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Abstract

Background: Epilepsy is a common neurological disorder characterized by recurrent
electrophysiological activities, known as seizures. Without the appropriate detection
strategies, these seizure episodes can dramatically affect the quality of life for those
afflicted. The rationale of this study is to develop an unsupervised algorithm for the
detection of seizure states so that it may be implemented along with potential
intervention strategies.

Methods: Hidden Markov model (HMM) was developed to interpret the state
transitions of the in vitro rat hippocampal slice local field potentials (LFPs) during
seizure episodes. It can be used to estimate the probability of state transitions and
the corresponding characteristics of each state. Wavelet features were clustered and
used to differentiate the electrophysiological characteristics at each corresponding
HMM states. Using unsupervised training method, the HMM and the clustering
parameters were obtained simultaneously. The HMM states were then assigned to
the electrophysiological data using expert guided technique. Minimum redundancy
maximum relevance (mRMR) analysis and Akaike Information Criterion (AICc) were
applied to reduce the effect of over-fitting. The sensitivity, specificity and optimality
index of chronic seizure detection were compared for various HMM topologies. The
ability of distinguishing early and late tonic firing patterns prior to chronic seizures
were also evaluated.

Results: Significant improvement in state detection performance was achieved when
additional wavelet coefficient rates of change information were used as features. The
final HMM topology obtained using mRMR and AICc was able to detect non-ictal
(interictal), early and late tonic firing, chronic seizures and postictal activities. A mean
sensitivity of 95.7%, mean specificity of 98.9% and optimality index of 0.995 in the
detection of chronic seizures was achieved. The detection of early and late tonic
firing was validated with experimental intracellular electrical recordings of seizures.

Conclusions: The HMM implementation of a seizure dynamics detector is an
improvement over existing approaches using visual detection and complexity
measures. The subjectivity involved in partitioning the observed data prior to training
can be eliminated. It can also decipher the probabilities of seizure state transitions
using the magnitude and rate of change wavelet information of the LFPs.
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Background
Epilepsy is one of the most common neurological disorders, affecting over 50 million

people worldwide. The disorder is characterized by spontaneous, recurrent, seemingly

unpredictable symptoms called seizures [1,2]. A seizure can be defined as the sudden

manifestation of lowered complexity synchronized rhythmic activities across populations

of neurons [3]. Epilepsy affects motor and speech, as well as other cognitive functions

that, if untreated, can lead to permanent damage to the brain. Time-frequency represen-

tation (TFR) is an important marker for understanding the progression into seizure

onsets [4]. The progression to the seizure onset is associated with the entrainment of

neuronal population firing. In particular, the TFR of epileptiform oscillation has been

suggested as a useful tool in localizing regions of seizure onsets and in understanding

the mechanisms behind seizure generation [5]. The current methods for detecting the

state transitions of seizure episodes based on TFR usually involve the computation of

state-specific features through supervised learning techniques [6-10]. In general, super-

vised learning strategies require certain knowledge of the system so that the data can be

separated into different states based on their known dynamics before the training pro-

cess. To date, a great deal of subjectivity is required for the implementation of these

algorithms since the desired solution for detection must be defined by the experimenter.

Seizure detection refers to the identification of seizure onsets a few seconds before

the observable behavioral changes [11,12]. Several effective supervised pattern recogni-

tion strategies have been developed for seizure detection. Multi-layered networks were

first introduced to analyze EEG data pertaining to seizure phenomenon in the mid-

1990s [13,14]. Various methods such as autoregressive models [15,16] to more

advanced techniques such as support vector machines [17,18] were also proposed. The

feature space for these approaches ranged from spectrogram [19], dominant frequency,

power and amplitude [20] to time frequency distribution [21] such as wavelet trans-

form based approximate entropy [22,23]. It has been reported that frequency content

of neuronal electrical activity changed significantly during the progression of a seizure,

both in the interspike interval and in the intraburst dynamics [8,24]. The major disad-

vantage of these supervised methods is that their performances can only be as good as

the initial data separation criteria. Therefore, it is essential to utilize an unsupervised

learning paradigm that transcends these restrictions.

An unsupervised probabilistic approach for the detection of seizure-like events

(SLEs) in vitro extracellular local field potentials (LFPs) seizures using hidden Markov

model (HMM) [25,26] along with clustering of wavelet features is proposed. The in

vitro model, emulating human epilepsy, provides a platform for testing the seizure

dynamics detection algorithm. The HMM is not meant to reproduce the exact electro-

physiological recordings of the brain. Instead, it is used to capture the essential TFR

characteristics in the progression of SLEs and to estimate the state transitions as a

multi-stage process. The HMM has an advantage over the supervised approaches

because it does not require prior manual separation of data into different dynamics.

The current approach of detecting seizure events using Markov models involves the

estimation of either two (seizure and interictal) [27] or three (baseline, detected and

seizure) [28] distinct states. Even though these proposed methods appear to detect sei-

zure onsets, they failed to address the possibility of having multiple distinctive

dynamics between non-ictal (interictal) and chronic seizure events, which may be an
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important aspect for the development of seizure therapy techniques. The training pro-

cess of the HMM is an unsupervised approach. However, a certain amount of bias can

be achieved by making an informed choice on the assignment of the model states to

the electrographical activities after the unsupervised training process is completed.

To determine the optimal HMM topology for seizure detection, two methods were

proposed and compared. First, the performance of the trained HMM was evaluated on

the validation set to determine the suitable HMM topology. Second, minimum redun-

dancy maximum relevance (mRMR) analysis [29] and Akaike Information Criteria

(AICc) [30,31] were used to find a suitable feature space and optimum model by balan-

cing the log-likelihood (LL) against the number of model parameters. Furthermore, the

performances of HMMs were compared with the wavelet-based supervised machine

learning techniques [6,7] based on the sensitivity and specificity of chronic seizure detec-

tion, the detection delay and the optimality measure [32]. We hypothesized that using

appropriate wavelet features, the HMM can detect the various stages of SLEs at least as

well as, if not better than, the supervised machine learning algorithms. We also hypothe-

sized that the optimal HMM topology can illuminate multiple transitional characteristics

in the tonic firing phrase leading to the onsets of chronic seizure activities.

Methods
A. Tissue preparation and data acquisition

Hippocampal slice recordings were obtained from eight Wistar rats (17-25 days old).

The animals were anaesthetized with halothane and decapitated in accordance with the

Canadian Animal Care Guidelines. The brains were promptly dissected and maintained

in ice-cold (4°C) artificial cerebrospinal fluid (aCSF) for four to five minutes. Each

brain was incised in a horizontal manner in accordance with the procedure outlined by

[33,34]. The dorsal cortex of each hemisphere was cut parallel to the rostral/caudal

axis and glued dorsal side down to an aluminium block, with caudal end towards the

blade. The block was secured at a 12-14° angle, and brain slices of 400 μm thick were

sectioned using a vibratome. Next, slices were maintained at room temperature in oxy-

genated “standard” aCSF (95% O2, 5% CO2) for a minimum of one hour prior to

recording. The composition of the “standard” aCSF was as follows (in mM), NaCl

(125), KCl (5), NaH2PO4 (1.25), MgSO4 (2), CaCl2 (2), NaHCO3 (25) and glucose (10).

The pH was approximately 7.4, with osmolarity in the range of 300 ± 5 mOsm. During

the data acquisition stage, slices were transferred to the fusion chamber maintained at

30°C (Medical Systems Corp., Model PDMI-2, Harvard Apparatus, St. Laurent, Que-

bec, Canada). The pyramidal cells were visualized with an upright microscope (BX51,

Olympus, Melville, NY, USA) using infrared imaging with differential interference con-

trast (IR-DIC) under 40 × magnification (water-immersion objective) with an OLY-

150IR camera-video monitor unit (Olympus) [35]. Pyramidal cells were identified

based on their characteristic spike frequency of 15.0 ± 5 Hz, their morphological fea-

tures and the general location of the electrode placement. At the time of recording,

spontaneous SLEs were induced by perfusing the slice with low-Mg2+ ACSF (contain-

ing in mM: 123 NaCl, 5 KCl, 1.5 CaCl2, 0.25 MgSO4, 25 NaHCO3, 1.2 NaH2PO4 and

15 glucose), or by tetanic stimulation of the CA3 region in “standard” aCSF, once

every 10 min (80 Hz, 1 second duration), using a Grass S44 stimulator (Grass Medical

Instruments, West Warwick, Rhode Island). The reduction of extracellular Mg2+
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concentration has long been known to enhance neuronal excitability by decreasing

membrane surface charge screening and, thereby, facilitating the activation of inward

currents in addition to increasing the synaptic excitation by unblocking the NMDA

receptor [36]. The population dynamic of the LFPs were measured using an aCSF-filled

borosilicate glass pipette located in stratus pyramidal of the CA1 region of the hippo-

campus. Data was acquired using a custom-made DC differential amplifier with a low-

pass filter (corner frequency 400 Hz), digitized at 1 kHz by a Digidata 1322 (Axon

Instruments, Union City, California). The whole-cell patch-clamp recordings were per-

formed in the current clamp configuration using an Axopatch 200B amplifier (Axon

Instruments, Union City, CA, USA). The whole-cell patch pipette solutions contained

(contained in mM: 8 NaCl, 0.001 CaCl2, 10 Na-Hepes, 5 KCl, 140 potassium gluconate,

1 MgCl2, 0.3 Na-GTP and 2 Na-ATP). The perforated patch pipette solution (contain-

ing in mM: 50 KCl, 2 Hepes, 0.1 EGTA and ≤50 μg/ml gramicidin).

Overall, this study utilized 50 SLEs from 20 hippocampal slices in 8 rats with at least

two SLEs recordings per rat. Each SLE was normalized in amplitude between -1 and

+1. The DC components and the 60 Hz noise along with their harmonics were

removed using FIR notch filtering. All of the analyses were performed using MATLAB

(MathWorks, Natick, MA). The entire date set contained SLEs 50-379 s in duration

(mean ± standard deviation of 145 ± 70 s). A typical SLE was made up of the interictal

period, followed by tonic firing and then chronic seizure, before returning to the inter-

ictal period through the postictal activity. The mean duration of the chronic seizure

was 74 s with standard deviation of 32 s. The duration of the tonic firing pattern lasted

0-301 s (mean ± standard deviation of 49 ± 48 s). We also included over 30 min of

non-ictal/interictal bursting (IB) activities to determine the false positive rates of the

seizure detectors. Details of the dataset for analysis are given in Table 1.

B. Wavelet-based hidden Markov model seizure detector

The HMM is a powerful technique for the estimation and analysis of state transitions

in any potentially multi-stage process. It is particularly useful in describing the progres-

sion of time-varying phenomenon in which the observed signals are emitted from the

underlying dynamical states whose detailed generating mechanism is unknown or hid-

den. This is also important because the underlying dynamics of the brain is still rela-

tively unknown.

Feature space

The LFPs recorded near the stratus pyramidal of the CA1 region of in vitro rat hippo-

campal slices were used to train the HMM. The continuous wavelet transform (CWT)

[37-39] using Morlet mother wavelet ψ(t) was performed to extract the features. We

have noted from our previous study that the choice of mother wavelet does not affect

Table 1 Characteristics of the data set

Characteristics

Duration of EEG recording 121 m

Number of seizures 50

Duration of non-ictal activity 30 m

Mean ± Stdev of tonic firing 49.8 ± 48.0 s

Mean ± Stdev of chronic seizure 73.6 ± 32.4 s

Sampling rate 1024 Hz
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the pattern recognition system [6]. The modified wavelets ψs,l(t), derived from a

mother wavelet by a scaling factor s and a translation factor l, is defined as:

ψs,l(t) =
1√
s
ψ

(
t − l

s

)

The wavelet coefficients (c) can be computed at each non-overlapping 1-second moving

time window, as the correlation between the modified wavelet and the input data. For this

study, seven frequency components (as illustrated in Table 2) denoting important physiolo-

gically-relevant frequency bands were obtained. We evaluated two feature spaces. The first

feature set was made up of 7-D wavelet coefficient data, which was identical to the feature

set used in the previous supervised seizure detection algorithm called the wavelet artificial

neural networks (WANN) [6,7]. The second feature set was a 14-D vector consisted of the

information from the first feature set and the rate of change information Δc, defined as the

numerical difference of c from the previous time window at each frequency band.

HMM topology

The HMM topology is defined by the number of states (Q) in the HMM and the number

of basis functions (M) used to represent the feature space. The value Q can be interpreted

as the potential number of distinct dynamics that may exist within a SLE. The value M

can loosely be interpreted as the complexity of the feature for each possible model state.

The model parameters of the HMM help create two probability functions: the state

transition probability and the emission probability. The parameter aij is the probability

of state transition from state i to state j where i and j can range from 1 to Q. The

model state j at time t is denoted as (St = j).

aij = P(St+1 = j|St = i)

In this study, Q could go up to 10, allowing for the detection of potential multi-stage

SLE processes. The transition of the model states was also assumed to follow a static

probability distribution such that the transition probability was independent of time.

For the representation of the features space, an unsupervised Mixture of Gaussians

(MoGs) clustering technique was used. The feature vectors in the D-dimensional space

is denoted as x, where D = 7 or 14 depending of the features. The multivariate Gaus-

sian probability density measure is a function of the center μk (D by 1 in size) and cov-

ariance matrix Σk (D by D in size). It is defined as:

φ(x,μk,�k) =
1

(2π)
D
2 |�k|

1
2

e−
{ 1

2 (x−μk)T
�k

−1(x−μk)
}

Table 2 Feature space for the HMM

Bands Frequency Range (Hz)

Delta <4

Theta 4 - 8

Alpha 8 - 15

Beta 15 - 40

Gamma 40 - 100

Super gamma 100 - 250

Fast ripple 250 - 400

The wavelet coefficients were divided into seven frequency bands according to the accepted physiological ranges.
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The HMM was set up such that each state j would have M number of clusters in the

feature space. Initially, the Gaussian clusters were randomly scattered and a subset of

the feature x was assigned to the kth cluster in the hidden state j. The output probabil-

ity function, called emission probability bj(x) can then be defined as:

bj(x) =
M∑

k=1

wjkφ(x,μjk,�jk)

Here, the weighting factor for each cluster is denoted as wjk. In order to interpret bj
(x) as true probability, the weighting factor needs to satisfy the following criteria:

M∑
k=1

wjk = 1

In this paper, the number of clusters was allowed to vary from 1 to 5. A schematic

representation of a 3-state HMM based on a 2-D feature space is shown in Figure 1,

illustrating how the transition probabilities and the emission probabilities can tell us

about the progression of the model states and the representation of Gaussian clusters

in the state space.

Training and validation

The training of HMM involved the process of maximizing the probability of fitting the dis-

tribution of the feature space through an iterative process of updating the model para-

meters [40]. Forty percent of the SLEs were randomly selected as the training set. For

each HMM topology (Q = 1 to 10 and M = 1 to 5), the model parameters (aij, wjk, μjk and

Σjk) related to HMM transitions and clustering were randomly initialized and estimated in

an iterative manner simultaneously. These parameters were updated according to the

Expectation-Maximization (EM) algorithm [25]. At the Expectation step, the responsibility

Figure 1 General schematic representation of hidden Markov model. A sample 3-state HMM with 2-D
features space is illustrated. The state transition probably from state i to j is denoted by aij and the
emission probability of having feature x in state j is denoted as bj(x). The mean μjk and covariance matrix
Σjk of each cluster provide information on the center and distribution of information in the feature space.
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of the model in representing the observed data was evaluated. The joint probability of

observing all the data up to time t at state j was given as aj(t) and the conditional probabil-

ity of all the future data from time t+1 onward at state i was given as bi(t). The joint prob-
ability and conditional probability can be updated in an iterative manner:

αj(t + 1) =

[
Q∑

i=1

αi(t)aij

]
bj(xt+1)

βi(t) =
Q∑

j=1

aijbj(xt+1)βj(t + 1)

Using a and b, the probability of St = i is given by gi(t). The probability of having St
= i and St+1 = j is denoted as ζij(t).

γi(t) =
αi(t)βi(t)

Q∑
j=1
αj(t)βj(t)

ζij(t) =
γi(t)aijbj(xt+1)βj(t + 1)

βi(t)

For the clustering of feature space using MoGs, the probability that the kth cluster at

state j can generate a particular observation xt is given by:

γjk(t) = γj(t)
wjkφ(xt,μjk,�jk)

bj(xt)

From these estimates, the model parameters can be updated in the Maximization step.

anew
ij =

T−1∑
t=1
ςij(t)

T−1∑
t=1
γi(t)

wnew
jk =

T∑
t=1
γjk(t)

T∑
t=1
γj(t)

μnew
jk =

T∑
t=1
γjk(t)xt

T∑
t=1
γjk(t)

�new
jk =

T∑
t=1
γjk(t)(xt − μnew

jk )(xt − μnew
jk )T

T∑
t=1
γjk(t)

The EM algorithm was repeated until the log-likelihood (LL) measure was no longer

showing significant improvement. The LL measures quantified the goodness of fit

between the feature x:

LL = log
(
P

(
x|aij, wjk,μjk,�jk

))
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The EM algorithm would typically take only a few seconds to complete. From the

learning process described above, it should be obvious that if the number of clusters

(M) and the number of possible HMM states (Q) were allowed to increase unrest-

ricted, the LL would continue to improve at the expense of over-fitting the data.

Two methods were used to select the appropriate HMM model topology (Q and M)

for each feature set. The first method involved the use of the validation data set. The

performance of the trained HMMs at different Q and M combinations were examined

on the validation sets consisting of 20% of the overall SLEs data. The HMM associated

with the best overall balance between ictal and non-seizure data detection was denoted

as the optimal HMMs. The optimal HMM obtained using 7-D wavelet coefficient fea-

tures was denoted HMMopt7D and the optimal HMM obtained using 14-D wavelet and

rate of change features was denoted HMMopt14D. These models were then tested to

evaluate the state transitions on the test data, consisting of the remaining 40% of the

SLEs. The second method to find the HMM topology involved the use of minimum

redundancy maximum relevance (mRMR) analysis [41] to reducing the dimensionality

of the feature space, and the use of AICc [30]. The mRMR method, which has been

frequently used in gene expression research, can identify subsets of feature that were

relevant to the classification tasks. It selected the features that were mutually far apart

from each other (small Wc) while still having a strong correlation (large VF) to the tar-

get state.

max VF, VF =
1

|�|
∑
fm∈S

F(fm, S)

min Wc, Wc =
1

|�|2
∑
m,n

C(fm, fn)

Here, Π represents the set of features, C(fm,fn) is the correlation between the two

wavelet features fm and fn and F(fm,S) is the F-statistics between the feature fm and the

target chronic seizure state S. The wavelet features associated with the largest mutual

information quotient VF/Wc were selected to construct the reduced feature set. This

reduced feature set was then used to build other HMMs based on AICc. The AICc

rewards goodness of fit based on the LL information, but also includes a penalty term

that is proportional to the number of parameters (K = 3QM + Q2) to reduce over-fit-

ting.

AICc = 2K − 2LL +
2K(K + 1)
(n − K + 1)

The size of the test set (n) also plays a role in determining AICc if n/K < 40. For

each HMM topology (Q and M), an AICc value was computed. These AICc values

were then rescaled with respect to the minimum AICc within the group such that the

lowest AICc value was set to zero [31].

�AICc = AICc − min(AICc)

The model with ΔAICc < 0.25 while having the least number of model parameters

(K) was then denoted as the optimal HMM (HMMAIC).
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C. Statistical test and optimality index

The HMM topologies were evaluated according to their abilities to detect non-seizure

events, different stages in the tonic activities as well as chronic seizures. After the

unsupervised training, the marginal posterior distribution gi(t) for each state i was

computed by evaluating the HMMs on the test data. The detection of distinct initia-

tion and termination of seizure dynamics as they evolved with time [42] was also con-

sidered in the form of early and late tonic spikes. An expert-guided state assignment

procedure was used to identify non-ictal to ictal transitions using short time maximum

Lyapunov exponent estimator derived from Rosenstein’s algorithm [43]. The dynamics

of chronic seizure period was first assigned to the most probable HMM state after

training. Based on the state progression in the transition matrix, the tonic firing and

non-ictal states were assigned in reverse order to HMM states before chronic activities;

the postictal activity was assigned to the appropriate state forward-in-time to the

HMM state after chronic activities.

Two types of spiking activities can be observed from the data set: tonic firing and

chronic seizure activity. To evaluate the statistical robustness of the HMM, the sensi-

tivity (TP) and specificity (TN) measures were determined. TP is defined by the per-

centage of correct chronic state detection within 30 s after the start of the chronic

events, denoted as electrographical chronic seizure onset time (EcSOT) [44]. The per-

centage of correctly identified non-seizure/interictal activities at least 30 s prior to

EcSOT is denoted as the TN. The ability of the HMM to detect chronic seizure onset

early enough was determined. The time delay (ΔT) is defined as the time difference

between the EcSOT and the approximated chronic seizure onset time (AcSOT) for

each HMM topology. The AcSOT is defined as the time instance at which gi(t) first
identified the chronic seizure state within a detection horizon of 30 s around the

EcSOT such that the EcSOT is located in the middle of a 1 min time window. Here, a

positive ΔT would imply early chronic seizure detection while a negative ΔT would

mean that the detection happened after the chronic seizure onset. Finally, the optimal-

ity index measure (O) [32], used to evaluate the overall performance of the HMM, is

defined as:

O =
TP + TN

2
− �T

d

Here, the value d is the chronic seizure duration for each SLE. A larger O indicates a

better overall performance for a given detector. These measures (TP, TN, ΔT and O)

from the HMMs were also compared with other supervised wavelet artificial neural

network (WANN) [6] built on identical features. Figure 2 provides a graphical illustra-

tion on the overall training and evaluation strategies.

Results
Comparison of the performance of HMMopt7D and HMMopt14D was done using a five-

fold cross-validation technique. The model parameters of the HMMs were identified

such that the best statistics for seizure detection in terms of optimality index (O) can

be produced in the validation data set.

After the unsupervised training and before the assignment of electrophysiological

states to the model states, the LL for different combinations of Q and M values were
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compared to give the initial estimate on the goodness of fit between the model and the

recorded data. Not surprisingly, the LL on the training data would increase and gradu-

ally reach a plateau for large Q and M values. However, using a large number of states

and clusters would cause over-fitting due to the curse of dimensionality, hence severely

jeopardizing the generalization ability of the detector. It was also not surprising that at

identical Q and M combination, the LL for the 14-D HMM using both c and Δc was

always larger than the LL for the 7-D HMM using c only (see Figure 3a and 3b). This

implies that the feature space containing Δc may more accurately represent the under-

lying dynamics of SLEs.

After assessing each HMM using the validation data, the topologies of the

HMMopt7D and HMMopt14D were obtained with the expert-guided state assignment.

For HMM with wavelet features (c) only, the maximum sensitivity of 68.4 ± 21.1% and

specificity of 85.8 ± 13.7% on the validation set was obtained for the HMM topology

of Q = 5 and M = 4. The aij of the HMMopt7D also exhibited a unidirectional sequence

of state transitions (as shown in Figure 4a). The state S5 was assigned as the chronic

seizure state, S5 was preceded by S4 as the tonic firing state and S2 as the interictal

state. The S1 and S3 can then be consolidated to represent the postictal activity. An

illustration of the LFP in the test set along with the posterior probabilities of the

Figure 2 Graphical representation on the method of evaluating HMMs. On the top illustration, the
LFP is illustrated. Maximum Lyapunov exponent analysis is used to determine the initiation and
termination of seizure activities (marked by solid vertical lines). The seizure detection horizon is defined as
a 1 min time window centered on the EcSOT (marked by dotted vertical line) and is denoted by regions B
and C. After the initial training process (using 40% of the overall dataset) on the full 7-D and 14-D feature
space, the performance of each HMM is evaluated using the validation set (20% of the overall dataset) to
determine the HMMopt7D and HMMopt14D topology. Afterwards, feature reduction from mRMR analysis and
AICc are used to find a suitable HMMAIC that balance the LL against the number of model parameters. The
statistical tests (TP and TN) as well as optimality index (O) are then evaluated. On the bottom illustration,
the intracellular activity before the EcSOT is partitioned based on its polarity characteristics into three
states: hyperpolarizing (Preh), depolarizing (Pred) and a mixture of hyperpolarizing and depolarizing (Prem)
activities [35]. This information is then compared to the gj(t) associated with the tonic firing patterns in the
HMM to evaluate the correlation between the multiple model states with the intracellular dynamics.
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Figure 3 Log-likelihoods of HMMs. (a) The LL for the HMM using wavelet coefficient features is shown.
The LL increases as Q and M goes up. (b) The LL for the HMM using both wavelet and rate of change
features. For any particular Q and M combination, the LL in this model is always larger than Figure 3a.
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model states is shown in Figure 4b. The HMMopt14D was found to contain Q = 8 and

M = 3, with the state transition diagram shown in Figure 5a. The application of

HMMopt14D on the validation set gave the maximum sensitivity of 80.1 ± 15.7% and

maximum specificity of 95.3 ± 4.4%. The state S6 can be assigned as chronic seizure,

S3 and S8 can be assigned as the postictal and interictal respectively. The three

Figure 4 The transition diagram and the posterior probabilities for HMMopt7D using the original
feature space. (a) A unidirectional sequence of state progress was found for the HMMopt7D. Even though
the validation result indicated that a five state model should be used, S1 and S5 can be consolidated to
represent the postictal events after expert guided state assignment. (b) The mapping of HMMopt7D output
to the electrophysiological data is given. The marginal posterior probabilities illustrate that the HMMopt7D is
able to detect the non-ictal, tonic firing, chronic seizures and postictal activities.
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interconnecting states of S1, S4, and S7 before chronic state S6 suggested that they can

be assigned as the late tonic firing activities. The state transition followed a somewhat

unidirectional evolution except for the interconnecting states of the early tonic state

(S2 and S5) back to the interictal state (S8), which appeared to suggest the possibility of

having seizure permissive tonic firing not leading to chronic seizures. Figure 5b gives a

Figure 5 The transition diagram and the posterior probabilities for HMMopt14D using the original
feature space. (a) The state transition diagram for HMMopt14D is given along with a sample LFP recording.
For an eight state model, some of the states represent the same electrophysiological dynamics and hence
can be consolidated. The HMM states S1, S4 and S7 represent the late tonic activities. They are
interconnected and are always followed by the chronic activity and preceded by early tonic firing states S2
and S5. The early tonic activity of this HMM is also allowed to return to interictal state without generating
seizures. (b) The mapping of HMMopt14D to the electrophysiological events is provided. Typically, this model
is able to differentiate early and late tonic firing. For this particular example, the model output switches
between interictal and early tonic state until about 46 s.
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graphical illustration of the LFP along with the posterior probabilities of the model

states using HMMopt14D.

Next, the HMM approach was also compared against the supervised approach using

identical wavelet coefficient feature set, in the form of a fully-supervised wavelet artifi-

cial neural network (WANN) seizure detection method designed by our group [6,7].

The training data for the WANN was created by first identifying the EcSOT, the data

prior to the EcSOT was separated into 30 s intervals based on the assumption that

there may be distinct changes in LFP leading to the EcSOT. Based on one-way

ANOVA statistical analysis, the WANN and HMMopt7D did not show significant dif-

ference in their optimality index (0.756 ± 0.059 and 0.665 ± 0.260, respectively).

When the wavelet rate of change information was included in the feature space, the

HMMopt14D gave the best overall performance out of the three approaches, with O =

0.915 ± 0.302 (p < 0.005). Table 3 summarizes the result of the chronic seizure detec-

tion for these three models.

The next question we asked was whether the state transitions of the HMM would

hinder the performance of the state detection on seizure-free data as well as seizure

permissive states that could translate back into interictal without generating seizures.

Using 30 min of interictal bursts and non-seizure data that were not part of the train-

ing set, mean detection accuracies of 90.1% and 97.1% were achieved using HMMopt7D

and HMMopt14D respectively. Since the state transition of HMMopt7D is strictly unidir-

ectional (Figure 4a), any missed false detection of the interictal state would trigger a

cascade of errors, resulting in significantly lower accuracy in interictal state detection.

HMMopt14D on the other hand allowed possible reversal in state transition back to

interictal. In Figure 6, a sample LFP recording along with the posterior probabilities of

the HMMopt14D is shown, illustrating that the model was able to classify the IB activ-

ities as non-ictal/interictal.

Another method for selecting the appropriate HMM topology was investigated by

reducing the feature space dimension and the number of free parameters in the model.

Minimum redundancy maximum relevance (mRMR) technique was used to select a

subset of relevant wavelet features. It can alleviate the effect of over-fitting caused by

the curse of dimensionality and improve the model’s ability to generalize. In conjunc-

tion with the AICc, which helped balance the LL against the number of model para-

meters, suitable optimum labelled HMMAIC can be found. A summary of the mRMR

analysis is shown in Table 4. The wavelet coefficients associated with the alpha (8 - 15

Hz) and beta (15 - 40 Hz) bands had the largest mutual information quotient (VF/Wc

= 0.497 and 0.436 respectively). The wavelet coefficients at these two frequency bands

Table 3 Performance measure for supervised and unsupervised seizure detection
approach

WANN HMMopt7D HMMopt14D

Sensitivity (TP) 73.1 ± 3.7% 69.8 ± 20.3% 86.7 ± 27.2%

Specificity (TN) 91.7 ± 4.4% 88.1 ± 20.9% 98.6 ± 7.7%

Detection delay (ΔT) 3.95 ± 3.38 s 8.30 ± 15.33 s -0.68 ± 10.07 s

Optimality index (O) 0.756 ± 0.059 0.665 ± 0.260 0.915 ± 0.302

Using identical wavelet coefficient features, the performance of the unsupervised HMM seizure detector (HMMopt7D) did
not show any statistically significant improvement over the supervised approach (WANN). However, when the rate of
change of wavelet information was included in the feature space, the optimality index of HMMopt14D was significantly
better than both WANN and HMMopt7D.
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then constituted the reduced features space. For the feature space consisted of the

wavelet coefficients (c) only, the simplest 2-D HMM topology with ΔAICc < 0.25 was

found at Q = 3, M = 2 (Figure 7a). The state transition diagram of the corresponding

HMM is shown in Figure 8a. It contained three bidirectionally connected states. When

the posterior probabilities of this model were matched against the LFP after assigning

the model states (Figure 8b), no distinction between the tonic firing and the postictal

events was found. There were also cases in which the state transitions jumped from

interictal to chronic seizure directly and back. ON average, the performance of this

HMM was slightly better than the HMMopt7D, with TP = 80.9 ± 34.4%, TN = 94.8 ±

15.6%, ΔT = 3.79 ± 8.67 s and O = 0.813 ± 0.247, even though student T-test analysis

did not reveal any statistically significant improvement. When the wavelet rate of

change information (Δc) was added as feature, a 4-D reduced feature space was cre-

ated. The simplest topology with ΔAICc < 0.25 for this feature set was found at Q = 5

Figure 6 State detection of interictal burst activities. An illustrative example of applying the HMM to
the interictal burst data. Even though bursting activity is exhibited, the HMM is able to accurately classify
the LFP as interictal state when the wavelet coefficient and rate of change features are used.

Table 4 Feature selection using mRMR method

Order VF /Wc Frequency Range (Hz)

1 0.497 8 - 15

2 0.436 15 - 40

3 0.400 100 - 250

4 0.331 4 - 8

5 0.308 40 - 100

6 0.308 250 - 400

7 0.266 <4

The frequency bands associated with the two highest mutual information quotients (VF/Wc) were used to create the
reduced feature space. In our analysis of chronic seizures versus non-seizure activities, the alpha (8 - 15 Hz) and beta (15
- 40 Hz) activities were found to be the most relevant for seizure detection.
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Figure 7 The rescaled AICc values are plotted with respect to the number of HMM states and
Gaussian mixtures. (a) The simplest model with ΔAICc < 0.25 is at Q = 3 and M = 2. In this model, the
reduced feature space consists of 2-D wavelet coefficients. (b) With the 4-D wavelet and rate of change
features established using mRMR, the simplest model with ΔAICc < 0.25 is found at Q = 5, M = 3.

Chiu et al. BioMedical Engineering OnLine 2011, 10:29
http://www.biomedical-engineering-online.com/content/10/1/29

Page 16 of 25



and M = 3 (Figure 7b). Figure 9a shows the state transition diagram for this HMM

(called HMMAIC). Similar to the HMMopt14D, the state progression was mainly unidir-

ectional with a non-zero state transition probability from the early tonic state back to

the interictal state. This suggests that it is possible to have seizure permissive early

tonic activity that can be reverted back to the interictal state. The marginal posterior

Figure 8 The transition diagrams and the posterior probabilities of the reduced feature space after
mRMR and AICc. (a) A bidirectional sequence of state progress is found where the HMM is not able to
distinguish between tonic firing and postictal activities. (b) The mapping of the HMM output to the
experimental data is shown. The tonic firing phase prior to the chronic seizure and the postictal activity are
represented by the same model state. Because the state transition probability from the tonic/postictal state
is extremely small (0.001), it would take much longer for the interictal activity right after chronic seizure to
be classified correctly.
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probability gi(t) for each state i of HMMAIC is plotted against a sample test data in

Figure 9b. Even though no significant improvement over HMMopt14D was revealed

using the student T-test, the HMMAIC gives the best overall performance out of all the

HMMs created in this study with TP = 95.7 ± 14.0%, TN = 98.9 ± 6.5%, ΔT = -2.03 ±

7.10 s and O = 0.995 ± 0.129. A summary of the performance measures for the

HMMAIC using mRMR and ΔAICc is presented in Table 5.

Figure 9 The transition diagrams and the posterior probabilities of the reduced feature space after
mRMR and AICc. (a) The state transition diagram for HMMAIC is given. Similar to the HMMopt14D, the some
early tonic activity permissive to seizures is allowed to return to the interictal state. Between the late tonic
firing and postictal state, the transition follows a unidirectional progression. (b) The mapping of HMMAIC

states to the electrophysiological LFP is shown. In this illustrative example, the marginal probabilities of the
model states follow a progression from non-ictal, tonic firing to chronic seizures and postictal state, before
returning to non-ictal. The late tonic firing state in this model is typically shorter than the model from
Figure 5b because of the significantly smaller transition probability back to itself.
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Finally, we evaluated the correlations between the model tonic firing state from the

HMMAIC with the phasic inhibition or excitation in the intracellular activities [35]. It

has been suggested that the intracellular whole-cell recordings exhibited a switch from

a dominant phasic inhibition (preh) to a dominant phasic excitation (pred) mode in the

state transition leading to the chronic seizure onset [35]. An intermediate state (prem)

was also reported to compose of a mixture of preh and pred mode. None of the HMM

created in this study was able to detect early preh mode using the LFP data. In the

HMMopt14D, the states S2 and S5 (Figure 5a) can be considered as a combination of

late preh and prem. Figure 10a summarizes the temporal relationship between the

HMM-identified early and late tonic firing activities in the LFP with the identified

prem and pred modes in the whole-cell recording. Most of the late tonic firing activities

identified by the model started earlier than the pred intracellular activities. Out of the

20 test cases, 85.9% of the pred activity was identified as the late tonic firing phase. A

paired T-test did not indicate a statistically significant difference between the start of

the whole-cell pred activity and the onset of the late tonic HMM state (p > 0.49), as

illustrated in Figure 10b.

Discussion
The administration of a therapeutic intervention, such as electrical stimulation, may be

effective in preventing seizures before and during the early stages of the seizure onset

[45]. The success of a real-time closed-loop seizure prevention method depends on the

time available between the early seizure detection and the manifestation of ictal onset.

Many early seizure detection algorithms have been proposed [9,15,23,32,46-50]. The

application of HMM for seizure dynamics detection was inspired by the relatively poor

objective criteria for identifying the precise period of preictal interval in supervised

learning. Here, an unsupervised training strategy with expert guided state assignment

of HMM is proposed where the best rule to represent the wavelet features of seizure

progression can be identified. One of the major criteria for selecting an appropriate

seizure detection algorithm for a real-time seizure intervention system is the available

time for the detection of the impending ictal onset. In this paper, HMMs were created

utilizing different feature vectors to characterize the dynamics of SLEs. A motivation

behind this work is to determine whether an unsupervised method can produce an

accurate seizure detector with a high optimality index. Furthermore, feature selection

based on the mRMR criteria and topology selection based on ΔAICc were implemen-

ted to evaluate the ability of the HMM to detect multi-stage dynamics leading to

Table 5 A summary of HMM performance measures

Features Wavelet Coefficients Only Wavelet Coefficients + Rate of Change

Validation Set mRMR and ΔAICc Validation Set mRMR and ΔAICc

7-D (Q = 5, M = 4) 2-D (Q = 3, M = 2) 14-D (Q = 8, M = 3) 4-D (Q = 5, M = 3)

Sensitivity (TP) 69.8 ± 20.3% 80.9 ± 34.4% 86.7 ± 27.2% 95.7 ± 14.0%

Specificity (TN) 88.1 ± 20.9% 94.8 ± 15.6% 98.6 ± 7.7% 98.9 ± 6.5%

Detection delay (ΔT) 8.30 ± 15.33 s 3.79 ± 8.67 s -0.68 ± 10.07 s -2.03 ± 7.10 s

Optimality index (O) 0.665 ± 0.260 0.813 ± 0.247 0.915 ± 0.302 0.995 ± 0.129

The optimal HMM model topologies were determined using two methods. The first method involved the use of
validation data set consisting of 10 SLEs to find the HMM topology that gave the highest optimality index. The second
method used the mRMR feature selection method and AICc to reduce the feature space dimension and the complexity
of the HMM. The HMM obtained using mRMR and AICc has the highest optimality index.

Chiu et al. BioMedical Engineering OnLine 2011, 10:29
http://www.biomedical-engineering-online.com/content/10/1/29

Page 19 of 25



Figure 10 The relationship between the HMM identified late tonic states and the intracellular
modes. (a) The temporal relationship between the intracellular modes before chronic seizures and the
HMM late tonic firing states for each SLE in the test set is shown. The intracellular modes are shown in
solid color (red for prem and blue for pred). The identified states by the HMM are shown as dashed lines
(red for early tonic and blue for late tonic states). (b) The boxplot summarizes the relationship between the
start of the pred intracellular activity and the onset of the late tonic firing model state. The HMM was able
to identify 85.9% of the pred activity as the late tonic firing state. The mean starting times for the
electrographical pred activity and the model late tonic state were 16.25 s and 16.77 s prior to chronic
seizure onset, respectively. Using pair-wise T-test analysis, no statistically significant difference was found
between the two (p > 0.49).
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chronic seizure onset by measuring the sensitivity, specificity, detection delay and the

optimality index.

The unsupervised learning strategy of the HMM involves the estimation of the

model parameters through the maximization of the LL function. The training data

consists of the wavelet-based features from 20 SLEs. Unlike other recent approaches

that assumed a fixed number of states (such as interictal, preictal and ictal) in the

model [28], the total number of hidden states in the HMM in this study was allowed

to vary in an unsupervised manner. It is logical to expect that if more states are

allowed, the better the model would match the observations. However, increasing the

possible number of hidden states would lead to over-fitting, hence reducing its ability

to generalize. To alleviate this problem, we need to find out the optimal HMM topol-

ogy defined by the number of states (Q) and the number clusters in the feature space

(M) that would be able to generalize well.

The first method we tried was to set aside a portion of the data for validation purpose.

The objective was to get the Q and M combination that would give the highest optimal-

ity index in the validation set. The optimal HMM (HMMopt7D) created using only wave-

let coefficient features had five states (Q = 5) with each feature space modeled by four

clusters (M = 4). If the rate of change of the wavelet coefficients was also included in the

feature space, the optimal HMM (HMMopt14D) would consist of eight states (Q = 8)

with the feature space modeled using three clusters (M = 3). The HMMopt14D is superior

to the HMMopt7D not only because it has a higher optimality index (0.915 ± 0.129, com-

pared to 0.665 ± 0.260), but also because it is more robust in identifying multiple distinct

dynamics between non-ictal and ictal events. The detection of early and late tonic firing

activities prior to the chronic onset in vitro also became possible. While the training pro-

cess of the HMM was not constrained to follow a unidirectional state transition, the

state transitions leading to the ictal onset often possessed some unidirectional progress.

Once the HMMopt7D output moved away from the interictal state, it must go through

the whole seizure progression before returning to interictal. This would then increase

the number of false detection in HMMopt7D, as indicated by the results shown in Table

3. On the other hand, some early tonic firing state in the HMMopt14D was allowed to

revert back to interictal directly. However, once it had advanced past the early tonic

state, it could not revert back to non-ictal activities. The HMMopt14D was successfully

tested on non-seizure or interictal burst data, demonstrating a mean accuracy of over

97%. Next, the unsupervised HMM and supervised WANN approaches [6] were com-

pared. The two methods differ in the way that the parameters are obtained. The para-

meters of the HMM were updated in an iterative manner until no significant

improvement in LL was achieved. The supervised WANN approach, on the other hand,

required that the human user separated the data into different training groups. The

WANN parameters were updated iteratively based on the partial derivative of error with

respect to the weights. By definition, the performance of any supervised learning algo-

rithm can be no better than the initial separation of seizure states by the human expert’s

“Gold Standard”. Since the human user has access to the entire observation before mark-

ing the chronic onsets, retrospective bias exists in any supervised learning algorithm

[28]. This retrospective bias can be eliminated with an unsupervised algorithm such as

HMM. The HMM implementation is superior to the WANN because it can distinguish

between the early and late tonic firing without having to define them before training.
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The second method to reduce the complexity of the HMM based on mRMR feature

selection criteria and ΔAICc topology selection was evaluated. The mRMR analysis

showed that activity in the alpha (8 - 15 Hz) and beta (15 - 40 Hz) range has the lar-

gest mutual information quotient (VF/Wc) of 0.497 and 0.436 respectively. This result

is consistent with the existing literature showing that the alpha and beta frequency

bands exhibit considerable difference in the signal complexity between healthy subjects,

epileptic subjects during a seizure-free interval, and during seizure [8]. Two new fea-

ture spaces were constructed: One consisted of 2-D wavelet coefficients and one con-

sisted of 4-D wavelet coefficient with rate of change information. Using these new

feature spaces, HMMs with different topologies were created using unsupervised learn-

ing. Since having large number of Q and M often lead to the curse of dimensionality

resulting in over-fitting, AICc was used to select the appropriate model topology by

balancing the goodness of fit with the number of parameters used. We found that

many Q and M combinations were able to achieve similar levels of AICc; the optimal

HMM was selected as the model with the smallest number of parameters while main-

taining a difference of <0.25 from the minimum AICc. The HMM of 2-D reduced fea-

tures consists of three states (Q = 3) with two clusters (M = 2). One of these three

states reflects the dynamics of both tonic firing and postictal activities (Figure 8a).

Because of the small transition probability (aij = 0.001) from the tonic/postictal back to

interictal state, it typically would take a much longer time for the model to return to

the proper interictal state after chronic seizure. This has been the source for most of

the misclassification in the non-ictal activity using this model. The HMM model of 4-

D reduced features consists of five states (Q = 5) with three clusters (M = 3). Again,

by including the wavelet rate of change information, this model gave the best overall

performance with O = 0.995 ± 0.129, even though the use of AICc does not warrant

an improvement in seizure detection performance. The AICc simply offers a much

simpler alternative to selecting the optimal HMM topology. We were able to more

easily and more quickly create a HMM seizure detector with fewer number of model

states and feature clusters with similar performance level.

The interpretation of early and late tonic firing state detected using HMMAIC in

terms of the underlying intracellular whole-cell measurement was investigated. When

the model posterior probabilities were plotted against the corresponding intracellular

whole-cell recording, we found a significant overlap (>85%) between the late tonic

state and the intracellular pred activity. It was also observed that the early hyperpolariz-

ing activity (preh) could not be distinguished from the interictal activities.

The application of HMM is based on the assumption that state transitions in seizure

generation follow first-order Markov processes. Depending on the sampling period of

the signal and the available history of HMM output, it is likely that neurodynamic

would depend on more than one previous sample in time. This work can be extended

to incorporate additional states in the past for the estimation of state transitions,

which can be achieved through modification of the conditional state transition prob-

ability equation such as the hidden semi-Markov model [51] where state transition

depends on the lapsed time since entering the current state. This model is also appro-

priate because the underlying process of seizure generation may not have a geometri-

cally distributed duration. Another possible improvement is to include other types of

features such as multi-site coherence in the feature space, since the manifestation of
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epilepsy typically involved progressive global entrainment. Preliminary analysis on the

analysis of clinical seizure data from intracranial EEG measurement using HMM also

showed promising results [52].

Conclusions
Based on the analysis of optimality index, the implementation of hidden Markov model

as a seizure dynamics detector offers significant improvement over existing approaches

based on human visual classification and supervised connectionist perspectives. The

subjectivity involved in partitioning the observed data into target states prior to train-

ing is eliminated. This model is able to estimate the parameters needed to best fit the

observed data depending on its specified topology. Once the unsupervised training is

completed, the assignment of the model state to the electrophysiology data is guided

by a human expert. To alleviate the curse of dimensionality, feature selection based on

minimum redundancy maximum relevance and topology selection based on Akaike

information criteria are implemented without jeopardizing the sensitivity, specificity

and early detection time of the final model. A five-state hidden Markov model was cre-

ated, capable of detecting chronic seizures with 95.7% sensitivity and 98.9% specificity.

It was also able to detect early and late tonic firing activities that correlate with the

intracellular whole-cell dynamics prior to chronic seizure onset. Such a model would

potentially allow the researchers to decipher possible sequence of distinct dynamic

modes leading to seizure onsets.
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