for m = 1, 2, . . . , n. Then
(A+B)(m) ≥ cm (5.14)

for m = 1, 2, . . . , n.

Proof. The proof is by complete induction on n. When n = 1, (5.13) implies
(taking m = 1) that 1 ∈ A∪B, so that (since 0 ∈ A∩B) also 1 ∈ A+B, whence

(A+B)(1) = 1 ≥ c · 1 = c.

Now suppose the theorem is known for all positive integral n′ < n, where
n ≥ 2. Supposing it false for n, choose a counterexample A,B with B(n) as
small as possible. Note that B(n) > 0, otherwise B = {0} and the inequalities
(5.13) and (5.14) coincide for each m. We proceed to construct sets A′,B′ ⊂
{0, 1, 2, . . . , n}, both containing 0, with the following three properties:

i. for m = 1, 2, . . . , n, we have

A′(m) +B′(m) ≥ cm, (5.15)

ii. A′ + B′ ⊂ A+ B,

iii. B′(n) < B(n).

Together these imply A′,B′ are a counterexample (for this particular n) with
B′(n) < B(n), contradicting the original choice of A,B.

To construct the setsA′,B′, note first that since B contains positive elements,
A + B 6⊂ A (e.g., the largest element of A + B cannot lie in A). We may thus
choose a0 ∈ A as small as possible so that

B′′ := {b ∈ B : a0 + b 6∈ A} 6= ∅.

Note that by the minimality of a0, we have for every positive r < a0 and every
b ∈ B,

b+ (A ∩ [0, r]) ⊂ A, (5.16)

whence
(A+ B) ∩ [0, r] ⊂ A. (5.17)

Now define

A′ := A ∪ ((a0 + B′′) ∩ [0, n]), B′ := B \ B′′.

With these definitions, 0 ∈ A ∩ B. Indeed 0 ∈ A ⊂ A′, and if 0 ∈ B′′ then
a0 6∈ A, which is absurd. Hence 0 ∈ B \ B′′ =: B′. Since B′′ 6= ∅, property iii) is
immediate, and to verify ii) we need only note that

A′ + B′ ⊂ (A∪ (a0 + B′′)) + B \ B′′ ⊂ (A+ B) ∪ ((a0 + B \ B′′) + B′′) ⊂ A+ B.
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It remains only to establish i), i.e., to establish that (5.15) holds for each
m = 1, 2, . . . , n. For such m, observe

A′(m) +B′(m)

= A(m) + |{b′′ ∈ B′′ : 1 ≤ b′′ + a0 ≤ m}|+B(m)− |{b′′ ∈ B′′ : 1 ≤ b′′ ≤ m}|
≥ A(m) +B(m)− |{b′′ ∈ B′′ : 1 ≤ b′′ ≤ m, b′′ + a0 ≥ m+ 1}|
≥ A(m) +B(m)− |{b ∈ B : 1 ≤ b ≤ m, b+ a0 ≥ m+ 1}|. (5.18)

Let b0 denote the smallest positive element of B contained in [m − a0 + 1,m];
if no such element exists, then the final term of (5.18) drops out, and (5.15)
follows from (5.13). Otherwise, (5.18) implies

A′(m) +B′(m) ≥ A(m) +B(b0 − 1).

Write m = b0 + r, so that 0 ≤ r < a0 ≤ n. Since r < n, it follows from the
induction hypothesis that

(A+B)(r) ≥ cr.
(Otherwise A∩ [0, r], B∩ [0, r] would be a counterexample to Theorem 5.3.6 for
n′ = r < n.) Since 0 ∈ A ∩ B and c ≤ 1,

|(A+ B) ∩ [0, r]| = 1 + (A+B)(r) ≥ 1 + cr ≥ c(1 + r).

Moreover, since r < a0, this result together with (5.17) shows |A ∩ [0, r]| ≥
c(1 + r). But (5.16) implies the interval [b0, b0 + r] contains at least as many
elements of A as [0, r], so that

|A ∩ [b0, b0 + r]| ≥ c(1 + r).

Consequently,

A′(m) +B′(m) ≥ A(m) +B(b0 − 1)

= A(b0 + r)−A(b0 − 1) +A(b0 − 1) +B(b0 − 1)

≥ c(1 + r) + c(b0 − 1) = c(b0 + r) = cm.

Corollary 5.3.7. Let A,B be sets of natural numbers, both containing 0. Sup-
pose that A(m) +B(m) ≥ Cm for every positive integer m. Then

δ(A+ B) ≥ min{1, C}. (5.19)

In particular, taking C = δ(A) + δ(B), we obtain

δ(A+ B) ≥ min{1, δ(A) + δ(B)}. (5.20)

Proof. If C = 0 the assertion is trivial. Otherwise set c = min{C, 1}, and note
that by the preceding theorem applied to A ∩ [0, n] and B ∩ [0, n] (with n an
arbitrary positive integer), we have (A+B)(n) ≥ cn.
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The analog of (5.20) for more than two summands follows immediately by
induction. That the analog of (5.19) also holds for more than two summands
follows from a theorem of Dyson [Dys45]. For a proof of this and a discussion
of related results, see [HR83, Chapter 1].

We now prove a theorem of Lepson which illustrates that Mann’s theorem
is best possible for every value of δ(A), δ(B):

Theorem 5.3.8 (Lepson [Lep50]). Let 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1. Then
there exist A,B ⊂ N, both containing 0, with δ(A) = α, δ(B) = β, and

δ(A+ B) = min{1, α+ β}.

Proof. For each positive integer n, set an := dαn!e. Let A consist of 0, 1 together
with each of the (possibly empty) blocks n! + 1, n! + 2, . . . , n! + an+1 − an. No
two of these blocks intersect; indeed

0 ≤ an+1 − an < (α(n+ 1)! + 1)− αn! ≤ (n+ 1)!− n! + 1,

so that

n! + an+1 − an < (n+ 1)! + 1.

It follows that for each positive integer n,

A(n!)

n!
=

1 +
∑n−1
i=1 (ai+1 − ai)

n!
=
an
n!

=
dαn!e
n!

≥ α.

Now for each positive integer m, we have A(m)/m ≥ A(n!)/n! ≥ α, if n is
chosen maximal with n! ≤ m. On the other hand, A(n!)/n! = dαn!e/n!→ α as
n→∞. Hence δ(A) = α. Now define bn and B similarly, so that δ(B) = β, and
set C := A+ B.

To prove δ(C) ≤ α+ β, we consider C(n!) for n = 2, 3, . . . . If c ∈ C satisfies
c ≤ n!, then c = a + b, where a ∈ A, b ∈ B and a, b ≤ n!. These inequalities
force a ≤ (n− 1)! + an − an−1, b ≤ (n− 1)! + bn − bn−1, and thus

c ≤ 2(n− 1)! + an + bn − an−1 − bn−1

≤ 2(n− 1)! + an + bn.

Consequently,

lim inf
n→∞

C(n!)

n!
≤ lim inf

n→∞
2(n− 1)! + an + bn

n!
= α+ β.

It follows that δ(C) ≤ α+ β. Since trivially δ(C) ≤ 1, we obtain

δ(A+ B) ≤ min{1, δ(A) + δ(B)}.

Combining this inequality with (5.20) yields the theorem.
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5.3.3 Asymptotic Bases

Theorem 5.3.5 can be used to obtain a criterion for a set A to be an asymptotic
basis of finite order in terms of its lower density d(A). However, formulating
this criterion requires a bit of care.

It is natural to conjecture, in analogy with Theorem 5.3.5, that d(A) > 0
implies A is an asymptotic basis of finite order. This is not quite the case; for
instance, congruence considerations imply the set of nonnegative even integers
cannot be an asymptotic basis of any order. A similar situation occurs whenever
there is an integer g > 1 for which all the terms of A are congruent (mod g).
If we shift the set to include 0 (which certainly does not affect whether A is
an asymptotic basis or not), then the existence of such a g is equivalent to the
existence of a g > 1 dividing every term of A. We prove:

Theorem 5.3.9. Let A ⊂ N, 0 ∈ A and d(A) > 0. Moreover, suppose
gcd(A) = 1. Then A is an asymptotic basis of finite order.

A slightly more general result in given in Exercise 5.3.6.
The proof of this theorem requires the following lemma from elementary

number theory whose proof we leave as Exercise 5.3.5:

Lemma 5.3.10. Let a1, . . . , ak be positive integers with gcd(a1, . . . , ak) = 1.
There exists a positive integer n0 = n0(a1, . . . , ak) for which every integer n ≥
n0 admits a representation in the form

n = a1x1 + · · ·+ akxk (xi ∈ N).

Proof of Theorem 5.3.9. The ideal of Z generated by the elements of A is the
unit ideal, hence there exist a1, . . . , ak ∈ A with gcd(a1, . . . , ak) = 1. By dis-
carding those ai = 0, we can assume all of a1, . . . , ak are positive. Choose n0 in
accordance with the lemma and write

n0 = a1x1 + · · ·+ akxk,

n0 + 1 = a1x
′
1 + · · ·+ akx

′
k,

where each xi and x′i is a natural number. Then (since 0 ∈ A) n0, n0 + 1 ∈ lA
for the positive integer l = max{∑xi,

∑
x′i}.

Now define A′ := (lA − {n0}) ∩ N. Then 1 ∈ A′ and d(A′) = d(lA) ≥
d(A) > 0. Thus A′ is a basis of finite order h1, say, by Theorem 5.3.5. But then

N ⊂ h1A′ ⊂ h1(lA− {n0}) = h1lA− {h1n0}.

It follows that every n ≥ n0h1 is a sum of h1l elements of A.

It is difficult to coax a bound for the order of the asymptotic basis for this
proof. This is because though the statement of Theorem 5.3.9 involves only the
natural density, the proof required a detour through Schnirelmann density. It
is natural to seek a theorem which directly relates the lower density of a sumset
to that of the component sets. The following deep result of Kneser [Kne53] is
exactly such a theorem:
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Theorem (Kneser). If A0, . . . ,Ak ⊂ are infinite sets of natural numbers, then
either

d(A0 + · · ·+Ak) ≥ lim inf
n→∞

(A0(n) + · · ·+Ak(n))/n (5.21)

or there are positive integers g, a0, . . . , ak such that

i. each Ai is contained in the union A′
i of ai distinct congruence classes

(mod g),

ii. there are at most finitely many positive members of A′
0 + · · ·+A′

k not in
A0 + · · ·+Ak,

iii. d(A0 + · · ·+Ak) ≥ (a0 + · · ·+ ak − k)/g.

Applied to the problem of estimating the order of an asymptotic basis, it
yields:

Corollary (Kneser). Under the assumptions of Theorem 5.3.9, the set A is
an asymptotic basis of order not exceeding max{2, b2/d(A)− 1c}.

For a development of Kneser’s ideas and a proof of his theorem, see [HR83,
Chapter 1, §7-10]. The corollary appears as [Ost56, Kapitel 14, Satz 5].

5.3.4 Exercises

Exercise 5.3.5. Prove Lemma 5.3.10. Suggestion: Show that every large integer
in any fixed congruence class (mod 2a1 . . . ak) admits a representation in the
desired form.

Exercise 5.3.6 (Ostmann [Ost56, Satz 4, §14]). Let A = {a1 < a2 < . . . } ⊂ N
and let d be the greatest common divisor of a2 − a1, a3 − a2, . . . . Suppose that
for some positive integer k, d(kA) > 0. Show that there exists an integer h such
that hA contains all sufficiently large integers n ≡ ha1 (mod d).

Exercise 5.3.7. Using Mann’s Theorem, improve the result of Exercise 5.3.3 to
the following: If A is a set of natural numbers containing 0 with δ(A) > 0, then
A is a basis of order at most d1/δ(A)e.
Exercise 5.3.8 (continuation). Show that for every 0 < α ≤ 1, there is a set
A ⊂ N with 0 ∈ A and δ(A) = α which is a basis of order d1/αe. Thus the
estimate of the last exercise is best-possible.

Suggestion: review Lepson’s construction.

Exercise 5.3.9. Let A = {a1 < a2 < . . . } be an infinite collection of natural
numbers with the following property: for every positive integer m, there exist
infinitely many i for which mai < ai+1. Show that A is not an asymptotic basis
of finite order.

Exercise 5.3.10. Using the result of the previous exercise, show that there exists
a set A of natural numbers containing 0 and 1 whose counting function satisfies
A(N) ≥ N1/2 for all large N , but which is not a basis of finite order.
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Exercise 5.3.11. Using Exercise 5.3.9, show that Theorem 5.3.9 is false if the
condition that d(A) > 0 is replaced by d(A) > 0.

Exercise 5.3.12 (Carroll [Car00]). Suppose the positive integers are partitioned
into finitely many sets. Must one of them, say Ai, have the property that
Ai ∪ {0} is an asymptotic basis of finite order?

Exercise 5.3.13 (Stöhr [Stö55, Kriterium 8], †). Show that if a1, a2, . . . is a
p-adically convergent sequence of integers, then {ai} is not an asymptotic basis
of finite order. Prove the same for any finite union of p-adically convergent
sequences (with respect to the same p).

Exercise 5.3.14 (Ostmann [Ost56, p.27]). For A ⊂ N, let f(A) be the least
integer h ≥ 2 for which hA ∩ A 6= ∅. That is, f(A) is the least h for which
there exists a solution to a1 + · · ·+ ah = ah+1 with each ai ∈ A. Using Lemma
5.3.10, prove that f(A) exists for every infinite set A. Ostmann calls f(A) the
Fermat index of A, since Fermat’s Last Theorem is equivalent to the assertion
that f({nk : n = 1, 2, . . . }) > 2 for k ≥ 3.

5.4 Densities of Particular Sumsets

Up to this point our investigation of sumsets and their densities has been rather
general. We now turn to particular and particularly striking special cases.

We commence our discussion with a result of Wirsing to the effect that if
f is a “smooth” function whose second derivative satisfies certain (stringent)
inequalities, then A := {f(n) : n = 1, 2, . . . } satisfies d(2A) > 0.

We then turn to Schnirelmann’s remarkable theorem that every n > 1 is a
sum of at most C primes, for an absolute constant C.

Central in the proof of Schnirelmann’s theorem is the proof that {p + q :
p, q prime} has positive lower density. The next result we discuss, due to Ro-
manov, has a similar flavor: for fixed a ≥ 2, the set {p+ak : p prime, k ≥ 1} has
positive lower density. We present the proof of Romanov’s result as exposited
by Nathanson [Nat96]. We then discuss some theorems of Erdős and Crocker
related to the special case a = 2.

5.4.1 A Special Class of Additive Bases

The following is a special case of a theorem of Wirsing (see [Ost56, §14, Satz
11]):

Theorem 5.4.1 (Wirsing). Let f : [1,∞) → [0,∞) be a twice continuously
differentiable function with f(x) → ∞ as x → ∞, and suppose that for some
constants C1, C2 > 0,

0 < C1x
−β ≤ f ′′(x) ≤ C2x

−α (x ≥ 1), (5.22)

where α, β satisfy 0 < α < 1 and α ≤ β ≤ 3α− 1.
Suppose the elements of the infinite subset A = {a1 < a2 < . . . } ⊂ N satisfy

an = f(n) +O(1) for n ≥ 1. Then d(2A) > 0.
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Proof. We will actually prove the stronger statement that the gaps between
consecutive elements of 2A are bounded.

For this, let γ ≥ 1 be a real number whose precise value will be chosen later,
and set m = m(n) = bγnαc. Since α < 1, we have n > m for all large n, say
n ≥ n0 = n0(γ). (In what follows, we suppress the dependence of constants on
the parameters in the theorem statement, but we note explicitly any dependence
on γ.)

For n > n0, we write down the following list of elements of 2A:

2an, an+1 + an−1, an+2 + an−2, . . . , an+m + an−m. (5.23)

The gaps between consecutive terms of this sequence are bounded: Indeed,
by repeated application of the mean value theorem,

an+v+1 − an−v−1 − an+v − an−v
= f(n+ v + 1)− f(n+ v)− (f(n− v)− f(n− v − 1)) +O(1)

= f ′(n+ v + θ1)− f ′(n− v − θ2) +O(1) = 2vf ′′(n+ θ3) +O(1)

≤ 2mC2(n+ θ3)−α +O(1) ≤ 2γC2

(
n

n− γnα
)α

+O(1),

where θ1, θ2 < 1 and |θ3| ≤ m. Since α < 1, the first term on the right tends to
2γC2 as n→∞, and thus is Oγ(1) for n ≥ n0.

We now show the final element of (5.23) exceeds 2an+1 if our initial choice
of γ is sufficiently large. We have

an−m + an+m − 2an = f(n−m) + f(n+m)− 2f(n) +O(1)

=

∫ m

0

∫ m

0

f ′′(n−m+ x+ y) dx dy +O(1)

≥
∫ m

0

∫ m

0

C1

(n+m)β
dx dy +O(1) = C1

m2

(n+m)β
+O(1)

≥ C1
(γnα − 1)2

(2n)β
+O(1) ∼ C1

γ2

2β
n2α−β (n→∞),

since 2α− β ≥ 1− α > 0. But we also have (with some θ < 1)

2an+1 − 2an = 2(f(n+ 1)− f(n)) +O(1)

= 2f ′(n+ θ) +O(1) ≤ 2f ′(n+ 1) +O(1)

= 2

∫ n+1

1

f ′′(x) dx+O(1) ≤ 2C2

∫ n+1

1

dx

xα
+O(1)

= 2
C2

1− αn
1−α +O(1).

Since 2α− β ≥ 1− α, we see that if γ is chosen so that

C1γ
22−β > 2C2(1− α)−1,
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then an−m + an+m − 2an > 2an+1 − 2an for all n ≥ n1(γ). That is, we have

an−m + an+m > 2an+1 (n ≥ n1(γ)). (5.24)

Finally, choose a positive integer n2 ≥ n1 such that f(x) is increasing for
x ≥ n2; this is possible because f(x)→∞ and f ′′(x) > 0.

To complete the proof that 2A has bounded gaps, it suffices to show that
starting at some element of 2A you can walk to infinity along the elements
of 2A taking only steps of bounded length. We do this by showing that for
n ≥ n2, one can walk from an to an+1 taking steps of only bounded length;
since an = f(n) +O(1)→∞, the result follows.

To prove this last claim, notice that if an+1 ≤ an, then

0 ≤ an − an+1 ≤ f(n)− f(n+ 1) +O(1) ≤ O(1),

so that walking from an to an+1 is a step of length bounded independently of
n. If an+1 > an, then we instead walk along consecutive terms of the sequence
(5.23), stopping just before the first term exceeding an+1; the inequality (5.24)
guarantees the existence of such a stopping point. Walking from this term to
the next is a step of bounded length (where the bound perhaps depends on γ),
so walking from this term to the nearer point an+1 is as well.

To illustrate, let

f(x) = x log x and an = bn log nc.

Then f ′′(x) = 1/x, so that (5.22) holds (with C1 = C2 = 1) for any choice of
α < 1 < β. We can satisfy the additional hypothesis β ≤ 3α− 1 with, e.g., the
choice α = 3/4, β = 9/4. We therefore conclude that a positive proportion of the
natural numbers can be written as a sum of two integers of the form bn log nc
(n ≥ 1). The set of integers of this form contains 0 and 1, so that Schnirelmann’s
basis theorem implies this is a basis of finite order for the natural numbers.

One consequence of the prime number theorem is that the nth prime pn
satisfies pn ∼ n log n; on our way to the proof of Schnirelmann’s theorem, we
will see that, as this example suggests, the set of integers that can be written
as a sum of two primes also has positive (lower) density.

Exercise 5.4.1. Suppose 1 < c ≤ 3/2. Show that d(2A) > 0, where A := {[nc] :
n = 1, 2, . . . }. Conclude that A is an asymptotic basis of finite order.

5.4.2 Schnirelmann’s Contribution to Goldbach’s Prob-
lem

Let r(N) denote the number of solutions to N = p + q, where p, q are primes.
Goldbach’s conjecture is that r(N) > 0 for even N ≥ 4.

In Chapter 3, §3.5.3 we established the upper bound

r(N)� N

log2N

∏

p|N

(

1 +
1

p

)

. (5.25)
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We actually established (5.25) only for even N ≥ 2, but since r(N) ≤ 2 for
every odd positive integer N , (5.25) is valid for every N ≥ 2.

An upper bound for r(N) may seem more like an anti-Goldbach theorem.
Actually, this upper bound is the main analytic input needed to achieve our
goal in this section: proving Schnirelmann’s result that every n > 1 is a sum of
at most C primes for some constant C.

The plan of attack is as follows: The upper bound (5.25) enables us to bound
above the mean square of r(N) over N ≤ x; Chebyshev’s lower bound (Chapter
1, §1.5) for π(x) gives us a lower bound on the mean of r(N) over the same
range, and the Schwarz inequality allows us to deduce from these two results a
lower bound on the number of n ≤ x for which r(N) > 0, i.e., a lower bound
on the counting function of the set of integers which are sums of two primes.
Applying the results of the last section to this set yields the result. We now fill
in the details.

Lemma 5.4.2. As x→∞,

∑

N≤x
r(N)2 � x3

log4 x
.

Proof. Substituting the upper bound (5.25), noting that N/ log2N � x/ log2 x
uniformly for 2 ≤ N ≤ x, we find

∑

N≤x
r(N)2 �

∑

2≤N≤x




N

log2N

∏

p|N

(

1 +
1

p

)




2

� x2

log4 x

∑

2≤N≤x




∏

p|N

(

1 +
1

p

)




2

� x2

log4 x

∑

2≤N≤x




∑

d|N

1

d





2

.

It remains to show the outer sum on the right is O(x). But owing to the trivial
inequality

[d1, d2] ≥ max{d1, d2} ≥ (d1d2)1/2,

we have

∑

N≤x




∑

d|N

1

d





2

=
∑

N≤x

∑

d1|N

∑

d2|N

1

d1d2
=

∑

d1,d2≤x

∑

N≤x
d1|N,d2|N

1

≤
∑

d1,d2≤x

1

d1d2

x

[d1, d2]
≤ x

∑

d1,d2≤x

1

(d1d2)
3
2

≤ x
( ∞∑

d=1

d−
3
2

)2

� x.



212 CHAPTER 5. A POTPOURRI OF ADDITIVE NUMBER THEORY

Lemma 5.4.3. As x→∞,

∑

N≤x
r(N)� x2

log2 x
.

Proof. From Chebyshev’s theorem we have π(x)� x/ log x as x→∞. Thus
∑

N≤x
r(N) =

∑

N≤x

∑

p+q=N

1 =
∑

p+q≤x
1

≥
∑

p≤x/2,q≤x/2
1 = π(x/2)2 � (x/2)2

log2 (x/2)
� x2

log2 x
.

Lemma 5.4.4. Let A,B ⊂ N and let rA,B(n) denote the number of solutions
to n = a+ b with a ∈ A, b ∈ B. Set S := A+ B. Then for x ≥ 1,




∑

n≤x
rA,B(n)





2

≤ S(x)
∑

n≤x
rA,B(n)2.

Proof. By the Cauchy-Schwarz inequality,

(
∑

n≤x
rA,B(n)

)2

=

(
∑

n≤x
rA,B(n)>0

rA,B(n)

)2

≤
(

∑

n≤x
rA,B(n)>0

1

)(
∑

n≤x
rA,B(n)>0

rA,B(n)2

)

= S(x)
∑

n≤x
rA,B(n)2.

Theorem 5.4.5. Let S be the set of integers representable as a sum of two
primes. Then d(S) > 0.

Proof. As x→∞, we have by Lemmas 5.4.3, 5.4.2, 5.4.4,

S(x) ≥
(
∑

n≤x
rA(n)

)2
/ ∑

n≤x
rA(n)2 �

(

x2

log2 x

)2
/ x3

log4 x
� x.

As a corollary, we obtain:

Theorem 5.4.6. There exists a constant C such that every integer n > 1 is a
sum of at most C primes.

Proof. Let A0 be the subset of the natural numbers consisting of 0 together with
the primes, and let A := 2A0. Then 0 ∈ A, gcd(A) = 1 (since A contains the
primes), and Theorem 5.4.5 implies d(A) > 0. Thus A is an asymptotic basis
of finite order h, say, and every n ≥ n0 is a sum of at most c0 := 2h primes, for
some positive integer n0. But each of the finitely many n, 1 < n < n0, can be
written as a sum of at most c1 primes for some c1, using only the primes 2, 3.
Thus we may take C := max{c0, c1}.
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The same proof we have described in this section yields a similar result for
any “thick” subset of the primes:

Theorem 5.4.7 (Landau [Lan30], see also [Nat87]). If P is a subset of
the primes for which

πP(x) := #{p ≤ x : p ∈ P} � x/ log x (x→∞),

then there exist constants C, n0 (depending on P) for which every n ≥ n0 is a
sum of at most C primes p ∈ P.

As an example, our results in Chapter 2 imply we may take for P the set of
primes congruent to a (mod q) for any integers a, q with q > 0 and gcd(a, q) = 1
(cf. Chapter 2, Exercise 2.6.1).

Exercise 5.4.2. Prove Theorem 5.4.7. Hint: For any set of primes P, we have
rP(n) ≤ r(n), so that the analog of Lemma 5.4.2 is immediate.

We close this section by mentioning a celebrated 1937 result of Vinogradov:

Vinogradov’s Three Primes Theorem. Let r(N) denote the number of or-
dered ways of writing N as a sum of three primes. As N → ∞ through odd
integers, we have

r(N) ∼
∏

p

(

1 +
1

(p− 1)3

)
∏

p|N

(

1− 1

p2 − 3p+ 3

)
N2

2 log3N
.

As a consequence, the primes form an asymptotic basis of order at most 4.
Though this theorem has the same flavor as Theorem 5.4.6, the proof (by the
circle method; cf. [Nat96, Chapter 8]) utilizes entirely different methods and
requires much more significant input from analytic number theory (specifically
a version of the prime number theorem on arithmetic progressions with a large
range of uniformity in the modulus).

5.4.3 Romanov’s Theorem

In this section we fix a positive integer a ≥ 2; all implied constants may depend
on this choice of a.

Lemma 5.4.8. As n→∞, we have

∑

d|n

1

d
� log log n.

Proof. Let k = ν(n). Since

n =
∏

pep‖n
pep ≥

∏

pep‖n
2 = 2k,

we have
k ≤ log n/ log 2. (5.26)
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Then with pi denoting the ith prime,

∑

d|n

1

d
=
∏

pep‖n

(

1 +
1

p
+ · · ·+ 1

pep

)

≤
k∏

i=1

(

1 +
1

pi
+

1

p2
i

+ . . .

)

=

k∏

i=1

(

1− 1

pi

)−1

� log pk, (5.27)

by Mertens’ Theorem (cf. Chapter 1, §1.7). By Chebyshev’s lower bound for
π(x) (cf. Chapter 1, §1.5),

√
pk �

pk
log pk

� π(pk) = k,

whence pk � k2, and

log pk ≤ 2 log k +O(1)� log k + 1� log log n,

by (5.26). Substituting into (5.27) gives the result.

Lemma 5.4.9. Let e(d) denote the order of a (mod d). Then

∞∑

d=1
(a,d)=1

1

de(d)
<∞.

Proof. Set D(x) =
∏

k≤x (ak − 1), where we think of x as large. Then

D(x) <
∏

k≤x
ak ≤ ax2

.

If e(d) = k for some k ≤ x, then d | ak − 1 | D(x). Thus, by Lemma 5.4.8,

E(x) :=
∑

k≤x

∑

e(d)=k
(a,d)=1

1

d
≤
∑

d|D(x)

1

d
� log logD(x)� log (x2 log a)� log x

for large x. It follows that for all t ≥ 1, E(t)� 1+log t. By partial summation,
we have for x ≥ 1,

∑

k≤x

1

k

(
∑

e(d)=k
(a,d)=1

1

d

)

=

∫ x

1/2

dE(t)

t
=
E(x)

x
+

∫ x

1

E(t)

t2
dt

� 1 + log x

x
+

∫ x

1

1 + log t

t2
dt� 1.

Consequently,
∞∑

d=1
(a,d)=1

1

de(d)
=

∞∑

k=1

1

k

(
∑

e(d)=k
(a,d)=1

1

d

)

<∞,

as was to be shown.
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Before proceeding, we recall the following sieve result from Chapter 3, §3.5.3:
For x ≥ 2,

πN (x) := #{p ≤ x : p+N prime} � x

log2 x

∏

p|N

(

1 +
1

p

)

, (5.28)

uniformly for even N ≥ 2.

Lemma 5.4.10. Let r(N) denote the number of solutions to N = p+ak, where
p is prime and k is a positive integer. Then

∑

N≤x
r(N)2 � x (x→∞).

Proof. Since r(N)2 counts the number of solutions to p1 + ak1 = p2 + ak2 = N ,
∑

N≤x r(N)2 counts the number of solutions to

p1 + ak1 = p2 + ak2 ≤ x (p1, p2 prime, k1, k2 ∈ Z+). (5.29)

In any such solution, one has k1, k2 ≤ log x/ log a and p1, p2 ≤ x. The number
of solutions with k1 = k2 is thus bounded by

log x

log a
π(x)� log x

log a

x

log x
� x.

It remains to establish the same estimate for the solutions with k1 6= k2; by
symmetry, we can restrict our attention to the case k1 < k2.

For fixed k1 and k2 with k1 < k2, the number of solutions to (5.29) is
bounded above by the number of p1 ≤ x with p1 = p2 + (ak2 − ak1); by (5.25),
this latter quantity is

� x

log2 x

∏

p|ak2−ak1

(

1 +
1

p

)

� x

log2 x

∏

p|ak2−k1−1

(

1 +
1

p

)

.

For k1 < k2 ≤ log x/ log a, one has k2 − k1 ≤ log x/ log a, and for any fixed j ≤
log x/ log a, there are not more than log x/ log a pairs k1 < k2 with k2 − k1 = j.
It follows that the number of solutions to (5.29) for k1 < k2 is

� x

log2 x
log x

∑

j≤ log x
log a

∏

p|aj−1

(

1 +
1

p

)

� x

log x

∑

j≤ log x
log a

∑

e(d)|j

1

d

� x

log x

∑

e(d)≤ log x
log a

1

d

log x

e(d) log a
� x,

by Lemma 5.4.9.

Lemma 5.4.11. With r(N) as in the last Lemma, we have
∑

N≤x
r(N)� x (x→∞).
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Proof. Indeed, as x→∞,

∑

N≤x
r(N) =

∑

N≤x

∑

p+ak=N

1 =
∑

p+ak≤x
1 ≥

∑

p≤x/2,ak≤x/2
1

= π(x/2)

⌊
log (x/2)

log a

⌋

� x

log x
log x = x.

Theorem 5.4.12 (Romanov). The set S := {p+ak : p prime and k ≥ 1} has
positive lower density.

Proof. Taking A as the set of primes and B as the set of positive powers of a in
Lemma 5.4.4 yields




∑

N≤x
r(N)





2

≤ S(x)
∑

N≤x
r(N)2.

Thus by Lemmas 5.4.10 and 5.4.11, we have as x→∞,

S(x)�




∑

N≤x
r(N)





2
/ ∑

N≤x
r(N)2 � x2/x = x.

Erdős has shown the following more general result:

Theorem (Erdős [Erd50]). Let a1 < a2 < . . . be an infinite sequence of
integers satisfying ak | ak+1. Then a necessary and sufficient condition that the
sequence p+ ak should have positive density is that

lim sup
k→∞

log ak
k

<∞ and
∑

d|ai

1

d
� 1.

5.4.4 Theorems of Erdős and Crocker on the Sum of a
Prime and Powers of 2

Only O(log x) = o(x) even integers up to x can be expressed in the form p +
2k. Thus Romanov’s theorem implies a positive proportion of odd integers
admit such a representation. One consequence of our next theorem is that
a positive proportion of odd integers cannot be so expressed. It is an open
question of Erdős to to decide whether the set of odd integers admitting such a
representation possesses a natural density.

Theorem 5.4.13 (Erdős). There exists an infinite arithmetic progression of
odd numbers none of which can be written as the sum of a prime and a positive
power of 2.
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Proof. We begin by noting that every integer k falls into one of the following
congruence classes:

0 (mod 2), 0 (mod 3), 1 (mod 4), (5.30)

3 (mod 8), 7 (mod 12), 23 (mod 24).

This is easily be checked by considering the various possibilities for k (mod 24).
From this, we deduce that every power of 2 falls into one of the corresponding
congruence classes

20 (mod 3), 20 (mod 7), 21 (mod 5), (5.31)

23 (mod 17), 27 (mod 13), 223 (mod 241).

To see this, note for example that if k ≡ 0 (mod 2) then 2k ≡ 20 (mod 3),
since ord32 | 2. In general, each congruence k ≡ ai (mod mi) of (5.30) implies
a corresponding congruence (of (5.31)) 2k ≡ 2ai (mod pi) for a prime pi with
ordpi

2 | mi.
Now let a (mod P ) be the congruence class mod

P := 29 · 3 · 7 · 6 · 17 · 13 · 241

which is the intersection of the congruence classes (5.31) with the congruence
class 1 (mod 29). We claim the positive integers in this class meet the conditions
of the theorem. If m ≡ a (mod P ) then gcd(m − 2k, P ) > 1 for every positive
integer k, by our discussion above, so it only remains to show that we cannot
have m− 2k = p for some prime p | P .

This is taken care of by the additional congruence m ≡ 1 (mod 29). Indeed,
suppose m−2k = p for some p | P . If k ≥ 9, then looking at this as a congruence
(mod 29) shows 1 ≡ m ≡ p (mod 29), which is false as 1 < p < 29 for each p | P .
If k < 9, then

1 < m = 2k + p ≤ 28 + p < 28 + 28 = 29,

which contradicts the congruence m ≡ 1 (mod 29).

With two powers of 2 instead of one, the situation is less well-understood.
For distinct powers, Crocker showed:

Theorem 5.4.14 (Crocker [Cro71]). For n ≥ 3, 22n − 1 cannot be expressed
as the sum of a prime and two distinct positive powers of 2.

Proof. Let n ≥ 3; we want to show that for a < b < 2n, the numbers 22n − 1−
2a− 2b are all composite. Choose r with 2r‖b− a (so that r < n) and then note
that

22r

+ 1 | (22n − 1)− 2a(1 + 2b−a).

Indeed, the left hand side divides both terms on the right. But since n ≥ 3,

22n − 1− 2a − 2b ≥ 22n − 1− 22n−1 − 22n−2

= 22n−2 − 1 > 22n−1

+ 1 ≥ 22r

+ 1,

implying that the factor we discovered above is nontrivial.
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In the same paper, Crocker exhibited an infinite family of odd integers that
could not be expressed as the sum of a prime and two positive powers of two,
distinct or otherwise. It is an open question to decide whether the set of such
odd integers has positive lower density.

Exercise 5.4.3 (Crocker [Cro61]). Show that none of the integers 22n−5, n ≥ 3,
can be written as the sum of a prime and a positive power of 2.

Exercise 5.4.4 (Sierpiński ([Sie60], [Sie88, p. 446]) and Riesel ([Rie56])). Let
P1 = 3 · 5 · 7 · 13 · 17 · 241.

a) Referring to the proof of Theorem 5.4.13, show that there exist infinitely
many positive integers n for which gcd(n+ 2k, P1) > 1 for every (nonneg-
ative) integer k.

b) Show that for these n, we also have gcd(n · 2j + 1, P1) > 1 for every j.
From this show there are infinitely many n for which n ·2j+1 is composite
for every j. These are called Sierpinski numbers (of the second kind).

c) Prove the cognate result that there are infinitely many (positive) n for
which n · 2j − 1 is composite for every j; these are called Riesel numbers.

Exercise 5.4.5 (†). Prove that there are infinitely many even k not divisible by
3 with the property that 3n+k is composite for all positive integers n. (For the
analog with an arbitrary positive integer in place of 3, see Aigner [Aig61].)

5.5 Schur’s Regularity Lemma

We have here a statement of the type: ‘if a system is parti-
tioned arbitrarily into a finite number of subsystems, then at least
one subsystem possesses a certain specified property.’ To the best
of my knowledge, there is no earlier result which bears even a re-
mote resemblance to Schur’s theorem. It is this element of novelty
that impresses itself so forcefully on the reader. – L. Mirsky, The
Combinatorics of Arbitrary Partitions [Mir75]

5.5.1 A Lemma in Graph Theory

The formulation of Schur’s proof that we present here utilizes ideas from graph
theory. Our presentation follows Mirsky [Mir75], who credits Greenwood &
Gleason and Abbott & Moser.

We first recall a few basic definitions from the subject: A graph G is an
ordered pair (V,E), where V (the set of vertices) is a set, and E (the set of
edges) is a collection of two-element subsets V . A graph (V,E) is said to be a
complete graph on n vertices if |V | = n and E contains every pair of distinct
elements of V . We say a graph is edge-colored (hereafter, simply colored) if we
assign a color to each element of E. By a triangle in a complete graph, we
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mean a set of three of vertices {vr, vs, vt} ⊂ V together with the three edges
{vr, vs}, {vr, vt}, {vs, vt} ∈ E.

We use G(n, k) to denote the set of k-colored complete graphs on n vertices.

For k = 1, 2, . . . , set µk := bk!ec. We shall deduce Schur’s lemma as a
corollary of the following lemma on graph colorings:

Lemma 5.5.1. Let k ≥ 1. Then every graph in G(µk + 1, k) contains a
monochromatic triangle.

We first observe:

Lemma 5.5.2. For k ≥ 2, we have the recurrence relation

µk = kµk−1 + 1.

Proof. For k = 1, 2, . . . , set

vk := k!

(

1 +
1

1!
+

1

2!
+ · · ·+ 1

k!

)

.

Then vk is an integer with vk ≤ k!e; moreover,

k!e− vk =
1

k + 1
+

1

(k + 1)(k + 2)
+ . . .

<
1

(k + 1)

(

1 +
1

k + 1
+

1

(k + 1)2
+ . . .

)

= 1/k ≤ 1.

Consequently, µk = vk (for k ≥ 1). The result follows.

Proof of Lemma 5.5.1. The proof is by induction on k. When k = 1, we are
considering 1-colorings of a complete graph on 3 vertices, and the result is
obvious.

Suppose the result holds for k−1 (with k ≥ 2). LetG be a k-colored complete
graph on µk+1 vertices, and label the vertices with the integers 1, 2, . . . , µk+1.
Consider the µk = kµk−1 + 1 edges connected to the vertex labeled 1; by the
pigeonhole principle, at least µk−1 + 1 of these must share the same color, say
red. By relabeling, we can assume these edges are

{1, 2}, {1, 3}, . . . , {1, µk−1 + 2}.

If there is a red edge between any two of the vertices 2, 3, . . . , µk−1 + 2, say
between i, j, then clearly {1, i, j} is a monochromatic triangle.

Otherwise, the subgraph on {2, 3, . . . , µk−1 + 2} is a complete graph on
µk−1 + 1 vertices colored with only k − 1 colors. By the induction hypothesis,
this subgraph contains a monochromatic triangle, so G does as well.
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5.5.2 Combinatorial Consequences

Lemma 5.5.3. Let a1 < a2 < · · · < aN be a sequence of N ≥ µk + 1 pos-
itive integers. If the integers 1, 2, . . . , aN − 1 are k-colored, there is always a
monochromatic solution to x− y = z, with 1 ≤ x, y, z ≤ aN − 1.

Moreover, if no three of the ai are in arithmetic progression, then x, y, z can
be chosen to be distinct.

Proof. Without loss of generality, we may assume N = µk + 1.
We k-color the complete graph with vertices {a1, . . . , aN} according to the

rule that the edge {ai, aj} (with i < j) receives the color of aj − ai. By Lemma
5.5.1, there is a monochromatic triangle connecting the vertices ai, aj , ak for
some 1 ≤ i < j < k ≤ N . Then x = ak − ai, y = aj − ai, z = ak − aj gives a
monochromatic solution to x− y = z.

Clearly x 6= y, x 6= z. If y = z, then ai, aj , ak are three terms in terms
arithmetic progression; the final part of the theorem follows.

Taking a1, . . . , aN as the sequence of the first N integers, we immediately
obtain the following corollary:

Corollary 5.5.4 (Schur). Suppose the integers 1, 2, . . . , bk!ec are k-colored.
Then there exists a monochromatic solution to x−y = z, with 1 ≤ x, y, z ≤ bk!ec.

Now choose ai = 2i−1 for 1 ≤ i ≤ bk!ec + 1. It is easy to check that ai
contain no three terms in arithmetic progression, so that we obtain:

Corollary 5.5.5. If the integers 1, 2, . . . , 2bk!ec − 1 are k-colored there exists a
monochromatic solution to x − y = z, with 1 ≤ x, y, z ≤ 2bk!ec − 1 and x, y, z
pairwise distinct.

It is natural to ask to what extent these bounds can be improved. Let
N = Nk denote the smallest N for which any k-coloring of {1, 2, . . . , N} admits
a monochromatic solution to x− y = z. Then Wan [Wan97] has shown

N < k!
e− e−1 + 3

2
(k ≥ 4), N < k!

e− e−1 + 3

2
− n+ 2 (even k ≥ 6).

In the opposite direction, the original paper of Schur contains a proof that it
is possible to k-color the integers 1, 2, . . . ,Mk := (3k − 1)/2 in such a way that
there is no monochromatic solution to x − y = z. The proof begins with the
observation that if C1, . . . , Ck is a partition of {1, 2, . . . ,M} into k sets, none of
which contains a solution to x− y = z, then

C′i := (3× Ci) ∪ ((3× Ci)− 1), C′k+1 := {1, 4, 7, . . . , 3M + 1}

is a partition of {1, 2, . . . , 3M + 1} into k + 1 sets with the same property.
For example, from the trivial partition of {1} into a single (difference-free)

set, we obtain a difference-free partition of {1, 2, 3, 4} into {1, 4} and {2, 3}.
The quoted bound of Schur, Nk > (3k − 1)/2, follows easily from induction and
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the relation Mk+1 = 3Mk + 1. Fredricksen [Fre79] has shown the lower bound
(3k − 1)/2 may be replaced by c(315)k/5 for some positive constant c.

The bound of Corollary 5.5.5 stemmed from our particular choice of a se-
quence free of three-term arithmetic progressions, and a denser sequence would
lead to a better bound. In Chapter 6, we will present Behrend’s construction of a
“dense” arithmetic progression-free sequence. Our result there implies 2bk!ec−1
may be replaced by (k!e)1+o(1). Bornsztein [Bor02] has recently shown it may
be replaced by bk!kec+ 1.

We now explain the title of this section. Schur’s student, R. Rado, took up
the task of generalizing Schur’s results to other equations

a1x1 + a2x2 + · · ·+ anxn = 0, (5.32)

where the ai are nonzero integers. He called such an equation k-fold regular
if for any k-coloring of the positive integers, there is always a monochromatic
solution to (5.32). An equation which is k-fold regular for each k was simply
called regular. In this language, Schur’s theorem is a finitary version of the
statement that x1 + x2 − x3 is regular.

We close by stating without proof the following criterion of Rado [Rad33]
for the regularity of (5.32):

Theorem (Rado). The equation (5.32) is regular if and only if there exists a
nonempty set I ⊂ {1, 2, . . . , n} such that

∑

r∈I
ar = 0.

For a proof of this theorem and for further discussion of Rado’s results, see
[Adh02]. For a cognate result, see Exercise 6.7.2.

5.5.3 Application to the Fermat Congruence

Consider the (in)famous Fermat equation,

xm + ym = zm.

A standard way to investigate integer solutions to Diophantine equations is to
begin by looking at solutions modulo primes and prime powers. As an example,
take m = 3, and consider the corresponding Fermat equation (mod 7). The
cubes (mod 7) are 0, 1 and −1, and there is no solution to ±1 + ±1 ≡ ±1
(mod 7) (for any choice of sign). It follows that in any solution x, y, z to the
Fermat equation, one of x3, y3 or z3 is 0 (mod 7), so that 7 | xyz. If we could
show the same held for infinitely many primes in place of 7, it would force
xyz = 0, and we would have proven Fermat’s Last Theorem in the case m = 3.

Unfortunately, this game-plan is doomed to failure, for m = 3 and any
other exponent. For example, Dickson, improving on an earlier estimate of
Cornacchia, showed that for p > (m − 1)2(m − 2)2 + 6m − 3, the “Fermat
congruence”

xm + ym ≡ zm (mod p) (5.33)
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always has a nontrivial solution, i.e., a solution in integers x, y, z with xyz 6≡
0 (mod p). (Strictly speaking, he proved this only for prime exponents m.)
This bound can be deduced, for example, from the theory of Jacobi sums (as
developed, e.g., in [IR90, Chapter 8]).

A simpler proof that (5.33) is nontrivially solvable for p > p0(m) was given
by Schur, utilizing his Corollary 5.5.4:

Theorem 5.5.6. Let m be a positive integer. The congruence (5.33) is non-
trivially solvable for p ≥ 1 + bm!ec.
Proof. Since the subgroup of mth powers in Z/pZ∗ coincides with the subgroup
of (m, p− 1)th powers, it suffices to treat the case when m | p− 1.

In this case, the cosets of this subgroup partition Z/mZ∗ into m sets. Iden-
tifying an integer with the coset it represents, we get an induced m-coloring of
{1, 2, . . . , p− 1}; since p− 1 ≥ bm!ec, it follows from Corollary 5.5.4 that there
exists a monochromatic solution to Z − Y = X.

Referring to the definition of this coloring, we see there exist integers g, x′, y′,
and z′ all coprime to p with X ≡ gxm (mod p), Y ≡ gym (mod p), Z ≡ gzm

(mod p). Then x, y, z are a nontrivial solution to (5.33).

Exercise 5.5.1.

a) Show that there are no consecutive 5th power residues (mod 25). Deduce
that there are no solutions to x5 + y5 ≡ z5 (mod 25) with x, y, z all units
(mod 25). Thus 5 | xyz if x5 + y5 = z5.

b) Show that the situation of part a) is atypical: for k,m ≥ 1, there is always
a solution to xm + ym ≡ zm (mod pk) with x, y, z coprime to p provided
p is sufficiently large, p > p0(k,m).

Several other aspects of the Fermat congruence been investigated (such as
the p-adic solvability of the Fermat equation). For an elegant survey, see [Rib79,
Lecture 12].
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Chapter 6

Sequences Without
Arithmetic Progressions

6.1 Introduction

We begin with a result (apparently) first conjectured by Schur [Soi95] which
later became a celebrated theorem of van der Waerden:

Theorem 6.1.1 (van der Waerden [vdW27], 1927). If the integers are
partitioned into finitely many (possibly empty) classes, then one of these classes
contains arbitrarily long arithmetic progressions.

One might guess that the reason van der Waerden’s theorem holds is that
in any finite partition of the positive integers, at least one set in the partition
has to be “large,” in the sense of possessing positive upper density. To see this,
observe that if all of the sets had asymptotic density 0, then their union would
also have density 0. This line of thinking led Erdős and Turán to formulate the
following conjecture:

Conjecture 6.1.1 (Erdős & Turán [ET36], 1936). Let S be a subset of the
positive integers possessing positive upper density. Then S contains arbitrarily
long arithmetic progressions.

This conjecture implies van der Waerden’s theorem; indeed, it says the
“largest” subset in any finite partition of the positive integers always contains
arbitrarily long arithmetic progressions.

The first progress on the Erdős-Turán conjecture was made by K.F. Roth,
who showed that a set with positive upper density has to contain a three-term
arithmetic progression. Actually, Roth proved something stronger:

Theorem 6.1.2 (Roth [Rot52], 1952). If r3(n) denotes the maximal size of
a subset of {1, 2, . . . , n} containing no 3 terms in arithmetic progression, then
r3(n)/n→ 0 as n→∞.

227
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To see how this implies the original statement, observe that if no 3 terms of
A are in arithmetic progression, then |A ∩ {1, 2, . . . , n}| ≤ r3(n) for each n.

About fifteen years later, Szemerédi proved ([Sze90], [Sze70]) that, with
r4(n) defined analogously, r4(n)/n→ 0. Thus a set with positive upper density
contains a four-term arithmetic progression. Finally, in 1975, Szemerédi [Sze75]
succeeded in proving Conjecture 6.1.1 by showing that rk(n)/n → 0 for every
fixed positive integer k.

Roth’s result above is the upper estimate r3(n) = o(n). Stronger, explicit
upper estimates are known; the best at the time of writing is due to Bourgain
[Bou99]:

r3(n)� n

√

log log n

log n
,

One can also ask for lower estimates on r3(n). It was noted by Szekeres that
the sequence of nonnegative integers containing only 0 and 1 in their ternary
expansion is free of any three-term arithmetic progression. It follows that there
is an arithmetic-progression-free subset of {0, 1, . . . , (3k − 1)/2} consisting of 2k

elements; translating everything by 1 shows that

r3

(
3k + 1

2

)

≥ 2k, (6.1)

and sandwiching n between two numbers of the form (3k +1)/2 then shows (see
Exercise 6.1.3)

r3(n)� nlog 2/ log 3 (n→∞).

Szekeres verified that equality holds in (6.1) for k = 1, 2, 3, and 4 (see [ET36])
and conjectured this was generally true. If this were the case, then one would
also have r3(n) = O(nlog 2/ log 3). However, in 1942 Salem & Spencer [SS42]
showed that for every ε > 0,

r3(n) > n1−ε, n > n0(ε).

In fact, they proved a more precise result, with ε replaced by a function of n
tending slowly to 0. Building upon their work, F.A. Behrend [Beh46] established
the best lower bound to date,

r3(n) ≥ ne−C
√

log n

for some constant C and all large n.

The study of sequences without arithmetic progressions is currently a fer-
tile research area with many tantalizing unsolved problems. As a sample, we
mention the following conjecture (carrying an Erdős prize of $3000):

Conjecture 6.1.2 (Erdős). If A is a set of positive integers for which the sum
∑

a∈A a
−1 diverges, then A contains arbitrarily long arithmetic progressions.
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This is wide-open; it is not even known whether the hypothesis of guarantees
the existence of a three-term arithmetic progression. Note that this conjecture
would have a number of very interesting consequences; e.g., in the literature the
observation is often made that this would imply the primes contain arbitrar-
ily long arithmetic progressions. Very recently this latter statement has been
unconditionally established by Ben Green & Terence Tao [GT04].

In this chapter we present proofs of the theorems of van der Waerden, Roth
and Behrend. Our proof of van der Waerden’s theorem follows the short proof
outlined in Graham and Rothschild [GR74] as expounded in [PS95]. We give
two proofs of Roth’s theorem. The first is purely combinatorial and is based on
on Szemerédi’s proof of his more general (and very difficult) result mentioned
above. Our treatment follows very closely that of [Gra81, Chapter 5]. The
second proof given here employs the circle method, and in this form is due to
D.J. Newman [New81], [New98]. Our presentation of Behrend’s construction is
based on his original paper [Beh46]. I first learned this result from Ernie Croot,
and his perspective is also in evidence there.

6.1.1 Exercises

Exercise 6.1.1. Show that r3(n) is a nondecreasing function satisfying r3(m +
n) ≤ r3(m) + r3(n) for every pair of positive integers m,n.

Exercise 6.1.2 (Erdős & Turán [ET36]; see also [ES03, §6.19]). Determine r3(n)
for n ≤ 8. Suggestion: When n < 5, this is easy. To handle 5 ≤ n ≤ 8, first pro-
duce a 4-element A.P. free subset of {1, 2, . . . , 5}. Since r3(n) is nondecreasing
(Exercise 6.1.1), showing r3(8) ≤ 4 will imply r3(5) = r3(6) = r3(7) = r3(8) = 4.
To prove this inequality, observe that any 5 element subset of {1, 2, . . . , 8} must
contain either three elements not greater than 4 or three elements greater than
4. Show that one can assume the first case always holds (by flipping about
9/2). Now examine the 3-element A.P.-free subsets of {1, 2, 3, 4} and show none
of them can be extended to a 5-element A.P. free subset of {1, 2, . . . , 8}.
Exercise 6.1.3 (Szekeres).

a) Show that the sequence of nonnegative integers containing only the dig-
its 0 and 1 in their ternary expansion contains no non-trivial three-term
arithmetic progression.

b) Deduce that r3((3k+1)/2) ≥ 2k. From this, prove r3(n)� nlog 2/ log 3. As-
suming r3((3k+1)/2) = 2k for every k, show that also r3(n)� nlog 2/ log 3.

Exercise 6.1.4 ([Ruz99, §13]). Let Sl be the set of nonnegative integers contain-
ing only the digits 0, 1 and 2 in their base 5 expansion and containing exactly
l 1’s.

a) Show that Sl contains no nontrivial three-term arithmetic progressions.

b) Using part a), show that if k is a positive integer and 0 ≤ l ≤ k,

r3

(
5k + 1

2

)

≥
(
k

l

)

2k−l.



230 CHAPTER 6. PROGRESSION-FREE SEQUENCES

c) Taking l = bk/3c in part b), show that there is a constant C ≥ 0 for which

r3

(
5k + 1

2

)

≥ k−C3k

whenever k ≥ 2.

d) Using part c), deduce that

r3(n)� nlog 3/ log 5−o(1)

as n→∞. Thus Szekeres’ conjecture cannot hold.

6.2 The Theorem of van der Waerden

6.2.1 Equivalent Forms of van der Waerden’s Theorem

After lunch we [van der Waerden, Schreier, and Artin] went into
Artin’s office in the Mathematics Department at the University of
Hamburg and tried to find a proof. We drew some diagrams on
the blackboard. We had what the Germans call ‘Einfälle’: sudden
ideas that flash into one’s mind. Several times such new ideas gave
the discussion a new turn, and one of the ideas finally led to the
solution. – van der Waerden, How the Proof of Baudet’s Conjecture
was Found [vdW71]

We begin with some reformulations of van der Waerden’s theorem due to Emil
Artin and Otto Schreier. In the next sequel, we shall prove van der Waerden’s
theorem in the third form given below, following a method of Graham and
Rothschild.

Theorem 6.2.1 (Artin & Schreier). The following statements are equivalent:

i. If the positive integers are partitioned into two subsets, then one of the
two contains arbitrarily long arithmetic progressions.

ii. For every positive integer k, there exists a positive integer W (k) such that
if the numbers {1, 2, . . . ,W (k)]} are partitioned into two subsets, then one
of the subsets contains an arithmetic progression of length k.

iii. For every pair of positive integers k, r, there exists a positive integer
W (k, r) such that if the numbers {1, 2, . . . ,W (k, r)} are partitioned into r
subsets, then one of the subsets contains a k-term A.P.

iv. For every positive integer r, if the positive integers are partitioned into r
subsets, then one of them contains arbitrarily long arithmetic progressions.
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Proof. i) ⇒ ii): We employ something called the compactness principle. Sup-
pose ii) fails for the positive integer k; then for every positive integer n, there is
a partition {1, 2, . . . , n} = An ∪Bn with neither An nor Bn containing a k-term
arithmetic progression. We may choose an infinite subsequence of the positive
integers N11 < N12 < . . . such that

L1 := AN11
∩ {1} = AN12

∩ {1} = . . . ,

since there are only two possibilities for the intersection and there are infinitely
many positive integers. Similarly, there is an infinite subsequence N21 < N22 <
. . . of {N1i} with the property that

L2 := AN21
∩ {1, 2} = AN22

∩ {1, 2} = . . . ,

and we can assume N21 > N11 We similarly define the sequence {Nkj}j≥1 and
Lk for each k > 2; as above, we may assume that

N11 < N21 < . . . ,

so that in particular Nk1 ≥ k for each k.
Consider now the set L := ∪∞k=1Lk. We claim that neither L nor its com-

plement contains arbitrarily long arithmetic progressions. Indeed, suppose L
contains a progression of length k, all of whose terms do not exceed M . Since

L ∩ {1, 2, . . . ,M} = ANM1
∩ {1, 2, . . . ,M},

this implies ANM1
contains a k-term arithmetic progression, contradicting the

initial choice of the sets Ai. Similarly, suppose Z+ \ L contains a k-term arith-
metic progression, all of whose terms do not exceed M . Then {1, 2, . . . ,M} \
ANM1

contain the same k-term arithmetic progression. Since NM1 ≥M , in fact
{1, 2, . . . , NM1} \ ANM1

contains this progression as well, contradicting again
the choice of the Ai.

We now show that ii) ⇒ iii) by induction on r, the case r = 1 being trivial
and the case r = 2 being what is asserted in ii). Suppose now that r ≥ 3, and
that it is known that W (k, r′) exists for all k and all r′ < r. We claim we may
take W (k, r) = W (W (k, 2), r−1). Indeed, let Z+ = A1∪A2 . . .Ar be any parti-
tion of {1, 2, . . . ,W (W (k, 2), r− 1)}. We can think of {1, 2, . . . ,W (W (k, 2), r−
1)} as partitioned into r − 1 classes, simply by lumping together everything in
A1 and A2 and keeping the remaining r − 2 classes. Then by the definition of
W (W (k, 2), r−1), one of these new classes contains an arithmetic progression of
length W (k, 2). If it is one of A3, . . . ,Ar, we’re done, since clearly W (k, 2) ≥ k.
Otherwise, we have an arithmetic progression of W (k, 2) integers all of which
fall into either A1 or A2. Number (in order) the W (k, 2) terms of this arithmetic
progression as 1, 2, . . . ,W (k, 2) and think of them as divided into two classes
(according as whether they are in A1 or A2); by the definition of W (k, 2), there
is an arithmetic progression of length k in one of these classes, and this in
turn yields an arithmetic progression of length k in our original set. Since the
implications iii)⇒ iv) and iv)⇒ i) are trivial, the theorem follows.
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The reader familiar with point-set topology will recognize the construction
of L that arose in proving the implication i) ⇒ ii) as a proof of the sequential

compactness of the powerset of Z+ (identified with {0, 1}Z+

given the usual
product topology). This explains the name “compactness principle.”

Henceforth we use the term van der Waerden’s theorem to refer to any of
the four equivalent assertion’s above.

Theorem 6.2.2 (Rabung [Rab75], see also [Bro75]). van der Waerden’s
theorem is equivalent to the following: Let A = {a1, a2, . . . } be an infinite set of
positive integers with a1 < a2 < . . . . If ai+1 − ai is bounded, then A contains
arbitrarily long arithmetic progressions.

Proof. This result implies van der Waerden’s theorem in the first form given
above. Indeed, if the positive integers are partitioned into two sets A,B, then
either the difference between consecutive elements of A remains bounded, in
which case the given statement implies A contains arbitrarily long arithmetic
progressions, or there are arbitrarily long blocks of consecutive integers not in A.
The latter possibility implies B contains these arbitrarily long blocks of consec-
utive integers, which means B contains arbitrarily long arithmetic progressions.

On the other hand, our statement follows from van der Waerden’s theorem
in its fourth form above. Let A = {a1 < a2 < . . . } be a set with ai+1 − ai ≤ r
for some positive integer r. Then every n > a1 is in one of the sets A + i for
some 1 ≤ i ≤ r; thus if we define

Ai := A− a1 + i = {a− a1 + i : a ∈ A},

then Z+ = ∪ri=1Ai. We would like to apply van der Waerden’s theorem in
its fourth form to deduce that one of the sets Ai (and hence A also) contains
arbitrarily long arithmetic progressions, but the sets Ai may not be disjoint. To
get around this, we apply a standard trick: define B1 = A1 and for 1 < i ≤ r
define Bi = Ai \ ∪i−1

j=1Bj . Then ∪ri=1Bi = Z+, and the Bi are disjoint. Now van
der Waerden’s theorem implies one of the Bi contains arithmetic progressions
of arbitrary length, and since Bi ⊂ Ai, the result follows.

6.2.2 A Proof of van der Waerden’s Theorem

We now present a proof of van der Waerden’s theorem due to Graham & Roth-
schild [GR74]. Our exposition follows very closely the treatment by Pomerance
& Sárközy [PS95].

Let l,m be positive integers. We say two m-term sequences

x1, . . . , xm and x′1, x
′
2, . . . , x

′
m (xi, x

′
i ∈ {0, 1, 2, . . . , l})

are l-equivalent if they agree up to the last occurrence of l. More precisely, they
are l-equivalent if neither sequence contains l or if there is a k, 1 ≤ k ≤ m, with
xi = x′i for 1 ≤ i ≤ k and xi, x

′
i < l for k < i ≤ m. (The first possibility can be

considered a degenerate case of the second, provided we allow k = 0.)
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The next two exercises are meant to help the reader internalize this rather
complicated definition; only the second is required for the proof of van der
Waerden’s theorem.

Exercise 6.2.1. Check that l-equivalence is an equivalence relation on m-term
sequences drawn from {0, 1, . . . , l}. What are the equivalence classes when m =
1?

Exercise 6.2.2. Show that if x1, . . . , xm+1 and x′1, . . . , x
′
m+1 are (m + 1)-term

l-equivalent sequences, and xm+1, x
′
m+1 < l, then x1, . . . , xm and x′1, . . . , x

′
m are

l-equivalent.

For every pair of positive integers l,m, we consider the following assertion:

Assertion S(l,m). For every positive integer r, there exists a positive integer
N(l,m, r) with the following property: if {1, 2, . . . , N(l,m, r)} is partitioned into
r parts A1, . . . ,Ar, then there are positive integers a, d1, . . . , dm such that

a+ l(d1 + · · ·+ dm) ≤ N(l,m, r) (6.2)

and such that whenever x1, . . . , xm and x′1, . . . , x
′
m are l-equivalent m-term se-

quences from {0, 1, . . . , l}, a+x1d1 + · · ·+xmdm and a+x′1d1 + · · ·+xmd
′
m lie

in the same Aj.

Note that (6.2) ensures that both sums a+
∑m
i=1 xidi and a+

∑m
i=1 x

′
idi fall

into {1, 2, . . . , N(l,m, r)}.
In order to elucidate the connection with van der Waerden’s theorem, we

now unravel the assertion S(l, 1). Two elements xi, x
′
i ∈ {0, . . . , l} (thought of

as 1-term sequences) are l-equivalent if and only if either xi, x
′
i < l or xi =

x′i. Thus S(l, 1) asserts (exactly) that for every positive integer r, there is a
positive integer N(l, 1, r) with the following property: if {1, 2, . . . , N(l, 1, r)} is
partitioned into r subsets, then there are positive integers a, d with a+ ld ≤ N
and such that a+0d, a+d, . . . , a+(l+1)d fall into the same Aj . (It also asserts
that a + xd and a + x′d fall into the same class when 0 ≤ x = x′ ≤ l, but this
is automatic.)

We see from the above that S(l, 1) implies the existence of W (l, r) for every
r. Thus, van der Waerden’s theorem is a corollary of the following result:

Theorem 6.2.3. For all positive integers l and m, the assertion S(l,m) is a
theorem.

The proof of Theorem 6.2.3 is divided into two parts. We first show that if
S(l, k) is a theorem for k = 1, 2, . . . ,m, then so is S(l,m+1). We then show that
if S(l,m) is a theorem for all m, then so is S(l+1, 1). Since S(1, 1) is a theorem
(take N(1, 1, r) = 2, a = d = 1 and observe that xi and x′i are 1-equivalent
1-term sequences if and only if xi = x′i), the result follows by double induction.

Proof that S(l, k) ∀k ≤ m⇒ S(l,m+ 1). Assume that S(l, k) is a theorem for
k = 1, 2, . . . ,m. For an arbitrary positive integer r, set M := N(l,m, r) and
M ′ := N(l, 1, rM ). We claim we may take N(l,m+ 1, r) = MM ′.
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Suppose {1, 2, . . . ,MM ′} is partitioned into r sets A1, . . . ,Ar. Let C be the
function assigning to i ∈ {1, 2, . . . ,MM ′} the number j ∈ {1, 2, . . . , r} for which
i ∈ Aj . We consider the matrix

A :=








C(1) C(2) . . . C(M)
C(M + 1) C(M + 2) . . . C(2M)

...
...

. . .
...

C((M ′ − 1)M + 1) C((M ′ − 1)M + 2) . . . C(M ′M)







.

We claim the matrix A contains an l-term arithmetic progression of identi-
cal rows. Each row is one of the rM possible M -term sequences drawn from
{1, 2, . . . , r}. Now partition {1, 2, . . . ,M ′} into rM classes, where i, j are in the
same class if and only if the rows i, j are identical. By our earlier discussion
of the meaning of S(l, 1) and from the definition M ′ = N(l, 1, rM ), there is an
arithmetic of progression b+ id, i = 1, 2, . . . , l − 1 of identical rows, where

b+ ld ≤M ′. (6.3)

We now apply S(l,m) to the M = N(l,m, r) consecutive integers {(b −
1)M + 1, (b − 1)M + 2, . . . , bM} with the partition into r sets induced by our
existing partition of {1, 2, . . . ,MM ′}. (Think of applying S(l,m) to the integers
{1, 2, . . . ,M} partitioned into r sets as follows: the integer 1 ≤ i ≤ M is in set
j if and only if i+ (b− 1)M is in set j with respect to our given partition.) We
obtain the existence of integers a, d1, . . . , dm such that

(i) a ≥ (b− 1)M + 1, a+ l(d1 + · · ·+ dm) ≤ bM .

(ii) if x1, . . . , xm and x′1, . . . , x
′
m are l-equivalent m-term sequences with en-

tries from {0, . . . , l}, then

C(a+

m∑

i=1

xidi) = C(a+

m∑

i=1

x′idi).

Set dm+1 = dM . We will prove S(l,m+ 1) by showing:

(i’) a+ l(d1 + · · ·+ dm+1) ≤MM ′,

(ii’) if x1, . . . , xm+1 and x′1, . . . , x
′
m+1 are l-equivalent (m+ 1)-term sequences

from {0, . . . , l}, then C(a+
∑m+1
i=1 xidi) = C(a+

∑m+1
i=1 x′idi).

To prove (i’), it is sufficient to note

a+ l(d1 + · · ·+ dm+1) = a+ l(d1 + · · ·+ dm) + ldm+1

≤ bM + ldm+1 = (b+ ld)M ≤M ′M,

by (6.3).
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We now prove (ii’). Let x1, . . . , xm+1 and x′1, . . . , x
′
m+1 be l-equivalent. If

xm+1 = l or x′m+1 = l, then xi = x′i for each i, and (ii’) certainly holds in this
case. Thus we may assume xm+1, x

′
m+1 < l. Define

j := a− (b− 1)M +

m∑

i=1

xidi, j′ := a− (b− 1)M +

m∑

i=1

x′idi. (6.4)

Then from (i) above, we see j, j′ ∈ {1, 2, . . . ,M}. We now look at how the j,
j′th columns of A intersect the rows b, b+ d, . . . , b+ (l − 1)d. Since these rows
are identical, the jth column is constant on these rows, as is the j′th. We now
show that the jth column and j′th column agree on row b, so not only are they
both constant, but they are both the same constant. For this, note that from
(6.4),

(b− 1)M + j = a+

m∑

i=1

xidi, (b− 1)M + j′ = a+

m∑

i=1

x′idi.

But x1, . . . , xm and x′1, . . . , x
′
m are l-equivalent (Exercise 6.2.2), so that

C(a+

m∑

i=1

xidi) = C(a+

m∑

i=1

xid
′
i),

by (ii). The claim follows.
We now look at the jth and j′th columns on selected rows chosen from

b, b+ d, . . . , b+ (l − 1)d. Since xm, x
′
m < l, both b+ xm+1d and b+ x′m+1d are

among these rows. Now (6.4) implies the following expressions for the jth and
j′th entries of rows b+ xm+1d, b+ xm+1d

′ respectively:

(b+ xm+1d− 1)M + j = a+

m+1∑

i=1

xidi, (b+ x′m+1d− 1)M + j′ = a+

m+1∑

i=1

x′idi.

Hence C(a +
∑m+1
i=1 xidi) = C(a +

∑m+1
i=1 x′idi). This proves (ii), and hence

establishes S(l,m+ 1).

Proof that S(l, k) ∀m⇒ S(l + 1, 1). We wish to show the existence of N(l +
1, 1, r) for every positive integer r. It is easy to see we may take N(l+ 1, 1, 1) =
l + 2 (take a = d = 1 and notice the remaining conditions are trivially satisfied
since there is only one set in the partition), so suppose that r ≥ 2. We claim
we may take N(l + 1, 1, r) = 2N , where N := N(l, r, r).

Let {1, . . . , 2N} be partitioned into r subsets A1, . . . ,Ar. In accordance
with the definition of N , choose a, d1, . . . , dr such that a+ l(d1 + · · ·+ dr) ≤ N
and such that if x1, . . . , xr and x′1, . . . , x

′
r are l-equivalent r-term sequences from

{0, . . . , l}, then a+
∑r
i=1 xidi and a+

∑r
i=1 x

′
idi fall in the same Aj .

Since there are
(
r+1
2

)
pairs u, v with 0 ≤ u < v ≤ r and since

(
r+1
2

)
=

(r + 1)r/2 > r for r ≥ 2, there exist 0 ≤ u < v ≤ r with

a+

u∑

i=1

ldi, a+

v∑

i=1

ldi (6.5)
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in the same subset of the partition, say Aj . Define

a′ := a+

u∑

i=1

ldi, d′ :=

v∑

i=u+1

di.

We claim the (l+1)-term arithmetic progression a′, a′+d, . . . a′+ ld′ lies entirely
in Aj and that a′ + (l + 1)d′ ≤ 2N . This claim will imply S(l + 1, 1) holds, by
our earlier interpretation.

Note that we already know that both a′, a′ + ld′ lie in Aj (these are just the
two elements of (6.5)). It remains to show that the same holds for a′ +xd′ when
x ∈ {1, 2, . . . , l − 1}. But for these x, the r-term sequences

l, l, . . . , l
︸ ︷︷ ︸

u

, 0, . . . , 0
︸ ︷︷ ︸

r−u

and l, . . . , l
︸ ︷︷ ︸

u

, x, . . . , x
︸ ︷︷ ︸

v−u

, 0, . . . , 0
︸ ︷︷ ︸

r−v

are l-equivalent. It follows that

a+

u∑

i=1

ldi = a′ and a+

u∑

i=1

ldi +

v∑

i=u+1

xdi = a′ + xd

lie in the same set of the partition; since a′ ∈ Aj , so is a′ + xd′.
Finally, to verify that a′ + (l + 1)d′ ≤ 2N , we note that

a′ + ld′ = a+

v∑

i=1

ldi ≤ a+

r∑

i=1

ldi ≤ N,

so that
a+ (l + 1)d′ ≤ 2(a+ ld′) ≤ 2N.

6.2.3 Exercises

Exercise 6.2.3 (Rabung [Rab75]). Using the compactness principle, show that
van der Waerden’s theorem is equivalent to the following “finite version” of
Rabung’s result quoted above: For every pair of positive integers k, r, there
exists a number G(k, r) such that any set of g integers {a1 < a2 < · · · < ag}
with ai+1 − ai ≤ r contains a k-term arithmetic progression.

Exercise 6.2.4. Use the second form of van der Waerden’s theorem given in
Theorem 6.2.1 to prove the following result (noticed by Schur): for every positive
integer k, there is always a block of either k consecutive quadratic residues (mod
p) or k consecutive quadratic nonresidues (mod p) whenever p > p0(k) is a
sufficiently large prime.

If you are feeling particularly ingenious, prove the theorem of Brauer that
for every k and all p > p1(k), there is always a block of k consecutive quadratic
residues. (One can also prove this with residues replaced by nonresidues; for a
survey of like results, see [Bra69]. For an analytic approach via character sums,
see [Sch76, Theorem 5A]).
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6.3 Roth’s Theorem and Affine Properties

Recall that we defined r3(n) as the size of any largest subset of {1, 2, . . . , n}
possessing no three terms in (nontrivial) arithmetic progression. In this chapter
we will give two proofs of the following now-classic result:

Theorem 6.3.1 (Roth [Rot52]). r3(n) = o(n).

In this section we set the stage for Roth’s result by placing it in the general
setting of affine properties. This level of generality is excessive (but benign) as
regards Szemerédi’s combinatorial proof; however, it is a convenient framework
to have in place when discussing Newman’s analytic proof.

A property P applying to finite (possibly empty) sets of integers is said to
be an affine property it if satisfies the following three conditions:

i. The empty set ∅ has P .

ii. If A has property P and B ⊂ A, then B has property P .

iii. For every pair of integers m,n with m 6= 0, the set A has property P if
and only if m×A+ n := {ma+ n : a ∈ A} has property P .

Some Examples of Affine Properties.

i. The property P0 of being a finite set of integers, with no restriction im-
posed, is an affine property.

ii. For any fixed (positive integer) k, the property of containing no k (distinct)
terms in arithmetic progression is affine.

iii. Let a1, a2, . . . , ak be k ≥ 3 integers which sum to 0. The property of
containing no solution to the equation a1x1 + · · ·+ akxk is affine.

Note that the property of having no 3 terms in arithmetic progression is
equivalent to possessing no solution to x1 + x2 = 2x3, which is a property
of this type. Actually, Newman’s proof of Roth’s theorem has an analog
for all properties in this family (see Exercise 6.7.2).

We define
M(n, P ) := max

A⊂{1,2,...,n}
A possesses P

|A|;

i.e., M(n, P ) is the size of any largest subset of {1, 2, . . . , n} possessing P . For
example, if P is the property of having no 3 terms in arithmetic progression,
then M(n, P ) is what we have been calling r3(n). Condition (i) above ensures
that M(n, P ) is well-defined for every affine property P . When n = 0, we adopt
the convention that {1, 2, . . . , n} denotes the empty set, so that M(0, P ) = 0.

Property iii) allows us to make the following observation:

M(n, P ) is the size of the largest subset possessing P of every set of n con-
secutive integers, or more generally of every n-term arithmetic progression
of integers.

(6.6)
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Figure 6.1:

N N N N · · · N rk

This will be very useful in the sequel. For example, in the proof of Roth’s
theorem the following situation often arises (with P the affine property of having
no three terms in arithmetic progression): we have a set A free of three-term
arithmetic progression and a set J , which is a set of consecutive integers or a
more general arithmetic progression. Then A∩J is AP-free, so we can estimate
|A ∩ J | from above by M(|J |, P ) = r3(|J |).

The permission constant associated to P is defined by

CP := lim
n→∞

M(n, P )

n
.

For example, CP0
= 1, and Theorem 6.3.1 is the assertion that CP = 0 for the

affine property of possessing no 3 terms in arithmetic progression. This constant
is well-defined for any affine property:

Lemma 6.3.2. For any affine property P ,

lim
n→∞

M(n, P )

n
= inf
n=1,2,...

M(n, P )

n
.

In particular, CP always exists.

Proof of Lemma 6.3.2. Let c denote this infimum. Because M(n, P )/n ≥ c for
every n, we need only show that for every ε > 0, one has M(n, P )/n < c + ε
whenever n is sufficiently large. Suppose otherwise; then we can choose ε > 0
for which

M(nk, P )

nk
≥ c+ ε (6.7)

for a sequence of positive integers {nk}k≥1 with nk →∞ as k →∞.

From the definition of c, we can choose N for which

M(N,P )

P
≤ c+

ε

2
. (6.8)

For k ≥ 1, write

nk = Nqk + rk,

where 0 ≤ rk < N . We break up the integers in {1, 2, . . . , nk} into blocks
of N consecutive integers, as illustrated in Figure 6.1. If S is any subset of
{1, 2, . . . , nk} possessing P , then by the second defining condition of an affine
property, the intersection of each of the blocks of N consecutive integers with
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S also possesses P . Thus the size of this intersection is bounded by M(N,P ).
Consequently,

|S| ≤ qkM(N,P ) + rk ≤ qkN
(

c+
ε

2

)

+ rk.

As this holds for all subsets of {1, 2, . . . , nk} possessing P , it follows that

M(nk, P ) ≤ qkN
(

c+
ε

2

)

+ rk ≤ nk
(

c+
ε

2

)

+ rk = cnk + nk
ε

2
+ rk. (6.9)

On the other hand, by (6.7),

M(nk, P ) ≥ nk(c+ ε) = cnk + εnk. (6.10)

Comparing the estimates (6.9) and (6.10) yields

ε

2
nk ≤ rk < N,

which is false once k is sufficiently large.

Naturally, for proving Roth’s theorem, we are most concerned with the sec-
ond family of examples of affine properties given above. Let Pk denote the
property of possessing no k terms in arithmetic progression. We abbreviate the
associated permission constant, CPk

, by Ck. In this language, Roth’s theorem
is precisely the assertion that C3 = 0.

In 1938, Behrend [Beh38] showed there were only two possibilities for the
behavior of the Ck: either Ck = 0 for every k, or Ck ↗ 1 as k → ∞. It took
nearly forty years before Szemerédi [Sze75] showed it was the second possibility
that prevails.

We close this section with the amusing result that Szemerédi’s theorem,
ostensibly a statement only about the properties Pk, actually determines the
permission constant of any affine property:

Theorem 6.3.3 (D.J. Newman). We have

Ck = 0 for every k (Szemerédi)⇐⇒ CP = 0 for every affine property P 6= P0.

Proof. The backward implication is obvious. For the forward implication, let P
be an affine property different from the trivial property P0.

Choose k for which {1, 2, . . . , k} does not possess P . Such a choice is possible
for otherwise, by (ii) and (iii) in the definition of an affine property, every finite
set would possess P , contradicting P 6= P0. With this choice made it then
follows from (iii) that any set possessing P contains no k terms in arithmetic-
progression. Consequently, M(n, P ) ≤M(n, Pk), whence

CP = limM(n, P )/n ≤ limM(n, Pk)/n = 0.

Exercise 6.3.1. Let f : N→ R be a function satisfying f(m+n) ≤ f(m) +f(n)
for all natural numbers m and n. Show that

lim
n→∞

f(n)

n
= inf
n=1,2,...

f(n)

n
.

Exercise 6.3.2. Prove that Ck ≤ 1− 1/k for each k.
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6.4 Szemerédi’s Combinatorial Proof of Roth’s
Theorem

We now present Szemerédi’s proof of Roth’s theorem. The proof is, for the most
part, an expansion of the treatment in R.L. Graham, [Gra81, Chapter 5].

6.4.1 A Combinatorial Lemma

Lemma 6.4.1. Let α = 2 +
√

3. For k ≥ 0, let lk := αn1−1/2k

. If A is
a subset of {1, 2, . . . , n} with at least lk elements, then there exist a ∈ A and
x0, . . . , xk > 0 for which

K(a;x0, . . . , xk) :=

{

a+

k∑

i=0

εixi : εi = 0 or 1

}

⊂ A.

Proof. We proceed by induction on k. Suppose first that k = 0. Since l0 = α
we have |A| ≥ α > 3 in this case. So we can choose a as the smallest element
of A and x0 as the positive difference between a and any other element of A.

Suppose the lemma holds for all values less than a certain k ≥ 1, and that
A = {a1 < · · · < al} ⊂ [1, n] with |A| = l ≥ lk. We first show that among the
(
lk
2

)
differences aj − ai, i < j, at least lk−1 of them must be equal. But this

follows since all the differences lie in [1, n] while

(
lk
2

)

≥ 1

2
lk(lk − 1) ≥ 1

2
(lk − 1)2 =

1

2
(αn1−1/2k − 1)2

≥ 1

2
(α− 1)2(n1−1/2k

)2 = αn2−1/2k−1

= nlk−1.

Therefore we have

ai1 − aj1 = ai2 − aj2 = · · · = aim − ajm = d > 0,

for some m ≥ lk−1. By the induction hypothesis, we can find a and x0, . . . , xk−1

with
K(a;x0, . . . , xk−1) ⊂ A′ := {aj1 , . . . , ajm}.

But then with xk = d, we have

K(a;x0, . . . , xk−1, xk) ⊂ A,

since a′ ∈ A′ implies a′ + d ∈ A.

Corollary 6.4.2. Let c be a fixed positive constant. Suppose that A is contained
in a set of n consecutive integers {m + 1, 2, . . . ,m + n} and that |A| ≥ cn. If
the nonnegative integer k satisfies

k <
log log n− log(logα− log c)

log 2
, (6.11)
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then there exist a ∈ A and x0, . . . , xk > 0 with

K(a;x0, . . . , xk) ⊂ A.

(Here α is the constant of the preceding lemma.)

Proof. Multiplying both sides of (6.11) of by log 2 and exponentiating, we find

2k <
log n

logα− log c
,

so that
1

2k
log n > logα− log c,

and

n1/2k

> α/c.

Then

|A| ≥ cn > αn−1/2k

n = αn1−1/2k

,

so in the case m = 0 the result follows from the preceding lemma.

In general we obtain from the above integers a′, x0, . . . , xk, with x0, . . . , xk >
0 and

K(a′; c0, . . . , xk) ⊂ A−m := {a−m : a ∈ A};

we can now take x0, . . . , xk as above and a := a′ +m.

6.4.2 Some Definitions

Let l be a positive integer.

We let A = A(l) denote a subset of {1, 2, . . . , l} of size r3(l) with no three
terms in arithmetic progression.

Partition {1, 2, . . . , l} into l′ groups J1,J2, . . . ,Jl′ of bl1/2c consecutive in-
tegers each, where the last group is perhaps incomplete. Note that

l′ = l1/2 +O(1) (l→∞).

We assume for the sake of contradiction that that C3 > 0.

Lemma 6.4.3. It is possible to choose j as a function of l so that both of the
following hold:

i. |Jj ∩ A| > C3l
1/2/2 for all large l, and

ii. |j − l1/2/2| = o(l1/2),

where the o(l1/2) term describes the behavior as l→∞.
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Let us sketch the proof: By definition of C3, we have

r3(n) = (C3 + o(1))n (n→∞). (6.12)

Applied with n = l, this implies the average size of |Jj ∩ A| is asymptotic
to C3l

1/2. The falsity of the lemma would imply a deficiency in the number
of terms of A in the sets Jj close to the center, and this would have to be
compensated by an overabundance of terms of A among the outer sets. But
(6.12) yields an upper bound on the contribution from any individual set, and
this bound implies said compensation is impossible. We now make this precise:

Proof of Lemma 6.4.3. We prove the following, which suffices: Fix ε > 0. Then
for large l, say l > l0(ε), there is a j satisfying (i) as well as

(ii’) |j − l1/2| ≤ 2εl1/2/C3.

To begin the proof, choose n0 = n0(ε) with

r3(n) < (C3 + ε)n (for n > n0). (6.13)

The length bl1/2c of the integer intervals Jj , with 1 ≤ j < l′, tends to infinity
uniformly with l. So the size of the sets Jj , 1 ≤ j < l′, eventually all exceed n0.
Now (6.6) and (6.13) assure us that for large enough l,

|Jj ∩ A| ≤ r3(|Jj |) ≤ |Jj |(C3 + ε) (1 ≤ j < l′).

This bound also holds with j = l′, unless |Jl′ | ≤ n0, i.e., unless |Jl′ | = O(1).
(Of course the implied constant here depends on ε.)

Write

|A| =
∣
∣
∣
∣
∣

⋃̇l′

j=1
Jj ∩ A

∣
∣
∣
∣
∣

=

l′∑

j=1

|Jj ∩ A|

=
∑

|j−l1/2/2|≤2εl1/2/C3

+
∑

|j−l1/2/2|>2εl1/2/C3

=
∑

1
+
∑

2
,

say. If there are no j for which (i) and (ii’) hold simultaneously, then

∑

1
≤
(
C3l

1/2

2

)(
4ε

C3
l1/2 +O(1)

)

= 2εl + o(l).

Also, by the above discussion,

∑

2
≤
(

l −
(

4ε

C3
l1/2 +O(1)

)(

l1/2 +O(1)
))

(C3 + ε) +O(1)

= l

(

1− 4ε

C3

)

(C3 + ε) +O(l1/2) +O(1)

= l

(

C3 − 4ε+ ε− 4ε2

C3

)

+ o(l);
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adding, we obtain

r3(l) = |A| =
∑

1
+
∑

2

≤ l
(

2ε+ C3 − 4ε+ ε− 4ε2

C3

)

+ o(l) < l(C3 − ε) + o(l).

But this contradicts (6.12) for all sufficiently large l.

Now choose j satisfying the conditions of the lemma and set J := Jj . Define
J ′ and J ′′ by

J ′ := {x ∈ {1, 2, . . . , l} : x < J }, J ′′ := {x ∈ {1, 2, . . . , l} : x > J },
where we write x < J (resp. x > J ) to mean that x lies to the left (resp. right)
of the entire integer interval J . That is, x < J means x ∈ Ji for some i < j,
and correspondingly for x > J .

Condition (ii) of Lemma 6.4.3 permits us to estimate the sizes of J and J ′′:

Lemma 6.4.4. We have

|J ′|, |J ′′| = l/2 + o(l). (6.14)

Proof. Since |J | + |J ′| + |J ′′| = l and |J | = O(l1/2), it suffices to prove the
claim for |J ′|. We have

|J ′| = bl1/2c(j − 1) = (l1/2 +O(1))(j − 1) = l1/2j +O(j) +O(1).

The lemma follows since j = l1/2(1/2 + o(1)).

Setting
k := blog log lc,

we have

k <
log log l1/2 − log(logα− log C3

2 )

log 2

for large l. So by Corollary 6.4.2 (with n = bl1/2c and c = C3/2) there exist a
and x0, . . . , xk with

K(a;x0, . . . , xk) ⊂ J ∩A,
where each xi satisfies

0 < xi ≤ |J | ≤ l1/2.
Define

Ki := K(a;x0, . . . , xi) (−1 ≤ i ≤ k),

where we take K−1 = {a}. Then take

Li := {j′′ ∈ J ′′ : j′, ki, j
′′ form a three-term AP for some j′ ∈ A ∩ J ′, ki ∈ Ki}

(−1 ≤ i ≤ k).

Figure 6.2 shows the rough relative positions of J ,J ′,J ′′ as well as Ki and Li.
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Figure 6.2:

J ′ J

K(a;x0, . . . , xi)

J ′′

Li

6.4.3 Properties of the Li

Because Ki ⊂ Ki+1, we also have Li ⊂ Li+1. The next lemma says that Li+1 is
“almost” the sumset

Li + 2xi+1 := {j′′ + 2xi+1 : j′′ ∈ Li}.

Actually, we prove these two sets are equal apart from “edge effects” (the mean-
ing of this will be explained by the proof below).

Lemma 6.4.5. For −1 ≤ i < k, both set differences

Li+1 \ (Li ∪ (Li + 2xi+1)) and (Li ∪ (Li + 2xi+1)) \ Li+1

have O(l1/2) elements. Consequently,

|Li+1| = |Li ∪ (Li + 2xi+1)|+O(l1/2) (−1 ≤ i ≤ k).

Proof. Suppose x lies in the first set difference above. Since x ∈ Li+1, there is
a three-term progression

j′, k, x (j′ ∈ J ′, k ∈ Ki+1).

Since x /∈ Li, we must also have k /∈ Ki, so that k = k′ + xi+1 for some
k′ ∈ Ki. Then j′, k′, x − 2xi+1 is also a three-term arithmetic progression. By
the definition of Li, either

x− 2xi+1 ∈ Li (=⇒ x ∈ Li + 2xi+1)

or
x− 2xi+1 /∈ J ′′.

By hypothesis, x /∈ Li + 2xi+1, so the latter must hold. But x is in Li+1, so
also in J ′′, so that this possibility forces x to belong to the first 2xi+1 elements
of J ′′. Since 2xi+1 ≤ 2bl1/2c, this limits x to a set of at most 2bl1/2c = O(l1/2)
elements.

Because the Li are increasing, the second set difference is just

(Li + 2xi+1) \ Li+1. (6.15)

Let x′ ∈ Li and choose an associated three-term progression

j′, k, x′ (j′ ∈ J ′, k ∈ Ki).
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Then x := x′ + 2xi+1 belongs to the three-term progression

j′, k + xi+1, x (k + xi+1 ∈ Ki+1, x ∈ J ′′).

So as long as x′ + 2xi+1 belongs to J ′′, the element x′ + 2xi+1 belongs to Li+1,
and we’ve proved

if x′ ∈ Li, then either x′ + 2xi+1 either exceeds l or lies in Li+1. (6.16)

It follows that an element x of (6.15) must be given by x′ + 2xi+1, where

l − 2xi+1 < x′ ≤ l.
Since 2xi+1 ≤ 2bl1/2c, this limits x′, and hence x, to a set of O(l1/2) elements.

Lemma 6.4.6. We have

|L−1| ≥ |A ∩ J ′|+ o(l).

Proof. Observe that |L−1| counts the number of three-term progressions

j′, a, j′′, (j′ ∈ A ∩ J ′, j′′ ∈ J ′′).

Since a is fixed, the choice of j′ determines the common difference, so determines

j′′ = (a− j′) + a = 2a− j′. (6.17)

Moreover, any choice of j′ ∈ A∩J ′ determines an acceptable progression except
those for which j′′, as defined by (6.17), falls outside of J ′′. There are thus two
exceptional cases to worry about:

First, j′′ could fall outside of J ′′ because j′′ < J ′′. Since J has length bl1/2c
and a ∈ J , this is ruled out once the difference of the arithmetic progression
j′, a, j′′ exceeds the length of J ; e.g.,

a− j′ > l1/2

suffices. This last inequality can only fail if (keeping in mind that j′ ∈ J ′, so
that j′ ≤ a ∈ J )

a− l1/2 ≤ j′ ≤ a.
So this case can hold for at most O(l1/2) = o(l) choices of j′ ∈ J ′ ∩ A.

The other way j′′ could fall outside J ′′ is if j′′ := 2a − j′ is too big, i.e.,
j′′ > l. Then

j′ < 2a− l. (6.18)

Let us estimate the right hand side here. Since a ∈ J = Jj , and j = l1/2(1/2 +
o(1)), we have

a ≤ l1/2(l1/2/2 + o(l1/2)) = l/2 + o(l),

whence
2a− l ≤ o(l).

By (6.18), we conclude this case can also hold for at most o(l) values of j′ ∈
A ∩ J ′.
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Lemma 6.4.7. For each i, −1 ≤ i ≤ k, we have

|Li| ≥
lC3

2
+ o(l) (6.19)

Proof. Because the Li are increasing, it suffices to obtain this bound for |L−1|.
By the previous lemma, we have

|L−1| ≥ |A ∩ J ′|+ o(l)

= |A| − |A ∩ J | − |A ∩ J ′′|+ o(l)

≥ (C3 + o(1))l − (C3 + o(1))(|J |+ |J ′′|) + o(l).

Here the bounds on the sizes of A ∩ J and A ∩ J ′′ are deduced by appeals to
(6.6) and (6.12). To complete the lower-bound estimate for the size of L−1, we
note that

|J |+ |J ′′| = O(l1/2) + |J ′′| = l/2 + o(l)

by Lemma 6.4.4, so that we finally obtain

|Li| ≥ (C3 + o(1))l − (C3 + o(1)) (l/2 + o(l)) + o(l) =
lC3

2
+ o(l).

6.4.4 Blocks and Gaps

Since

L−1 ⊂ L0 ⊂ · · · ⊂ Lk
and |Lk| < l, there is an index i, −1 ≤ i < k, with

|Li+1 \ Li| ≤
l

k + 1
=

l

blog log lc+ 1
<

l

log log l
. (6.20)

Choose such an i and keep it fixed for the remainder of the proof.

Consider the set of elements of J ′′ that lie in an arbitrary fixed residue class
(mod 2xi+1), say

Cj := {x ∈ J ′′ : x ≡ j (mod 2xi+1)}.

By a Cj-block of Li, we mean a subset B := {b1 < · · · < bt} of Cj with the
following three properties:

i. bs+1 = bs + 2xi+1 for 1 ≤ s < t,

ii. bs ∈ Li for 1 ≤ s ≤ t,

iii. b1 − 2xi+1 /∈ Li, bt + 2xi+1 /∈ Li.
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By a block of Li, we mean a set that is a Cj-block of Li for some j.
Let B be a block with largest element b, and consider b + 2xi+1. Because

b was maximal, this element cannot belong to Li; on the other hand, (6.16)
implies b + 2xi+1 does belong to Li+1 provided only that it does not exceed l.
Since 2xi+1 ≤ 2bl1/2c, we find that to all but O(l1/2) blocks we may associate
in this manner an element of Li+1 \ Li. These elements are also distinct, since
two distinct blocks cannot have the same largest element. So by (6.20), we find
the number of blocks does not exceed

l/ log log l +O(l1/2).

Just as we divided into blocks the elements of Cj belonging to Li, we now
divide into gaps those not belonging to Li. By a Cj-gap, we mean a set of
elements congruent to j (mod 2xi+1) which either lies between two Cj blocks,
precedes the initial Cj-block or follows the final Cj-block. Also, if there are no
Cj-blocks, we consider all of Cj a Cj-gap. A gap is a set that is a Cj-gap for some
j.

The total number of gaps is bounded above by

∑

j (mod 2xi+1)

(#Cj-blocks + 1) =

(
l

log log l
+O(l1/2)

)

+O(2xi+1)

=
l

log log l
+O(l1/2). (6.21)

6.4.5 Denouement

We now have all the tools we need to complete the proof of Roth’s theorem.
We will obtain a contradiction by showing that |A∩J ′| is larger than allowed.

More specifically, since A ∩ J ′ is AP-free, we must have

|A ∩ J ′| ≤ (1 + o(1))C3|J ′|

≤ (1 + o(1))C3

(
l

2
+ o(l)

)

= (1 + o(1))
lC3

2
. (6.22)

On the other hand,

|A ∩ J ′| = |A| − |A ∩ J ′′| − |A ∩ J |
= |A| − |A ∩ J ′′|+ o(l)

= l(C3 + o(1))− |A ∩ J ′′|+ o(l). (6.23)

So a lower bound on |A ∩ J ′| follows from an upper bound on |A ∩ J ′′|. We
certainly have the upper estimate

|A ∩ J ′′| ≤ r3(|J ′′|) ≤ (C3 + o(1))|J ′′| = l
C3

2
+ o(l), (6.24)

using (6.14). If we substitute this into (6.23), we find

|A ∩ J ′| ≥ (1 + o(1))
lC3

2
,
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which is just a shade off from contradicting (6.22). In fact, any diminishment
of the coefficient of l in the upper estimate (6.24) would give a lower bound
contradicting (6.22). Below we will prove

|A ∩ J ′′| ≤ l

2
C3(1− C3) + o(l) (6.25)

and thereby complete this demonstration of Roth’s theorem.
The improvement on (6.24) is based on the observation that A being free of

arithmetic progressions precludes it from intersecting Li, by the very way we
defined Li. Consequently

|A ∩ J ′′| = |A ∩ (J ′′ \ Li)|.
We would like to estimate this last intersection from above by (C3+o(1))|J ′′\Li|.
However, it is not obvious how to justify this: J ′′ \ Li is not an arithmetic
progression, so (6.6) is not immediately applicable.

But we are prepared! Above we partitioned J ′′ \ Li into so-called gaps.
Our gaps are arithmetic progressions (with common difference 2xi+1) so (6.6)
applies to them. We may therefore proceed by estimating the number of terms
of A in each gap.

Say that a gap G is small if |G| < log log log l, otherwise large. For a large
gap we have the expected estimate

|A ∩ G| ≤ r3(|G|) ≤ (1 + o(1))|G|;
this is because |G| is bounded below by a function tending to infinity with l,
namely log log log l. Moreover, the total number of elements (in A or otherwise)
which belong to small gaps does not exceed

(
l

log log l
+O(l1/2)

)

log log log l = o(l),

using (6.21). Putting this together, we find (using (6.14), (6.19))

|A ∩ J ′′| = |A ∩ (J ′′ \ Li)|
≤ (C3 + o(1))|J ′′ \ Li|+ o(l)

= (C3 + o(1)) (|J ′′| − |Li|) + o(l)

≤ (C3 + o(1))

(
l

2
+ o(l)− C3l

2
+ o(l)

)

+ o(l)

=
l

2
C3(1− C3) + o(l).

6.5 More on Affine Properties

6.5.1 The Behavior of the Extremal Sets

Fix an affine property P . The underlying reason Roth’s theorem holds is that
the subsets of {1, 2, . . . , n} of size M(n, P ) which possess P (the extremal sets)
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behave like subsets of {1, 2, . . . , n} whose elements are chosen at random with
probability CP , at least with respect to containing three-term arithmetic pro-
gressions. Let us attempt to justify this here.

We begin with a proposition which is not needed for the proof of Roth’s
theorem (although that proof will require Lemma 6.5.2 below):

Proposition 6.5.1. Let f : Z+ → N be a nondecreasing function satisfying
0 ≤ f(n) ≤ n for every positive integer n. Suppose that f(n)/n→ ε as n→∞.
Let E(n) denote the expected number of three-term arithmetic progressions in
a randomly chosen subset of {1, 2, . . . , n} of size f(n), where order counts and
equality is allowed. Then as n→∞,

E(n) = ε3
n2

2
+ o(n2). (6.26)

Lemma 6.5.2. There are precisely dn2/2e three-term arithmetic progressions
consisting of elements of {1, 2, . . . , n}. Here order counts and equality is allowed.

Proof. The elements x, y, z are in arithmetic progression precisely when z−y =
y−x, i.e., when x+z = 2y. It follows that the number of three-term arithmetic
progressions of {1, 2, . . . , n} (counting degenerate progressions where all three
terms are equal and taking order into account) is given by the number of ordered
pairs (x, z) with x, z ∈ {1, 2, . . . , n} and x ≡ z (mod 2). We can compute this
by calculating the total number of pairs (x, z) and subtracting the number with
x, z of opposite parity. If n is even, this comes out to

n2 − 2(n/2)(n/2) = n2 − n2

2
=
n2

2
=

⌈
n2

2

⌉

,

while if n is odd, it evaluates as

n2 − 2
n− 1

2

n+ 1

2
= n2 − n2 − 1

2
=
n2 + 1

2
=

⌈
n2

2

⌉

.

Proof of Proposition 6.5.1. If f(n) < 3 for all n, then ε = 0 and En = 0 for
each n. Thus (6.26) asserts that 0 = o(n2), which is certainly the case. Thus
we can suppose that f(n) ≥ 3 for large enough n.

Let B denote the set of 3-element arithmetic progressions of {1, 2, . . . , n},
where order counts and trivial progressions are allowed; i.e.,

B := {(x, y, z) : x, y, z ∈ {1, 2, . . . , n}, x+ y = 2z}.

Then

E(n) =
1

(
n

f(n)

)

∑

S⊂{1,2,...,n}
|S|=f(n)

∑

b=(x,y,z)∈B
{x,y,z}⊂S

1.

We now reverse the order of summation. For n large enough that f(n) ≥ 3, the
number of f(n)-element subsets of {1, 2, . . . , n} containing a given b = (x, y, z) ∈
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B is
(
n−3

f(n)−3

)
. Thus

E(n) =
1

(
n

f(n)

)

∑

b=(x,y,z)∈B

∑

S⊂{1,2,...,n}
|S|=f(n),{x,y,z}⊂S

1

=
1

(
n

f(n)

)

∑

b=(x,y,z)∈B

(
n− 3

f(n)− 3

)

=

(
n−3

f(n)−3

)

(
n

f(n)

) |B| =
(
n−3

f(n)−3

)

(
n

f(n)

)

(
n2

2
+O(1)

)

.

Now (
n−3

f(n)−3

)

(
n

f(n)

) =
f(n)/n

1

f(n)/n− 1/n

1− 1/n

f(n)/n− 2/n

1− 2/n
→ ε3

as n→∞. Consequently,

E(n) = (ε+ o(1))3
(
n2

2
+O(1)

)

= ε3
n2

2
+ o(n2).

In §6.7 we will prove the following lemma:

Lemma 6.5.3. Fix an affine property P , and for every positive integer n fix a
subsetM(n, P ) ⊂ {1, 2, . . . , n} of size M(n, P ) possessing property P . Let F (n)
denote the number of three-term arithmetic progressions of M(n, P ). Then as
n→∞,

F (n) = C3
P

n2

2
+ o(n2).

Since M(n, P ) is nondecreasing in n for fixed P and M(n, P )/n→ CP , this
lemma paired with the result of Proposition 6.5.1 implies that the setsM(n, P )
behave like randomly chosen subsets of {1, 2, . . . , N} of size M(n, P ).

6.5.2 Roth’s Theorem revisited

Let us see how to deduce Roth’s theorem from Lemma 6.5.3:

Proof of Roth’s Theorem (Theorem 6.3.1). Let P be the affine property of con-
taining no nontrivial three-term arithmetic progression. For each n, fix a choice
of an extremal set M(n, P ), as in Lemma 6.5.3. The only three-term arith-
metic progressions ofM(n, P ) are the trivial ones consisting of a single element
repeated three times; thus

n ≥M(n, P ) = F (n) = C3
P

n2

2
+ o(n2).

It follows that CP = 0, which is Roth’s theorem.

The proof of Lemma 6.5.3 is based on on the following fundamental lemma:
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Fundamental Lemma. Fix an affine property P , and for each integer n fix
a subset M(n, P ) ⊂ {1, 2, . . . , n} of size M(n, P ) possessing property P . As
n→∞, we have

∑

a∈M(n,P )

e(aθ) = CP

n∑

a=1

e(aθ) + o(n), (6.27)

uniformly for θ ∈ [0, 1].

The proof of the fundamental lemma and the succeeding deduction of Lemma
6.5.3 constitute an example of the circle method . We take some time out right
now to discuss the basis for this method before returning to these proofs.

Exercise 6.5.1. The Fundamental Lemma can also be interpreted as asserting
that the extremal sets display “average” behavior among subsets of the same
size. Demonstrate this by showing the following:

Let f : Z+ → N be a nondecreasing function satisfying 0 ≤ f(n) ≤ n for
every positive integer n. Suppose that f(n)/n → ε as n → ∞. Let E(θ, n)
denote the expected value of the sum

∑

a∈A
e(aθ)

for a randomly chosen subset A ⊂ {1, 2, . . . , n} of size f(n). Show that

E(θ, n) = ε

n∑

a=1

e(aθ) + o(n) (n→∞),

uniformly for θ ∈ [0, 1].

6.6 Interlude: Remarks on the Circle Method

The proof of the fundamental lemma will be accomplished by a variant on a
technique known as the circle method (aka the Hardy-Littlewood method). This
method, based on analysis of exponential sums, has proven to be a powerful
method in analytic number theory.

6.6.1 The Function e(θ)

For real θ, we define

e(θ) := e2πiθ.

Since e2πi = 1, it follows that e(θ) is periodic mod 1. Moreover, as θ runs from
0 to 1, the values assumed by e(θ) trace out the unit circle {z : |z| = 1}. This
is the essential reason for the term circle method.
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6.6.2 Parseval’s Formula

A trigonometric polynomial is a function f : R→ C given by

f(α) =
∑

n

ane(nα),

where an = 0 for all but finitely many integers n.

Theorem 6.6.1 (An Orthogonality Relation). Let m,n ∈ Z. Then

∫ 1

0

e(mα)e(nα) dα =

{

1 if m = n,

0 otherwise.

Proof. If n = m, then the integrand is identically 1 and the result is clear.
Otherwise, the integrand has the form e(hα) where h 6= 0. Then

∫ 1

0

e(hα) dα =

∫ 1

0

sin(2πhα) + i cos(2πhα) dα

=
−1

2πh
cos(2πhα)

∣
∣
∣
∣

1

0

+
i

2πh
sin(2πhα)

∣
∣
∣
∣

1

0

= 0,

since both sin and cos are periodic with period 2π.

As an application of the orthogonality relations, we prove an important
formula due to Parseval.

Theorem 6.6.2 (Parseval’s Formula). Let

f(θ) =
∑

n

ane(nθ), g(θ) =
∑

m

bme(mθ)

be trigonometric polynomials. Then

∫ 1

0

f(θ)g(θ) dθ =
∑

n

anbn.

In particular,
∫ 1

0

|f(θ)|2 dθ =
∑

n

|an|2. (6.28)

Proof. Observe

∫ 1

0

f(θ)g(θ) dθ =

∫ 1

0

∑

n,m

anbme(nθ)e(mθ) dθ

=
∑

n,m

anbm

∫ 1

0

e(nθ)e(mθ) dθ =
∑

n

anbn,

where the final equality follows from the above orthogonality relation.
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6.6.3 Applications

Let A is a finite set of integers, and consider the trigonometric polynomial
defined by

f(θ) =
∑

a∈A
e(aθ).

Then
f(θ)s =

∑

a1,a2,...,as∈A
e((a1 + a2 + · · ·+ as)θ),

so that our orthogonality relation implies

Rs(n) =

∫ 1

0

f(θ)se(−θn) dθ,

where Rs(n) counts the number of solutions to

n = a1 + a2 + · · ·+ as.

For instance, we might take A as the set of (nonnegative) kth powers not ex-
ceeding N ; then Rs(n) is the number of ways of writing any n ≤ N as a sum of
kth powers. Similarly, we might take A as the set of primes not exceeding N ;
then Rs(n) is the number of (ordered) representations of any n ≤ N as a sum
of s primes.

Because Rs(n) can be represented as an integral, it is reasonable to hope
that estimates for Rs(n) could be obtained by studying the integrand. In many
situations this is indeed the case; e.g., this is the modern method of attacking
Waring’s problem. It is also how Vinogradov showed that every sufficiently large
odd integer is a sum of three primes.

More in line with our immediate purposes, we can use the circle method
to count three-term arithmetic progressions from a finite set. If A is a finite
set of integers, then the number of three-term arithmetic progressions from
A (counting order and allowing equality) is just the number of solutions to
x+ y = 2z, and this is given by

∫ 1

0

(
∑

a∈A
e(aθ)

2

)(
∑

a∈A
e(−2aθ)

)

dθ.

In the next section, we shall prove the fundamental lemma by obtaining
analytic information on the exponential sum

∑

a∈A e(aθ).

6.6.4 Exercises

Exercise 6.6.1. Let f(θ) = (1 + e(θ))n. Using the binomial theorem and Parse-
val’s formula, show that

n∑

k=0

(
n

k

)2

=

∫ 1

0

|f(θ)|2 dθ.
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Evaluate the integral and obtain the identity

n∑

k=0

(
n

k

)2

=

(
2n

n

)

.

Exercise 6.6.2. Show that Fermat’s Last Theorem is equivalent to the assertion
that for every positive integer N ,

∫ 1

0

(
N∑

n=1

e(nkθ)

)2( N∑

n=1

e(−nkθ)
)

dθ = 0.

Exercise 6.6.3. Show that for any positive integer q, we have

1

q

q
∑

j=1

e(mj/q)e(nj/q) =

{

1 if m ≡ n (mod q),

0 otherwise.

This is a discrete version of the orthogonality relation proved in this section;

indeed, the left hand side is a Riemann sum for
∫ 1

0
e(mt)e(nt) dt, and we recover

the continuous version by letting q tend to infinity.

Exercise 6.6.4. Let V be the C-vector space of continuous functions f : [0, 1]→
C satisfying f(0) = f(1). For f, g ∈ V , define

(f, g) :=

∫ 1

0

f(θ)g(θ) dθ.

Show that (f, g) is a scalar product on V . Using the orthogonality relation
proved in this section, show that the functions {em}m∈Z, where em(θ) := e2πimθ,
form an orthonormal set. This explains the term “orthogonality relation.”

Exercise 6.6.5 (Bessel’s Inequality). Suppose f is a trigonometric polynomial,
and let ak (for k ∈ Z) be defined by

ak :=

∫ 1

0

f(θ)e(−kθ) dθ (6.29)

By the orthogonality relations, ak is the coefficient of e(kα) in f(α), so that

Parseval implies (cf. (6.28))
∫ 1

0
|f |2 =

∑

k |ak|2.
Now suppose f is any piecewise continuous function on [0, 1], and that ak is

defined by (6.29). Show that

∑

k

|ak|2 ≤
∫ 1

0

|f |2.

Hint: Reexpress the right hand side of the inequality

0 ≤
∫ 1

0

∣
∣
∣
∣
∣
f(θ)−

N∑

k=−N
ake(kθ)

∣
∣
∣
∣
∣

2

dθ.
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6.7 Newman’s Proof of Roth’s Theorem

6.7.1 Further Preliminaries

We now fix an affine property P , and write C for CP , M(n) for M(n, P ) and
M(n) forM(n, P ). We extend M(n) to be a function defined for all nonnegative
real numbers by setting

M(x) = M(dxe).
Notice that because M(0) = 0 and C = infn=1,2,...M(n)/n, we always have

M(x) ≥ Cdxe ≥ Cx.

Also, as x→∞,

M(x) = Cdxe+ o(dxe) = Cx+O(1) + o(dxe) = Cx+ o(x);

that is, M(x)− Cx = o(x).
For the proof, it will be useful to replace M(x) − Cx with a monotone

function majorizing it:

Lemma 6.7.1. For x > 0, define

R(x) := sup
0≤t≤x

(M(t)− Ct).

Then R(x) is a nondecreasing function satisfying R(x) = o(x) as x→∞.

Proof. That R(x) is nondecreasing is clear. Now let ε > 0 be given. Choose a
positive real number x0 such that

M(x)− Cx < εx

whenever x > x0. Now choose a positive real number x1 such that R(x0)/x1 < ε,
and let x2 = max{x0, x1}. Now suppose x > x2. If 0 ≤ t ≤ x0, then

M(t)− Ct ≤ R(t) ≤ R(x0) < εx1 < εx,

while if x0 < t ≤ x,
M(t)− Ct < εt ≤ εx.

It follows that (M(t) − Ct) ≤ εx for all 0 ≤ t ≤ x, so that R(x) < εx when
x > x2. Since ε > 0 was arbitrary and R(x) is nonnegative, it follows that
R(x) = o(x).

We need two more lemmas.

Lemma 6.7.2 (Dirichlet’s Approximation Lemma). Let α ∈ R. For every
real Q ≥ 1, there exists a rational number p/q with 1 ≤ q ≤ Q, gcd(p, q) = 1
and

|p/q − α| ≤ 1

qQ
.
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Proof. We give a proof utilizing the elementary theory of Farey fractions (see,
e.g., [LeV96, §9.1]); a proof using nothing more than Dirichlet’s box principle is
outlined in Exercise 6.7.1. It suffices to prove the result when 0 ≤ α < 1.

SetN = bQc. The number α lies between (inclusively) two terms of the Farey
sequence FN , say p1/q1 ≤ α ≤ p2/q2. Consider the mediant (p1 + p2)/(q1 + q2);
because this lies between p1/q1, p2/q2 and does not appear in FN , we must have
q1 + q2 ≥ N + 1. Now α lies in (at least) one of the intervals [p1/q1, (p1 +
p2)/(q1 + q2)], [(p1 + p2)/(q1 + q2), p2/q2]. If it lies in the first then,

∣
∣
∣
∣
α− p1

q1

∣
∣
∣
∣
≤ p1 + p2

q1 + q2
− p1

q1
=

1

q1(q1 + q2)
≤ 1

q1(N + 1)
≤ 1

qQ
,

and we may take p = p1, q = q1. Similarly, if it lies in the second, then

∣
∣
∣
∣
α− p2

q2

∣
∣
∣
∣
≤ p2

q2
− p1 + p2

q1 + q2
=

1

q2(q1 + q2)
≤ 1

q2(N + 1)
≤ 1

qQ
,

and we may take p = p2, q = q2.

Lemma 6.7.3. Let F be a trigonometric polynomial of the form

F (θ) =

n∑

k=0

cke(kθ).

For j = 1, . . . , n+ 1, define

Fj(θ) :=

n∑

k=n−j+1

cke(kθ).

That is, Fj is the jth partial sum, beginning from the tail. For any α, β ∈ R,
we have

|F (α)− F (β)| ≤ 2π|α− β|
n∑

j=1

|Fj(β)|.

Proof. If e(α) = e(β) then F (α) = F (β), and the result holds. So assume
otherwise and write

F (α)− F (β) =
n∑

k=1

ck(e(kα)− e(kβ)).

Set z = e(α), w = e(β) in the identity

zk − wk
z − w = zk−1 + zk−2w + · · ·+ wk−1
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to obtain

1

e(α)− e(β)

n∑

k=1

ck(e(kα)− e(kβ)) =

n∑

k=1

ck

k−1∑

j=0

e(jα)e((k − 1− j)β)

=

n−1∑

j=0

e(jα)

n∑

k=j+1

cke((k − 1− j)β)

=

n−1∑

j=0

e(jα)e((−1− j)β)

n∑

k=j+1

cke(kβ).

The triangle inequality now implies

|F (α)− F (β)| ≤ |e(α)− e(β)|
n−1∑

j=0

∣
∣
∣
∣
∣
∣

n∑

k=j+1

cke(kβ)

∣
∣
∣
∣
∣
∣

= |e(α)− e(β)|
n−1∑

j=0

|Fn−j(β)| = |e(α)− e(β)|
n∑

j=1

|Fj(β)|.

The result follows, since

e(α)− e(β) =

∫ β

α

e′(t)dt = 2πi

∫ β

α

e(t)dt,

so that
|e(α)− e(β)| ≤ 2π|β − α|

by the M-L inequality.

6.7.2 Proof of The Fundamental Lemma

Proof of the Fundamental Lemma. For n a positive integer, define the trigono-
metric polynomial

g(θ) :=
∑

a∈M(n,P )

e(aθ)− C
n∑

a=1

e(aθ).

Note that g depends on n; however, in what follows we suppress this dependence
to avoid notational clutter.

We wish to show that g(θ) = o(n) uniformly for θ ∈ [0, 1] as n → ∞.
Equivalently, we want to show that given any ε > 0, there exists N0(ε) such
that

sup
θ∈[0,1]

∣
∣
∣
∣

g(θ)

n

∣
∣
∣
∣
< ε (6.30)

provided n > N0(ε).
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Given ε > 0, choose positive integers K0,K1 such that

x > K0 =⇒ R(x)/x <
ε

22

x > K1 =⇒ R(x)/x <
ε

22K0
.

We now prove that we may take N0(ε) = max{K0,K1} in the above.

For n > N0, set Q = n/K0. Our strategy is to estimate g(θ) and the partial
sums

gj(θ) :=
∑

a∈M(n)
n−j+1≤a≤N

e(aθ)− C
∑

n−j+1≤a≤n
e(aθ) (1 ≤ j ≤ n),

at those rational numbers p/q with q ≤ Q. By Dirichlet’s approximation lemma,
corresponding to every θ ∈ [0, 1] is a rational number p/q with |p/q − θ| ≤
(qQ)−1. A bound for g(θ) will then follow from Lemma 6.7.3.

To start things off, write, for 1 ≤ j ≤ n,

gj (p/q) =
∑

a∈M(n)
n−j+1≤a≤n

e (ap/q)− C
∑

n−j+1≤a≤n
e (ap/q)

=

q
∑

k=1

e (kp/q)

(
∑

a∈M(n)
n−j+1≤a≤n
a≡k (mod q)

1− C
∑

n−j+1≤a≤n
a≡k (mod q)

1

)

.

The first inner sum counts the size of

{a ∈M(n) : n− j + 1 ≤ a ≤ n, a ≡ k (mod q)}
⊂ {n− j + 1 ≤ a ≤ n : a ≡ k (mod q)}.

Here the right hand side set is affine equivalent to a subset S of at most dj/qe
consecutive integers. The left hand side is the image under an affine map of a
subset of S; since the left hand side set possesses P and P is an affine property, it
follows that the cardinality of the left hand side is bounded above byM(dj/qe) =
M(j/q); this motivates us to reexpress

gj(p/q) = −
q
∑

k=1

e(kp/q)

(

M(j/q)−
∑

a∈M(n)
n−j+1≤a≤n
a≡k (mod q)

1

)

+

q
∑

k=1

e(kp/q)

(

M(j/q)− C
∑

n−j+1≤a≤n
a≡k (mod q)

1

)

. (6.31)
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Both parenthesized expressions are in fact nonnegative; the first of these was
proven to be nonnegative above, and the latter is nonnegative owing to the
relation

M(j/q) = M(dj/qe) ≥ Cdj/qe ≥ C
∑

n−j+1≤a≤n
a≡k (mod q)

1.

Consequently, the triangle inequality applied to (6.31) yields

|gj(p/q)| ≤
q
∑

k=1

(

M(j/q)−
∑

a∈M(n)
n−j+1≤a≤n
a≡k (mod q)

1

)

+

q
∑

k=1

(

M(j/q)− C
∑

n−j+1≤a≤n
a≡k (mod q)

1

)

= 2qM(j/q)− Cj −
∑

a∈M(n)
n−j+1≤a≤n

1.

Now substitute the estimate

∑

a∈M(n)
n−j+1≤n≤n

1 = M(n)− |{a ∈M(n) : a ≤ n− j}| ≥M(n)−M(n− j)

and note that M(n) ≥ Cn to obtain

|gj(p/q)| ≤ 2qM(j/q)− Cj − Cn+M(n− j)
= 2q(M(j/q)− Cj/q) + (M(n− j)− C(n− j))
≤ 2qR(j/q) +R(n− j)
≤ 2qR(n/q) +R(n)

for 1 ≤ j ≤ n. Since g has no constant term, g = gn, so that the same estimate
holds for |g(p/q)|.

Now apply Dirichlet’s approximation theorem. Given θ ∈ [0, 1], choose p/q
with q ≤ Q such that |θ − p/q| ≤ (qQ)−1. Taking β = p/q in Lemma 6.7.3
implies

|g(θ)| ≤ |g(p/q)|+ 2π
1

qQ

n∑

j=1

|gj(p/q)|

≤
(

1 + 2π
1

qQ
n

)

(2qR(n/q) +R(n))

=

(

1 + 2π
K0

q

)

(2qR(n/q) +R(n)) .

We now consider two cases, depending on the size of q.
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Case I: q ≤ K0: Use the estimate R(n/q) ≤ R(n) to obtain

|g(θ)| ≤
(

1 +
2πK0

q

)

(2q + 1)R(n) ≤ 3q

(

1 +
2πK0

q

)

R(n)

= (3q + 6πK0)R(n) ≤ K0(3 + 6π)R(n) ≤ K0(3 + 6π)
εn

22K0

=
3 + 6π

22
εn < εn.

Case II: q > K0: Here we use the fact that q ≤ Q = n/K0, so that
n ≥ n/q ≥ K0. This implies

|g(θ)| ≤
(

1 + 2π
K0

q

)

(2qR(n/q) +R(n))

≤ (1 + 2π)(2qR(n/q) +R(n)) ≤ (1 + 2π)

(

2q
ε

22

n

q
+

ε

22
n

)

=
3 + 6π

22
εn < εn.

Thus the estimate (6.30) holds. As ε > 0 was arbitrary, the result follows.

Remark. The distinction made in the two cases above is an example of a phe-
nomenon that occurs quite frequently in applications of the circle method. The
behavior of a trigonometric sum near a number α often depends on how well-
approximated α is by a rational number with “small” denominator. In appli-
cations, this often necessitates breaking up the range of integration [0, 1] (or
some other appropriately chosen unit interval) into major and minor arcs, the
former corresponding to the numbers well-approximated by rationals with small
denominator, and the latter taken to be the complement of this set.

6.7.3 Proof of Lemma 6.5.3

We now deduce Lemma 6.5.3 as a corollary of the Fundamental Lemma.

Proof of Lemma 6.5.3. Let

f(θ) =
∑

a∈M(n,P )

e(aθ). (6.32)

The number of three-term arithmetic progressions fromM(n, P ), counting order
and allowing equality, is given by

∫ 1

0

f(θ)2f(−2θ) dθ. (6.33)

Write

f(θ) = Ch(θ) + g(θ), (6.34)
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where

h(θ) :=
n∑

a=1

e(aθ). (6.35)

Thus

f(θ)2f(−2θ) = (Ch(θ) + g(θ))2(Ch(−2θ) + g(−2θ))

= (C2h(θ)2 + 2Ch(θ)g(θ) + g(θ)2)(Ch(−2θ) + g(−2θ)),

so that the integral (6.33) can be written as I1 + I2 + · · ·+ I6, where

I1 =

∫ 1

0

C3h(θ)2h(−2θ) dθ, I2 =

∫ 1

0

C2h(θ)2g(−2θ) dθ,

I3 =

∫ 1

0

2C2h(θ)h(−2θ)g(θ) dθ, I4 =

∫ 1

0

2Ch(θ)g(θ)g(−2θ) dθ,

I5 =

∫ 1

0

Cg(θ)2h(−2θ) dθ, I6 =

∫ 1

0

g(θ)2g(−2θ) dθ.

But
∫ 1

0
h(θ)2h(−2θ) dθ counts the total number of three-term arithmetic pro-

gressions from {1, 2, . . . n}, which we already determined in Lemma 6.5.2 to be
dn2/2e. Thus

I1 = C

(
n2

2
+O(1)

)

= C
n2

2
+ o(n2).

It suffices now to show that I2, I3, . . . , I6 are all o(n2). We can write each
of the integrands appearing in any of these, up to a constant, in the form
f1(θ)f2(θ)f3(θ), where f1(θ) and f2(θ) are among the functions h(θ), h(−2θ),
g(θ), and g(−2θ), and where f3(θ) is either g(θ) or g(−2θ).

Note that both h(θ) and g(θ) can be written as
∑

j cje(jθ), where j runs
over a set of at most n integers and |cj | ≤ 1 for each j. Replacing θ by by −2θ
if necessary, we see that each fi admits such a representation. It follows now by
Parseval’s inequality that for each i,

∫ 1

0

|fi|2 dθ =
∑

j

|cj |2 ≤ n. (6.36)

Now write
∫ 1

0

|f1f2f3| ≤ sup
θ∈[0,1]

|f3(θ)|
∫ 1

0

|f1(θ)||f2(θ)| dθ

≤ sup
θ∈[0,1]

|f3(θ)|
(∫ 1

0

|f1(θ)|2 dθ
)1/2(∫ 1

0

|f2(θ)|2 dθ
)1/2

.

Estimating the integrals by (6.36), we see that for 2 ≤ j ≤ 6,

Ij �
(

sup
θ∈[0,1]

|f3(θ)|
)

n1/2n1/2 = o(n2),
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since, by the fundamental lemma,

sup
θ∈[0,1]

|f3(θ)| = sup
θ∈[0,1]

|g(θ)| = o(n).

6.7.4 Exercises

Exercise 6.7.1 (Another Proof of Dirichlet’s Approximation Lemma). Show that
if α0, . . . , αN are N + 1 real numbers, then ‖αj − αi‖ ≤ (N + 1)−1 for some
i 6= j. Use this result to give another proof of Lemma 6.7.2, by taking αi = iα
for i = 0, . . . , Q.

Suggestion: One way to proceed is by observing that 2π‖αj − αi‖ is the
shortest distance along the unit circle between e(αj) and e(αi).

Exercise 6.7.2 (A Generalization of Roth’s Theorem, †). Let a1, . . . , ak be k ≥ 3
integers which sum to zero. Let P denote the property of possessing no nontrivial
solution to the equation

a1x1 + a2x2 + · · ·+ a3x3 = 0.

Show that P is an affine property and that CP = 0. (Roth’s theorem is the case
k = 3 and a1 = a2 = 1, a3 = −2.)

6.8 The Number of Three Term Progressions

Let 0 < δ ≤ 1. By Roth’s theorem, any subset of [1, n] with at least δn elements
contains a three-term arithmetic progression provided n is large enough. We now
derive from the same theorem a lower bound for the number of such progressions:

Theorem 6.8.1 (P. Varnavides [Var59]). Let 0 < δ ≤ 1. If n > n0(δ),
and S ⊂ [1, n] is a set of more than δn positive integers, then there are at
least C(δ)n2 three term arithmetic progressions of elements of S. Here trivial
arithmetic progressions (of three equal terms) are not allowed and progressions
are counted without regard to order.

Remark. The theorem is best possible, for it follows from Lemma 6.5.2 that the
total number of three-term arithmetic progressions drawn from all of [1, n] is,
counted as above and with lower order terms discarded, simply n2/4.

If k is large, any subset of [1, k] with more than δ
2k integers contains a

nontrivial three-term arithmetic progression; indeed, this is nothing more than
the assertion that r3(k) ≤ δ

2k for all large k, which is immediate from Roth’s
theorem. Fix k = k(δ) to be the smallest positive integer exceeding 8 with this
property.

We now consider all k-term arithmetic progressions of the form

1 ≤ u < u+ d < · · · < u+ (k − 1)d ≤ n. (6.37)

Such an arithmetic progression will be called “good” if it contains at least δ
2k

terms of S. The proof of Theorem 6.8.1 rests on the following estimate for the
number of good progressions:
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Lemma 6.8.2. There are constants n1 = n1(δ, k) = n1(δ) and C1 = C1(δ, k) =
C1(δ) for which the number G of “good progressions” satisfies G > C1n

2 when-
ever n > n1.

Proof. We wlll show that for small d, namely

1 ≤ d < δ

k2
n, (6.38)

there are �δ n good progressions with common difference d. Adding up the
contribution from each such d gives the result.

Fix a value of d satisfying (6.38). Let S′ = S ∩ [kd, n − kd]. If the element
a ∈ S′ occurs in the progression (6.37), then

u ≡ a (mod d), u ≤ a ≤ u+ (k − 1)d; (6.39)

conversely, if u satisfies these conditions, then

u ≥ a− (k − 1)d ≥ d ≥ 1, u+ (k − 1)d ≤ a+ (k − 1)d ≤ n− d ≤ n,
and the progression (6.37) contains a. So the number of times a given element
a ∈ S′ occurs in a progression of the form (6.37) is precisely the number of
integers satisfying the conditions (6.39). There are exactly k of these: namely,
u = a and the k − 1 integers u ≡ a (mod d) in the range a− (k − 1)d ≤ u < a.
Since S′ contains at least

|S| − 2kd > δn− 2
δ

k
n = δ(1− 2/k)n

elements, we have, with Su,d denoting the number of terms of S in the progres-
sion (6.37),

∑

u:1≤u+(k−1)d≤n
Su,d ≥ k|S′| > kδ(1− 2/k)n >

3

4
δkn.

(Recall k > 8.) As d is fixed, there are no more than N progressions of the form
(6.37), whence the upper bound

∑

u:1≤u+(k−1)d≤n
Su,d ≤

1

2
δk · n+ k ·Gd;

here we have written Gd for the number of good progressions of difference d.
Combining this with the previous lower bound for the same sum shows

Gd ≥
3

4
δn− 1

2
δn =

1

4
δn.

Consequently,

G =
∑

Gd ≥
∑

1≤d< δ
k2 n

1

4
δn ≥ 1

4
δn · δ

2k2
n =

δ2

8k2
n2,

provided n > n1(δ, k) = n1(δ). The lemma follows with this n1 and C1 =
δ2

8k2 .
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Proof of Theorem 6.8.1. Let P be the set of elements of a progression of the
form (6.37). We map P bijectively onto {1, 2, . . . , k} by the map

φP (a) = 1 + (a− u)/d.

As an affine map, this preserves arithmetic progressions, and

a1 < a2 < a3 form a 3-term AP⇐⇒ φ(a1) < φ(a2) < φ(a3) form a 3-term AP.

If P is a good progression, then

φ(P ∩ S) ⊂ {1, 2, . . . , k}, |φ(P ∩ S)| = |P ∩ S| > δ

2
k;

by the choice of k, φ(P ∩S) contains a nontrivial three-term arithmetic progres-
sion, and the same must then hold for P ∩S. So from each good progression P ,
we can choose a corresponding nontrivial three-term arithmetic subprogression
of elements of S. By the preceding lemma, more than C1(δ)n2 (not necessarily
distinct!) subprogressions are produced by this process, provided n > n1(δ).

Let P ′ be such a subprogression, so that its common difference d′ satisfies

d′ ≤ (k − 1)d/2 < kd/2. (6.40)

If P is a k-term progression given by (6.37) which contains P ′, then its difference
d must divide d′, say d = d′/t; by (6.40), we have t < k/2. So there are at
most k/2 possibilities for the common difference of P . For any fixed common
difference d, there are most at most k − 2 k-term progressions P of the form
(6.37) which contain P ′.

Consequently, P ′ can be contained in no more than

(k/2)(k − 2) =: C2(k, δ) = C2(δ)

such arithmetic progressions. Hence, with C := C1/C2 and n0 := n1, there are
more than Cn2 three-term progressions consisting of elements of S, provided
n > n0.

6.9 The Higher-Dimensional Situation

In this section we digress from the main matter to discuss (without proofs)
higher dimensional analogs of of the theorems of van der Waerden and Sze-
merédi.

This next result of Gallai (appearing in [Rad33]) generalizes van der Waer-
den’s theorem to several dimensions (see Exercise 6.9.1). A short elementary
proof can be found in [And76]:

Theorem (Gallai). Let F be a finite subset of Nd. For any r-coloring of Nd,
there is a positive integer a and a point v ∈ Nd for which the set a× F + v :=
{af + v : f ∈ F} is monochromatic. Moreover, the dilation factor a and the
coordinates of v are bounded by a function depending only on F and r (and not
on the particular k-coloring).
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By contrast, there is no elementary proof known for the corresponding analog
of Szemerédi’s theorem in higher dimensions:

Theorem (Furstenberg & Katznelson [FK78]). Let S ⊂ Zd. Suppose that

for some sequence of parallelepipeds Πn = [a
(1)
n , b

(1)
n ] × · · · × [a

(d)
n , b

(d)
n ] ⊂ Zd,

with b
(i)
n − a(i)

n →∞, i = 1, 2, . . . , d, we have

|S ∩Πn|/|Πn| > ε

for some ε > 0. If F is a finite subset of Zd, then there exists a positive integer
a and a point v ∈ Zd for which a× F + v ⊂ S.

So far everything generalizes as well as one could hope. But now consider
the form of van der Waerden’s theorem put forth by Rabung: a sequence with
bounded gaps contains arbitrarily long arithmetic progressions. This next result
of Dekking shows this need not be true in higher dimensions:

Theorem (Dekking [Dek79]). There is an infinite sequence v0,v1, · · · ∈ Z2

with each vi+1 − vi = (0, 1) or (1, 0), and such that no five of the vi form an
arithmetic progression of vectors.

That is, one can walk to infinity in Z2 taking only unit steps right and up
in such a way that one assumes no five positions in arithmetic progression.

It is easy to describe the sequence Dekking constructs, though not easy to
prove it has the stated property: Think of a and b as formal symbols, and
consider the set of all “words” on a and b (finite or countably infinite nonempty
concatenations of these symbols). We define a function θ from the set of words
to itself, given by taking θ(a) = abb, θ(b) = aaab, and extending to all words by
concatenation. Because θ(a) begins with a, θk(a) will begin with θ(k−1)(a) for
every positive integer k. This implies that for any given n, the first n symbols
of θk(a) are eventually constant (i.e., constant for k > k0(n)); this allows us to
define an infinite “limit word” θ∞(a). Then the sequence of moves is given by
interpreting every 0 in the limit word as a unit step in the direction (0, 1), and
every 1 as a unit step in the direction (1, 0).

In contrast to Dekking’s result, we have the following theorem, proposed by
T.C. Brown as an advanced problem in the Monthly :

Theorem 6.9.1. Let v0,v1,v2, . . . be an infinite sequence of points in Z2 with
vi+1 − vi = (1, 0) or (0, 1) for each i. Then for every positive integer k, there
is a line containing k of the vi.

Proof (P.L. Montgomery [BM72]). Without loss of generality we may assume
v0 = 0. Let k > 1 be given. For each i, write vi = (xi, yi). An easy induction
shows xi + yi = i for each i. Let

si = xi/i (i = 1, 2, . . . ).

To begin with, consider the special case where some s shows up infinitely often
in the sequence of si; then the line

x

x+ y
= s
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contains infinitely many of the vi. We are not guaranteed such an s exists, but
compactness tells us there is always some limit point l of the si in [0, 1].

We consider two cases, according as l is or is not the limit of the entire
sequence of si. If it is not, then for some ε > 0, |si − l| ≥ ε for infinitely many
i. It follows that we may choose a rational number r = p/q for which

si − p/q =
qxi − pi

qi

changes sign infinitely often. Indeed, if si − l ≥ ε infinitely often, let r be any
rational from the interval (l, l + ε), otherwise choose r from (l − ε, l).

It follows that qxi − pi is integer valued and changes sign infinitely often,
but

|(qxi+1 − p(i+ 1))− (qxi − pi)| = |q(xi+1 − xi)− p| ≤ q + p

is bounded. Consequently, qxi − pi assumes the same value t infinitely often.
Then the line

qx− p(x+ y) = t (6.41)

contains infinitely many of the vi.

Now suppose l is the limit of the si. Let r = p/q be a rational approximation
to l, not necessarily in lowest terms, satisfying

|p/q − l| < 1

2kq
, q > k.

(This is clearly possible if l ∈ Q, otherwise invoke Lemma 6.7.2.) We claim that
the line (6.41) contains at least k of the vi. For this, it suffices to show qxi− pi
assumes the same value at least k times, as i ranges over 0, 1, 2, . . . . If this is
false, then for each j ≥ 1 one can choose i, 0 ≤ i ≤ (k − 1)(2j + 1), with

|qxi − pi| ≥ j + 1. (6.42)

But for any such (necessarily nonzero) i,

∣
∣
∣
∣

xi
i
− p

q

∣
∣
∣
∣
≥ j + 1

qi
≥ j + 1

q(k − 1)(2j + 1)
≥ 1

2kq
. (6.43)

Letting

ε :=
1

2kq
− |p/q − l| > 0,

we see

|si − l| =
∣
∣
∣
xi
i
− l
∣
∣
∣ ≥ ε. (6.44)

Moreover, since we can take j arbitrarily large, (6.42) shows there are infinitely
many i satisfying (6.43) and hence (6.44). But this contradicts our supposition
that si → l.
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This theorem suggests that when studying sequences of bounded gaps in
Z2, we should look for large configurations of collinear points, not necessarily
in arithmetic progression (equally spaced). Thus the proper generalization of
Rabung’s form of van der Waerden’s theorem is as follows:

Theorem (Ramsey & Gerver [GR79]). Let B > 0 and let k be a positive
integer. There exists a number N = N(B, k) with the property that if n ≥
N(B, k) and v0,v1, . . . ,vn is any sequence of n+ 1 points of Z2 with

‖vi+1 − vi‖ ≤ B (i = 0, 1, . . . , n− 1), (6.45)

then k of the vi are in arithmetic progression.

Pomerance [Pom80] has succeeded in proving the proper analog of Sze-
meredi’s theorem in this situation: it suffices the gap be bounded on average,
in that the last theorem remains true if the condition (6.45) is replaced by

1

n

n−1∑

i=0

‖vi+1 − vi‖ ≤ B.

What about dimensions 3 and higher? Ramsey & Gerver, in the already-
cited paper, construct a walk in 3-space showing that even the analog of Theo-
rem 6.9.1 fails.

6.9.1 Exercises

Exercise 6.9.1. Show that Gallai’s theorem implies van der Waerden’s in the
third form listed in Theorem 6.2.1.

Exercise 6.9.2. Show that Dekking’s theorem would be false if 5 were replaced
by 4. Suggestion: Show that every infinite word on the two symbols a, b contains
three consecutive blocks that are permutations of each other.

Exercise 6.9.3. Prove that the assumptions of Theorem 6.9.1 do not imply the
existence of a line containing infinitely many of the vi.

Exercise 6.9.4 (Pomerance [Pom79, Theorem 4.1], †). The quoted theorem of
Pomerance implies that if a1 < a2 < . . . is an increasing sequence with positive
lower density then there are k collinear points on the graph {(n, an)} for every
k. In this exercise we prove the same when an = pn, the nth prime.

It suffices to produce collinear points on the inverse of the prime number
graph, {(pn, n) : n = 1, 2, . . . }.

a) Let k be a positive integer. Let u = ek, v = 2ek, and let T be the (closed)
parallelogram bounded by the vertical lines x = u, x = v and the diagonal
lines with slope 1/k through (u, li(u) +u/ log3 u) and (v, li(u)−u/ log3 u).

Prove that there are� ku/ log3 u lines of slope 1/k passing through lattice
points contained in T (as k →∞).
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b) Using the prime number theorem in the strong form

π(x) = li(x) +O(x/ log5 x) (x→∞),

prove that every point (pn, n) with u ≤ pn ≤ v lies in T once k is suffi-
ciently large.

c) Show that as k →∞, there are� u/ log u points (pn, n) with u ≤ pn ≤ v.
Conclude from a) and b) that there is a line of slope 1/k passing through
� 1

k log2 u = k of these points.

6.10 Behrend’s Lower Bound for r3(n)

The aim of this section is to describe Behrend’s construction of dense sets free
of arithmetic progressions. As a consequence, we shall obtain the best known
lower bound for r3(N) (up to the value of the constant c):

Theorem 6.10.1. As N →∞,

r3(N) > N exp((−c+ o(1))
√

logN),

where c = 2
√

2 log 2.

We first introduce a multi-dimensional analog of our problem. For integers
n, d ≥ 2, let R(n, d) be the set of lattice points in the n-dimensional interval
[0, d)n, i.e.,

R(n, d) := {x = (x0, x1, . . . , xn−1) ∈ Nn : xi < d for i = 1, . . . , n}.

We set about to estimate from below the largest subset of R(n, d) free of arith-
metic progressions. We shall obtain the required bound through clever applica-
tion of the following geometric lemma:

Lemma 6.10.2. Let S be a sphere in Rn, and let L be a line. Then L intersects
S in at most two distinct points.

Proof. Without loss of generality, we may assume the sphere is centered at the
origin. Let S be defined by ‖x‖2 = R, and let the line L be parametrized by
u + tv, t ∈ R. The points of intersection correspond to those real t with

R = ‖u + tv‖2 = ‖u‖2 + 2(u · v)t+ t2‖v‖2.

Since a quadratic equation has at most 2 real roots, the result follows.

This lemma suggests partitioning the points of R(n, d) according to the their
distance from the origin (absolute value). Thus, we define

Sk(n, d) := {x ∈ R(n, d) : ‖x‖2 = k}.
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Since
‖x‖2 = x2

0 + · · ·+ x2
n−1 ≤ n(d− 1)2,

we have

R(n, d) =
⋃̇n(d−1)2

k=0
Sk(n, d).

Since |R(n, d)| = dn, it follows that for some 0 ≤ k ≤ d(n− 1)2,

|Sk(n, d)| ≥ dn

n(d− 1)2 + 1
≥ dn

nd2
=
dn−2

n
.

This set Sk(n, d) is free of any nontrivial arithmetic progression. Indeed, if
x,y, z ∈ Sk(n, d) were in arithmetic progression with x 6= z, then the line
through x and z would intersect the sphere ‖x‖2 = k in the three distinct
points x, z, (x + z)/2 = y, contradicting Lemma 6.10.2. Thus we have shown:

Lemma 6.10.3. For integers n, d ≥ 2, there exists an arithmetic-progression
free subset of R(n, d) with at least dn−2/n elements.

This is an interesting result in itself. The relevance for the original problem
comes from the existence of the “nice” map ψn,d : Rn,d → N, given by

(x0, x1, . . . , xn−1) 7→ x0 + x1(2d− 1) + · · ·+ xn−1(2d− 1)n−1.

What makes this map so nice? First, it is injective, as follows from unique-
ness of radix 2d − 1 representation. Second, if ψ(x) + ψ(y) = 2ψ(z), then
x + y = 2z. Indeed, the given equation translates into the condition that
∑n−1
i=0 (xi + yi)(2d− 1)i =

∑n−1
i=0 2zi(2d− 1)i. Since each of xi, yi, zi are at

most d−1, uniqueness of the base 2d−1 expansion forces xi+ yi = 2zi for each
i, so that x + y = 2z as claimed.

Together, these two properties imply that if S ⊂ R(n, d) is A.P. free, then
ψ(S) ⊂ N is an A.P. free subset with the same size. If we note that the image
of any point of Rn,d under ψ is always smaller than

(d− 1)(2d− 1)n−1
∞∑

i=0

(2d− 1)−i =
1

2
(2d− 1)n < (2d− 1)n,

we see that there is always a subset of the nonnegative integers less than (2d−
1)n, of size at least dn−2/n, with no three terms in arithmetic progression.
Shifting everything by 1 now implies

r3((2d− 1)n) ≥ dn−2/n.

Our strategy for proving Theorem 6.10.1 will be to choose n as a slow-
growing function of N , defined whenever N is sufficiently large. We will then
determine the integer d ≥ 2 (as a function of N) by the inequalities

(2d− 1)n ≤ N < (2d+ 1)n. (6.46)
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The choice of n will be optimized so that the right hand side of the estimate

r3(N) ≥ r3((2d− 1)n) ≥ dn−2

n
>

(N1/n − 1)n−2

n2n−2
=
N1−2/n

n2n−2
(1−N−1/n)n−2

(6.47)
is essentially as large as possible.

Note that for this plan to be carried out, for every large N there should be
an integer d ≥ 2 for which (6.46) is satisfied. This will be the case as long as
3n ≤ N , so as long as n ≤ logN/ log 3; in particular, it will hold if n = o(logN).

We begin by maximizing the term

N1−2/n

n2n−2

appearing on the right hand side of (6.47). Write

N1−2/n

n2n−2
=
N1−2/n

n2n−1
= N1− 2

n− log n
log N − (n−2) log 2

log N = N1−g, (6.48)

say. Now fix N , and think of g as a function only of n. As long as N is large,

g′(n) =
−2

n2
+

1

n logN
+

log 2

logN
=

1

n2

(

−2 +
1

logN
n+

log 2

logN
n2

)

has a unique positive zero at

n0 =
− 1

logN +
√

1
log2N

+ 8 log 2
logN

2 log 2/ logN
=

√

2 logN

log 2
+O(1).

It can be shown (again, assuming N is large) that this is actually the global
minimum of g on the interval [2,∞). This motivates choosing

n =

⌊√

2 logN

log 2

⌋

.

Notice that the hypothesis n = o(logN) is satisfied for this choice of n.
It straightforward to establish each of the estimates

2

n
=

√
2 log 2 +O(1/

√
logN)√

logN
=

√
2 log 2 + o(1)√

logN
,

log n

logN
=
O(log logN/

√
logN)√

logN
=

o(1)√
logN

,

(n− 1) log 2

logN
=

√
2 log 2 +O(1/

√
logN)√

logN
=

√
2 log 2 + o(1)√

logN
.

Thus with this choice of n,

g =
2
√

2 log 2 + o(1)√
logN

,
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so that
N1−2/n

n2n−2
= N1−g = N exp((−c+ o(1))

√

logN).

Referring to (6.47), we see that to estimate r3(N) from below, it remains only
to obtain a lower bound for (1−N−1/n)n−2. But for our choice of n, we in fact
have (1−N−1/n)n−2 → 1; indeed, this holds whenever n = o(logN/ log logN).
It follows that for large N ,

r3(N) >
1

2

N1−2/n

n2n−2
≥ N exp((−c+ o(1))

√

logN).

6.10.1 Exercises

Exercise 6.10.1. Verify the unproved claims made in the course of our choice of
the function n = n(N). In particular:

a) Check that if we choose n = o(logN/ log logN), then (1−N−1/n)n−2 → 1
as N →∞.

b) Show that if N is sufficiently large the global minimum of g on [2,∞]
occurs at the point n0.

Exercise 6.10.2. Show directly from (6.47) that if we choose n ≥ 2 as a constant
function of N , then we obtain the estimate r3(N) �n N1−2/n as N → ∞.
Thus if we only wish to show r3(N)�ε N

1−ε for each ε > 0, we can forego the
detailed analysis given above.

Exercise 6.10.3 (Salem & Spencer). Let n, d be positive integers with d | n
and d > 1. Let Sn,d be the set of nonnegative integers with base 2d − 1 ex-
pansion of the form an−1an−2 . . . a0, where exactly n/d of the ai are equal to
each of 0, 1, . . . , d − 1. Then Sn,d contains no nontrivial three-term arithmetic
progression.

Salem & Spencer [SS42] used the result of this exercise to obtain the bound

r3(N) > N exp

(

−c logN

log logN

)

,

for any constant c > log 2 and all N > N0(c).
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[ES03] Paul Erdős and János Surányi, Topics in the theory of numbers, Un-
dergraduate Texts in Mathematics, Springer-Verlag, New York, 2003,
Translated from the second Hungarian edition by Barry Guiduli. MR
2003j:11001
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Chapter 7

A Short Proof of Waring’s
Conjecture

Every integer is a square or the sum of two, three, or four squares;
every integer is a cube or the sum of at most nine cubes; every integer
is also the square of a square, or the sum of up to nineteen such, and
so forth. – Edward Waring, Meditationes Algebraicae (1770)

7.1 Introduction

In 1770, the same year Lagrange proved that every nonnegative integer could be
written as a sum of four squares, Waring put forward analogous statements for
higher powers, asserting that every positive integer was a sum of nine nonnega-
tive cubes, nineteen nonnegative fourth powers, “and so forth.” It has become
usual to interpret this final clause as a statement of the following conjecture:

Waring’s Conjecture. For each k ≥ 1, there exists s = s(k) ≥ 1 for which

n =

s∑

i=1

xki , xi ≥ 0,

is solvable for each n ≥ 0.

Expressed in the language of Chapter 5, this is the assertion that the set of
nonnegative kth powers is a basis (of N) of finite order for each k = 1, 2, . . . .

Lagrange’s four squares theorem tells us we may take s(2) = 4 in Waring’s
conjecture. If we define g(k) as the least permissible value of s(k) (the order of
the basis), then we also have g(2) = 4, since every integer ≡ 7 (mod 8) actually
requires 4 squares in its representation. Keeping this notation, it is reasonable
to read Waring’s other assertions as claims that g(3) = 9 and g(4) = 19.

The first to prove the existence of g(k) for all k was Hilbert [Hil09]; his proof
depended on the four squares theorem and the existence of certain complicated

275
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algebraic identities; see Exercise 7.1.2 for an example of this sort of reasoning.
A more fruitful line of attack was introduced by Hardy & Littlewood [HL20]
and later refined by Vinogradov. The starting point is the realization that

rk,s(n) :=
∑

xk
1+···+xk

s=n
xi≥0

1

can be expressed as an integral. Namely, with

f(α) :=

N∑

m=0

e(αmk),

where N = bn1/kc, we have

rk,s(n) =

∫ 1

0

f(α)se(−αn) dα.

(See the discussion in §6.6.2 if this is unfamiliar.) The behavior of rk,s(n) for
fixed k and large s can then be analyzed in terms of the behavior of f . Roughly
speaking, it turns out that f is small away from numbers well-approximable by
rationals while it can be conveniently estimated near such numbers. Carrying
forward this (hard) analysis, Hardy & Littlewood proved that for fixed k and
large s, say s ≥ s1(k),

rk,s(n) =
Γ(1 + 1/k)s

Γ(s/k)
ns/k−1G(n) + o(ns/k−1) (n→∞), (7.1)

where Γ is the usual Gamma-function and G is a complicated arithmetic function
bounded between two positive constants.

It follows immediately from this asymptotic formula that every sufficiently
large integer is a sum of at most s1 kth powers, so every nonnegative integer
is a sum of at most s2 such powers for some s2. The same analytic method,
with considerable refinements over the years, has been used to settle numerous
related problems; for example, Waring’s claims about g(3) and g(4) have since
been vindicated (the latter resisting attack until 1986!), and it is now known
that g(k) = 2k + b(3/2)kc − 2 with at most finitely many exceptions (compare
with Exercise 7.1.1). Complete treatments of the Hardy-Littlewood method
can be found in Davenport’s “blue book” [Dav63] and Vaughan’s monograph
[Vau97]. An excellent survey of developments up to 1971 is [Ell71].

In this chapter we content ourselves with a proof that g(k) exists for every
k. Our simple and short argument is due to D.J. Newman ([New60], [New98,
Chapter V]). The key lemma is that for fixed k and large s,

rk,s(n)� ns/k−1 (n = 1, 2, . . . ). (7.2)

As we shall shortly prove, this upper bound implies the set of integers express-
ible as a sum of s kth powers has positive lower density, so the proof of Waring’s
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conjecture can be completed by an appeal to the results of Schnirelmann dis-
cussed in Chapter 5. Whereas Linnik [Lin43] proved (7.2) by elementary means,
Newman proves (7.2) by stripping down the Hardy-Littlewood approach to the
asymptotic formula. The resulting argument is one of the shortest known paths
to Waring’s conjecture.

7.1.1 Exercises

Exercise 7.1.1. Show that 2kb(3/2)kc−1 is a sum of 2k+b(3/2)kc−2 nonnegative
kth powers and no fewer.

This result was first noted by Johannes Albert Euler (son of Leonhard) in
1772. Hint: be greedy!

Exercise 7.1.2 (Liouville). Verify the identity

∑

1≤i<j≤4

(yi + yj)
4 +

∑

1≤i<j≤4

(yi − yj)4 = 6(y2
1 + y2

2 + y2
3 + y2

4)2.

a) Using Lagrange’s four squares theorem, prove that every number of the
form 6m2 is a sum of 12 nonnegative fourth powers.

b) By applying the four squares theorem again, show that every nonnegative
multiple of 6 is a sum of 48 nonnegative fourth powers.

c) Conclude that every nonnegative integer is a sum of 53 nonnegative fourth
powers.

Exercise 7.1.3. Assume Waring’s conjecture. Show that if we define h(k) as the
smallest number of nonnegative kth powers needed to represent every nonneg-
ative rational number, then h(k) exists and satisfies h(k) ≤ g(k).

The next few exercise present an analog of Waring’s Problem for the poly-
nomial ring C[t]. We use the symbol ∆j to denote the jth iterate of the forward
difference operator, so that

∆1(f ;h1)(t) := f(t+ h1)− f(t),

∆j+1(f ;h1, . . . , hj+1) := ∆1(∆j(f ;h1, . . . , hj), hj+1).

Exercise 7.1.4. Let R be a commutative ring with identity and let k be a positive
integer. Let A = {±g(T )k : g(T ) ∈ R[T ]}.

a) Show that if f(T ) can be represented as the sum of finitely many elements
of A, then the same is true of ∆1(f ;h1)(T ), for any h1 ∈ R.

b) Show that if T can be written as the sum of at most s = s(k) elements of
A, then A is a basis of R[T ] of order at most s.

Exercise 7.1.5 (continuation).

a) Iterating part a) of the preceding exercise, show that for some C ∈ R, the
polynomial k!T + C can be written as a finite sum of elements of A.
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b) From part b) of the preceding exercise, deduce that if R = K is a field of
characteristic 0, then A is a basis of finite order. On the other hand, show
that A is never a basis of finite order if R = Z.

c) Assume that R = K is an algebraically closed field of characteristic 0.
Show that A is a basis of order at most k. Also show that A coincides
with the set of kth powers in K[T ]. Thus the analog of Waring’s conjecture
holds for K[T ].

The argument of the preceding exercise (in the special case K = C) is due
to S. Hurwitz. If we use g(k,C[T ]) to denote the order of the corresponding
basis, then Hurwitz conjectures that g(k,C[T ]) = k for each positive integer k.
Newman & Slater [NS79] have shown g(k,C[T ]) > k1/2 for each k > 1.

Exercise 7.1.6 (Waring’s Problem for Formal Power Series). Let K be an al-
gebraically closed field of characteristic 0. Show that for each k > 1, the set of
kth powers is an additive basis of order 2 for K[[T ]].

Suggestion: First characterize the kth powers in K[[T ]].

7.2 The Linnik-Newman Approach

Waring’s conjecture will be deduced from the following result, whose proof is
deferred to the next section:

Fundamental Lemma. Let k ≥ 2. For all large s (depending only on k),

rk,s(n)� ns/k−1 (n = 1, 2, . . . ).

In particular, for s sufficiently large (depending on k),

rk,s(n)� xs/k−1 (1 ≤ n ≤ x). (7.3)

The implied constants here depend only on s and k.

Remark. For fixed k and s, we can easily see that the average of rk,s(n) up to
x is O(xs/k−1):

∑

n≤x
rk,s(n) = |{(x1, . . . , xs) ∈ Nk : xk1 + · · ·+ xks ≤ x}| ≤ (x1/k + 1)s.

The central difficulty is in proving that if s is large, none of the terms rk,s(n)
are much bigger than average.

To see how the fundamental lemma is applied, suppose A is a set of natural
numbers containing 0 with d(A) > 0. Define

rAk,s(n) :=
∑

xk
1+···+xk

s=n
xi∈A

1,
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so that rAk,s ≤ rk,s, with equality when A is the set of all natural numbers.
Let k ≥ 2 and s = s(k) be fixed integers for which (7.3) holds, and fix a

positive number d < d(A). Then for large x,
∑

n≤x
rAk,s(n) = |{(x1, . . . , xs) ∈ Ak : xk1 + · · ·+ xks ≤ x}|

= |{(x1, . . . , xs) ∈ Ak : xi ≤ (x/s)1/k}| ≥ (d(x/s)1/k)s =
ds

ss/k
xs/k.

But for n ≤ x, one has

rAk,s(n) ≤ rk,s(n)� xs/k−1,

so that there have to be

� ds

ss/k
xs/k

/

xs/k−1 � x

values of n ≤ x with rAk,s(n) > 0. In other words, if B denotes the set of kth
powers of elements of A, then the s-fold sumset sB has positive lower density.
If A is primitive, in the sense that there is no d > 1 dividing all the elements
of A, then the same holds for B and hence for sB. By Theorem 5.3.9, sB is an
asymptotic basis of finite order s′, say. But then B is an asymptotic basis of
order ≤ s′s.

We codify what we have proven in the following theorem:

Theorem 7.2.1 (Waring’s Conjecture for Sets of Positive Density). Let
A be a set of natural numbers containing 0 with positive lower density and with
gcd(A) = 1. Then for each positive integer k, the set B of kth powers of A is
an asymptotic basis of finite order.

Moreover, there is an s depending only on k (and not on A) with the property
that the sumset sB has positive lower density.

Strictly speaking, the argument above applies only to k > 1, but the case
k = 1 is already contained in Theorem 5.3.9.

Examples.

i. We apply the first half of Theorem 7.2.1 with A = N and find that the set
of kth powers is an asymptotic basis of finite order for each k = 1, 2, . . . .
Since 0 and 1 are in A, the set of nonnegative kth powers is an actual
basis of finite order as well. We have therefore proved Waring’s original
conjecture.

ii. Reasoning similarly with A as the set of odd numbers, we find every
positive integer is the sum of a bounded number of kth powers of odd
integers.

iii. For result of a slightly different flavor, we take A as the set of positive
integers expessible as a sum of two primes (as is permissible by Theo-
rem 5.4.5); we find, e.g., that all large natural numbers are the sum of a
bounded number of terms (p+ q)7, with p and q prime.
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7.3 Proof of the Fundamental Lemma

Let N be a positive integer and let f(α) =
∑N
m=0 e(αm

k). Then we noted in
the introduction that

rk,s(n) =

∫ 1

0

f(α)se(−αn) dα

for the choice N = bn1/kc.
Consequently, to prove the fundamental lemma it suffices to show that for

fixed k and large s (depending on k),
∫ 1

0

|f(α)|s dα�s,k N
s−k

for N = 1, 2, . . . .
The rough idea in proving this is as follows: cover [0, 1] with small inter-

vals centered at rational numbers and estimate the above integral over each of
these. We’ll show f is small on those intervals centered at rationals with large
denominator; the key tool here is Weyl’s estimates for certain exponential sums,
a simplified form of which we present in the following subsection. The intervals
centered at rationals with small denominators are divided up further, and a
suitable approximation to f on these intervals is introduced. Crude estimates
give what is required to complete the proof.

7.3.1 A Simplified Estimate of the Weyl Sums

Theorem 7.3.1 (Newman). Let I be a set of at most N ≥ 1 consecutive in-
tegers, and let ε > 0. Let f be a polynomial of degree k ≥ 2 with real coefficients
and first coefficient a integral and prime to the positive integer b ≤ N . Then

S = S(f, b, I) :=
∑

n∈I
e

(
f(n)

b

)

�k,ε N
1+εb−1/2k−1

, (7.4)

where the implied constant depends only on k and ε.

We need a few lemmas. The first is an elementary bound on the rate of
growth of the number of divisors function.

Lemma 7.3.2. For every ε > 0, we have τ(n)�ε n
ε for n = 1, 2, 3, . . . .

Proof. Define an arithmetic function f(n) by f(n) := τ(n)/nε. When q = pk is
a prime power,

f(q) = f(pk) =
k + 1

pkε
≤ log 2q/ log 2

qε
< 1

as soon as q > q0 = q0(ε). It follows that the set S of prime powers q for which
f(q) > 1 is finite. Since f is multiplicative,

τ(n)

nε
= f(n) =

∏

pk‖n
f(pk) ≤ C :=

∏

q∈S
f(q) <∞
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for every n = 1, 2, 3, . . . .

The next result is a well-known inequality whose proof is included for com-
pleteness’ sake:

Lemma 7.3.3. For −π/2 ≤ θ ≤ π/2, we have

| sin(θ)| ≥ 2|θ|/π. (7.5)

Proof. We may assume θ ≥ 0, since both sides of (7.5) represent even functions.
Equality holds in (7.5) for θ = 0 and θ = π/2, so we may further assume 0 <
θ < π/2. For such θ, the inequality tan(θ) ≥ θ holds. Indeed, f(θ) := tan(θ)−θ
satisfies f(0) = 0, and f ′(θ) = sec2(θ)−1 = tan2(θ) ≥ 0 for θ ∈ [0, π/2), so that
f is nondecreasing on this interval.

Now consider the function g(θ) = sin(θ)/θ. Then g(π/2) = 2/π, and

g′(θ) =
θ cos(θ)− sin(θ)

θ2
.

Since tan(θ) ≥ θ for 0 < θ < π/2, the numerator here is nonpositive for 0 < θ <
π/2. Hence g is nonincreasing on the interval (0, π/2). Since g is continuous at
θ = π/2, it follows that for any 0 < θ < π/2,

g(θ) = sin(θ)/θ ≥ g(π/2) = 2/π,

as was to be shown.

We need the next lemma to jumpstart the inductive proof of Theorem 7.3.1:

Lemma 7.3.4. Let α, β be real numbers. For integers r,Q with Q ≥ 0,
∣
∣
∣

∑

r+1≤m≤r+Q
e(αm+ β)

∣
∣
∣ ≤ min{Q, (2‖α‖)−1} ≤ min{Q, ‖α‖−1}. (7.6)

Proof. The case Q = 0 is clear, so we suppose that Q is positive. Since e(β +
(r + 1)α) is on the unit circle, we may also assume β = 0 and r = −1, so that
the sum runs from 0 to Q− 1. Finally, shifting α by an integer we may assume
|α| ≤ 1/2, so that ‖α‖ = |α|.

By the triangle inequality, the left hand side is at most Q in absolute value;
moreover, equality holds when ‖α‖ = 0. When α is non-integral, summing the
geometric series shows the left hand side is

∣
∣
∣
∣

e(Qα)− 1

e(α)− 1

∣
∣
∣
∣
≤ 2

|e(α)− 1| =
2

|e(α/2)− e(−α/2)| =
2

| sin(πα)| .

Since |πα| ≤ π/2, Lemma 7.3.3 implies

| sin(πα)| ≥ 2|α| = 2‖α‖.

This gives the first inequality in (7.6); the second is immediate from the obser-
vation that the function min{X,Y } is nondecreasing in both arguments.
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Proof of Theorem 7.3.1. The proof is by induction on k and is based on the
identity

|S|2 =
∑

n,m∈I
e

(
f(n)− f(m)

b

)

= |I|+ 2<
∑

n,m∈I
n>m

e

(
f(n)− f(m)

b

)

.

Reorganizing the sum according to the value of n −m ≤ N and recalling that
|I| ≤ N , we find

|S|2 � N +

N∑

d=1

∣
∣
∣
∣
∣

∑

m∈I∩I−d
e

(
f(m+ d)− f(m)

b

)
∣
∣
∣
∣
∣
. (7.7)

What is of interest here is that the inner sum is of the same form as S, with f
replaced by ∆(f ; d) of degree one less than f , and I replaced by I∩(I−d), which
is again a set of at most N consecutive integers. This allows for an inductive
argument.

Our base case is when k = 2. Then

f(m+ d)− f(m)

b

is a linear polynomial with leading coefficient α := 2ad/b, so that (7.6) and (7.7)
together imply

|S|2 � N +
N∑

d=1

max{N, ‖2ad/b|−1} � N +
2N∑

d=1

max{N, ‖ad/b‖−1}.

To estimate this final sum we break it into blocks of b consecutive integers,
allowing the final block to perhaps be incomplete. Since gcd(a, b) = 1, the sum
over each block is

� N +
b∑

d′=1

‖d′/b‖−1 � N +
∑

d′≤b/2

b

d′
� N + b log b.

Now b ≤ N , so that log b ≤ logN �ε N
2ε; since there are � 2N/b + 1 � N/b

such blocks, we get (keeping in mind that b ≤ N)

|S|2 � N +Nb−1
(
N + bN2ε

)

� N +N2b−1 +N1+2ε � N2b−1 +N1+2ε � N2+2εb−1,

Taking the square root yields (7.4) for k = 2.
Now suppose k ≥ 3 and that the lemma is known to hold for k−1. We apply

the induction hypothesis to the inner sum in (7.7). To circumvent the difficulty
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that the leading coefficient kad of f(m+ d)− f(m) might not be prime to b, we
write

kad

b
=
a′

b′
,

in lowest terms. Then b′ = b′(d) divides b (so is ≤ N).
Moreover, the number of d ∈ [1, N ] with a given value of b′ is �k Nb/b

′. To
prove this last claim, suppose b′ is the denominator of kad/b in reduced terms.
Then b/b′ divides kad, and as gcd(a, b) = 1, we must have b/b′ divides kd. But
there are only

� kN

b/b′
+ 1�k Nb

′/b+ 1� Nb′/b

integers ≤ kN divisible by b/b′, and the assertion follows.
Therefore, by the induction hypothesis,

|S|2 � N +
∑

b′|b
N
b′

b
N1+εb′−1/2k−2

� N +
1

b
N2+ε

∑

b′|b
b′1−1/2k−2 � N +

1

b
N2+εb1−1/2k−2

τ(b).

Since τ(b)�ε b
ε ≤ N ε, we get the estimate

|S|2 � N +N2+2εb−1/2k−2 � N2+2εb−1/2k−2

.

Again, taking square roots gives the result.

Remark. Newman includes the case k = 1 in his statement of the lemma, using
it as his “obvious” base case. But the lemma is false for k = 1 (exercise!), and
this necessitates a more complicated argument than that which he presents in
[New98, Chapter V].

7.3.2 Completion of the Proof

Let k ≥ 2 be fixed. Set ν = 1/3.
For 0 ≤ a ≤ q ≤ Nk−ν , gcd(a, q) = 1 and j ≥ 0, define

Ij(q, a) :=

{

α :

∣
∣
∣
∣
α− a

q

∣
∣
∣
∣
≤ 1

qNk−ν ;
j

Nk
≤
∣
∣
∣
∣
α− a

q

∣
∣
∣
∣
<
j + 1

Nk

}

.

By Dirichlet’s approximation lemma (Lemma 6.7.2),

[0, 1] ⊂
⋃

a,q

∪jIj(q, a). (7.8)

Note that for fixed a, q,

Ij(q, a) = ∅ (j > Nν); (7.9)

hence only finitely many of the Ij(q, a) are nonempty.
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Lemma 7.3.5. For α ∈ Ij(q, a),

f(α)� N

(q + j)1/2k ,

where the implied constant depends only on k.

Proof. We distinguish two cases according as q is large or small. Suppose first
q is large, say q > N2ν . Then if α ∈ Ij(q, a), we have (applying Theorem 7.3.1
with ε = ν/2k)

f(a/q) = 1 +

N∑

m=1

e(amk/q)� 1 +N1+ν/2k

q−1/2k−1 � N ·Nν/2k

q−1/2k−1

� N · q1/2k+1

q−1/2k−1 � Nq−1/2k

. (7.10)

Also, since |f ′| is bounded by 2πNk+1,

|f(α)− f(a/q)| =
∣
∣
∣
∣
∣

∫ α

a/q

f ′(t) dt

∣
∣
∣
∣
∣
≤ 2πNk+1|α− a/q|

� N1+νq−1 = N ·Nνq−1 � Nq−1/2 � Nq−1/2k

. (7.11)

Combining (7.10) and (7.11) gives the result in this case, since q > N2ν ≥ Nν

implies j = 0.
Now suppose q is small, i.e., q ≤ N2ν . Let A := q−1

∑q
m=1 e(am

k/q), so
that |A| ≤ 1 trivially, and

A� q−1q1+1/2k

q−1/2k−1

= q−1/2k

. (7.12)

by Theorem 7.3.1 (applied with ε = 1/2k). Write

f = 1 +

N∑

m=1

e(amk/q) = 1 + S1 +AS2,

where

S1 :=
∑N

m=1

(
e(amk/q)−A

)
e((α− a/q)mk),

S2 :=
∑N

m=1
e((α− a/q)mk).

S1 takes the form
∑
amg(m), where

am = e(amk/q)−A, g(m) = e((α− a/q)mk).

Now A was selected so that the sum of the am vanishes when taken over any
block of q consecutive integers; since each am is bounded by 2, we obtain a
uniform bound on the partial sums:

∣
∣
∣
∣

∑N

m=1
am

∣
∣
∣
∣

=

∣
∣
∣
∣

∑N

m=q[N/q]+1

(
e(amk/q)−A

)
∣
∣
∣
∣
≤ 2q.
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We also have the bound on the variation

V :=

∫ N

0

|g′(t)| dt =

∫ N

0

2π|α− a/q|ktk−1 dt = 2π|α− a/q|Nk ≤ 2πNν/q

and we know that the maximum of |g| on [0, N ] is 1. By Appendix A, Corollary
A.2.4 we deduce

|S1| ≤ (2q)(2πNν/q + 1)� Nν + q � N2ν

while by Appendix A, Corollary A.2.2,

S2 =

∫ N

0

g(t) dt+O(V ) = v(α− a/q) +O(Nν/q),

where

v(β) :=

∫ N

0

e(βuk) du.

Consequently,

f(α) = AS2 + S1 + 1

= Av(α− a/q) +O(|A|Nν/q) +O(N2ν) +O(1)

= Av(α− a/q) +O(N2ν).

In particular, referring to (7.12) shows

f(α)� |A||v(α− a/q)|+N2ν

� q−1/2k |v(α− a/q)|+N2ν .

To complete the proof we need to estimate v(α−a/q). Trivially v(α−a/q) ≤
N . To get a sharper estimate when |α − a/q| is large, we change variables to
find

v(α− a/q) = |α− a/q|−1/k

∫ N/|α−a/q|1/k

0

e(uk) du

� |α− a/q|−1/k = N(Nk|α− a/q|)−1/k � Nj−1/k,

where we have used the convergence of
∫∞
0
e(uk) du. Of course this last estimate

is only useful (or sensible!) if j ≥ 1, but if we combine it with the trivial estimate
we find

|v(α− a/q)| � N(j + 1)−1/k � N(j + 1)−1/2k

.

Therefore,

f(α)� Nq−1/2k

(j + 1)−1/2k

+N2ν

� N(q + j)−1/2k

+N(q + j)−1/2 � N(q + j)−1/2k

;

in transitioning between lines we have used that q, j � N2ν (by (7.9)) and
1− ν ≥ 2ν.
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Proof of the Fundamental Lemma. Let s ≥ 2k+2. Since Ij(q, a) is contained in
a union of two intervals of total length 2N−k,

∫

Ij(q,a)

|f(α)|s dα� Ns

(q + j)4
N−k � Ns−k

(q + j)4
.

By (7.8) and (7.9),

∫ 1

0

|f(α)|s dα ≤
∑

q≤Nk−ν

∑

0≤a≤q
gcd(a,q)=1

∑

0≤j≤Nν

∫

Ij(q,a)

|f(α)|s dα

� Ns−k ∑

q≤Nk−ν

∑

0≤j≤Nν

q

(q + j)4
� Ns−k∑

q≥1
j≥0

1

(q + j)3
� Ns−k,

since
∑

q≥1

∑

j≥0 (q + j)−3 converges (the inner sum being O(q−2)). The re-
marks at the beginning of this section suffice to complete the proof.

7.3.3 Exercises

The following two exercises are based on observations appearing in [New98].

In this section we proved that for k ≥ 2 and s > s(k),

∫ 1

0

|f(α)|s dα�s,k N
s−k (N = 1, 2, . . . ). (7.13)

Exercise 7.3.1.

a) Noting that |f ′| ≤ 2πNk+1, deduce from f(0) = N + 1 that |f(α)| ≥ N/2
for 0 ≤ α ≤ (4πNk)−1.

b) Prove that for any k, s ≥ 1,

∫ 1

0

|f(α)|s dα ≥ (2s+2π)−1Ns−k,

so that the estimate of this section is best possible.

Exercise 7.3.2. Suppose that for some k, s ≥ 1, one has

∫ 1

0

|f(α)|s dα ≤ CNs−k (N = 1, 2, . . . ).

Prove that the same inequality holds (with the same C) with s replaced by any
s′ ≥ s.
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Birkhäuser Boston Inc., Boston, MA, 2003. MR 1 997 439

[Hil09] D. Hilbert, Beweis für die Darstellbarkeit der ganzen Zahlen durch eine
feste Anzahl n-ter Potenzen (Waringsches Problem). Dem Andenken
an Hermann Minkowski gewidmet, Math. Annalen 67 (1909), 281–300.

[HL20] G.H. Hardy and J.E. Littlewood, Some problems of ‘Partitio Numero-
rum’; I: A new solution of Waring’s problem., Gött. Nachr. (1920),
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Appendix A

Some Notions from
Asymptotics

In this chapter we survey results from asymptotics needed in the text. The
material of this chapter (especially of the first two sections) is standard and can
be found in the opening chapters of any analytic number theory text (e.g., see
[Ten95, Chapter 0], [Mur01, Chapter 2] or [Apo76, Chapters 3, 4]).

Another helpful but unpublished reference is [Hil02].

A.1 Big Oh, little oh, and their relatives

A.1.1 Big-Oh notation

Suppose f and g are complex-valued functions of one or several variables. We
write f = O(g) if |f | ≤ C|g| for some constant C and all specified values of the
variables; the constant C is referred to as the implied constant . For example,
x = O(x2) for x ≥ 1 (we may take C = 1), but not in the larger range x ≥ 0
(consider values of x approaching 0).1

The notation f(x) = O(g(x)) as x→ a means that f = O(g) on some deleted
neighborhood U of a, with respect to the topology of the extended real line
R∪{±∞}. In particular, when a =∞, this condition reduces to the statement
that f = O(g) on some set U of the form (x0,∞). Similar conventions apply
(with left and right deleted neighborhoods, respectively) if we replace “x→ a”
by “x ↑ a” (x approaches a from below) or “x ↓ a” (x approaches a from above).

Instead of letting x tend to a through all values, as was the case in the
previous paragraph, we sometimes restrict the values of x to a prescribed subset

1The following quote, drawn from C.A. Roger’s preface to [Dav77], illustrates the

formidable utility of this notation: “Davenport, Erdős, Ko, Mahler and Z̆ilinskas found time
to play regular bridge. Mahler, who had only recently taken up the game, was prone to miss
the best play, and the others and Mahler himself were soon describing poor play as being
O.M. (or more correctly O(M)). Mahler long remained unaware that the Landau notation
was in use and that this stood for ‘Order of Mahler.”’
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S. In order for x to tend to a along values of S, it must be that a is in the closure
of S. In this case, we define f(x) = O(g(x)) as x → a along values x ∈ S to
mean that f(x) = O(g(x)) for some set U , where U is the intersection of S with
a deleted neighborhood of a. A common such situation is when S is an infinite
set of positive integers and a =∞; in this case, the assertion f = O(g) unwinds
to the assertion that there exist (finite) constants C,N0 for which |f | ≤ C|g| for
N ≥ N0, N ∈ S.

Finally, if f and g depend on a parameter λ, then we write f = Oλ(g) to
mean that C (as well as the neighborhood U , in the situations of the last two
paragraphs) is allowed to depend on λ. If C (and the neighborhood U) can be
chosen independently of λ, then we say that the estimate holds uniformly in λ.
For example, the function fn(x, y) = n(x2 + y2) is On(1) for x, y ∈ [0, 1], while
the function gn(x, y) = sin(n(x2 + y2)) is O(1) uniformly in (real) n for x, y in
the same range.

If f and g depend on λ, but in stating a big-Oh estimate we do not specify
either dependence on λ or uniformity in λ, then the former is assumed by default.
That is, we always assume the weaker statement is being made.

The notation f � g is sometimes used in place of f = O(g). We write f � g
to mean g � f , and f � g to mean f � g and g � f ; in the latter case we say
that g gives the order of magnitude of f , or that f and g have the same order
of magnitude. Subscripts used with any of these symbols denote dependence on
parameters, as above.

A.1.2 Little-oh notation

We say that f = o(g) as x→ a if

lim
x→a

f(x)/g(x) = 0,

i.e., if for every ε > 0 there is a deleted neighborhood U of a such that
|f(x)/g(x)| < ε for every x ∈ U . If f, g depend on a parameter λ, then we
say f = o(g) uniformly in λ if for every ε, the set U can be chosen indepen-
dently of λ. For example, x = o(x2) as x→∞, and sin(nx) = o(x) as x→∞,
uniformly in n.

If the values of x tending to a are restricted to lie in the set S (where we
assume a belongs to the closure of S), then the definitions are the same as above,
except that U is now the intersection with S of a deleted neighborhood of a.

We say “f is asymptotic to g as x tends to a,” and write f ∼ g as x → a,
if limx→a f(x)/g(x) = 1. Most commonly a = ∞, which we assume if no a
is specified. Note that f ∼ g is equivalent to f = g(1 + o(1)), provided g is
nonvanishing in a deleted neighborhood of a.
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A.2 Estimation of Sums

A.2.1 Comparison of a Sum and an Integral

If f does not oscillate too wildly, it is reasonable to expect the Riemann sum
∑b
n=a+1 f(n) to approximate the integral

∫ b

a
f(t) dt. Our next theorem gives us

an expression for the error in this approximation.

Theorem A.2.1 (Euler’s Summation Formula). Let a < b be integers and
suppose f : [a, b]→ C is continuously differentiable. Then

b∑

n=a+1

f(n) =

∫ b

a

f(t) dt+

∫ b

a

{t}f ′(t) dt.

Proof. We begin with the identity

g(1) =

∫ 1

0

g(t) dt+

∫ 1

0

tg′(t) dt,

which (integrating by parts) holds whenever g is continuously differentiable on
[0, 1]. Applying this identity with g(t) = f(n− 1 + t) shows

f(n) =

∫ 1

0

f(n− 1 + t) dt+

∫ 1

0

tf ′(n− 1 + t) dt

=

∫ n

n−1

f(t) dt+

∫ n

n−1

{t}f ′(t) dt.

Summing over n = a+ 1, . . . , b yields the result.

Example. We take f(n) = 1/n, a = 1, and b = N in Theorem A.2.1 to obtain

∑

n≤N

1

n
= 1 +

∫ N

1

dt

t
+

∫ N

1

−{t}
t2

dt

= logN + 1−
∫ N

1

{t}
t2

dt,

the computation being valid for positive integers N ≥ 2. Because {t}/t2 � t−2,
this last integral converges when extended to infinity, so that

∑

n≤N

1

n
= logN + 1− C +O

(∫ ∞

N

dt

t2

)

= logN + γ +O(1/N),

where γ := 1 − C. The same estimate holds if the limit of summation N is
replaced by an arbitrary real number x ≥ 2; this follows from what we’ve just
done by taking N = bxc and noticing that

logbxc = log x+ log

(

1− {x}
x

)

= log x+O(1/x).
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The following crude form of Euler’s summation formula often suffices in
applications:

Corollary A.2.2. Let a < b be integers and suppose f : [a, b] → C is continu-
ously differentiable. Then

b∑

n=a+1

f(n) =

∫ b

a

f(t) dt+O

(
∫ b

a

|f ′(t)| dt
)

.

A.2.2 Partial Summation

In number theory one often needs estimates for sums of the form
∑

y<n≤x anbn
in situations where one already has estimates for S(t) :=

∑

y<n≤t an.

As was observed by Abel, if y, x are integers (with y ≤ x) then we can rewrite
the desired sum as

x∑

n=y+1

anbn =

x∑

n=y+1

(S(n)− S(n− 1))bn

=

x∑

n=y+1

S(n)bn −
x−1∑

n=y+1

S(n)bn+1

=
x−1∑

n=y+1

S(n)(bn − bn+1) + S(x)bx. (A.1)

When the values of bn are given by a smooth function f , there is a more
telling way of reexpressing this sum completely analogous to the usual formula
for integration by parts. Before stating this result, we introduce a bit of further
notation: If f and c are complex-valued functions defined on [a, b], with f ′

piecewise continuous here, we define

∫ b

a

f(t) dc(t) = c(b)f(b)− c(a)f(a)−
∫ b

a

f ′(t)c(t) dt, (A.2)

whenever the right-hand integral exists. This last condition is certainly satisfied
if c is piecewise continuous on the interval or (a weaker condition) if c is of
bounded variation. Note that if c(t) = t, then the right hand side of (A.2) is
the same as that appearing in the formula for integration by parts, so that this
agrees with the usual definition of

∫
f(t) dt.

Just as with ordinary integrals, it is convenient to extend the notation to
allow b =∞ by setting

∫ ∞

a

f(t) dc(t) = lim
b→∞

∫ b

a

f(t) dc(t).
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Theorem A.2.3 (Partial summation). Suppose y ≤ x are real numbers
and that complex numbers an are defined for all n ∈ (y, x]. Define S(t) =
∑

y<n≤t an. If f ′ is piecewise continuous on [y, x], then

∑

y<n≤x
anf(n) =

∫ y

x

f(t) dS(t).

Proof. We have

∫ x

y

f(t) dS(t) = S(x)f(x)−
∫ x

y




∑

y<n≤t
an



 f ′(t) dt

= S(x)f(x)−
∑

y<n≤x
an

∫ x

n

f ′(t) dt

= S(x)f(x)−



f(x)
∑

y<n≤x
an −

∑

y<n≤x
anf(n)





=
∑

y<n≤x
anf(n).

Example. Let A be a set of positive integers with density 1/2, so that A(x) =
x(1/2 + o(1)), and suppose we wish to estimate

∑

n≤x,n∈A 1/a. Take an to be
the characteristic function of A; then S(t) = A(t), and

∑

a≤x,a∈A

1

a
=
∑

n≤x
an

1

n
=

∫ x

1/2

1

t
dA(t)

=
A(t)

t
− A(1/2)

1/2
−
∫ x

1/2

−A(t)

t2
dt

= (1/2 + o(1)) +

∫ x

1

(
1

2t
+ o

(
1

t

))

dt (A.3)

= O(1) +
1

2
log x+ o(log x) = (1/2 + o(1)) log x. (A.4)

The reader should offer a careful justification of the transition from (A.3) to
(A.4), keeping in mind that one cannot in general pull o’s outside an integral.

The following corollary of Theorem A.2.3 will be required in Chapter 7:

Corollary A.2.4 (Newman [New60]). Let N be a positive integer, f a con-
tinuously differentiable complex-valued function on [0, N ] and a1, . . . , aN any
complex numbers. Let

M := max
m=1,2,...,N

∣
∣
∣
∣
∣

m∑

n=1

an

∣
∣
∣
∣
∣
, M ′ := max

x∈[0,N ]
|f(t)|, V :=

∫ N

0

|f ′(t)| dt.
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Then ∣
∣
∣
∣
∣

N∑

n=1

anf(n)

∣
∣
∣
∣
∣
≤M(V +M ′).

Proof. Let S(t) =
∑

n≤t an. Then

N∑

n=1

anf(n) =

∫ N

1/2

f(t) dS(t) = S(N)f(N)−
∫ N

1

f ′(t)S(t) dt

�MM ′ +MV = M(V +M ′).

Those with some background in analysis will recognize that V coincides
(under our hypotheses on f) with the “total variation” of f on [0, N ].

A.3 Counting Lattice Points

A.3.1 . . . in Homothetically Expanding Regions

Let X be a bounded subset of Rn. Then the number N(X) of lattice points
contained in X is a Riemann sum for the (Jordan)-volume

vol(X) :=

∫

Rn

χX dV =

∫

X

1 dV .

Thus, letting a×X denote the dilation of X by a, it is reasonable to expect the
count of lattice points contained in a × X to be approximately vol(a × X) =
anvol(X). The next theorem says that for fixed X, this is true asymptotically
as a→∞.

Theorem A.3.1. Let X be a bounded subset of Rn which possesses a Jordan-
volume vol(X), and let N(a×X) denote the number of lattice points contained
in the dilation a×X. Then N(a×X)/an → vol(X) as a→∞.

The same holds if vol(X) is interpreted as n-dimensional Lebesgue measure,
provided the boundary of X has measure zero.

Proof for the Lebesgue measure (sketch). It is enough to show N(aj×X)/anj →
vol(X) holds for every given sequence {aj}j≥1 of positive numbers with aj →∞.

Instead of letting X expand by the factor aj , we think of contracting the
usual lattice by the same factor, so that Rn is partitioned into n-dimensional
cubes of volume a−nj . We define fj = 1 on those cubes where the corner with

smallest coordinates (the analog of the southwest corner in R2) belongs to X
and fj = 0 on the other cubes. More precisely (to fix what we do about the
boundaries of the cubes), using the notation bxc = (bx1c, . . . , bxnc) for x ∈ Rn,
we define

fj(x) :=

{

1 if bajxc ∈ ajX,
0 otherwise.
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Then

N(aj ×X)/anj =

∫

Rn

fj .

Moreover, fj(x)→ χX(x) for every x not on the boundary of X, so for almost
every x ∈ Rn. By the bounded convergence theorem,

lim
j→∞

N(aj ×X)/anj = lim
j→∞

∫

Rn

fj =

∫

Rn

χX = vol(X).

Proof for the Riemann integral (sketch). Proceeding as above, we interpretN(a×
X)/an as a Riemann sum for vol(X), where the corresponding partition is into
n-dimensional cubes of side length a−1. As a → ∞, the mesh of the partition
tends to 0, so the Riemann sum tends to the integral (by [Guz03, §4.2, Theorem
4]).

For example, taking X as the unit circle implies there are πr2 +o(r2) lattice
points in the circle of radius r centered at the origin. For regions like this,
which are bounded by simple closed rectifiable plane curves, better results are
provided by our next theorem.

A.3.2 . . . enclosed by a Jordan curve

Theorem A.3.2. Let J be a simple, rectifiable closed plane curve of length
L ≥ 1 enclosing a region of area (Lebesgue measure) A. Then the number N of
lattice points inside or on J satisfies N = A + O(L), with an absolute implied
constant.

Remark. Jarnik showed that under these conditions |N − A| < L, and a short
proof was later published by Steinhaus [Ste47]; his argument is reproduced in
[Hua82, Chapter 6, Theorem 9.2]. The proof given below of the weaker Theorem
A.3.2 is taken from [Lan69, Teil 8, Einleitung].

Proof. Let R denote the region enclosed by J , including the boundary. Let M
be the number of (closed) squares (of the usual lattice) containing a point of the
boundary curve J . We may interpret N , as defined in the theorem statement,
as the number of lattice squares whose southwest corner belongs to R.

We first claim N−A ≤M : to see this, consider the squares whose southwest
corner belongs to R. These are of two types: those which lie entirely in R and
those which contain at least one point outside of R. There are at most A of
the former, since each square has area 1, and at most M of the latter, since any
square intersecting both R and its complement must intersect J .

On the other hand, we also have A − N ≤ M : if we think of covering R
with lattice squares, it is obvious that A is bounded by the number of squares
that intersect R. Such a square either has southwest corner belonging to R or
outside of R; in the former case it is counted by N and in the latter by M .

Consequently,
|N −A| ≤M. (A.5)
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It remains to estimate M . For this, note that a curve of length < 1 can intersect
at most 4 squares, since among any five squares there are two at least distance
1 apart. Breaking J into bLc+ 1 pieces of length L/(bLc+ 1) < 1, we see

M ≤ 4(bLc+ 1) ≤ 4(L+ 1) ≤ 8L. (A.6)

The result now follows from (A.5) and (A.6).

We immediately obtain an improvement on our earlier estimate:

Corollary A.3.3. The number of lattice points inside or on any circle of radius
r ≥ 1 in the plane is πr2 +O(r), where the implied constant is absolute.
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Appendix B

Finitely Generated Abelian
Groups

In this brief appendix we develop the basic theorems on finitely generated Z-
modules (aka finitely generated abelian groups).

B.1 The Fundamental Theorem

Theorem B.1.1 (Fundamental Theorem of Finitely Generated Abelian
Groups, sans uniqueness). Let M be a finitely generated Z-module, which we
suppose can be generated by k elements and no fewer. Then there are elements
e1, . . . , ek of M with

M = Ze1 ⊕ · · · ⊕ Zek,

and such that the order of ei divides the order of ei + 1 (for 1 ≤ i ≤ r − 1),
where r is such that the order of ei is finite for i ≤ r and infinite for r < i ≤ k.

Remark. Naturally, this internal direct sum decomposition implies an external
direct sum decomposition. Namely, if r (respectively s) is the number of gener-
ators ei of finite (respectively infinite) order, then letting mi denote the order
of ei, we have

M ∼= Z/m1Z⊕ · · · ⊕ Z/mrZ⊕ Zs,

where m1 | m2 | · · · | mr.

Proof (E. Artin). We proceed by induction on k, the smallest number of ele-
ments required to generate M . The case k = 1 being trivial, we assume k > 1.
We consider all minimal generating sets e1, . . . , ek for M and all nontrivial
relations

m1e1 + · · ·+mkek = 0, (B.1)

where “nontrivial” means not all the mi = 0. From all nontrivial relations (B.1)
among all minimal generating systems, we fix a relation (B.1) containing the

299
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smallest positive coefficient. (If there are no such relations, then any minimal
generating system is a Z-basis for M , so the theorem holds.) By reordering the
ei, we can assume m1 is this minimal positive coefficient.

We claim:

i) In any relation
n1e1 + · · ·+ nkek = 0

among the ei, we have m1 | n1.

ii) For every i = 1, . . . , k, we have m1 | mk.

To prove the first claim, note that if m1 - n1, then with q chosen so that
0 < n1 −m1q < m1, we have

(n1 −m1q)e1 + · · ·+ (nk −mkq)ek = 0;

this relation has a smaller positive coefficient (namely n1 − m1q) than m1,
contradicting minimality.

To prove the second claim, suppose for example that m1 - m2. Then writing
m2 = m1q + r, we obtain

m1(e1 + qe2) + re2 + · · ·+mkek = 0. (B.2)

But e1 +qe2, . . . , ek is also minimal generating system. Since the relation (B.2)
possesses a smaller positive coefficient than m1, we again obtain a contradiction
to the minimality of m1.

By the second claim we have mi = m1qi for integers q1, . . . , qk, and therefore

0 = m1e1 +m1q2e2 + · · ·+m1qkek

= m1(e1 + q2e2 + · · ·+ qkek).

Define
e1 := e1 + q2e2 · · ·+ qkek. (B.3)

It follows from claim i) above that set of integers m with me1 = 0 is exactly
the principal ideal generated by m1; hence Ze1

∼= Z/m1Z.
Now consider the (minimal) generating system e1, e2, . . . , ek. We claim

M = Zg1 ⊕ (Zg2 + · · ·+ Zgk).

That this holds with ⊕ replaced by + is clear; to see that the sum is direct, first
note that if

n1e1 + n2e2 + · · ·+ nkek = 0

for some n1, . . . , nk ∈ Z, then (by (B.3)) we can find integers N2, . . . , Nk ∈ Z
for which

n1e1 +N2e2 + · · ·+Nkek = 0;

by our first claim, we then have m1 | n1. Since m1e1 = 0, in this case both
n1e1 and n2e2 + · · ·+ nkek = 0. Therefore the sum is direct as claimed.
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Now the submodule generated by e2, . . . , ek has a minimal generating system
of size k − 1. (The size of a minimal generating set clearly does not exceed
k − 1, and if we could pick a generating set of fewer than k − 1 elements then
appending e1 we would find a generating set of M with fewer than k elements.)
By induction, choose e2, . . . , ek for which

Ze2 + · · ·+ Zek = Ze2 ⊕ · · · ⊕ Zek

and arranged so as to satisfy the divisibility conditions of the theorem. Let mi

denote the order of ei, for i = 2, . . . , k, so that m2 | · · · | mk.

To complete the proof we need only check that m1 divides m2, provided m2

is defined. To see this, write down the relation

m1e1 +m2e2 + 0e3 + 0e4 + · · ·+ 0ek = 0.

If m1 does not divide m2, then we can write m2 = m1Q+R with 0 < R < m1

to obtain

m1(e1 +Qe2) +Re2 + · · ·+mkek = 0;

this is a relation among a minimal system of generators with a positive coefficient
smaller than m1.

B.2 Free Z-modules of Finite Rank

A Z-module M is said to be free of finite rank if there are elements e1, e2, . . . , en

in M with the property that every v ∈ M admits a unique expression in the
form

v = c1e1 + · · ·+ cnen (ci ∈ Z);

in this case e1, . . . , en are said to be a basis for M . We define the rank of a
such a module as the number of elements in a basis; the next lemma assures us
this is well-defined.

Lemma B.2.1. Suppose M is a Z-module with a basis of n elements, where n
is a positive integer. Then every basis of M possesses n elements.

Proof. Because a Z-module with a basis of n elements is isomorphic to Zn, we
may assume M = Zn. Let e1, . . . , em be any basis of Zn. Then e1, . . . , em

is also a basis of Qn. Indeed, any linear dependence over Q implies a linear
dependence over Z upon clearing denominators. Also, if v ∈ Qn, then rv ∈ Qn,
for some positive integer r, so rv is in the Z-span of e1, . . . , em, whence v is
the Q-span of e1, . . . , em. The equality m = n follows now from uniqueness of
dimension.

Theorem B.2.2. Let M be a free Z-module of rank n. Then every submodule
N of M is free of rank at most n.



302 APPENDIX B. FINITELY GENERATED ABELIAN GROUPS

Proof. We may assume M = Zn. For each 1 ≤ k ≤ n, let Nk be the submodule
of N consisting of those points (x1, . . . , xn) ∈ N whose first k − 1 coordinates
x1, . . . , xk−1 vanish, with the convention that N1 = N . Let Ik be the set of kth
coordinates of elements of Nk. Then Ik is an ideal of Z, so that Ik = Zgk for
some integer gk. If gk 6= 0 then let ek be any element of Nk with kth coordinate
gk; when gk = 0, let ek = 0.

We claim e1, . . . , en generate N . For let v ∈ N be given; we can choose, by
definition of g1, an integer c1 such that v− c1e1 has vanishing first coordinate.
We can then choose, by definition of g2, an integer c2 such that

v − c1e1 − c2e2

has vanishing first and second coordinates, and so on. In this way we find

v = c1e1 + · · ·+ cnen.

It follows that the ei span N , and this remains true if we throw away those
ei = 0.

We claim that the remaining elements ei1 , ei2 , . . . , eik , with i1 < i2 < · · · <
ik, form a basis for N . It only remains to check linear independence. So let

v := c1ei1 + · · ·+ ckeik

be a linear combination of these vectors, with not all the cj vanishing, and let
cj be the first nonvanishing coefficient. Then v has ijth coordinate cjgij 6= 0,
so v 6= 0.
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