Int J Softw Tools Technol Transfer
DOI 10.1007/s10009-011-0191-0

REGULAR PAPER

The common aspect proof environment

Shmuel Katz - David Faitelson

© Springer-Verlag 2011

Abstract We describe the goals, architecture, design con-
siderations and use of the common aspect proof environment
(CAPE). The CAPE is an extensible framework integrating
formal methods and analysis tools for aspect-oriented pro-
grams. It is intended both to encourage the use of formal
methods and analysis tools for systems with aspects and to
facilitate the development of new tools for aspect analysis.
The general principles of the CAPE are first explained, and
the components and their high-level organization are given.
The user interfaces are described, providing both application
oriented and tool oriented Eclipse views. A description of the
tools already integrated into the CAPE is given, and some
analysis and verification scenarios are shown for an example
aspect system. The aid of the CAPE in tool evaluation and
experimentation with innovative usage of tools is demon-
strated. As one example, verification aspects are used to aid
in the abstraction and specification needed for formal analy-
sis in Java Pathfinder. The scenarios and strategies employed
are steps towards a methodology that includes multiple for-
mal methods tools in aspect-oriented software development.

Keywords Verification framework - Aspects -
Formal methods tools - Tool evaluation
1 Introduction

Aspects are powerful programming constructs that allow
modular treatment of concerns that otherwise would cut

S. Katz (X)) - D. Faitelson
Computer Science Department, The Technion, Haifa, Israel
e-mail: katz@cs.technion.ac.il

D. Faitelson
e-mail: davidfn@cs.technion.ac.il

Published online: 16 March 2011

across usual class and package modules (see [6] for a
variety of aspect languages). An aspect declaration generally
includes a description of when it is to be activated (called a
pointcut descriptor) and code segments to be executed (called
advice). Aspects often introduce nonlocal effects which make
them difficult to reason about. One possibility to help us rea-
son about systems with aspects is to use formal verification
and analysis techniques.

Unfortunately, using such techniques is not trivial, even
for non-aspect systems. Indeed, full post-facto formal verifi-
cation of implemented software systems has proven imprac-
tical. Inductive methods have floundered due to the difficulty
in providing appropriate invariants, and model checking has
proven unable to directly handle the huge state-space of com-
plex software with asynchronous threads or processes. Thus,
any attempt to introduce formal methods for aspects has to
either deal directly with key abstract models, e.g., of indi-
vidual aspects, or provide a methodology for abstracting an
implemented system by isolating components for indepen-
dent analysis and/or reducing the possible values of fields or
variables.

A second problem is that even though there are attempts
to develop tools that use formal techniques to verify aspects,
there has not been any attempt to integrate the different tools
into a single coherent framework.

A third difficulty is that existing verification tools for
aspects differ widely in their robustness and maturity and
may be showcased on example systems that do not reveal
the limitations of the tool. Thus, a “neutral” environment is
essential for evaluation of and experimentation with tools.

In order to improve this situation, we have been devel-
oping, as a part of the AOSD-Europe project, the common
aspect proof environment (CAPE), which is a platform for
the integration of verification and analysis tools for aspect-
oriented languages. The purpose of the CAPE is to try and

@ Springer

S. Katz, D. Faitelson

bring the tools and techniques of formal verification closer to
developers of systems with aspects, and to facilitate the eval-
uation of such tools, as well as to integrate the use of such
tools into development methodologies for aspect systems.

In this paper, we summarize the work done on the CAPE
environment and use a case study to demonstrate how the
CAPE may be used to apply various tools to verify aspec-
tual code. The scenarios that we demonstrate on the sample
aspect system deal both with verifying an abstract model of
an individual aspect relative to its specification, even before
it is expressed in a programming language, and with the
abstraction needed to formally verify a module of Java code
with aspects in Aspect]. Both of these help to alleviate the
first problem mentioned above, of abstraction. The scenarios
themselves and typical chaining of methods facilitated by the
uniform tool interface, along with the dual view provided by
the CAPE (explained in the following Section), help with the
second problem, of integration. The difficulties encountered
in applying some of the tools to new examples, and experi-
ments with new ways of applying the tools (some of which
are described later), show the usefulness for tool evaluation.

In the following section, the structure and user interfaces
of the CAPE are described, and a brief overview of the tools
presently in the framework is given. Then, our view of inte-
grated use of tools is explained, followed by a description of
the elements in the case study, using a medium-sized aspect
application called “Health Watcher” [26] and the application
of several usage scenarios and tools to it. The paper ends with
a description of related work, and conclusions.

2 CAPE

The CAPE, whose basic architecture was first described
in [5], is an extensible platform for integrating verification
and analysis tools of aspect-oriented programs. The CAPE
provides a common interface to a variety of verification tools,
manages the verification artifacts, and offers a standard inter-
face for extending the platform with new tools. In addition,
the CAPE provides a way to link various tools together to
form proof strategies, exploiting the relative strengths of
the different tools, and suggests use scenarios to demon-
strate how different verification tasks can be approached.
The CAPE is implemented as a set of plugins on top of the
Eclipse platform. It is available for examination and down-
load at http://www.cs.technion.ac.il/~ssdl/research/cape.

In the approach to tool integration seen here, modules of
existing tools become the basis of the integration framework.
Thus, a collection of existing static analysis and verification
modules is used to construct specific aspect verification tools
for a variety of programming and design languages. The
generic collection includes data-flow and parsing compo-
nents, as well as existing model checkers and type analyzers.

@ Springer

For example, the MAVEN tool to check the correctness of
individual aspects (and that is described in more detail later)
uses the NuSMV model checker, and in turn is a component
in another tool being developed to detect interference among
multiple aspects.

The CAPE proof environment is intended for three types
of users: application developers and testers who wish to
apply the tools to aspect programs or designs, tool developers
providing new verification or analysis tools for aspects, and
tool evaluators who wish to evaluate the quality or robustness
of atool. Therefore, individual verification and analysis mod-
ules are intended to be accessible and separately included in
the CAPE, both so that they can be individually activated or
evaluated, and also so they can serve as building blocks for
developing new tools. Besides standard code analysis mod-
ules, facilities are provided to construct finite-state models
that are then input to model checkers.

The CAPE uses Eclipse’s plug-in mechanism to achieve
a flexible infrastructure of its various modules. The CAPE
provides a framework in which the different modules can
communicate, sharing resources and complementing each
other’s functionality. This is achieved through the Generic
Aspect Representation (GAR): a collection of common rep-
resentations of aspect-oriented source code and other proper-
ties. Among the representations are the abstract syntax trees
of the component modules of implemented systems, abstract
transition system representations intended for model check-
ing, dataflow information (including define-use pairs and
method summaries) for aspect systems, representations of
pointcuts as regular expressions, and properties proven about
the system.

Since the GAR is implemented on top of the Eclipse
resource management platform, we first provide a brief over-
view of auser view of Eclipse and then describe how the GAR
is implemented. The basic unit of organization in Eclipse is
a project. Each project consists of a collection of files and
directories. In addition, each project has one or more natures.
A nature defines the type of the project and associates to the
project a builder. Thus for a Java application we may create
a project with a Java nature that associates a Java compiler
as the builder of the project. Whenever the build action is
selected from the menu, the Java compiler takes all the Java
source files in the project and compiles them.

A single project is homogeneous. You can create a Java
project or a Ruby project, but you cannot have both Ruby
and Java source code in the same project. In order to sup-
port applications built using more than one language, we can
collect several projects into a working set. We then can have
a working set for an application, containing a project with a
Java nature for the Java code, a project with a Ruby nature
for the Ruby code, and so on.

Another important property of Eclipse projects is that
they can refer to the same files and directories using linked

http://www.cs.technion.ac.il/~ssdl/research/cape

The common aspect proof environment

resources. A linked resource is similar to a symbolic link
in UNIX. This makes it possible to create some projects as
views of other projects by making the files in the view pro-
jects link to the files in the other projects.

The CAPE’s GAR is implemented as an Eclipse work-
ing set. A typical CAPE GAR consists of one or more pro-
jects that hold the source code of the application and one or
more analysis projects that either hold abstract models of the
application, or use linked resources to select the parts of the
source code that are relevant for analysis. For example, to
perform aspect data flow analysis using the AIDA tool (to
be described later) we create an AIDA project (that is, a pro-
ject whose nature is AIDA) and populate it with links to the
source files that we would like to analyze. When we build the
project, the AIDA tool (which is the builder of that project)
compiles the files in the project and produces a graph that is
added to the project’s output directory.

In addition to the standard Aspect] Development Toolkit
(AJDT), the compilers presently in the CAPE are the stan-
dard Aspect] [18] compiler, the extendable abc compiler [1],
and a partial compiler for Composition Filters [2]. Moreover,
there are five foundational tools (not especially oriented to
aspects) available, namely

— JavaPathFinder [10], amodel checker for woven systems,
which is explained in detail in Sect. 8.

— NuSMV [3], a well-known publicly available (Open
Source) model checker.

— Cadence SMV [22], another version of an SMV model
checker, with different properties.

— GROOVE [24], a tool set for creating and analyzing
graphs, including an editor for creating graph produc-
tion rules, a simulator for visually computing the graph
transformations induced by such rules, a generator for
automatically exploring state spaces, and an imaging tool
for converting graphs to images.

— VPA package [23], a collection of decision procedures
for Visibly Pushdown Automata that can be used to deter-
mine whether complex pointcuts from different aspects
define overlapping joinpoints.

The tools specifically oriented to analyzing systems with
aspects include

— MAVEN [7,8], a model analyzer for individual aspects
relative to their specifications (that is further explained in
Sect. 7).

— SECRET, a syntactic tool to detect conflicts (that origi-
nates in the Composition Filters compiler suite).

— AIDA [30], a static analysis tool that detects how aspects
interact through changes they cause to the data flow of a
system.

— AIA (Aspect Introduction Analyzer) [11], which analyzes
and reports conflicts related to introductions. AIA auto-
matically converts (part of) the abstract syntax tree of
Java and Aspect] programs (source code) to a GROOVE
graph-based model. In addition, it automatically con-
verts the introduction specifications that are part of the
Aspect] source code to GROOVE graph transformation
rules, which can be applied to such a model.

— CNVA [12], a scenario-based tool to check that every
execution sequence in a woven system is equivalent to
one where aspect advice is done atomically immediately
from states that are joinpoints (also briefly considered in
Sect. 10).

— GRASS [27], a tool for detecting interference between
aspects written in the Composition Filters language. The
tool builds a set of graph transformation rules that models
the behavior of the composition filters and then uses the
GROOVE tool suite to generate a labeled transition sys-
tem that represents all the possible executions of the fil-
ters. Interference between aspects is detected by looking
for different final states in the graph, since they indicate
that a different execution order of the aspects (at the join
point) produces different results.

The structure of a typical CAPE application working
set is seen in Fig. 1. In it, an application engineer for
a security application has applied dataflow analysis using
AIDA to detect whether the PasswordEncryption and Pass-
wordRetrieval aspects potentially influence the same fields
or variables, used AIA introduction analysis to check that
there are no name conflicts in those aspects, and used
Maven to check the correctness of state machine models
of those components relative to a linear temporal logic
specification.

The tools introduced into the CAPE are divided into the
categories Verifiers, Translators and Editors. Verifiers ana-
lyze their input and provide the user with a viewable result of
the analysis process. Examples include model checkers and
data flow analyzers. They are implemented over Eclipse’s
launching mechanism, which allows the user to “debug”
his/her input files with a verifier much like any other debug-
ger in Eclipse.

Translators translate (or compile) their input into an output
that other tools may use. Some examples are Graph Pro-
duction System generators, finite state machine builders, or
compilers. They are implemented as builders, and are used
as described above.

Editors, as their name suggests, modify their own input
files and are implemented as either built-in or external Eclipse
editors.

In addition to the typical (for Eclipse) application-based
view, the CAPE provides a tool-based Eclipse perspective,
illustrated in Fig. 2, which offers a centralized location where

@ Springer

S. Katz, D. Faitelson

gt

TR it ” B ="

= &= @

*9 Hierar [L[’_| Projec ftg Packa £3 ™\

The working set

These files are links to the files =
in the implementation project

\\'

This is the project that holds
the AspectJ implementation

3=

\.T_g

g

Every analysis project has an input
directory and an output directory.
The builder for the project
processes all the files in the input
directory and writes the results to
the output directory.

™

Fig. 1 The structure of a CAPE working set

the user can browse and activate the available tools on the
applications to which that tool has been applied. This allows
convenient evaluation of tools in the CAPE by gathering
together examples of its application.

The organization of the CAPE facilitates addition of new
tools to the CAPE, and a precise menu for integrating such
tools is provided on the CAPE webpage (along with a video
demonstrating the steps in adding a new tool seamlessly
to both perspectives of CASE tools). This should encour-
age both new tool development, and evaluation of additional
aspect verification tools.

@ Springer

1 Security application
I=F data flow analysis /

= input

> implementation
B src

An Aida project

|44 EncryptionlO.aj
% PasswordEncryption.aj
ﬁ PasswordRetrieval.aj

\ This is the output

of the Aida tool

= output

ﬁ DUGraph.dot

i example
|i] Authenticate.java
'& PasswordEncryption.|
ﬁl_', PasswordRetrieval.aj
lﬂ RegquestPassword jav

EE RetrievallO.aj
'ﬂ Server java
|l| Success java

=i JRE System Library [JVM 1.5.0 (
Bl Aspect] Runtime Library
I=*F introduction analysis

&\' = input

|§:1 PasswordEncryption.aj
@ PasswordRetrieval.aj

= output

= groove_model.gps

=" maven analysis
= input

| Encrypt.fsma
—| Retrieve.fsma
| Security_KPER.fsma

= output

|| Encrypt.out

|~| Retrieve.out
|| Security_KPER.out

3 The importance of integrated analysis

Effective analysis requires the integration of different tools
and techniques at different stages of the development cycle,
for three main reasons.

First, different tools have complementary (though often
overlapping) capabilities. For example, because AIDA can
only find problems that involve data flow dependencies it
did not detect a race condition in our case study that clearly
is related to control flow. On the other hand, even though a
tool like JPF can find, at least in principle, any problem that

The common aspect proof environment

[Translators 83 =0
Select a Translator: AIDA v
Select a project:

/Health Watcher Data flow analysis Browse...
Translate
' s =)

1 Verifiers S@_x 8
Select a Tool: Java PathFinder =
Select a Java file with a main method

Browse...
Activate

Fig. 2 The CAPE’s tool perspective

AIDA can find, in practice we would prefer to use AIDA
whenever possible because it operates entirely automatically
on the source code, while with JPF we need to invest more
time and effort to adapt the system and to design and insert
appropriate assertions to locate the problem. In general, syn-
tactic and dataflow tools (like AIDA and AIA) are easier to
operate but are limited in the classes of problems they can
detect, while general purpose tools (like JPF and MAVEN)
can detect (almost) any class of problem but require (some-
times much) greater effort.

Second, many tools, in particular general purpose tools,
follow a pattern of diminishing returns. Investing a small
amount of effort finds most of the problems, but to find
more problems requires investing much more time. For exam-
ple, with JPF it is relatively easy to find violations of sim-
ple invariant assertions. However, when we are looking for
more general temporal properties, as will be described, we
must translate them to simple assertions by augmenting the
state space of the system with auxiliary variables updated at
various points. At some point the complexity of this mech-
anism might be greater than the system under test, and it
then may be better to try another tool (for example, MAVEN
which natively supports checking full LTL temporal logic
properties).

Finally, different tools operate at different levels of
abstraction, trading time and effort against precision. Even
if an abstracted model satisfies desired properties, the
full implemented system has to be checked, because the
abstracted model might not fully reflect the details of
the implementation. An example of this phenomenon will
be shown.

For all of the aforementioned reasons, the integration of
different tools is essential for an effective analysis and veri-
fication process. Such a process should be flexible (allowing
us to accommodate real world limits of time and effort), eco-
nomical (allowing us to extract from each tool the greatest
benefit with the least effort), and finally allow compensating
for the limitations of each individual tool with the capabilities
of the other tools.

4 The case study

Health Watcher [26] is a web application that manages health-
related records and complaints. It contains about 100 classes
and 14 aspects with a total of about 10K lines of code.

The application is essentially a database of various health-
related records: disease types, complaints, health units,
employees of these units, and so on. For each such problem
domain entity there is a repository that can be stored either in
a relational database or in memory (usually for testing pur-
poses). The decision whether to use an external database or
to store everything in memory is global to the system, and is
determined by the initialization of a constant.

The functionality of the system is collected under a single
facade object which contains a method for every operation
and query that the system supports: creating new employees,
updating complaint records, retrieving complaints and so on.
Users interact with the system (like any traditional web appli-
cation) by filling a form in the browser and sending it to the
web server. Next, the web server forwards the HTTP Get or
Post request to the servlet, which parses the request and calls
the appropriate Health Watcher facade operation. The servlet
also translates the results of the call (including exceptions)
into HTML which is sent back to the browser. The aspects
in the system are divided into packages:

— Synchronization aspects, of which there are three, con-
vert the record repositories into thread-safe versions by
protecting their operations with a Java synchronize
keyword.

— Distribution aspects provide an option for running the
system in a client-server mode by changing the servlet
to contain a Java RMI client and creating an RMI server
that runs the application logic.

— Exception handling aspects are used to translate excep-
tions into HTML messages. This is required because
unless caught, application level exceptions such as trans-
action aborts will cause internal web server errors. The
exception aspects catch these exceptions and convert their
content into an HTML message.

— Persistence aspects replace calls to the creation of repos-
itory objects by calls that decide whether to create an in-
memory or a persistent implementation of the repository

@ Springer

S. Katz, D. Faitelson

interface. The decision is based on the value of a global
constant.

— A transaction management aspect turns the public
methods of the facade into transactions by invoking a
begin-transaction operation before every facade method
call, a commit-transaction operation after a successful
return, and an abort-transaction operation after an excep-
tional return.

We applied several CAPE tools to the Health Watcher sys-
tem. The static analyzer AIA and dataflow tool AIDA were
used to identify possible areas of interest. Using AIA gave us
a visual view of aspect introductions which highlighted some
that under further investigation were found to create nam-
ing conflicts. Applying AIDA created a graph of data flow
dependencies between aspects which acted as a map of dan-
gerous spots that we then examined more closely. We used
MAVEN to determine the correctness of models of specific
aspects and also applied an extension for detecting aspect
interference to analyze an interaction between the exception
handling and transaction management aspects. Finally, JPF
was used on modules of bytecode after weaving both Health
Watcher aspects and additional aspects to specify and abstract
the module. Below we describe the application of these tools
in greater detail, how the CAPE can be used both to ver-
ify an application, and to evaluate the tools. The difficulties
encountered in using the tools are summarized in Sect. 9.

5 Aspect introduction analysis (AIA)

The Aspect Introduction Analyzer tool (AIA) analyzes and
reports conflicts related to introductions. AIA automatically
converts (part of) the structure (abstract syntax tree) of Java
and Aspect] programs (source code) to a GROOVE graph-
based model. In addition, it automatically converts the intro-
duction specifications that are part of the AspectJ source code
to GROOVE graph transformation rules.

The tool explicitly models several kinds of composition
conflicts as graph matching patterns. Using GROOVE as
a subsystem to match these patterns against the program
models, the tool can automatically detect the occurrence of
composition conflicts. The same tool is used to apply the
introductions (represented by graph transformation rules) to
the program model.

AIA enables us to detect situations in which the transfor-
mations can be applied in different orders, leading to poten-
tially different transformed program structures. In practice,
this would mean the (normally arbitrary) order of compila-
tion may lead to differently structured compiled programs—a
highly undesirable effect. It can, for example, detect “holes”
in the type-checking of Aspect], not detected by the regular
compiler, where the same field name is introduced by two

@ Springer

aspects, but given different types (and used for different pur-
poses). In practice, such conflicts were not found in the orig-
inal Health Watcher system, but when errors were inserted
in order to check the tool, it indeed succeeded in identifying
them. Once the user creates an AIA project, and selects Java
and AspectJ code files to be analyzed, the tool automatically
executes and creates a folder with results that can be viewed
using GROOVE’s graph visualization package.

6 Aspect interaction detection analysis (AIDA)

The AIDA tool [30] detects how aspects interact through
changes they cause to the data flow of a system. For exam-
ple, one aspect may read a variable x while another aspect
(perhaps introduced later) writes to this variable. The earlier
aspect which assumed that x was updated by the original
program is now reading values that were updated by the new
aspect. This interaction may lead to unexpected (and often
undesired) modifications to the behavior of the program. The
AIDA tool can analyze the code before it runs and locates
such interactions. It performs an iterative bottom-up data-
flow analysis on Aspect] programs, based on summaries of
methods and aspect advice.

We used AIDA to look for possible problems in the Health
Watcher case study. In some variants of the application sys-
tem, AIDA indeed detected potential Read/Write interfer-
ence among aspects. For example, additional aspects that
monitor execution may be influenced in unwanted ways by
aspects that increase the distributiveness of the application.
Once the potential interaction among aspects is detected by
the dataflow, it can be considered in greater depth to deter-
mine whether errors could result in the woven system.

Of course, this tool is useful for identifying potential inter-
ference based on dataflow, and cannot detect problems such
as race conditions based purely on control flow, or seman-
tic interferences related to the intended properties of each
aspect.

7 MAVEN

MAVEN [7,8] is a model checking tool that determines
whether an aspect is correct relative to its specification. The
specification is given in two parts: an assumption relating to
an underlying system to which this aspect should be woven,
and a guarantee about any system to which the aspect has
been woven. The aspect is correct relative to its specification
if whenever it is woven to a system satisfying the assump-
tion, the woven result will satisfy the guarantee. A user has
to describe the assumption and guarantee in temporal logic,
and the model of the aspect advice as a transition system
in the language of the SMV model checker. The pointcut is

The common aspect proof environment

also identified in terms of predicates that are true for pointcut
states.

The tool then automatically builds a transition system that
represents every computation of a system that satisfies the
assumption, and weaves the aspect advice transition system
into it, by transferring control from a state representing a
pointcut to the initial state of an advice segment and transfer-
ring control back to the underlying system in the appropriate
state after the advice segment. The result of this construction
is then passed to the NuSMV model checker that determines
whether the guarantee of the aspect holds for this model. If
it does, the aspect is correct relative to its specification.

Such verification of an abstract aspect model is valuable
in order to check that the assumptions and guarantee are well
understood and that the pointcut and advice model achieve
the desired result. However, it does not cover problems that
might arise from the use of multiple aspects, where one aspect
may interfere with the correct operation of another. To treat
this problem, an Interference Detection tool [13] was used.
This tool itself uses MAVEN as a subsystem. Given two
aspects, A and B, with assumptions P4 and Pp respectively,
for each possible weaving order of the aspects, two checks are
performed: the K P4p check determines whether aspect A,
when woven into a system satisfying both P4 and Pg, keeps
the assumption of B. The K R4 p check determines whether
aspect B, when woven into a system satisfying the guarantee
of A, Ra, keeps this guarantee. If these checks are passed
for each pair of aspects in a library, any collection of aspects
from the library can be woven without causing interference.

As an example of applying these to the Health Watcher
system, consider the transaction management and excep-
tion handling aspects. We modeled the aspects as transition
systems, and their specification was given in the assume-
guarantee form described above. This is the input format of
both MAVEN and the Interference Detector. The exception
handling aspect (Ex) is applied when an exception is thrown
by a facade method. This event is modeled by a state-predi-
cate throw (thus the pointcut of the aspectis throw = true).
The aspect catches any transaction exception, creates an
appropriate report, and returns it as an HTML message to
the web server. Other exceptions are rethrown. The code and
full advice model are not shown here.

We modeled by the throw_trans predicate the event of
throwing a transaction exception, and by the msg_send pred-
icate the event of sending the HTML message. We needed
to express that throwing a transaction exception is indeed a
type of throwing. Formally,

Pg, = G(throw_trans — throw)

The specification of the exception handling aspect (Ex) guar-
antees that if a transaction exception is thrown, then an

appropriate message will be sent:
Rgx = G(throw_trans — Fmsg_send)

We have verified the aspect Ex in MAVEN according to the
above specification, and found it to be correct.

The transaction management aspect (TM) is applied in
three cases: when a facade method is about to be executed
(modeled by the before predicate), when a facade method
has just finished successfully (modeled by return predicate),
and when an exception is thrown during the execution of a
facade method (the throw_trans predicate mentioned above).
Executing a facade method means performing a transaction;
thus, when such a method is executed, the in_progress pred-
icate is true. The specification of the transaction manage-
ment aspect guarantees that whenever a transaction finishes
successfully, its results are committed to the database (this
event is modeled by the commit predicate), while if an excep-
tion was thrown during the execution, the results will be
discarded (rollback predicate). The transaction management
aspect should also guarantee that every transaction execution
is preceded by announcing its beginning to the database (the
begin predicate). Formally,

Rrm = [G(return — (—rollback U commit)) A
G(throw — (—commit U rollback)) A
G(in_progress — (in_progress S begin))]
The assumption of the transaction management aspect
expresses our external knowledge of the semantic relation-
ships between the predicates of the base system. It contains
statements about the connection between the in_progress
predicate and all the rest, and also about mutual exclusion
between the throw, return and before predicates. Although
several such relations were overlooked in early attempts,
leading to false counterexamples, ultimately the following
predicate was used:

Pry = [G(=(return A throw)) A
G(—(begin A return)) A
G(—(begin A throw)) A
G(in_progress —
(in_progress U (return Vv throw))) A
G(in_progress —
(—before N —return A —throw A

(in_progress S before)))]

We have verified the transaction management aspect in
MAVEN according to the aforementioned specification and
also found it to be correct.

Though both the aforementioned aspects were correct,
we detected an interference among them in one abstract
variant of the Health Watcher system using the Interference

@ Springer

S. Katz, D. Faitelson

Detection procedure. We found that when the exception han-
dling aspect was woven before the transaction management
aspect, the latter does not preserve the guarantee of the excep-
tion handling aspect. The counterexample showed that a
transaction exception is caught by the transaction manage-
ment aspect which aborts the transaction but does not re-
throw the exception and thus the exception handling aspect is
not activated and the notification message is not sent. More-
over, we found that the opposite ordering of the aspects is
also problematic: when the transaction management aspect
is woven before the exception handling aspect, the excep-
tion handling aspect does not preserve the guarantee of the
transaction management, for similar reasons.

8 Java Pathfinder

Java PathFinder (JPF) [29] is a model checker [4] that is
implemented as a Java virtual machine. That is, JPF exe-
cutes Java’s virtual machine code, but unlike a regular virtual
machine, JPF explores all the possible states that the program
may reach.

JPF keeps track of every state (the content of the heap and
the stack of each thread) the program has visited. When the
program reaches a point that may lead to several possible
executions (for example when two threads are executing in
parallel) JPF reruns the program on all the possible execu-
tions. As a result, any assertion we embed in the code will
be checked for all the possible executions of the program,
under the assumption that the program always terminates.
This means that if the assertion never triggers an exception
then we are sure that the program can never violate the asser-
tion. As an additional benefit, if the assertion is violated then
JPF creates a report that consists of the entire history of the
execution up to the point of the violation.

However, there are obstacles to the use of JPF. In order
to apply it successfully to a realistic system we must both
describe the properties we wish to check, and ensure that the
state space of the program or module to be checked is small
enough to fit within the memory of the computer.

In the original application of JPF to the case study, we fol-
lowed standard practice of inserting assert statements when-
ever needed in the source code to specify needed properties.
This means that we had to change the program every time we
decided to check for a different property. Moreover, often a
single property cannot be checked in a specific place, but we
must distribute assertions at several places in the code. To
treat the needed state reduction, we followed the traditional
approach of manually separating the parts of the program we
wish to verify from the rest of the system, and reducing the
domains of variables. This may be done either by writing a
model that is entirely separate from the original program or
by manually modifying the original program.

@ Springer

As part of JPF’s integration into the CAPE, we investi-
gated how best to apply it to complete systems with aspects
after weaving. Since it works on the Java Bytecode level,
this is not in principle difficult, but we sought to alleviate the
above obstacles to use of JPF. In particular, we experimented
with using aspects themselves to give a cleaner and more
modular usage of JPF. By using verification aspects we can
solve problems in annotating and specifying systems before
applying JPF. We can write a different aspect for each new
property and then weave it into the program without having
to manually edit it. And by using the appropriate pointcut pat-
terns we can easily distribute the different assertions to their
appropriate locations. It also becomes trivial to remove the
assertions when we have finished with the verification task.
Finally, the connection between the pointcuts —representing
where assertions are made—and the advice—representing
the assertion itself—is immediate and direct.

Some of the properties we wanted to test were general
temporal properties (namely the properties defined in the
MAVEN model). Because JPF does not support full tem-
poral logic, an aspect was written that augmented the state of
the program by a set of variables that remembered key events
and updated those auxiliary variables at appropriate places.
Using these variables we formulated the properties as simple
assertions for programs that terminate.

For example, to express

Rg = G(throw_trans — Fmsg_send)

we record the occurrence of throw_trans, set another OK
flag to false, and then begin testing whether msg_send has
occurred. When that happens, OK is set to true. When such
an execution terminates, it is simple to check the value of
OK to see whether the temporal formula held for that com-
putation. Thus, the new claim is that OK is true whenever the
program terminates (and the tool is only used for programs
that by assumption always terminate).

To treat the needed state reduction, the traditional approach
is to manually separate the parts of the program we wish to
verify from the rest of the system and reduce the domains of
variables. This may be done either by writing a model that is
entirely separate from the original program or by manually
modifying the original program. However, such an approach
is tedious and error prone. As a result, verification is rarely
preformed more than once, even though the system under-
goes many changes.

Aspects also were used to cleanly decouple state reduc-
tions from the program. It then becomes easier to reapply
the abstraction when the program changes. In addition, it
becomes easier to understand the nature of the abstraction.
By looking at the aspect we can immediately see which con-
crete elements of the system are replaced by abstract versions.

First, we must take control of the inputs to the program
and replace them with JPF’s special nondeterministic choice

The common aspect proof environment

operator. This is easily done with aspects that replace input by
the needed nondeterministic choices. Second, we must dis-
connect the parts of the application that we wish to test from
the entire application. In our case, we created a “driver” envi-
ronment for running the Health Watcher system outside of a
web application server because it would have been imprac-
tical to run the entire web server through JPF.

Another part of the environment is the database manage-
ment system (DBMS) that underlies Health Watcher’s per-
sistence mechanism. As usual in testing, a “stub” DBMS
is needed that also simulates exceptions to be tested. For
example, here is the implementation of the abstract commit
operation:

public void commitTransaction ()
throws TransactionException {
if (Verify.getBoolean())
throw new
TransactionException (' ‘'STUB_COMMIT EX'’);

Such an implementation not only removed a problematic
component from the test environment but also forced JPF to
test the system through both the normal and the exceptional
branches.

We then can create a verification aspect, as seen earlier,
with three boolean variables:

— txex_thrown is set to true when a transaction exception is
thrown.

— msg_sent is set to true when an HTML error message is
sent to the web server.

— tx_abort is set to true when a transaction is aborted.

For each variable we create a pointcut that catches all
the relevant events that the variable is intended to model.
We then use an advice to set the variable to true at these
points. For example, we set the tx_abort variable to true
whenever the persistent mechanism’s rollback operation is
called:

pointcut transactionAborts/()
call (void IPersistenceMechanism.
rollbackTransaction()) ;

after () transactionAborts () {
tx_abort = true;

After the program completes executing (either normally
or abnormally) we check that if a transaction exception was
thrown then it was reported and aborted:

pointcut mainProgram ()
execution(void Main.main(..));

after () mainProgram() {
assert (!txex_thrown || msg_sent);
assert (!txex_thrown || tx_abort);

We can place the assertion at the end of the program
because we have created a version of the main method that
runs the system only once. However, because JPF checks all
the possible paths through the program and because we have
replaced the persistence mechanism with nondeterministic
versions, the program will be tested through all the possible
combinations of normal and abnormal execution.

Recall that when we created the abstract MAVEN model
of the transaction and exception aspects, we assumed that
operations such as begin, commit, and abort a transaction
were atomic. However, in practice they are compound oper-
ations that may fail and in particular may throw transaction
exceptions. The JPF worked directly from the woven byte-
code of the implementation, and exactly such a scenario was
caught, detecting additional errors.

This example demonstrates the importance of using a
combination of approaches. The abstract model detected key
errors at an early stage of development, but it contained hid-
den assumptions that were not true of the actual program.
In contrast, adapting the implemented system to run on top
of JPF was complicated and time consuming, but it revealed
hidden assumptions and errors that were not detected in the
abstract models.

9 Tool evaluation using the CAPE

In addition to providing tools for application developers
using aspects, and to aid in producing new aspect analy-
sis tools, the CAPE provides an environment for evaluating
the tools in it. Both students and industrial adopters can use
the dual view of the CAPE to see which tools have been
applied to a particular aspect system and which examples
exist for each tool. The outputs can be evaluated for read-
ability, effectiveness, and scalability, and the effort involved
in applying the tool can be measured. Such evaluations were
applied to the Healthwatcher case study, as well as to other
CAPE applications.

Early developments of analysis tools are often demon-
strated on examples chosen to feature the strengths of the
tool. The present output of AIA is a graph that represents the
syntactic structure of an AspectJ program. This output does
not scale well even to relatively small programs such as our
case study. The analysis itselfis relatively fast, about the same
time it takes to compile the program, but the resulting graph
is too large. There is an option to zoom into the graph but it is
slow, and once we have zoomed, we have to scroll the display
in order to look for the highlighted occurrences. This is a

@ Springer

S. Katz, D. Faitelson

long and laborious process. However, it should not be diffi-
cult to analyze this graph automatically to detect problematic
situations, with only these being displayed to the user as error
or warning messages.

For the AIDA tool, evaluation of an early version provided
feedback to the developers that made it much easier to be fully
exploited in practice. First, in the first version the graphs gen-
erated by AIDA contained not only dependencies between
different aspects (inter-aspect dependencies) but also depen-
dencies between different parts of the same aspects (intra-
aspect dependencies). The problem is that the intra-aspect
dependencies are much more frequent than the (more inter-
esting) inter-aspect dependencies and tend to dominate the
graph. As for the previous tool, it becomes very difficult to
locate the interesting dependencies in the graph. This prob-
lem was easily solved by adding options for selective analysis
to hide the intra-aspect dependencies.

The case study showed that the MAVEN tool can check
semantic correctness relative to a specification, and can detect
subtle interferences among aspects, but is difficult to use
because of the need to accurately model the aspects and
give precise specifications. The user must write the spec-
ification in temporal logic (including relations among the
predicates), and the model in the SMV input language,
which are significant obstacles for many users. The diffi-
culty in writing formal specifications has motivated contin-
ued research on semi-automatically refining temporal logic
specifications [14].

As seen in the case study, there is also the problem that the
abstract model that is checked by MAVIN might not entirely
reflect the implemented system, a typical difficulty when
abstract models are not automatically refined into imple-
mented code. Thus, both verification of an abstract model
and a verification derived directly from code are needed (or
else the code should be reliably generated from the abstract
model).

The difficulties of JPF, in expressing the needed augmen-
tations to the system and adding parts to “remember” key
events, were already noted and were treated through a meth-
odological approach that used aspects over JPF.

10 Other tools

Not all of the tools in the CAPE were applied to the Health
Watcher system, nor is it reasonable to apply every tool to
every application. The tools to be used depend on the specific
verification tasks deemed most important, be it modeling,
considering individual aspects intended for reuse, verifying
a particular woven system, or treating aspect interactions.
For example, yet another CAPE use scenario investigates
the weaver itself, using the CNVA tool. In particular, it can
check whether it is justified to consider the series of steps

@ Springer

taken in the woven system as if the advice instructions were
done atomically immediately at a joinpoint. (For reasons
of optimization, they might in practice be interleaved with
instructions from other aspects or the base program, without
damaging the correctness.) For the case study, it is reason-
able to consider two clients and a single server, and desired
typical computations where the steps in each aspect advice
are executed sequentially with no other interleaving of oper-
ations from other threads, immediately when the appropriate
joinpoint is reached. These cases are described using a reg-
ular expression language. The CNVA system then automat-
ically checks whether every computation in a woven model
of the entire system (that does include various orderings of
operations from different threads) is equivalent to one of the
desired typical ones. Two computations are defined as equiv-
alent if they differ only in that independent operations were
executed in a different order. Thus, it is also necessary to
check which operations are independent of each other.

In other situations, where specifications are not available,
but the system is supposed to be deterministic (at least in giv-
ing the same response to the same query), the GRASS tool
can be used. The effect of multiple aspects applied at the same
joinpoint is considered with different possible orderings and
any differences in the results are identified.

11 Related work

Of course, there are numerous other works on formal methods
or analysis for aspects, in addition to those presently included
in the CAPE. The first work to separately model check the
aspect state machine segments that correspond to advice is
[19,20], where the verification is modular in that base and
aspect machines are considered separately. The treatment
there is for a particular aspect woven directly to a particular
base program. It shows how to modularly extend properties
which hold for that base program to the augmented program
(using branching-time logic CTL).

In [16], model checking tasks are automatically generated
for the augmented system that results from each weaving
of an aspect. That approach has the disadvantage of hav-
ing to treat the augmented system, but offers the benefit that
needed annotations and set-up need only be prepared once.
That work first introduces verification aspects intended to
accompany a reusable application aspect (and applied in this
report to JPF). In [16], such aspects were used in conjunction
with the Bandera [9] assertion language to annotate a base or
woven system with assertions and predicates prior to model
checking. Bandera generates input to model checking tools
directly from Java code, and can be extended to, for example,
the aspect-oriented Aspect] language.

In [15] a semantic model based on state machines is given,
and the treatment of aspects and joinpoints defined in terms

The common aspect proof environment

of transitions is described. Categories of aspects are defined
that automatically preserve classes of temporal logic prop-
erties, or have easier proofs. Some categories are shown to
be syntactically identifiable, or to require only dataflow, thus
linking syntactic analysis, dataflow, and model checking for
aspects.

To our knowledge, besides the CAPE, no other general
framework for analysis and verification of aspects exists. In
fact, most other combinations of verification tools, even for
non-aspect systems, do not have the variety of approaches
seen here. Some tools use a combination of different tech-
niques to solve a specific problem. For example, ACL2 [17]
uses BDDs to efficiently solve large propositional problems,
in addition to usual theorem proving techniques. Similarly,
the PVS theorem prover has been extended to use the
Yices SMT solver. However, such combinations are tightly
integrated into the tools and do not provide an extensible
platform.

The CAPE framework has similar goals to the ETT [28]
tool integration platform and its continuation jETI. That
framework, associated with the STTT journal, provides an
Internet-based integration platform for experimentation and
support in particular domains. Thus, Bio-JETI [21] provides
a framework for biological analysis. ETI/JETI and the CAPE
have in common their ideas of combining tools and compo-
nents in order to produce new tools and to use the combina-
tion of appropriate tools to treat difficult tasks in the domain
under consideration. The jETI framework is Internet based,
and thus provides quite loose coupling, and supports remote
execution. The CAPE attempts to provide a uniform Eclipse-
based environment, with application and tool-based views,
along with guidelines on typical usage and chaining, through
examples.

The CAPE can also be seen as an implementation, for
aspect oriented software development, of the Evidential Tool
Bus, presented as a position paper at a meeting about the Ver-
ification Grand Challenge [25]. That paper advocates loose
integration and tool chaining as the best way forward to
achieve practical analysis and verification.

12 Discussion and future work

We have described the CAPE and illustrated how we may use
its tools to reason about aspects, both in woven systems and
individually. The case study shows how the CAPE encour-
ages evaluation of existing tools and helps identify remaining
areas for improvement. Thus for AIA and AIDA, we saw that
further development is needed to make the results accessible
for larger systems. The ease of developing new tools is seen in
the extension of MAVEN (itself built over the NuSMV model
checker) to a tool for checking semantic interference among
aspects. This Interference Detector tool is presently under

advanced development, and has been significantly expedited
by using the CAPE framework to create tool chains and to
provide a uniform interface and system organization. Finally,
for JPF we have described how aspects themselves can be
used to specify and abstract a model before applying the tool.
The verification-aspect technique we described reduced the
effort and the overhead paid when switching the case study
system between a real database and a stub version in memory
used for testing, as well as for state reductions.

The case study and additional usage scenarios demon-
strate tool chaining and integration among the tools, as well as
delineating verification and analysis tasks appropriate for dif-
ferent tools at different stages of system development. How-
ever, fully automatic chaining, using the output of one tool as
the input of another, has proven impractical for the tools in the
CAPE due to the different notations and goals of each tool.
Still, the scenarios show valuable strategies that are useful
for many applications. These include (1) using fully auto-
matic code analysis tools to identify problem areas, (2) mod-
eling aspects with abstract models and specifications that
are shown correct for key protocols or unclear properties
(sometimes identified by the automatic tools), and (3) using
verifiers directly from code to check delicate implementa-
tion issues, such as interference among aspects at shared join
points, even when abstract modeling has also been done.

Work on the CAPE is continuing. In the future we expect
to add additional tools and to integrate the existing tools
more tightly. The CAPE has already proven valuable to us, its
developers, in clarifying connections and assumptions about
the tools it includes. It should also aid application system
developers who use aspects by increasing the accessibility
and uniform interface of a wide variety of formal meth-
ods tools. The case studies and use scenarios illustrate the
diverse ways in which formal methods tools can be used dur-
ing aspect-oriented software development.

Acknowledgments This research was partially supported by the New
York Metropolitan Research Fund at the Technion. The support of
AOSD-Europe, an EU Network of Excellence in the 6th Research
Framework, is gratefully acknowledged. We also wish to thank Sha-
har Dag, Eyal Dror, Wilke Havinga, Yael Kalachman, Emilia Katz, Ha
Nguyen, Tom Staijen, and Nathan Weston for their help in developing
the CAPE and its tools.

References

1. Avgustinov, P, Christensen, A.S., Hendren, L., Kuzins, S., Lhotak,
J., Lhotak, O., de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.:
abc: an extensible aspectj compiler. Trans. Aspect-Oriented Softw.
Dev. 1, 293-334 (2006). LNCS 3880

2. Bergmans, L., Aksit, M.: Composing crosscutting concerns using
composition filters. CACM 44, 51-57 (2001)

3. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore,
M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV version 2:
an OpenSource tool for symbolic model checking. In: Proceedings

@ Springer

S. Katz, D. Faitelson

10.

11.

12.

13.

14.

15.

of International Conference on Computer-Aided Verification (CAV
2002). LNCS, vol. 2404, Copenhagen, Denmark. Springer, July
2002

Clarke, E.M. Jr., Grumberg, O., Peled, D.A.: Model Checking. MIT
Press, Cambridge (1999)

Dror, E., Katz, E., Katz, S., Staijen, T.: The revised architecture of
the cape. Technical report, AOSD Europe, August 2006

Filman, R., Elrad, T., Clarke, S., Aksit, M.: Aspect-Oriented Soft-
ware Development. Addison-Wesley, New York (2005)

Goldman, M., Katz, E., Katz, S.: Maven: modular aspect verifica-
tion and interference analysis. Form. Methods Syst. Des. 37, 61-92
(2010)

Goldman, M., Katz, S.: Maven: modular aspect verification. In:
Proceedings of 13th TACAS 2007. LNCS, vol. 4424, pp. 308-322.
Springer, New York (2007)

Hatcliff, J., Dwyer, M.: Using the Bandera Tool Set to model-
check properties of concurrent Java software. In: Larsen, K.G.,
Nielsen, M. (eds.) Proc. 12th Int. Conf. on Concurrency Theory,
CONCUR’01. LNCS, vol. 2154, pp. 39-58. Springer, New York
(2001)

Havelund, K., Pressburger, T.: Model checking Java programs
using Java PathFinder. Int. J. Softw. Tools Technol. Transf. 2(4)
(2000)

Havinga, W., Nagy, ., Bergmans, L., Aksit, M.: A graph-based
approach to modeling and detecting composition conflicts related
to introductions. In: AOSD ’07, pp. 85-95. ACM Press, New York
(2007)

Katz, E., Katz, S.: Verifying scenario-based aspect specifications.
In: Proceedings of Formal Methods: International Symposium of
Formal Methods Europe (FMO05). LNCS, vol. 3582, pp. 432-447.
Springer, New York (2005)

Katz, E., Katz, S.: Incremental analysis of interference among
aspects. In: Proceedings of Foundations of Aspect Languages
Workshop (FOALO8) (2008)

Katz, E., Katz, S.: User queries for specification refinement treating
shared aspect join points. In: Proceedings of International Confer-
ence on Software Engineering and Formal Methods (SEFM) (2010)
Katz, S.: Aspect categories and classes of temporal properties.
Trans. Aspect-Oriented Softw. Dev. 1, 106-134 (2006). LNCS
3880

@ Springer

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Katz, S., Sihman, M.: Aspect validation using model checking. In:
Proceedings of International Symposium on Verification. LNCS,
vol. 2772, pp. 389—411 (2003)

Kaufmann, M., Strother Moore, J., Manolios, P.: Computer-Aided
Reasoning: An Approach. Kluwer, Norwell (2000)

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten M., Palm J.,
Griswold, W.G.: An overview of Aspect]. In: Proceedings ECOOP.
LNCS, vol. 2072, pp. 327-353 (2001)

Krishnamurthi, S., Fisler, K.: Foundations of incremental aspect
model-checking. ACM Trans. Softw. Eng. Methodol. 16, Article 7
(2007)

Krishnamurthi, S., Fisler, K., Greenberg, M.: Verifying aspect
advice modularly. In: Proceedings of SIGSOFT Conference on
Foundations of Software Engineering, FSE’04, pp. 137-146. ACM
(2004)

Margaria, T., Kubczak, C., Steffen, B.: Bio-jeti: a sevice integra-
tion, design, and provisioning platform for orchestratesd bioinfor-
matics processes. BMC Bioinformatics 9(S-4) (2008)

McMillan, K.L.: Getting Started With SMV. Cadence Labs, March
1999

Nguyen, H., Sudholt, M.: Aspects over vpa-based protocols. In:
Proc. Intl. Conf. Software Eng. and Formal Methods (SEFM).
Computer Science Press (2006)

Rensink, A.: The groove simulator: a tool for state space genera-
tion. In: AGTIVE 2003. LNCS, vol. 3062, pp. 479-485 (2003)
Rushby, J.: An evidential tool bus. In: Verification Grand Challenge
‘Workshop, Jan 2006

Soares, S., Borba, P., Laureano, E.: Distribution and persistence as
aspects. Software: Practice and Experience, Jan 2006

Staijen, T., Rensink, A.: A graph-transformation-based semantics
for analysing aspect interference. In: Workshop on Graph Compu-
tation Models, Jan 2006

Steffen, B., Margaria, T., Braun, V.: The electronic tool integra-
tion platform: concepts and design. Int. J. Softw. Tools Technol.
Transf. 1(1-2), 9-30 (1997)

Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model
checking programs. Autom. Softw. Eng. 10(2), 203-232 (2003)
Weston, N., Taiani, F., Rashid, A.: Interaction analysis for
fault-tolerance in aspect-oriented programming. In: Workshop on
Methods, Models and Tools for Fault Tolerance (2008)

	The common aspect proof environment
	Abstract
	1 Introduction
	2 CAPE
	3 The importance of integrated analysis
	4 The case study
	5 Aspect introduction analysis (AIA)
	6 Aspect interaction detection analysis (AIDA)
	7 MAVEN
	8 Java Pathfinder
	9 Tool evaluation using the CAPE
	10 Other tools
	11 Related work
	12 Discussion and future work
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

