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ABSTRACT
This paper analyses alternative techniques for deploying low-
cost human resources for data acquisition for classifier induc-
tion in domains exhibiting extreme class imbalance—where
traditional labeling strategies, such as active learning, can
be ineffective. Consider the problem of building classifiers
to help brands control the content adjacent to their on-line
advertisements. Although frequent enough to worry adver-
tisers, objectionable categories are rare in the distribution
of impressions encountered by most on-line advertisers—so
rare that traditional sampling techniques do not find enough
positive examples to train effective models. An alternative
way to deploy human resources for training-data acquisition
is to have them “guide” the learning by searching explic-
itly for training examples of each class. We show that un-
der extreme skew, even basic techniques for guided learning
completely dominate smart (active) strategies for applying
human resources to select cases for labeling. Therefore, it is
critical to consider the relative cost of search versus label-
ing, and we demonstrate the tradeoffs for different relative
costs. We show that in cost/skew settings where the choice
between search and active labeling is equivocal, a hybrid
strategy can combine the benefits.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications—data mining; I.2.6
[Artificial Intelligence]: Learning—induction; I.5.1 [Pat-
tern Recognition]: Models—statistics

General Terms: Design, Performance, Human Factors

Keywords: active learning, machine learning, class imbal-
ance, human resources, on-line advertising, micro-outsourcing
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1. INTRODUCTION
This paper concerns the interaction of humans in the data

acquisition phase of the process of building classification
models from data. Consider the following example data
mining application: classifying web pages for the purpose
of safe advertising. Advertisers and advertising networks
(hereafter, advertisers) would like a rating system that esti-
mates whether a web page or web site displays certain objec-
tionable content. With such a system, advertisers can con-
trol the destination of their ads, advertising only on those
pages deemed unlikely to display such unacceptable content
(depending on the advertiser, objectionable categories in-
clude: adult content, kids content, hate speech, malware,
etc.).1 Evaluating each potential advertising opportunity
involves classifying the web page with respect to these ob-
jectionable categories. The classification system can take
into account various evidence, including the URL, the page
text, anchor text, DMOZ categories, third-party classifica-
tions, position in the network of pages, and so on [18, 1,
3]. For this paper, we will consider only the textual html
source for each page, but the ideas generalize to any type of
available feature data.

Manually examining every page encountered by such a
system would be prohibitively expensive. This is particu-
larly true in safe advertising, where models for new classifi-
cation categories must be built rapidly to meet the chang-
ing demands of each customer and campaign. Furthermore,
assuming that these classifications are based on statistical
models, predictions will be more or less effective depending
on the particular cases used for training and on the amount
and distribution of training data used in their construction.
For a given budget, some subset of the cases can be exam-
ined by humans—potentially at very low cost using a micro-
outsourcing system [24] such as Amazon’s Mechanical Turk
[2]—to produce training data.

A critical question then is: which cases should be selected
for training? Simply sampling cases uniformly at random is
unlikely to be the best strategy, as is evidenced by the rich
field of research comprising active learning [22]. Settings
with extreme class imbalance, as is frequently the case on
the web, further reduce the effectiveness of random sampling
since for reasonable labeling budgets, only rarely would such
sampling produce a positive training example at all. For in-
stance, we would hope that the distribution of pages that

1This site rating system may be best developed and main-
tained by a third party to avoid conflicts of interest [4], but
that complexity does not affect the development here.



are offered an advertiser for ad placement contain only a
tiny fraction of pages containing hate speech. For safe ad-
vertising, depending on the category, the base rate of the
minority class can be 1

104 to 1
107 or lower. Occasionally fil-

ters can be provided on the data (for example, based on
selected phrases), to reduce the skew by orders of magni-
tude. However, generally we see base rates of less than 1

102 .
These filters introduce a new problem: they bias the data—
training and test—toward particular “disjuncts” [29] of the
objectionable category.

In extreme cases, active learning simply finds no minority-
class examples—examples of the positive class (e.g., adult
content, hate speech) appear too infrequently in the pool of
cases considered for labeling. Even in moderately high skew
settings, any strategy for selecting examples automatically
that does not solve the classification problem itself, is likely
to select mostly negative examples. For generality this pa-
per mainly considers moderate skews; the trends to the far
extreme are clear. As demonstrated below in Section 5, as
the minority class becomes more and more scarce, standard
active learning strategies have increased difficulty finding in-
stances that improve performance on held-out data.

The techniques we use in this paper for the most part
either are existing techniques or are fairly straightforward.
The main novelty is the idea of considering on equal footing
a variety of strategies for applying human resources for data
mining, and an analysis of different strategies applying hu-
man resources for inducing classifiers in domains where the
base rate of an important category is very low. The main
contributions of the paper are threefold (as follows).2

First, the paper provides an empirical analysis of the per-
formance of traditional active learning techniques in highly
skewed settings. This investigation reveals the deficiency of
many active learning techniques in the extreme imbalance
setting: the dependency of the active learner on an uninfor-
mative model leads to repeatedly making the same mistakes,
often leading to selecting mainly majority-class instances for
labeling, while important portions of the minority class re-
main completely unrepresented in the training data.

Second, the paper contrasts active learning with “guided
learning.” Active learning is based on the availability of hu-
man resources that can be applied to the labeling of specially
selected examples. Guided learning applies those resources
specifically to search for examples satisfying some criteria;
for example, humans could be directed to search specifically
for positive examples. For safe advertising, adult content
or hate speech may have a fairly low prevalence among the
pages supported by a particular advertiser (or on the web
more generally); however, a human with a search engine
may be able to find examples fairly quickly. We examine
the relative benefit of using humans for labeling cases (in
combination with an active learning strategy) versus using
humans for searching for cases.

The results are striking. Looking ahead to Figure 2, it
is clear that that straightforward guided learning strongly
dominates active learning—improving accuracy much faster
as examples are added to the training set. The details of all

2As a minor contribution we introduce to the research com-
munity the application of classification for safe advertising
[6, 7], which exhibits extremely skewed class distributions
and illustrates the issues addressed here. The interested
reader should also see http://www.adsafemedia.com and
the contemporaneous work of Rajan et al. [21].

techniques will be covered below. This is important not only
as practical guidance. This result shows that the dominant
problem in these domains is simply finding minority-class
examples, not finding otherwise “informative” examples or
examples near the classification boundary. The paper pro-
ceeds with a deeper empirical analysis of this phenomenon.
For example, does this result still hold if search for examples
is several times more expensive than labeling examples?

Third, the paper presents and evaluates a hybrid strategy
for cost-effective guided learning, that utilizes both search
and active labeling. The results show that a hybrid strategy
can perform better than either pure guided learning or pure
active learning, when the setting does not provide clear dom-
inance of one over the other. An ultimate goal for this sort
of learning would be to judge the relative benefit-per-unit-
cost of each sub-strategy, and allocate resources to labeling
or to search accordingly.

The techniques described here are operating in produc-
tion as part of the technology underlying the rating system
of AdSafe Media.3 Human analysts are tasked with labeling
and with search for guided learning; they are supported by
systems for web-page labeling and for web search. Models
are built across various categories of objectionable content,
including adult content, hate speech, violence, and others.
Guided/active learning procedures feed analysts with search
tasks and with examples to be labeled. The resultant models
are used to reduce objectionable on-line advertising adjacen-
cies. In practice, we find that mixing guided learning and
active learning is preferable to either in isolation.

The remainder of this paper proceeds as follows: Section
2 covers the baseline techniques used for comparison and
explains the details and motivation behind guided learning.
Section 3 covers prior work on classification and active learn-
ing in unbalanced settings. Section 4 presents the experi-
mental framework and datasets used for evaluation. Section
5 covers the results of these experiments. Section 7 covers
the behavior of guided learning under different cost settings,
and presents and evaluates hybrid guided/active data acqui-
sition strategies. Section 8 compares with the results of an
actual production guided learning system. Section 9 pro-
vides further discussion of the issues raised by this work,
offers concluding remarks, and notes. Earlier versions of
this paper appeared previously [6, 7].

2. LEARNING & HUMAN INTERVENTION
As discussed, this paper analyzes two different methods

for incorporating human resources in the data mining pro-
cess. Specifically, via labeling carefully chosen examples,
or via searching for examples. We assume that the reader
is familiar with the notion of active learning for choosing
examples for labeling; Settles provides a comprehensive sur-
vey [22]. We call the search for examples based on particular
criteria “Guided Learning.” Here we describe the particular
techniques that we study in this paper.

2.1 Active Learning
For active learning, this study employs two strategies.

The first, uncertainty sampling, is by far the most popu-
lar active learning strategy, and is closely related to model-
specific strategies such as actively selecting instances closest

3http://www.adsafemedia.com



to a separating hyperplane [26].4 The second is a variation of
the popular Query-by-committee [23] technique, specifically
introduced to deal with skewed class distributions [25].

• Uncertainty Sampling: instances with the smallest
margin are chosen for inclusion at each fold. Here we
calculate margin as |p(0)− p(1)| [15].

• Boosted Disagreement with QBC: instances are
ordered by a class-weighted disagreement measure,

−
P

j∈{0,1} bj
V (kj)

|C| log
V (kj)

|C| , where V (kj) is the num-

ber of votes from a committee of size |C| that an in-
stance belongs to a class kj . bj is a weight correspond-
ing to the importance of including a certain class; a
larger value of bj corresponds to a increased tendency
to include examples that are thought to belong to this
class. From a window W of examples with highest
disagreement, instances are selected greedily based on
the model’s estimated class membership probabilities
so that the batch selected from the window has the
highest probability of having a balanced class mem-
bership [25].

We also assessed several other candidate active learning tech-
niques. None of them offered substantial improvement over
the techniques presented above. Of particular note, we ran
several experiments with the density-sensitive pre-clustering
technique of Nguyen and Smeulders [19], because of the ex-
pected ”disjunctiveness” of the classes (see extended discus-
sion below). Surprisingly, this technique performed no bet-
ter than uncertainty sampling on the datasets under consid-
eration, while the added computational complexity extended
the experimental run time to prohibitive levels. We offer
some conjectured insight into the deficiencies of density-
sensitive techniques in Section 6.

2.2 Guided Learning
Guided Learning is an alternative technique for utilizing

human resources for model development, beyond traditional
(active) instance labeling. Here, humans are tasked with
seeking examples satisfying some criteria. For this paper,
the basic guided learning task is straightforward: find exam-
ples representing the different classes in some proportion, ρ.
These instances are provided as input to classifier induction.

Guided learning is motivated by the results of Weiss &
Provost [28, 30], who address the question “if only n train-
ing examples are to be selected, in what proportion should
the classes be represented?” Their results show that the best
proportion varies across domains; however, if one wants to
maximize the ranking of cases (i.e., the AUC) a proportion
of ρ = 0.5 is a very good choice. In principle the problem
of this paper is different: how to use human resources to
search for valid examples using all tools available to them—
including both active learning and guided learning. Never-
theless, this paper’s analysis could be seen as a follow-on
to this prior work; in our experimental setting we simulate
guided learning by class-conditional random sampling. We
describe the simulation below.

More specifically, a thorough evaluation of a guided learn-
ing system in the wild would require a sizable labeled pool

4For example, for an SVM that produces probability esti-
mates via the common technique of applying a simple logis-
tic regression to the orthogonal distance of an example from
the separating hyperplane, uncertainty sampling will select
the unlabeled examples closest to the separator.

of instances, in effect defeating the cost savings of the tech-
niques proposed here. In order to compare and contrast dif-
ferent techniques, all guided learning experiments presented
here are performed in the following way: given an initial
pool of labeled instances P with some subset of minority
and majority instances, P+ and P− respectively, along with
a selection ratio, ρ, at each batch, the guided learning sim-
ulator selects ρ|b| instances from the P+ uniformly at ran-
dom and (1− ρ)|b| instances uniformly at random from P−,
where |b| is the size of the batch selected at each selection
epoch. This process proceeds until either pool is exhausted,
at which point the process switches over to purely random
sampling from the other class. This simulation is similar to
the procedure of Weiss & Provost who assume that examples
can be produced randomly by class.

3. RELATED WORK
As mentioned above, guided learning was motivated by

the results of Weiss and Provost [30, 28]; the authors inves-
tigate the influence of class distribution on classifier perfor-
mance, empirically showing that given a training set of n
examples, barring domain-specific information, a balanced
class distribution tends to offer the best AUC on held-out
data.5 Lomasky et al. [17], as well as Weiss and Provost,
also investigate the setting where instances can be drawn
randomly by class, and address the issue of actively choos-
ing classes for sampling. This is a complementary task to
what we address in this paper. Our analysis assumes sim-
ply that examples will be provided in a particular propor-
tion (balanced by class for our experiments). Incorporating
techniques for better choosing the class distribution in the
training data could improve the guided learning results pre-
sented below and is a direction for future work

There is an extensive body of work investigating strategies
for learning in highly skewed settings. This work includes
over-sampling the minority class or under-sampling the ma-
jority class [9, 16]. A different branch of work investigates
the application of non-uniform misclassification costs during
training in order to give additional consideration to the class
of interest [10].

There has been some work on active learning on skewed
data. Tomanek [25] investigates Query By Committee-based
approaches to sampling labeled sentences for the task of
named entity recognition. The goal of their selection strat-
egy is to encourage class-balanced selections by incorporat-
ing class-specific costs. This work assumes that classifiers
can often accurately infer which instances belong to the mi-
nority class, giving higher weight to instances thought to
belong to the minority class and with a high degree of un-
certainty. Our work differs from this by extending to ex-
treme cases where initial performance is poor. Additionally,
our techniques are more general, able to extend beyond the
tasks faced in NLP.

Bloodgood and Shanker [8] use a similar approach to [25],
incorporating class specific cost factors to encourage choos-
ing from the minority class in the skewed setting. Here the
base rate is estimated on a small random sample. We note
that in many realistic settings, random samples may not re-
veal any minority instances, thereby foiling this technique.

Zhu and Hovy [31] investigate active learning in conjunc-

5Many practitioners used this as a rule of thumb prior to
Weiss & Provost’s research.



tion with over and under-sampling to alleviate the class im-
balance problem. Here active learning is used to choose a
set of instances for labeling, with sampling strategies used
to improve the class distribution. Our work differs by seek-
ing strategies for acquiring a good class distribution in the
data, removing the necessity for performing sub-sampling.

Ertekin et al. [13] address active learning on highly un-
balanced data sets. Given a large, unbalanced pool of la-
beled instances, the authors randomly sub-sample instances,
choosing to keep only those that are positioned close to the
margin of a SVM classifier. The authors do not address the
problem of seeking unlabeled instances in the wild. Fur-
thermore, the margin-based active learning heuristic is very
similar to uncertainty sampling, a strategy that we demon-
strate to exhibit difficulty in the extremely skewed cases.

We note that many active learning strategies depend to
some degree on the quality of the current model—until the
model “warms up,” the instance selection is essentially ran-
dom. This cold-start problem has been examined by Zhu
et al. [32], work extended by Donmez and Carbonell [11].
This work seeks to find “clusters” of distinct content among
the unlabeled instances. While this offers greater potential
overcoming the cold-start than many common active learn-
ing techniques, it is still unlikely to succeed in the extremely
skewed case; there is often so much diversity within the ma-
jority that the method will miss any minority instances. Ad-
ditionally, these complex methods don’t scale well to the
data sizes necessary to experience an extreme class skew.

Donmez et al. [12] propose a hybrid active learning tech-
nique whereby a density-sensitive learning technique is used
to overcome the initial deficiencies of uncertainty sampling
until the derivative of the learning rate decreases below some
threshold. After this point, traditional uncertainty sampling
is incorporated to the instance selection. The intuition here
is that the density-sensitive technique is better for explor-
ing the space, while uncertainty sampling is better at “fine
tuning” the decision boundary.

4. EXPERIMENTAL SETUP
The experiments for this paper are performed on six data

sets with similar characteristics; all represent a task of sep-
arating examples of one minority class from examples of a
diffuse collection of other topics. While all use text as the
raw feature data, the techniques illustrated here apply to
any other type of input. The first two are taken directly
from the domain of safe advertising; the others are publicly
available surrogate data sets with similar problem structure.
Specifically, the data sets are:

1. Safe-Adult A set of 35, 000 pages labeled based on
the presence of adult content. Positive instances here
are deemed unsafe for advertising.

2. Safe-Guns A set containing 55, 000 pages labeled based
on the presence of guns, ammunition, bombs, or other
destructive equipment. Often advertisers choose not
to be associated with this type of content.

The two previously mentioned datasets represent random
sub-samples from much larger datasets for experimental con-
venience. Safe-Adult has a class skew of approximately
20 : 1 while Safe-Guns has a class skew of roughly 150 : 1.

The next three data sets were taken from urls contained
in the topical hierarchical taxonomy of the Open Directory
Project [1]. This data set is a result of a crawl of approxi-

mately 4, 000, 000 urls, and instances are assigned class la-
bels based on their membership in top-level DMOZ cate-
gories. To eliminate confusion, pages belonging more than
one category were eliminated from this experiment. Data
sets were further down-sampled in order to induce a greater
degree of skew.

3. DMOZ-Science: Positive instances belong to the top-
level category of Science, while the minority instances
belong to all other categories. This set has approx-
imately 130, 000 instances. While this data set was
used for experiments of varying skew, the nominal class
distribution for this set is 200 : 1.

4. DMOZ-News: Here positive instances are pages found
in the News top-level DMOZ category. This data set
has 100, 000 instances with a class skew of 100 : 1.

5. DMOZ-Games: Urls sampled from the Games cat-
egory make up the positive category in this data set,
sub-sampled to give 100, 000 instances with a 100 : 1
class skew.

6. 20-News-Groups: This data set is derived from the
popular 20 News Groups set frequently used in text
mining evaluation [5]. The data set is modified from
the original data by assigning a positive label to all
science-related articles, and a negative label otherwise.
Positive instances are randomly removed from the data
set to give a highly skewed label distribution of roughly
80 to 1.

Classification and probability estimation are performed with
logistic regression trained using stochastic gradient descent
using feature hashing [27]. The choice of logistic regression
was based on this algorithm’s efficiency during training and
induction, critical given the massive numbers of experimen-
tal runs performed in this work. Smaller-scale experiments
indicate that the main effects described in this work are in-
dependent of the type of model used; other machine learning
algorithms could be substituted with similar results.

All experiments compare the area under the receiver oper-
ating characteristic curve (AUC) at various stages in learn-
ing [14]. This metric allows a comparison of model perfor-
mance that is largely insensitive to the class prior in the
evaluation set, and also to the difference in class priors be-
tween the training and test sets. This is critical in a highly
skewed setting where simply choosing the majority label for
each instance would yield very high (and misleading) clas-
sification accuracy, and where one often wants to dope the
training set with additional minority-class examples. The
results presented are averages computed over ten-fold cross-
validation for every experiment. We use uniform random
sampling as the baseline against which to compare human-
intervention strategies.

5. ACQUISITION RESULTS
Figure 1 compares the four acquisition strategies covered

in sections 2.2 and 4 on the six high-skew data sets under
consideration. These plots show how the the area under the
ROC curve (AUC; vertical axis) improves with additional
labeled training data, as acquired by the different strategies.

The results show that searching for examples of each class
in balanced proportion, even without any “active” selection
at all, by and large provides substantially more informative
data to the modeling process. These results are similar for
every experiment: guided learning very quickly achieves very



good class separation (AUC in the high .90s) with consider-
ably fewer examples than are required by active strategies
or random sampling. In comparison, the “smart” labeling
strategy, uncertainty sampling, often offers no benefits over
simply selecting instances at random, in every case requiring
thousands of examples to achieve the performance levels of
a few hundred instances selected through guided learning.

Boosted disagreement—though specifically designed for
active learning in skewed settings by favoring uncertain in-
stances belonging to the minority class—seems to suffer from
the same problems as uncertainty sampling, with few excep-
tions. The models forming the committee are simply un-
aware of much of the minority class; the method has limited
ability to find instances that would improve the generaliza-
tion performance of the system.

On 20-News-Groups we see an interesting behavior: un-
certainty sampling and boosted disagreement perform quite
well initially, followed by plateaus, as the active learning
apparently cannot find the instances that will improve the
model beyond a certain point; only after they exhaust a large
number of seemingly uninformative examples do they choose
examples for labeling that again provide improvement over
random sampling. This behavior suggests a disjunctive mi-
nority class, with portions of the class lying within the high-
certainty (of majority) regions of the example space. Ex-
amples from these disjuncts are only selected when active
learning exhausts the less-certain instances. As a result, lit-
tle improvement is offered after repeated example selection.
In effect, the certainty of the underlying model that the as-
of-yet unexplored disjuncts are of the wrong class hinders
the success of the active learning. We return to this in Sec-
tion 6.

From these results we can conclude that many active learn-
ing heuristics are ill-suited for learning highly skewed, possi-
bly disjunctive concepts. In these cases, gathering rare-class
examples and exploring sub-concepts is critical. In these
settings, the base-learner induced by the early stages of ac-
tive learning often has a poor understanding of the problem
space, making poor selection of subsequent instances as a
result, in turn offering little improvement in model perfor-
mance. Guided learning, as presented here, does not depend
on the quality of the base-learner, relying on an oracle to ex-
plore the details of the space.

There is an interesting phenomena in some of the learn-
ing curves shown in Figure 1. Notice that many learning
curves traced by guided learning achieve their optimal AUC
very quickly, then slowly decay. This may be due to several
factors: the base learner may be susceptible to certain high
skew settings, or to noise present on certain features. Al-
ternately, introducing a large number of diverse pages may
cause a large number of hash collisions, an artifact of the
feature hashing used, thereby reducing the clarity of each
dimension. It is also possible that there is sufficient label
noise in this case that the good data set provided in the
initial epochs is simply washed out as more data is added.

The primary motivation for introducing guided learning
was to facilitate cost-effective learning in settings with high-
to-extreme class skew. We now assess the relative benefit
of guided learning for different skews. Figure 2 presents the
learning curves for three different instance sampling strate-
gies at different base rates, as induced on the DMOZ-Science
data set. Specifically, this plot displays the AUC for three
different labeling strategies, uniform random sampling, un-

certainty sampling, and guided learning with ρ = 0.5. We
see that as the skew increases, uncertainty sampling and
random sampling have increased difficulty selecting minority
instances, resulting in poor generalization performance. In
the most skewed setting, random sampling and uncertainty
sampling are unable to select reliably any minority instances
given 10, 000 draws from the available pool. This likely re-
sults in a complete lack of understanding of the space.

For this experiment, skew was induced by taking a large
data set and randomly removing instances belonging to the
minority class. This design choice exposes a limitation of
our simulation framework; the absolute number of available
minority instances critically influences the maximum per-
formance that a model can achieve, becoming particularly
evident as skew increases. We note that this limitation has
the effect of handicapping guided learning; on the web, even
cases that occur extremely infrequently in relation to the
web as a whole still occur in great numbers in the absolute
sense. While a guided learning scheme may require greater
cost and effort to get new minority instances as the number
of epochs increases, there is unlikely to be a hard cap on per-
formance as seen in this experiment. It is clear that given
enough information, a model can reach generalization per-
formance in excess of AUC= 0.9; the performance of guided
learning over all the learning curves present in this work,
and in particular the high-skew settings in Figure 2, may
therefore be underestimated.

6. INFLUENCE OF DISJUNCTIVE CLASSES
ON ACTIVE LEARNING

As mentioned above, “disjunctive” concepts—classes to be
modeled that are made up of distinct subclasses—have been
shown repeatedly to cause problems for supervised induc-
tion. We hypothesized above that the unexpectedly poor
performance of active learning for some of our data sets may
be (in part) due to poorly modeled subclasses.

Figure 3 examines graphically the relative positions of the
minority examples through the active learning. The black
curve shows the AUC (right vertical axis) of the models
learned by uncertainty sampling on the 20-News Groups
data set as in Figure 5 (rescaled as follows). At each epoch
we sort all instances by their predicted probability of mem-
bership in the majority class, P̂ (y = 0|x). The blue dots
in Figure 3 represent the minority class instances, with the
value on the left vertical axis showing their relative position
in this sorted list. The x-axis shows the active learning epoch
(here each epoch requests 30 new instances from the pool).
The blue trajectories mostly show examples’ relative posi-
tions changing. Minority examples drop down to the very
bottom (certain minority) either because they get chosen for
labeling, or because labeling some other example caused the
model to “realize” that they are minority examples.

We see that early on the minority examples are mixed all
throughout the range of estimated probabilities, even as the
generalization accuracy increases. Then the model becomes
good enough that, abruptly, few minority class examples are
misclassified (above P̂ = 0.5). This is the point where the
learning curve levels off. However, notice that there still are
some residual misclassified minority examples, and in par-
ticular that there is a cluster of them for which the model is
relatively certain they are majority examples. It takes many
epochs for the active learning to select one of these, at which



(a) Safe-Adult (b) Safe-Guns

(c) DMOZ-Science (d) DMOZ-Games

(e) DMOZ-News (f) 20-News-Groups
Figure 1: Comparison of active learning strategies and guided learning. The vertical axis shows the gen-
eralization performance of the learned models, measured by the area under the ROC curve (AUC). The
horizontal axis shows the number of examples labeled/acquired. Uncertainty sampling and boosted disagree-
ment outperform random sampling. Guided learning dominates by a large margin.

point the generalization performance increases markedly—
apparently, this was a subconcept that was strongly mis-
classified by the model, and so it was not a high priority for
exploration by the active learning.

On the 20-News Groups data set we can examine the mi-
nority examples for which P̂ decreases the most in that late
rise in the AUC curve (roughly, they switch from being mis-
classified on the lower plateau to being correctly classified
afterward). Recall that the minority (positive) class here
is “Science” newsgroups. It turns out that these switching

examples are members of the cryptography (sci.crpyt) sub-
category. These pages were classified as non-Science pre-
sumably because before having seen any positive examples
of the subcategory, they looked much more like the many
computer-oriented subcategories in the (much more preva-
lent) non-Science category. As soon as a few were labeled
as Science, the model generalized its notion of Science to
include this subcategory (apparently pretty well).

Finally, let’s return briefly to the surprising (to us) re-
sult that density-sensitive active learning techniques did not



Figure 2: Comparison of random sampling, uncertainty sampling, and guided learning on the same data set
with induced skews ranging from 5 : 1 to 10, 000 : 1.

Figure 3: A comparison of the learned model’s or-
dering of the example pool, along with the quality
of the cross-validated AUC.

improve upon uncertainty sampling in this domain, when
we have just provided some support for our intuition that
the concepts are disjunctive, and thus one would expect
a density-oriented technique to be appropriate. Unfortu-
nately, for these domains—and we conjecture that this is
typical of domains with extreme class imbalance—the ma-
jority class is even more disjunctive than the minority class.
For example, in 20-News-Groups, Science indeed has four
very different subclasses. However, non-Science has 16 (with
much more variety). We expect the same thing to be true
for safe advertising: there are certainly very different sorts of
adult content, of hate speech, etc. But there are many more
subclasses of non-objectionable content (the whole rest of
the ad-supported web). Techniques that (for example) try
to find as-of-yet unexplored clusters in the example space
are likely to just get lost in vast and varied majority class.

7. COST-SENSITIVE GUIDED LEARNING
AND HYBRID STRATEGIES

The per-instance cost for a guided learning strategy is
likely to differ from that for strictly label-based active learn-
ing. Searching for an example of an obscure class may re-
quire more effort than simply identifying if a given sample
belongs to the class of interest. Alternatively, using tools
like web search engines, clear-cut examples may be readily

found, whereas labeling would require time-consuming anal-
ysis of each case. The relative costs of guided learning and
instance labeling vary from setting to setting, and in this
section we seek to investigate the behavior in a variety of
cost scenarios.

Figure 4 compares various instantiations of our guided
learning approach with uncertainty sampling on the three
data sets, where the curves show the increase in general-
ization performance as a function of investment in human
effort (labeling or search). The horizontal axis shows the
total cost expended by each strategy; to normalize, we fix
the cost of labeling to be 1. For active learning, we only re-
port for uncertainty sampling. The different instantiations
of guided learning vary the relative cost of search (γ) from
γ = 0.5 to γ = 16, doubling each step.

Figure 4: Comparison of guided learning and active
learning under different relative costs for search and
labeling (20-News-Groups data set). Horizontal axis
shows total cost, normalized to 1 for acquiring one
label. Here guided learning and active learning have
equivalent performance-per-unit-cost when search is
about 8 times more expensive than labeling.

By construction, the performance-per-unit-cost of guided
learning declines gradually as the cost is increased. These
results show how one can judge the relative value of applying
human resources for search and for labeling. For example,
for 20-News-Groups, in terms of performance-per-unit cost
uncertainty sampling seems to be approximately equivalent



to guided learning when search is approximately γ = 8 times
more expensive than labeling.

As discussed, guided learning seems to be most appropri-
ate in cases where the class priors are extremely unbalanced,
and the cost structure is skewed in the opposite direction:
discovering missing instances from the minority class is more
expensive than missing examples from the majority class.
The results presented up to this point have assumed that one
would have to choose either guided learning or active learn-
ing. In practice, it might be better to mix strategies. For
example, one might bootstrap the active learning process by
first searching for good training data, potentially at a higher
cost-per-example; alternatively, if one suspects that the ac-
tive strategies have reached a plateau (as in Figure 1(f)),
search may be used to inject additional information.

Given a budget, B, a data set, D, and a cost struc-
ture, C, policies for guided/active learning will allocate B
to some combination of guided search and instance labeling.
The goal of this of this section is to illustrate that hybrid
guided/active strategies can be designed to offer superior
performance for a given B than either strategy would be
capable of in isolation.

While such a hybrid strategy could take many functional
forms, here we propose a switching strategy inspired by the
DUAL technique used by Donmez et al [12]. We rely on our
background knowledge that guided learning excels at finding
different examples of the minority class, while many tradi-
tional active learning techniques are better at fine-tuning
the decision boundary of the base model.

First, the technique estimates the benefit to model gener-
alization of a purely guided selection strategy as a function
of the cost of human effort. When the returns for further
guided selection are sufficiently low, it switches to a purely
active strategy. Note that almost any conventional active
learning strategy may be employed for this phase of the hy-
brid approach. Due to its simplicity, documented success,
and ubiquity, we chose uncertainty sampling as the active
learning heuristic used in this second phase.

More succinctly, given a certain cost structure represent-
ing the cost-per-query to an oracle performing guided learn-
ing, we perform guided learning by selecting instances from
both classes in proportion ρ. After each phase of guided
learning, we estimate the performance, A, and use this per-
formance estimate to construct a learning curve. When the
expected gain for performing additional guided learning as
a function of cost is sufficiently low, ∂A

∂c
≤ τ , we switch from

guided learning to a more traditional active learning strat-
egy that requires only choosing examples from the pool for
which to request labels.

In order to determine when to switch phases in our pro-
posed switching strategy, we must understand how the per-
formance of a model is changing under a given selection
scheme, as a function of that scheme’s cost, ∂A

∂c
. This re-

quires careful estimation of the model’s performance at each
epoch. To accomplish this, we compute x-validated accu-
racy of the current model on the available pool of instances.
Progress of learning curve is estimated empirically [20]. Here
we use LOESS regression in order to smooth the variances
in estimated learning rates at each epoch. More succinctly,
the learning rate at any point is estimated by computing the
slope of a least-squares linear regressor fit to performance es-
timates local to that point (in this case x-validated accuracy;
cf.[20]). When the slope of accuracy as a function of cost

Figure 5: Comparison of our hybrid strategy with
guided learning and uncertainty sampling.

drops below some threshold, τ , we change strategies from
guided learning to active learning.

The learning curves traced by the proposed hybrid tech-
nique on the 20-News-Group data set are presented in Fig-
ure 5, using the approximate break even cost of γ = 8. We
see that under this cost setting, a switch from guided learn-
ing to active learning does indeed improve the learning rate
beyond what is achieved by either component technique in
isolation. Note that as the cost approaches approximately
2, 000, the slope of the learning curve increases drastically as
the selection strategy switches from guided learning to active
learning. This reveals an interesting limitation of the typical
learning-curve evaluation. Before cost=2000, the learning
curves seem to show fairly equivalent performance (with a
slight advantage to active learning here at γ = 8). However,
the hybrid strategy illustrates that the models likely are ac-
tually very different. After cost= 2000 both active learning
and the hybrid are using the same acquisition strategy (un-
certainty sampling). However, the hybrid performs much
better. The difference is that the hybrid’s model has bene-
fitted from a strong exploratory phase, randomly sampling
instances from across both classes, leaving it in a state very
amenable to refinement by active learning.

8. GUIDED LEARNING IN THE WILD
Through out the preceding sections, we have used class-

conditional random sampling as a simulation for a true guided
learning system. This section presents results from a real
guided learning system, AdSafe Media’s Web Hound, where
class-exemplary urls are collected to facilitate the swift pro-
duction of statistical models. We provide a first experimen-
tal verification that the conclusions made through simula-
tion throughout this work also hold for a realistic system.

AdSafe Media’s Web Hound is a production system apply-
ing micro-outsourcing resources towards the construction of
statistical models for use in a safe advertising system. A
worker in a micro-outsourcing system is provided the defini-
tion of a class under consideration and tasked with finding
examples of this class, using all tools available. Responses
are checked for duplication, and optionally passed through
an explicit labeling system to ensure correctness, thereby re-
ducing noise and spam. The resulting urls are then passed



Figure 6: Comparison of our guided learning simu-
lation with AdSafe Media’s Web Hound system.

to a machine learning system where model induction is per-
formed.

In order to determine if the results seen throughout the
preceding sections indeed hold for such a production set-
ting, we task users with finding examples of adult content
and non-adult content in equal proportions. These results
are held in a pool where training instances are drawn to
build models and produce learning curves. The models in-
duced by Web Hound are then compared to models created
through the guided learning simulator accessing the hand
labeled data set, Safe-Adult. In order to ensure that neither
data set has an unfair advantage, we choose a third data set
for evaluation. This test set consists of random web pages
from the adult and non-adult portions of the DMOZ tax-
onomy. We perform ten folds of cross-validation evaluated
on this external set and present the results in Figure 6. The
results are surprisingly similar—both the simulation the real
system are able to find examples that produce very accurate
classification models, with very little human effort.

A system like Web Hound, based on the explicit selection
class examples, while extremely flexible, is but one way to
implement a guided learner. Depending on the details of
one’s application, it may be preferable to ask for key word
queries, that, when posed to a search engine, are highly likely
to return class-representative examples. Alternately, in cer-
tain settings, it may be easy to ask for directory pages, for in-
stance sub-sets of DMOZ likely to contain examples of inter-
est. However, the fine-granularity facilitated through Web
Hound allows the explicit exploration of disjuncts- when por-
tions of a class are poorly represented, instructions can be
altered to seek more examples from these portions of the
problem space. Finally, we point out that in the most skewed
settings, it may be possible to select random unlabeled ex-
amples from the pool and just assume a negative example,
rather than seeking majority instances explicitly. Depend-
ing on the base rate, the number of mistaken labels that
result from such a strategy may be far lower that the typi-
cal human error resulting from a human labeling system.

The implementation choices made in a guided learning
system have obvious impacts on the both the costs per in-
stance, and on the distribution of the instances returned.
Anecdotally, for our particular instantiation, we have ob-
served per-instance costs between two and five times the
cost per label.

9. CONCLUSION & LIMITATIONS
The main result of this paper—that guided learning can

dominate active learning so strongly—raises the possibly

contentious question of: when should we be doing active
learning at all? The analysis of the hybrid techniques shows
such situations exist, for instance, under low class skews and
relatively high search cost. However, the more general re-
sults (Figure 4) make it clear that the question warrants
further investigation.

This is not a trivial point. Research on active learning
almost always makes one (or both) of two assumptions: (i)
that labeling via initial random sampling is going to produce
a model sufficiently accurate to do active learning, or (ii)
that there is some “cold start” labeled-instance-acquisition
process that provides the system with a small initial set
of labeled examples to prime the process with a model of
sufficient accuracy for active learning to be effective. With
even moderately high skews, assumption (i) very often does
not hold. With even 999 : 1 skew, a labeler would have to
label 30, 000 examples just to get 30 minority examples.

Most research starts with assumption (ii) that some (usu-
ally unspecified) labeled-instance-acquisition process has pro-
duced a small labeled training set (often balanced). The re-
sults of this paper raise the question: why not just continue
with that labeled-instance-acquisition process?! Why do ac-
tive learning at all? It is possible that the acquisition process
was an unrepeatable (historic) stroke of good fortune.6

Otherwise, these results suggest that we may want to
put more research emphasis and development investment
on/into such processes. What is the relative cost as com-
pared to active learning? Under what conditions does it
make sense to continue with this process, versus switch-
ing to active learning, versus applying some combination of
both? Clearly more sophisticated hybrid approaches will be
designed than the simple switching strategy we use. For ex-
ample, we would like to be able to judge the relative benefit-
per-unit-cost of different human deployment strategies and
allocate resources accordingly. Moreover, perhaps we should
be investing more effort in reducing the cost of search for
examples.7 What mechanism design issues arise in building
systems for cost-effective guided learning, for example using
micro-outsourcing systems [24]?

While many of the analyses presented in this paper are
simulations using class-conditional random sampling, we jus-
tify many of our conclusions by showing similar acquisi-
tion performance for both our simulator and the AdSafe
Web Hound. This one experiment does not explore issues
surrounding a production guided learning system—any im-
plementation is likely to have some biases induced by the
method of selection, be that DMOZ, a search engine, or
a user’s imagination. As a result, the instances returned
from a guided learning system may differ significantly from a
class-conditioned uniform random selection in certain cases.

6For example, in our safe advertising example, an advertiser
complained about a particular set of web pages on which her
ad appeared, which then become labeled training data.
7An initial reaction to the question of quantifying the rel-
ative cost of search versus labeling often is: search has to
be more expensive than labeling, since with search one must
find the examples as well as label them. However, with a
search engine and a human brain, it may be less costly to
envision what a case might look like and find it, than to
examine a presented case in detail to be sure. For example,
one may be able to search and find examples of all manner
of hate speech on the web more efficiently than reading care-
fully through a borderline web page to determine whether
or not it contains some form of hate speech.



This could bias the results above in either way: they could
be overly pessimistic if initial instances returned would in
some sense be the best, most informative representatives
of that particular class. They could be overly optimistic if
the internal biases of the search engine or the human user
made the selection of certain examples unlikely. Research
has shown repeatedly that classifiers’ errors are concentrated
in the “small disjuncts”—the model’s representations of the
rare subclasses [29]. In light of the disjunct-oriented results
presented in Section 6 and our preliminary discouraging re-
sults using density-sensitive active learning, the problem of
finding rare subclasses both with guided and active learning
requires further investigation.

Relatedly, above we mentioned that in practice extreme
imbalance often is reduced by orders of magnitude via filters
on examples. Such filters are essentially codified search pro-
cedures for guided learning. These filters also suffer from
potential bias problems, and in our experience the bias is
substantially more extreme than with human searchers, be-
cause of the inflexibility. These filters bias the data largely
toward particular disjuncts of the interesting category. In
practice, this introduces a particularly insidious problem for
data mining: the testing data are biased as well!

Thus, it is necessary to provide tools that simultaneously
reduce the cost of search, and challenge humans to explore
the “far reaches” of the category. This suggests a different
integration with active learning: guiding the human search
away from cases already “known” by the model to be mem-
bers of the class, and (somehow) toward as-of-yet unexplored
disjuncts.

Our simulation has other important differences from a
real-world implementation of guided learning, particularly in
the case of document search on the web. First, the extreme
size of the web is likely to yield a near-unlimited number
of instances belonging to almost any category. Thus, unlike
with our experiments, the guided learning curves would not
run out of minority class examples (which is often the appar-
ent reason they “knee over” so sharply). On the other hand,
many instances in the web’s long tail may be increasingly
difficult to find. This could mean that the constant-cost
model is simplistic; search probably incurs increasing cost
as the number of requested instances increases, and as the
exploration of the class probes the smaller disjuncts.

This paper does not explore the possibility that guided
learning might focus solely on finding minority classes. In
cases of extreme skew, one likely could just presume a ran-
domly selected case to be a majority class, and deal with
the small amount of resultant noise. This would effectively
halve the cost of guided learning as we present it.

There still is much to do to understand the best ways to
employ human resources for some combination of search and
labeling, to produce the best models per unit cost in training
data. We hope that this paper has made useful headway.
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