
THE spt-FUNCTION OF ANDREWS

AMANDA FOLSOM AND KEN ONO

Abstract. Recently, Andrews introduced the function s(n) = spt(n) which counts the
number of smallest parts among the integer partitions of n. We show that its generating
function satisfies an identity analogous to Ramanujan’s mock theta identities. As a
consequence, we are able to completely determine the parity of s(n). Using another type
of identity, one based on Hecke operators, we obtain a complete multiplicative theory
for s(n) modulo 3. These congruences confirm unpublished conjectures of Garvan and
Sellers. Our methods generalize to all integral moduli.

1. Introduction and Statement of Results

Recently, Andrews [3] introduced the function s(n) = spt(n) which counts the number
of smallest parts among the integer partitions of n. As an illustration, one sees that
s(4) = 10 by examining the partitions of 4 below:

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.

The generating function for s(n) is

(1.1) S(z) :=
∞∑

n=0

s(n)qn =
1

(q)∞
·

∞∑

n=1

qn ·∏n−1
m=1(1 − qm)

1 − qn
= q + 3q2 + 5q3 + 10q4 + · · · ,

where q := e2πiz, and (q)∞ :=
∏∞

n=1(1 − qn). Andrews obtained an elegant description of
s(n) in terms of the partition function p(n), and the 2nd rank moment function1

N2(n) :=
∑

m∈Z

m2N(m,n).

The rank of a partition is its largest part minus its number of parts, and N(m,n) denotes
the number of partitions of n with rank m. Andrews proved that

(1.2) s(n) = np(n) − 1

2
N2(n).

In view of the recent works on ranks (for example, see [8, 9] among other subsequent
works), one suspects that (1.2) can be placed within the framework of the theory of
Maass forms. In a recent preprint, Bringmann [5] indeed produces a harmonic weak
Maass form related to q−1S(24z). As in [8, 9], she makes great use of this result to
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obtain asymptotics, and congruences modulo primes ℓ > 3. Recent works by Bringmann,
Garvan, and Mahlburg [7, 13] give more results concerning such congruences.

Here we investigate s(n) modulo 2 and 3. To place this in proper context, we note
that very little is known about p(n) modulo 2 and 3. This difficulty stems from the
fact that there are no known methods of mapping the generating function for p(n) to
spaces of holomorphic modular forms mod 2 or 3, where the powerful theory of Galois
representations gives results for primes ℓ ≥ 5 (see [1, 2, 15]). Bringmann’s work shows
that these technical difficulties persist for s(n) modulo 2 and 3.

We circumvent these problems by invoking the “principle” of Ramanujan’s mock theta
function identities. Loosely speaking, this is the fact that the difference of two harmonic
weak Maass forms, whose non-holomorphic parts agree, is a weakly holomorphic modular
form (for example, see [10, 12, 14]). Our task is to find such pairs of harmonic weak
Maass forms whose difference contains the generating function for s(n) as a component.
These pairs provide further relations which are presently unavailable in the case of p(n),
thereby allowing us to leverage information such as congruences.

Remark. The methods here apply to all integral moduli ℓ, not just ℓ = 2 and 3. For
brevity, we restrict attention to these troublesome primes.

We require two further mock theta functions. The first arises from the nearly modular
Eisenstein series E2(z). Define D(z) by

D(z) :=
q−

1

24

(q)∞

(
1 − 24

∞∑

n=1

nqn

1 − qn

)
=
q−

1

24

(q)∞
E2(z) = q−

1

24 − 23q
23

24 − · · · .(1.3)

The second mock theta function L(z) is defined by

L(z) :=
(q6)2

∞(q24)2
∞

(q12)5
∞

·
(
∑

n∈Z

(12n− 1)q6n2− 1

24

1 − q12n−1
−
∑

n∈Z

(12n− 5)q6n2− 25

24

1 − q12n−5

)

= q
23

24 + q
47

24 + q
71

24 − 4q
95

24 − 6q
119

24 + 12q
143

24 − · · · .
(1.4)

Our first result provides a modular linear combination of these mock theta functions.

Theorem 1.1. In the notation above, the function

D(24z) − 12L(24z) − 12q−1S(24z) = q−1 − 47q23 − 142q47 − 285q71 − 547q95 − · · ·
is a weight 3/2 weakly holomorphic modular form on Γ0(576) with Nebentypus

(
12
•
)
.

Remark. Using the Dedekind eta-function η(z) = q1/24
∏∞

n=1(1−qn), in Section 3 we shall

construct a modular function F̃ (z) with the property that

(1.5) D(24z) − 12L(24z) − 12q−1S(24z) = F̃ (24z) · q23(−q24)∞(q96)∞(q144)∞(q288)∞.

Now we turn to questions of congruence. In [3], Andrews proved that

s(5n+ 4) ≡ 0 (mod 5),

s(7n+ 5) ≡ 0 (mod 7),

s(13n+ 6) ≡ 0 (mod 13).
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Modulo primes ℓ > 3, there are infinitely many congruences of the form

s(an+ b) ≡ 0 (mod ℓ).

Bringmann essentially proves this in [5]. To obtain this result, one simply combines her
work for N2(n) with results for p(n) [1, 2, 15] using Lemmas 2.63 and 3.30 of [16]. Garvan
[13] has obtained explicit examples modulo 11, and a forthcoming paper by Bringmann,
Garvan, and Mahlburg [7] promises further results.

For the moduli ℓ = 2 and 3, different techniques are required. Theorem 1.1 allows us to
determine the parity of s(n), a result that proves phenomena first observed numerically
by both Garvan and Sellers.

Theorem 1.2. We have that s(n) is odd if and only if 24n − 1 = pm2, where m is an
integer and p ≡ 23 (mod 24) is prime.

Remark. Note that s(n) is even for almost all n (in terms of arithmetic density).

Ramanujan-type congruences follow immediately from Theorem 1.2. For example, if
3 < ℓ 6≡ 23 (mod 24) is prime, and if 0 < k < ℓ, then for all n, s(ℓ2n+ℓk−(ℓ2−1)/24) ≡ 0
(mod 2). For example, when ℓ = 7, one has

s(49n+ 5) ≡ s(49n+ 12) ≡ s(49n+ 19) ≡ s(49n+ 26)

≡ s(49n+ 33) ≡ s(49n+ 40) ≡ 0 (mod 2).
(1.6)

Remark. By (1.2), Theorem 1.2 gives congruences for N2(n) for even integers n.

Garvan conjectured a surprising multiplicative congruence modulo 3. Here we prove this
phenomenon by leveraging a Maass form using the Hecke algebra, a method which plays
a central role in recent work of the second author and Bruinier on Heegner divisors and
derivatives of modular L-functions (see the proof of Theorem 7.6 of [11]). For notational
convenience, if p ≥ 5 is prime, let

(1.7) δ(p) := (p2 − 1)/24.

In what follows, we let
(•
◦
)

denote the Legendre symbol.

Theorem 1.3. If p ≥ 5 is prime, then for every non-negative integer n we have

s(p2n− δ(p)) +

(
3 − 72n

p

)
s(n) + ps

(
n + δ(p)

p2

)
≡
(

3

p

)
(1 + p)s(n) (mod 3).

Remark. Theorem 1.3 asserts that q−1S(24z) (mod 3) is a weight 3/2 Hecke eigenform
with Nebentypus. We shall see that it is related to η(6z)4 =

∑∞
n=1 a(n)qn, and the elliptic

curve
E : y2 = x3 + 1.

Remark. A straightforward calculation involving Theorem 1.3, combined with Dirichlet’s
Theorem on primes in arithmetic progressions, easily implies

#{0 ≤ n ≤ X : s(n) ≡ r (mod 3)} ≫
{
X if r ≡ 0 (mod 3),√

X
log X

if r ≡ 1, 2 (mod 3).
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Remark. Theorem 1.3 also yields Ramanujan congruences thanks to the fact that the
Legendre symbol satisfies

(
n
p

)
= 0 when p | n. Specifically, let p > 3 be a prime such that

p ≡ 2 (mod 3). If 0 < k < p− 1, then for all n, s(p4n+ p3k − (p4 − 1)/24) ≡ 0 (mod 3).
For example, when p = 5 we have

s(625n+ 99) ≡ s(625n+ 224)

≡ s(625n+ 349) ≡ s(625n+ 474) ≡ 0 (mod 3).

When 3 | n, Theorem 1.3 and (1.2) implies congruences for N2(n) (mod 3).

In Section 2 we prove Theorem 1.1, and in Section 3 we produce (1.5). In Section 4 we
provide a proof of Theorem 1.2, and in Section 5 we conclude with a proof of Theorem 1.3.
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2. The new mock theta identity

Theorem 1.1 follows easily from the lemma in this section which expresses “completed”
combinations of the series L(24z), D(24z), and q−1S(24z) as harmonic weak Maass forms.
We then use these forms to produce a weakly holomorphic modular form, a meromorphic
form whose poles (if any) are supported at cusps.

2.1. Preliminaries. We first recall the notion of a harmonic weak Maass form (see also
[6]-[10]). We suppose k ∈ 1

2
+ Z, and define ǫv, for v odd, by

(2.1) ǫv :=

{
1 if v ≡ 1 (mod 4),

i if v ≡ 3 (mod 4).

As usual, we let

(2.2) ∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)

be the weight k hyperbolic Laplacian, where z = x+ iy with x, y ∈ R. If N is a positive
integer and ψ (mod 4N) is a Dirichlet character, then a harmonic weak Maass form of
weight k on Γ0(4N) with Nebentypus ψ is any smooth function f : H → C satisfying:
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(1) For all A = ( a b
c d ) ∈ Γ0(4N) and all z ∈ H, we have

f(Az) = ψ(d)

(
c

d

)2k

ǫ−2k
d (cz + d)k f(z).

(2) We have that ∆kf = 0.
(3) The function f(z) has at most linear exponential growth at all cusps.

Ramanujan’s “Lost” Notebook contains a number of identities involving Ramanujan’s
original mock theta functions. By the “mock theta conjectures”, we refer to the surpris-
ing identities involving the 5th order mock theta functions. These identities remained
unproven until the important work of Hickerson [14] in 1988.

Recently, a complete understanding of the modular properties of Ramanujan’s mock
theta functions (see [8], [9], [18] [19]) has been obtained. These functions are holomorphic
projections of harmonic weak Maass forms. Thanks to this theory, we have a conceptual
understanding of the phenomenon of the mock theta conjectures. Such identities arise
when two harmonic weak Maass forms share a non-holomorphic part. Folsom [12] has
obtained a short proof of the original identities arguing in this way, and Bringmann, Ono,
and Rhoades [10] have developed this further to obtain many infinite families of modular
forms as Eulerian series. Theorem 1.1 is a new mock theta identity.

2.2. Proof of Theorem 1.1. Theorem 1.1 follows immediately from the next lemma.

Lemma 2.1. The two real analytic functions

M(z) := q−1S(24z) − D(24z)

12
− i

4π
√

2

∫ i∞

−z

η(24τ)

(−i(τ + z))
3

2

dτ,

N (z) := L(24z) +
i

4π
√

2

∫ i∞

−z

η(24τ)

(−i(τ + z))
3

2

dτ

are weight 3/2 harmonic weak Maass forms on Γ0(576) with Nebentypus
(
12
•
)
.

Remark. We refer to the period integrals

± i

4π
√

2

∫ i∞

−z

η(24τ)

(−i(τ + z))
3

2

dτ

as the non-holomorphic parts of these Maass forms.

Remark. We note that Lemma 2.1 corrects a sign error in front of the non-holomorphic
part of M(z) in [5].

Proof. The claim about M(z) follows from [5, Thm. 1.1], (1.2), and the identity

∞∑

n=0

np(n)qn =
1

(q)∞

∞∑

n=1

nqn

1 − qn
=

1 −E2(z)

24(q)∞
.
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The claim about N (z) is easily derived from [6, Thm. 2.1, Prop. 3.1], the fact that
ψa,b(τ) = ψb−a,b(τ) for 0 < a < b as defined in [6, Eqn. (1.20)], and the two identities

η(24z) =
∑

k∈Z

(−1)kq(6k+1)2 and Θ0(z) =
∑

n∈Z

qn2

=
η(2z)5

η(z)2η(4z)2
.

�

3. Explicit Description of the modular form

By Theorem 1.1, we have that

η(24z)·(D(24z) − 12L(24z) − 12q−1S(24z)) = 1 − 48q24 − 96q48 − 96q72 − · · ·

is a weight 2 weakly holomorphic modular form on Γ0(576) whose non-zero Fourier co-
efficients are supported on multiples of 24. By standard facts (for example, see [16]), it
equals Ω(24z) for some modular form Ω(z) on Γ0(24). We obtain an explicit description
of Ω(z). To this end we define modular functions F1(z) and F2(z). First we let

f1(z) :=
η(2z)2η(4z)2

η(z)η(3z)η(8z)η(24z)
= q−1 + 1 + 2q2 − q3 − 2q4 + 4q5 − · · · ,

f2(z) :=
η(4z)4η(6z)4

η(z)η(2z)2η(3z)η(8z)η(12z)2η(24z)
= q−1 + 1 + 4q + 6q2 + 11q3 + · · · ,

f3(z) :=
η(2z)3η(3z)9

η(z)3η(6z)9
= q−1 + 3 + 6q + 4q2 − 3q3 − 12q4 − 8q5 + · · · ,

f4(z) :=
η(z)2η(3z)2

η(4z)2η(12z)2
= q−1 − 2 − q + 7q3 − 9q5 + · · · ,

f5(z) :=
η(2z)2η(4z)2η(6z)2η(12z)2

η(z)2η(3z)2η(8z)2η(24z)2
= q−1 + 2 + 3q + 8q2 + 11q3 + 16q4 + 31q5 + · · · .

As usual, if m is a positive integer, let U(m) denote the Atkin-U -operator defined by

(3.1)
(∑

b(n)qn
)

| U(m) :=
∑

b(mn)qn.

The modular function F1(z) is given by

F1(z) =

∞∑

n=−1

A1(n)qn := −6f1 − 28f1|U(2) + 24f1|U(3) − 18f2 + 14f3 + 15f4 − 4f5

= q−1 − 24 − 95q − 88q2 − 213q3 − 856q4 − 1003q5 − 904q6 − 1694q7 − · · · .

(3.2)
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To define F2(z), we require

f6(z) :=
η(4z)4η(6z)2

η(2z)2η(12z)4
= q−1 + 2q + q3 − 2q7 − · · · ,

f7(z) :=
η(z)4η(4z)4η(6z)4

η(2z)4η(3z)4η(12z)4
= q−1 − 4 + 6q − 4q2 − 3q3 + 12q4 − 8q5 − · · · ,

f8(z) :=
η(3z)4η(4z)4

η(z)4η(12z)4
= q−1 + 4 + 14q + 36q2 + 85q3 + 180q4 + 360q5 + · · · ,

f9(z) :=
η(z)4η(2z)4

η(3z)4η(6z)4
= q−1 − 4 − 2q + 28q2 − 27q3 − 52q4 + 136q5 − · · · .

Using these functions and F1(z), we define F2(z) by

F2(z) =
∞∑

n=−1

A2(n)qn := 76 + F1|U(2) − 2f6 + 2f7 + 6f8 − 20f3 + 14f9

= −48 − 144q − 336q2 − 720q3 − 1584q4 − 3168q5 − 6192q6 − 11520q7 − · · · .

(3.3)

Using the coefficients of F1(z) and F2(z), define F̃ (z) by

F̃ (z) : =

∞∑

n=0

A1(2n− 1)q2n−1 + F2(2z)

= q−1 − 48 − 95q − 144q2 − 213q3 − 336q4 − 1003q5 − 720q6 − 1694q7 − · · · .

(3.4)

Although these harmonic weak Maass forms are proven to be of level 576, all of their
images under SL2(Z) are known. For brevity they are not given here. Nevertheless,
the holomorphic parts of these images are always reciprocals of explicit weight 1/2 theta
functions (which are eta-products) multiplied with explicit Lambert-type series (see [5, 6]).
By considering poles at cusps for these series (using the valence formula), it turns out
that

Ω(z) = F̃ (z) · η(2z)η(4z)η(6z)η(12z),

which in turns implies that

(3.5) D(24z) − 12L(24z) − 12q−1S(24z) =
F̃ (24z) · η(48z)η(96z)η(144z)η(288z)

η(24z)
.

Remark. It would be very interesting to know whether there is a simpler description of
F̃ (z) involving just one or two “natural” modular functions.

4. Parity of s(n)

We first reduce the proof of Theorem 1.2 to an elementary congruence.
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Lemma 4.1. Theorem 1.2 is equivalent to the congruence

q−1S(24z) ≡ L(24z) (mod 2).

Proof. It suffices to prove that

L(24z) ≡
∑

p≡23 (mod 24) prime

∑

m≥1
gcd(m,6)=1

qpm2

(mod 2).

Since
(q6)2

∞(q24)2
∞

(q12)5
∞

≡ 1 (mod 2),

it follows that

L(24z) ≡
∑

n∈Z

q144n2−1

1 − q288n−24
+
∑

n∈Z

q144n2−25

1 − q288n−120
(mod 2)

≡
∑

m≥1
−12m<d<0
gcd(d,6)=1

q144m2−d2 ≡
∑

m≥1
−12m<d<0
gcd(d,6)=1

q(12m+d)(12m−d) (mod 2).

The proof now follows easily by rewriting the expression (12m + d)(12m − d) as a sum
over divisors of integers. �

Proof of Theorem 1.2. By Lemma 4.1, it suffices to prove that

q−1S(24z) ≡ L(24z) (mod 2).

By Theorem 1.1 and (1.5) (or (3.5)), it suffices to show that

D(24z) ≡ F̃ (24z) · η(48z)η(96z)η(144z)η(288z)

η(24z)
(mod 24).

Since η(24z) =
∑∞

n=1

(
12
n

)
qn2

= q + · · · , and since η(24z)D(24z) ≡ 1 (mod 24), we must
show that

F̃ (24z) · η(48z)η(96z)η(144z)η(288z) = 1 − 48q24 − 96q48 − · · · ≡ 1 (mod 24).

Since the non-zero coefficients of this form are supported on exponents which are multi-

ples of 24, it follows that Ψ(z) := F̃ (z) · η(2z)η(4z)η(6z)η(12z) is a weakly holomorphic
modular form of weight 2 on Γ0(24). From the definitions in the introduction, or a simple

analysis of the orders at cusps of the form F̃ (z), it follows that Ψ(z)η(z)24E4(z)E6(z) is a
weight 24 cusp form on Γ0(24), where E4(z) and E6(z) are the classical Eisenstein series

E4(z) = 1 + 240

∞∑

n=1

∑

d|n
d3qn and E6(z) = 1 − 504

∞∑

n=1

∑

d|n
d5qn.

Since E4(z) ≡ E6(z) ≡ 1 (mod 24), the claim is implied by the following congruence
between two weight 24 modular forms:

Ψ(z)η(z)24E4(z)E6(z) ≡ η(z)24E6(z)
2 (mod 24).
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This is easily verified by a result of Sturm (for example, see Th. 2.58 of [16]). �

5. Sketch of the proof of Theorem 1.3

Since many of the methods of the proof already appear previously in this paper, and
since this theorem is merely about congruences rather than explicit formulas, for brevity
we provide just a brief sketch of the proof.

The classical weight 3/2 Hecke operators T (m2) act (for example, see Section 7 of
[11]) on the Maass form M(z) from Lemma 2.1. Since η(24z) is a Hecke eigenform,
it follows that the non-holomorphic part of this Maass form is also an eigenform with
explicit eigenvalues. Combined with elementary facts about p-adic modular forms (e.g.
that E2 is a weight two 3-adic modular form, and the algebra structure of p-adic modular
forms [17]), we may, for every prime p ≥ 5, combine M(z) with M(z)|T (p2) to obtain a
weakly holomorphic modular form. Numerical calculations, combined with Hecke theory
and standard facts about p-adic modular forms reveal that

q−1S(24z)|T (25) ≡ 0 (mod 3),

q−1S(24z)|T (49) ≡ q−1S(24z) (mod 3).

Such formulas, combined with the corresponding Hecke action on the other summands
of M(z), allow us to conclude that q−1S(24z) is the reduction modulo 3 of a weakly
holomorphic modular form. It turns out to be the reduction of a cusp form whose image
modulo 3 under the Shimura correspondence is the 12-quadratic twist of the newform
η(6z)4 =

∑∞
n=1 a(n)qn ∈ S2(Γ0(36)). The Shimura correspondence is Hecke equivariant,

and so it suffices to show, for primes p ≥ 5, that a(p) ≡ 1 + p (mod 3).
The newform η(6z)4 corresponds to the Q(

√
−3) CM elliptic curve

E : y2 = x3 + 1.

The desired congruence follows by the theory of Hecke Grössencharakters, which in this
case is equivalent to multiplying out q-series identities of Euler and Jacobi. One uses the
fact that the ring of integers of Q(

√
−3) is a UFD. Alternatively, one may employ the fact

that the reduction map modulo p for elliptic curves is injective on torsion. In this case,
the proof follows since the torsion subgroup of E/Q has non-trivial 3-rank. In particular,
the torsion subgroup is Z/6Z, which implies that a(p) ≡ 1 + p (mod 6).
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