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Statistical flaws in Excel

Hans Pottel
Innogenetics NV, Technologiepark 6, 9052 Zwijnaarde, Belgium

Introduction
In 1980, our ENBIS Newsletter Editor, Tony Greenfield, published a paper on ‘Statistical
Computing for Business and Industry’. In that paper, he came to the conclusion that the
programmable caculators used at that time were unknowingly threatening to inflict bad
decisions on business, industry and society through their bland acceptance of incorrect
machine-based calculations. Today, 23 years later, everybody will agree that there has been a
revolution in computerscience, leading to very sophisticated computers and improved
algorithms. The type of calculations Tony has been discussing in 1980 are nowadays very
often done with the Commercial Off-the-Shelf (COTS) software package Microsoft Excel,
which is very widespread, for various reasons:

• Its integration within the Microsoft Office suite
• The wide range of intrinsic functions available
• The convenience of its graphical user-interface
• Its general usability enabling results to be generated quickly

It is accepted that spreadsheets are a useful and popular tool for processing and presenting
data. In fact, Microsoft Excel spreadsheets have become somewhat of a standard for data
storage, at least for smaller data sets. This, along with the previously mentioned advantages
and the fact that the program is often being packaged with new computers, which increases its
easy availability, naturally encourages its use for statistical analysis. However, many
statisticians find this unfortunate, since Excel is clearly not a statistical package. There is no
doubt about that, and Excel has never claimed to be one. But one should face the facts that
due to its easy availability many people, including professional statisticians, use Excel, even
on a daily basis, for quick and easy statistical calculations. Therefore, it is important to know
the flaws in Excel, which, unfortunately, still exist today. This text gives an overview of
known statistical flaws in Excel, based on what could be found in the literature, the internet,
and my own experience.

General remarks
Excel is clearly not an adequate statistics package because many statistical methods are
simply not available. This lack of functionality makes it difficult to use it for more than
computing summary statistics and simple linear regression and hypothesis testing.

Although each Microsoft Excel worksheet function is provided with a help-file that indicates
the purpose of that function, including descriptions of the inputs, outputs and optional
arguments required by the routine, no information about the nature of the numerical
algorithms employed is generally provided or could be found. This is most unfortunate as it
might help detect why numerical accuracy might be endangered or why – in some cases - a
completely wrong result is obtained.

Another important remark is that although many people have voiced their concerns about the
quality of Excel’s statistical computing, nothing has changed. Microsoft has never responded
to comments on this issue. Consequently, the statistical flaws reported in Excel 97 worksheet
functions and the Analysis Toolpak are still present in Excel 2000 and Excel XP. This, of
course, is most unfortunate.
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My overall assessment is that while Excel uses algorithms that are not robust and can lead to
errors in extreme cases, the errors are very unlikely to arise in typical scientific data analysis.
However, I would not advise data analysis in Excel if the final results could have a serious
impact on business results, or on the health of patients. For students, it’s my personal belief
that the advantages of easy-to-use functions and tools counterbalance the need for extreme
precision.

Numerical accuracy
Although the numerical accuracy is acceptable for most of Excel’s built-in functions and for
the tools in the Analysis Toolpak when applied to “easy” data sets, for “not-so-easy” data sets
this may be no longer true.
The numerical performance of some of Excel’s built-in functions can be poor, with results
accurate to only a small number of significant figures for certain data sets. This can be caused
by the use of a mathematical formula (as in the STDEV worksheet function) or a model
parametrization (as in the LINEST and TREND worksheet functions) that exacerbates the
natural ill-conditioning of the problem to be solved, i.e., leads to results that are not as
accurate as those that would be returned by alternative stable algorithms. Alternatively, the
poor performance can be a consequence of solving a problem that approximates the one
intended to be solved (as in the LOGEST and GROWTH worksheet functions).
The numerical performance of Excel’s mathematical and trigonometric functions is generally
good. The exception is the inverse hyperbolic sine function, ASINH, for which the algorithm
used is unstable for negative values of its argument.
For Excel’s statistical distributions, the numerical performance of these functions exhibits
systematic behaviour, with worsening accuracy at the tails of the distributions. Consequently,
these functions should be used with care.
In many instances, the reported poor numerical performance of these functions can be avoided
by appropriate pre-processing of the input data. For example, in the case of the STDEV
worksheet function for the sample standard deviation of a data set, the accuracy loss can be
avoided by subtracting the sample mean from all the values in the data set before applying the
STDEV function. Mathematically, the standard deviations of the given and shifted data sets
are identical, but numerically that of the latter can be determined more reliably.

Basic descriptive statistics
The most important flaw in basic statistical functions is the way Excel calculates the standard
deviation and variance. The on-line help documentation for the STDEV worksheet function
makes explicit reference to the formula employed by the function. This is in contrast to many
of the other functions that provide no details about the numerical algorithms or formulae used.
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Unfortunately, it is well known that this formula has the property that it suffers from
subtractive cancellation for data sets for which the mean x  is large compared to the standard
deviation s, i.e., for which the coefficient of variation s/ x  is small. Furthermore, a floating-
point error analysis of the above formula has shown that the number of incorrect significant
figures in the results obtained from the formula is about twice that for the mathematically
equivalent form
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I’ll demonstrate this by an example. I programmed an alternative User Defined Function
(UDF) (the UDF is programmed in Visual Basic for Applications, the Excel macro language)
for the standard deviation, which I here called STDEV_HP. This function calculates the
standard deviation, based on the second formula. The method of calulation is based on
centering the individual data points around the mean. This algorithm is known to be much
more numerically stable.

Function STDEV_HP(R As Range) As Double
  Dim i As Integer
  Dim n As Integer
  Dim Avg As Double
  ‘n = number of observations = number of cells in range R
  n = R.Cells.Count
  ‘calculate the average
  Avg = 0
  For i = 1 To n
    Avg = Avg + R.Cells(i).Value
  Next i
  Avg = Avg / n
  ‘calculate the standard deviation
  STDEV_HP = 0
  For i = 1 To n
    STDEV_HP = STDEV_HP + (R.Cells(i).Value - Avg) ^ 2
  Next i
  STDEV_HP = Sqr(STDEV_HP / (n - 1))
End Function

Example:
The data set used to demonstrate the difference in accuracy between Excel’s built-in function
STDEV and the new UDF STDEV_HP is:

Observation X
1 10000000001
2 10000000002
3 10000000003
4 10000000004
5 10000000005
6 10000000006
7 10000000007
8 10000000008
9 10000000009

10 10000000010
AVG 10000000005.5

STDEV 0.000000000
STDEV_HP 3.027650354

In the example, it is clear that there is variation in the X-observations, but nevertheless
Excel’s built-in function STDEV gives ZERO as output. This is clearly wrong. The
alternative UDF STDEV_HP gives 3.027650354 as output. As shown in the UDF, an easy
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way to work around this flaw is by centering the data before calculating the standard
deviation, in case it is expected that s/ x  is small. For this example, after centering, I obtain

Obs X-Avg
1 -4.5
2 -3.5
3 -2.5
4 -1.5
5 -0.5
6 0.5
7 1.5
8 2.5
9 3.5
10 4.5

STDEV 3.027650354

If Excel’s built-in function STDEV is applied on the centered data, you will find exactly the
same result as with my User Defined Function STDEV_HP.
Excel also comes with statistical routines in the Analysis Toolpak, an add-in found separately
on the Office CD. You must install the Analysis Toolpak from the CD in order to get these
routines on the Tools menu (at the bottom of the Tools menu, in the Data Analysis command).
Applying the Analysis Toolpak tool “Descriptive Statistics” to the small data set of 10
observations, I obtained the following output:

X

Mean 10000000005.5
Standard Error 0
Median 10000000005.5
Mode #N/A
Standard Deviation 0
Sample Variance 0
Kurtosis -1.2
Skewness 0
Range 9
Minimum 10000000001
Maximum 10000000010
Sum 100000000055
Count 10
Largest(1) 10000000010
Smallest(1) 10000000001
Confidence Level(95.0%) 0

Apparently, the Analysis Toolpak applies the same algorithm to calculate the standard
deviation. As the sample variance, standard error and the confidence level (95.0%) are
probably derived from this miscalculated standard deviation, they are wrong too. Again, if the
data are centered before I apply “Descriptive Statistics” in the Analysis Toolpak, I obtain:



5

X

Mean 0
Standard Error 0.957427108
Median 0
Mode #N/A
Standard Deviation 3.027650354
Sample Variance 9.166666667
Kurtosis -1.2
Skewness 0
Range 9
Minimum -4.5
Maximum 4.5
Sum 0
Count 10
Largest(1) 4.5
Smallest(1) -4.5
Confidence Level(95.0%) 2.165852240

The correct standard deviation is obtained now. As the variance, standard deviation, standard
error and confidence level are invariant for this kind of transformation (centering the data
around the mean), these results are correct for the original data set.
The functions in Excel STDEV, STDEVP, STDEVA, STDEVPA, VAR, VARP, VARA,
VARPA all suffer from the same poor numerical accuracy. On the other hand, the functions
KURT (Kurtosis) and SKEW (skewness) apply an algorithm on centered data and do not have
this flaw.

Note that the confidence level is calculated using z1-α/2 = NORMSINV(0.975) = 1.96 times
the standard error, which might be valid if the population variance is known or for large
sample sizes, but not for small samples, where tα/2,n-1 = TINV(0.05, n-1) should be used. Note
that 1-α/2 = 0.975 has to be entered in the NORMSINV function, whereas the TINV function
requires the value of α. Excel is quite inconsistent in the way these funtions are used.

It has been seen many times that the Analysis Toolpak makes use of the worksheet functions
for its numerical algorithms. Consequently, the Analysis Toolpak tools will have the same
flaws as Excel’s built-in functions.

Excel also has a strange way to calculate ranks and percentiles. Excel’s built-in RANK
function does not take into account ‘tied’ ranks. For example, in a series of measurements
100, 120, 120, 125 Excel gives two times rank 2 to the value of 120 and value 125 gets the
rank 4. When ‘tied’ ranks are taken into account, the rank of 120 should be (2 + 3)/2 = 2.5 and
the value of 125 should indeed get rank 4. Excel assigned the lowest of the two ranks to both
observations, giving each a rank of 2. Because Excel doesn’t consider ‘tied’ ranks it is
impossible to calculate the correct non-parametric statistics from the obtained ranks. For this
reason I developed a User Defined Function, called ‘RANKING’,  which takes into account
‘tied’ ranks.
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Function Ranking(V As Double, R As Range) As Double
  Dim No As Integer
  Ranking = Application.WorksheetFunction.Rank(V, R, 1)
  No = Application.WorksheetFunction.CountIf(R, V)
  Ranking = Ranking + (No - 1) / 2
End Function

The way Excel calculates percentiles is also not the way most statistical packages calculate
them. In general, the differences are most obvious in small data sets. As an example, let’s take
the systolic blood pressures of 10 students sorted in ascending order: 120, 125, 125, 145, 145,
150, 150, 160, 170, 175. The lower quartile (or 25% percentile) as calculated with Excel’s
built-in function QUARTILE (or PERCENTILE) is 130 and the upper quartile is 157.5. A
statistical package, however, will give 125 and 170 as lower and upper quartile, respectively.
Apparently, Excel calculates the lower quartile 130 = 125 + (145-125)*0.25 and the upper
quartile as 157.5 = 150 + (160-150)*0.75. This is an interpolation between the values below
and above the 25% or 75% observation. Normally, the pth percentile is obtained by first
calculating the rank l = p(n+1)/100, rounded to the nearest integer and then taking the value
that corresponds to that rank. In case of lower and upper quartiles, the ranks are 0.25*(10+1)
= 2.75 ⇒ 3 and 0.75*(10+1) = 8.25 ⇒ 8 which corresponds to 125 and 170 resp.

Correlation and regression

Regression on difficult data sets
Let’s take back my first example and add a column for the dependent variable Y. Actually this
example was presented by J. Simonoff in his paper entitled “Statistical analysis using
Microsoft Excel”. As shown before, with this kind of data, Excel has serious problems to
calculate descriptive statistics. What about regressing Y against X?
Excel has different ways of doing linear regression: (a) using its built-in function LINEST, (b)
using the Analysis Toolpak tool ‘Regression’ and (c) adding a trendline in an XY-scatter
graph. Let me start making an XY-scatter plot and try to add a trendline:

X Y
10000000001 1000000000.000
10000000002 1000000000.000
10000000003 1000000000.900
10000000004 1000000001.100
10000000005 1000000001.010
10000000006 1000000000.990
10000000007 1000000001.100
10000000008 1000000000.999
10000000009 1000000000.000
10000000010 1000000000.001

Apparently, Excel does not have a problem displaying these kind of data (see Figure 1). Now,
by right-clicking the data points in the graph, and selecting Add Trendline (with options
‘display R2 and equation on the chart’), we obtain Figure 2. It is clear that Excel fails to add
the correct straight line fit. The obtained line is very far away from the data. Excel even gives
a negative R-square value. I also tried out every other mathematical function available via
‘Add Trendline’. With the exception of ‘Moving Average’, all trendlines failed to fit the data,
resulting in nonsense fit results and statistics.
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Figure 1: XY scatter graph for the J. Simonoff data set

Figure 2: A trendline for the J. Simonoff example
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The second way to do regression is by using the LINEST function. The LINEST function is
actually an array function, which should be entered using ‘CTRL+SHIFT+ENTER’ to obtain
the fit parameters plus statistics.
This is the output of LINEST for the example above:

-0.125 2250000001
0 0

-0.538274369 0.694331016
-2.799367289 8
-1.349562541 3.85676448

Note that in case of linear regression, the output of the LINEST functions corresponds to:

Slope Intercept
Standard Error of Slope Standard Error of Intercept

R-square Standard Error of Y
F df

SS(Regression) SS(residual)

As you can see, the output is complete nonsense, with R-square, F, and SS(Regression) being
negative. Standard errors of slope and intercept are zero, which is clearly wrong. Applying the
Analysis Toolpak tool ‘Regression’ to the above example results in the following output:

SUMMARY OUTPUT

Regression Statistics
Multiple R 65535
R Square -0.538274369
Adjusted R Square -0.730558665
Standard Error 0.694331016
Observations 10

ANOVA
df SS MS F Significance F

Regression 1 -1.349562541 -1.3495625 -2.79936 #NUM!
Residual 8 3.85676448 0.482095
Total 9 2.507201939

Coefficients Standard Error t Stat P-value
Intercept 2250000001 0 65535 #NUM!
X Variable -0.125 0 65535 #NUM!

As one can see, the same values are found with the Analysis Toolpak tool as with the LINEST
worksheet function. Because a negative number is found for F and unrealistic values for t Stat,
Excel is unable to calculate the corresponding p-values, resulting in the #NUM! Output.
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Note that the slope is identical in the three cases (trendline, LINEST and the Analysis
Toolpak), but the intercept and R-square are different when the ‘Add Trendline’ tool is used.

Excel also has different worksheet functions that are related to the linear regression
calculation. These functions are SLOPE, INTERCEPT, TREND, etc. These functions give the
same erroneous results and clearly they suffer from the application of numerically unstable
algorithms.

Related to linear regression are the worksheet functions for correlation: CORREL and
PEARSON and worksheet functions like STEYX. Here Excel is really surprising: CORREL
gives the correct output, but PEARSON gives the result #DIV/0!. While they are actually the
same, two different algorithms are used to calculate them. The worksheet function STEYX
gives #N/A.

As with the calculation of the STDEV or VAR functions, the workaround is quite
straightforward. By simply centering the data for X and Y around their respective means, the
calculation becomes much more numerically stable and the results are correct (the negative
value for the adjusted R-square is because of the very poor linear relationship between X and
Y, but is correctly calculated from its definition).

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.016826509
R Square 0.000283131
Adjusted R Square -0.124681477
Standard Error 0.559742359
Observations 10

Of course, due to the centering the obtained regression coefficients should be transformed
back to obtain the true regression coefficients. The slope is unaffected by this transformation,
but the intercept should be adjusted.

Below I have added some simple VBA code to calculate slope and intercept of a linear
regression line, based on a numerically stable algorithm.

Sub Straight_Line_Fit()
Dim X_Values As Range
Dim Y_Values As Range
Dim Routput As Range
Dim avgx As Double, avgy As Double, SSxy As Double, SSxx As Double
Dim n As Integer, i As Integer
Dim FitSlope As Double
Dim FitIntercept As Double
Set X_Values = Application.InputBox("X Range = ", "Linear Fit", , , , , , 8)
Set Y_Values = Application.InputBox("Y Range = ", "Linear Fit", , , , , , 8)
Set Routput = Application.InputBox("Output Range = ", "Linear Fit", , , , , , 8)
avgx = 0
avgy = 0
‘number of observations
n = X_Values.Cells.Count
‘averages
For i = 1 To n
  avgx = avgx + X_Values.Cells(i).Value / n
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  avgy = avgy + Y_Values.Cells(i).Value / n
Next i
‘sum of squares
SSxy = 0
SSxx = 0
For i = 1 To n
  SSxx = SSxx + (X_Values.Cells(i).Value - avgx) ^ 2
  SSxy = SSxy + (X_Values.Cells(i).Value - avgx) * (Y_Values.Cells(i).Value - avgy)
Next i
'slope
FitSlope = SSxy / SSxx
'intercept
FitIntercept = avgy - FitSlope * avgx
Routput.Offset(0, 0) = "Slope = "
Routput.Offset(0, 1) = FitSlope
Routput.Offset(1, 0) = "Intercept ="
Routput.Offset(1, 1) = FitIntercept
End Sub

Regression through the origin
Although Excel calculates the correct slope when regressing through the origin, the ANOVA
table and adjusted R-square are not correct. Let me show you an example:

X Y
3.5 24.4
4 32.1

4.5 37.1
5 40.4

5.5 43.3
6 51.4

6.5 61.9
7 66.1

7.5 77.2
8 79.2

Using the Analysis Toolpak ‘Regression’ tool and checking the ‘Constant is Zero’ checkbox,
the following output is obtained:

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.952081354

R Square 0.906458905
Adjusted R Square 0.795347794

Standard Error 5.81849657

Observations 10

ANOVA

df SS MS F Significance F

Regression 1 2952.6348 2952.63487 87.2143966 1.41108E-05

Residual 9 304.69412 33.8549023

Total 10 3257.329
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Coefficients Stand Err t Stat P-value Lower 95% Upper 95%

Intercept 0 #N/A #N/A #N/A #N/A #N/A

X 9.130106762 0.3104578 29.4085247 2.96632E-10 8.427801825 9.83241169

In case of regression through the origin, the total sum of squares should not be calculated

from ∑
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2 . Consequently, the total sum of squares of 3257.329 is

wrong in the table above and should be replaced by the correct value of 29584.49. The correct
ANOVA table then becomes:

ANOVA

df SS MS F Significance F

Regression 1 29279.79588 29279.7958 864.861330 2.96632E-10

Residual 9 304.694121 33.8549023

Total 10 29584.49

Note that the p-value calculated from the ANOVA table and the p-value for the slope are now
exactly the same, as it should be. Indeed, for simple linear regression the square of the value
for t Stat for the slope should equal the value for F in the ANOVA table.
The adjusted R-square can be calculated from the definition: 1- n/(n-1) x R2 = 0.896065.

Excel’s normal probability plot
One of the output possibilities in the Analysis Toolpak’s ‘Regression’ tool is the ‘normal
probability plot’. A probability plot of residuals is a standard way of judging the adequacy of
the normality assumption in regression. Well, you might think that this plot in Excel is a
normal probability plot of the residuals, but actually the ordered target values yi are plotted
versus 50(2i-1)/n, which are the ordered percentiles. This has nothing to do with normality of
residuals at all. It is simply a plot checking for uniformity of the target variable, which is of
no interest in ‘model adequacy checking’.

The multi-collinearity problem
Let me show you an example to demonstrate what can happen in case of multicollinearity.
A physiologist wanted to investigate the relationship between the physical characteristics of
preadolescent boys and their maximum oxygen uptake (measured in milliliters of oxygen per
kilogram body weight). The data shown in the table were collected on a random sample of 10
preadolescent boys.

Maximal
oxygen uptake

Age
years

Height
centimeters

Weight
kilogram

Chest depth
centimeters

1.54 8.4 132.0 29.1 14.4
1.74 8.7 135.5 29.7 14.5
1.32 8.9 127.7 28.4 14.0
1.50 9.9 131.1 28.8 14.2
1.46 9.0 130.0 25.9 13.6
1.35 7.7 127.6 27.6 13.9
1.53 7.3 129.9 29.0 14.0
1.71 9.9 138.1 33.6 14.6
1.27 9.3 126.6 27.7 13.9
1.50 8.1 131.8 30.8 14.5
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Using the Analysis Toolpak ‘Regression’ tool the following output is obtained:

Regression Statistics
Multiple R 0.983612406
R Square 0.967493366
Adjusted R
Square

0.941488059

Standard Error 0.037209173
Observations 10

ANOVA

df SS MS F Significance F
Regression 4 0.206037387 0.051509347 37.20369 0.000651321
Residual 5 0.006922613 0.001384523
Total 9 0.21296

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept -4.774738582 0.862817732 -5.53389019 0.002643 -6.992678547 -2.556798617
Age -0.035213868 0.015386301 -2.288650763 0.070769 -0.074765548 0.004337812
Height 0.0516366 0.006215219 8.308089712 0.000413 0.035659896 0.067613303
Weight -0.023417087 0.013428354 -1.743853833 0.14164 -0.057935715 0.01110154
Chest depth 0.03448873 0.085238766 0.404613206 0.70249 -0.184624134 0.253601595

Let me now critically investigate this result by asking the following questions:
a) Is the model adequate for predicting maximal oxygen uptake? Yes! From the ANOVA

table one can see that p = 0.00065 (significance F) < 0.05. R2 is approximately 97%!
b) Which variables are significant? Apparently, only the intercept and height are significant!

Did you expect this? Didn’t you expect that the greater a child’s chest depth, the greater
should be the maximal oxygen uptake? A strong non-significant p-value for chest depth is
unexpected!

c) It seems reasonable to think that the greater a child’s weight, the greater should be his
lung volume and the greater should be the maximal oxygen uptake? To be more specific: a
positive coefficient for weight is expected!! A negative coefficient for weight is totally
unexpected! It seems that common sense and statistics don’t go together in this example!

What is happening here? Let me calculate the coefficient of correlation between each pair of
independent variables! To do this use Data analysis ⇒ Correlation in Excel. Does this
information ring a bell?

Age Height Weight Chest depth
Age 1
Height 0.327482983 1
Weight 0.230740335 0.789825204 1
Chest depth 0.165752284 0.790945224 0.880960517 1

Apparently, there is a very high correlation between weight and chest depth, meaning that
both variables are providing the same information to the data set. Also, weight and height,
height and chest depth are strongly correlated. This causes the problem of multicollinearity.
This data set cannot be fitted to the multivariate model because calculations become
numerically unstable due to the high correlation between variables.
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Although Excel correctly calculates the regression output, there is obviously something wrong
here. However, there is no actual calculation problem. The fact is that there is no meaningful
regression possible here, because the predictors are collinear. This means that no regression
model can be fit using all predictors. The problem with Excel is – as compared to statistical
packages – that it doesn’t give a warning for such high collinearity. Statistical packages will
correctly note the perfect collinearity among the predictors and drop one or more if necessary,
allowing the regression to proceed, or report the problem and their inability to find a solution,
while Excel will find a solution that is wrong. Excel does not compute collinearity measures
(such as the Variance Inflation Factor) and consequently does not warn the user when
collinearity is present and reports parameter estimates that may be nonsensical.

Data organization
Excel requires the X-variables to be in contiguous columns in order to input them to the
regression procedure. This can be done with cut and paste, but is certainly annoying,
especially if many regression models are to be built.

Hypothesis testing
As can be easily understood from the above discussion, all hypothesis tests in Excel that need
the calculation of a standard deviation or a variance, will suffer from the poor numerical
algorithms Excel uses. Let me take an example using two variables and perform (just to
demonstrate the erroneous results) several hypothesis tests, such as t-tests and F-tests.
Here is the data to demonstrate this (actually variable 2 = variable 1 plus 1):

A B
1 Variable 1 Variable 2
2 10000000001 10000000002
3 10000000002 10000000003
4 10000000003 10000000004
5 10000000004 10000000005
6 10000000005 10000000006
7 10000000006 10000000007
8 10000000007 10000000008
9 10000000008 10000000009

10 10000000009 10000000010
11 10000000010 10000000011

The t-test assuming equal variances from the Analysis Toolpak gives the following result:

t-Test: Two-Sample Assuming Equal Variances

Variable 1 Variable 2
Mean 10000000005.5 10000000006.5
Variance 0 0
Observations 10 10
Pooled Variance 0
Hypothesized Mean Difference 0
df 18
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t Stat 65535
P(T<=t) one-tail #NUM!
t Critical one-tail 1.734063062
P(T<=t) two-tail #NUM!
t Critical two-tail 2.100923666

As can be seen from the table above, the variances equal zero, including the pooled variance.
This results in an unrealistic value for t Stat of 65535. As a consequence, the p-value cannot
be calculated. If Excel had used a better algorithm to calculate the variances, the result would
have been correct.

Note that if you apply Excel’s built-in function TTEST on these data, you obtain
=TTEST(A2:A11;B2:B11;2;2) = 0.4697, which is the correct result.

Applying the Analysis Toolpak’s ‘t-test: two sample assuming unequal variances’, one
obtains:

t-Test: Two-Sample Assuming Unequal Variances

Variable 1 Variable 2
Mean 10000000005.5 10000000006.5
Variance 0 0
Observations 10 10
Hypothesized Mean Difference 0
df 0
t Stat 65535
P(T<=t) one-tail #NUM!
t Critical one-tail #NUM!
P(T<=t) two-tail #NUM!
t Critical two-tail #NUM!

Now apart from calculating the variances wrongly, Excel seems to be unable to even calculate
the correct number of degrees of freedom. Again, the TTEST function gives the correct p-
value. The degrees of freedom are calculated from the Welch-Satterthwaite approximation,
which is based on the variances of both groups. So, it is not surprising that if the variances
cannot be correctly calculated, this will also apply to the degrees of freedom.
Note also that even for an easy dataset, the Analysis Toolpak’s ‘t-test: two sample assuming
unequal variances’, gives the incorrect p-value as it is based on the wrong number of degrees
of freedom. The error here is that Excel rounds the obtained number of degrees of freedom
from the Welch-Satterthwaite approximation to the nearest integer before it calculates the
corresponding p-value. All statistical packages that I know use the exact non-integer number
of the degrees of freedom obtained from the Welch-Sattherthwaite approximation, and use an
interpolation algorithm to calculate a more exact p-value. Remarkably the TTEST function,
when applied for unequal variances, gives the correct p-value. Here, the Analysis Toolpak and
Excel’s built-in function do not use the same calculation algorithms.

The example above would be a bad example to use for the Analysis Toolpak’s ‘t-test: paired
two sample for means’, as Variable 2 is simply Variable 1 plus 1 (the differences would be
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the same for all observations, resulting in zero variance). Therefore, I modified the data
slightly to give:

Variable 1 Variable 2
10000000001 10000000001
10000000002 10000000003
10000000003 10000000004
10000000004 10000000005
10000000005 10000000007
10000000006 10000000007
10000000007 10000000008
10000000008 10000000009
10000000009 10000000010
10000000010 10000000011

The output of the Analysis Toolpak’s ‘t-test: paired two-sample for means’ is:

t-Test: Paired Two Sample for Means

Variable 1 Variable 2
Mean 10000000005.5 10000000006.5
Variance 0 0
Observations 10 10
Pearson Correlation #DIV/0!
Hypothesized Mean Difference 0
df 9
t Stat -6.708203932
P(T<=t) one-tail 4.3857E-05
t Critical one-tail 1.833113856
P(T<=t) two-tail 8.7714E-05
t Critical two-tail 2.262158887

Note that the Pearson correlation could not be calculated, resulting in #DIV/0!. The value of
the variances are again zero. However, the value of t Stat and the p-values are correct. This is
because the calculations are based on the differences, which become small numbers, and
calculating the standard deviation will be correct again. Note that if the differences between
paired observations had been very large, the results would probably have been wrong (the
question then is whether you really need to do a paired test to see that there is a difference).
The TTEST function also gives the correct result for a paired test.

Let me continue with the example and see what Excel generates if I want to do an F-test (for
the equality of variances). The Analysis Toolpak’s ‘F-test: Two-sample for variances’ test
gives the following output:

F-Test Two-Sample for Variances

Variable 1 Variable 2
Mean 10000000005.5 10000000006.5
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Variance 0 0
Observations 10 10
df 9 9
F 65535
P(F<=f) one-tail #NULL!
F Critical one-tail 0.314575033

Clearly, this test suffers from the same problem: both the variances are zero and the value for
F is unrealistic. Now Excel gives ‘#NULL!” as the p-value.
Excel’s built-in function FTEST gives the following result: 0.867465. Excel’s on-line help
says this function returns the one-tailed probability that the variances in Array 1 and Array 2
are not significantly different. This is clearly NOT correct as the value returned by the FTEST
function is the two-tailed probability. This can easily be seen by calculating the F-value from
the correct variances. These variances can be obtained on the centered data:

-4.5 -5.5
-3.5 -3.5
-2.5 -2.5
-1.5 -1.5
-0.5 0.5
0.5 0.5
1.5 1.5
2.5 2.5
3.5 3.5
4.5 4.5

Variance 1 Variance 2
9.166666667 10.27777778

The F-value thus becomes: F = 10.2778 / 9.1667 = 1.1212. Using FDIST to obtain the p-value
one can find: FDIST(1.1212, 9, 9) = 0.4337325, which is exactly half of the value obtained by
the FTEST function. The value obtained from FDIST is the one-tailed p-value. Taking 2 times
the value obtained from FDIST is equal to the value obtained by FTEST, which is the two-
tailed p-value.

Although the FTEST function returns the two-tailed p-value, (in contrast to what has been
claimed in the online help), this value is correct. Apparently, Excel’s built-in function FTEST
and the calculation in the Analysis Toolpak are not based on the same numerical algorithm.

Excel’s Analysis Toolpak algorithms for ANOVA (one-way, two-way) suffer from the same
ill-balanced numerical algorithms. They calculate the wrong variances and as such the
ANOVA tables are not correct.

Excel’s ZTEST function and the z-test in the Analysis Toolpak make use of the value for the
population sigma, which has to be entered as such. Consequently these tools provide the
correct p-values. Although two remarks should be made:

1) these two tools do not perform the same statistical test. The ZTEST function is the
one-variable z-test, where the mean of one variable is tested against some prefixed
population mean µ, with known value of σ. The ‘z-test two-sample for means’ of the
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Analysis Toolpak compares two variables with known standard deviation against each
other.

2) The ZTEST function returns the one-sided p-value, although Excel’s help says it is the
two-tailed p-value.

Missing data
Missing data can cause all kind of problems in Excel (at least in Excel ’97 because apparently
this has been ‘solved’ in Excel 2000 and XP, although ‘solved’ is not really the correct way to
type it as only error messages are now displayed when there are missing values, and no result
is given).
As an example, in Excel ’97, I take the paired t-test function TTEST and the Analysis
Toolpak’s ‘t-test: paired two-sample for means’. The following data will be used to
demonstrate the different outcomes of TTEST and the Analysis Toolpak’s paired t-test.

Sample 1 Sample 2
3 2
4
3 2

3
2 3
4 3
4 3
3 4
2 3
4 2

The TTEST function returns 0.401508 for the p-value. The output of the Analysis Toolpak
‘paired t-test’ is:

t-Test: Paired Two Sample for Means

Sample 1 Sample 2
Mean 3.222222222 2.777777778
Variance 0.694444444 0.444444444
Observations 9 9
Pearson Correlation -0.18156826
Hypothesized Mean Difference 0
df 8
t Stat 0.644658371
P(T<=t) one-tail 0.268595733
t Critical one-tail 1.85954832
P(T<=t) two-tail 0.537191465
t Critical two-tail 2.306005626

The two-tailed p-value is clearly different from the one obtained with the TTEST function.
Which one is right? Or are both wrong?
Manual calculation gives us the following results (assuming the data range is A1:C11):
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Sample 1 Sample 2 Difference
3 2 1
4
3 2 1

3
2 3 -1
4 3 1
4 3 1
3 4 -1
2 3 -1
4 2 2

Average 0.375
StDev 1.187734939

Note here that if you apply ‘=A2-B2’ in cell C2 to obtain the difference (and drag this
formula to C11), Excel will assume empty cells as Zero and the result in cell C3 will be 4, and
in cell C5 one will obtain -3. Be careful with this. It is clear that these cells should be empty
as well. Excel’s built-in functions AVERAGE and STDEV do not have problems with empty
cells and the correct result is obtained. From these values, using t Stat = Average of
Differences / (stdev/sqrt(n)) where n is the number of pairs with non-missing data (here n =
8), one will find t Stat = 0.893. Using TDIST(t Stat, 7, 2) gives 0.401508, which is exactly the
same p-value as returned by Excel’s =TTEST(A2:A11;B2:B11;2;1).
Apparently, the TTEST function knows how to deal with missing values, the Analysis
Toolpak clearly not.

Chi-square test

Excel also has a function to perform a chi-square test, that is, CHITEST. This function
requires the observed counts AND the expected counts. But here, you are supposed to
calculate the expected counts yourself. If you have a sufficient statistical background and
know how to do Excel calculations, you’ll be able to calculate them. If not, it seems to be
your problem as Excel’s online help will definitely not tell you how.

General remarks about Excel’s statistical analysis tools

• Commonly used statistics and methods are simply not available within Excel. As
stated earlier, Excel is clearly not a statistical package. It contains only a very small
number of statistical tools, and even for the student, this will quickly turn out to be
simply not enough.

• Paired t-tests, ANOVA, Regression and other Analysis Toolpak tools in Excel badly
deal with missing values. However, this seems not to be the case for Excel’s built-in
statistical functions.

• Excel requires the data in “tabular” form, rather than in “list” form, which encourages
bad practice for data storage.This requires extra work if the data have been stored
appropriately. Moreover, the data organization might differ according to the analysis,
forcing you to organize your data in many ways if you want to do many analyses.
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• Output is poorly organized, sometimes inadequately labeled (Excel uses strange names
for the analysis it performs or to name output measures (e.g., significance F is the p-
value)). The Analysis Toolpak never indicates the significance level used in the
output.

• The numerical algorithms used are not optimal, especially when the variance or
standard deviation is much smaller than the average of the variable. Standard
deviation, variances and all Analysis Toolpak tools that rely on standard deviation
calculations where large numbers with low variation are involved, will be unreliable.
Remarkable here is the fact that Excel’s built-in hypothesis test functions do not suffer
from this unstable numerical algorithms. On the other hand, Excel’s built-in regression
functions (like LINEST, TREND, LOGEST, etc), which are also used by the Analysis
Toolpak ‘Regression’ tool are based on poor numerical algorithms, mainly because the
data are not centered around the mean in the calculations.

• Many analyses can only be done on one column at a time, making it inconvenient to
do the same analysis on many columns.

• The Analysis Toolpak tools like ANOVA and Regression seem to be restricted to 16
columns.

• Excel’s RANK function does not treat tied observations correctly. I defined a different
User Defined Funtion, called RANKING, to be able to calculate non-parametric
hypothesis testing. Perhaps it is fortunate that non-parametric tests are not available in
Excel as they would probably rely on the RANK worksheet function.

Will these problems affect you?

If you are using Excel for simple data analysis, on relatively easy data sets, it is most unlikely
you will have any problems. The impact of the poorer algorithms used by Excel will be more
visible on relatively ‘not so easy’ data sets. If you are dealing with very large numbers,
scaling and/or centering your numbers will solve the problem. Note that you should not use
Excel’s STDEV function to scale your data, in case of large numbers. In most cases, centering
the data will suffice to generate the correct results.
Some of the difficulties mentioned in this text can be overcome by using a good third-party
add-in. These add-ins will usually provide the user with many more statistical tools, including
non-parametric hypothesis testing, which is completely absent in Excel.
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