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Abstract

In recent years, the application of metaheuristic techniques to solve multi-objective optimization problems
(MOPs) has become an active research area. Solving these kinds of problems involves obtaining a set of
Pareto-optimal solutions in such a way that the corresponding Pareto front fulfills the requirements of
convergence to the true Pareto front and uniform diversity. Most studies on metaheuristics for multi-
objective optimization are focused on Evolutionary Algorithms, and some of the state-of-the-art techniques
belong to this class of algorithms. Our goal in this paper is to study open research lines related to
metaheuristics but focusing on less explored areas to provide new perspectives to those researchers
interested in multi-objective optimization. In particular, we focus on non-evolutionary metaheuristics,
hybrid multi-objective metaheuristics, parallel multi-objective optimization, and multi-objective optimiza-
tion under uncertainty. We analyze these issues and discuss open research lines.

Keywords: multi-objective optimization; metaheuristics; hybridization; parallelism; optimization under uncertainty

1. Introduction

Many sectors of industry (mechanical, chemistry, telecommunication, environment, transport, etc.)
are concerned with complex problems of large dimensions that must be optimized. These
optimization problems are seldom single-objective; on the contrary, they frequently have several
contradictory criteria or objectives that must be satisfied simultaneously. Multi-objective
optimization is a discipline centered on the resolution of these kinds of problems. It has its
roots in the 19th century in the economics works of Edgeworth and Pareto (Pareto, 1896). Initially,
it was applied to the economic sciences and management, and gradually to the engineering sciences.
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As in single-objective optimization, the techniques to solve a multi-objective optimization
problem (MOP) can be classified into exact and approximate (also called heuristic) algorithms.
Exact methods such as Branch and Bound (Sen et al., 1988; Visée et al., 1998), the A� algorithm
(Stewart and White, 1991), and Dynamic Programming (Carraway et al., 1990) are effective for
problems of small sizes. When problems become harder, usually because of their NP-hard
complexity, approximate algorithms are mandatory.
In recent years, a group of approximate optimization techniques, known as metaheuristics, have

become an active research area. Although there is no commonly accepted definition of
metaheuristics (Blum and Roli, 2003), they can be considered as high-level strategies that guide a
set of simpler techniques in the search for an optimum. Among these techniques, evolutionary
algorithms for solving MOPs are very popular in multi-objective optimization, giving rise to a
wide variety of algorithms, such as NSGA-II (Deb et al., 2002), SPEA2 (Zitzler et al., 2001),
PAES (Knowles and Corne, 1999), and many others (Coello et al., 2002; Deb, 2001).
In general, optimization problems (single or multi-objective) can be divided into two categories

(Blum and Roli, 2003): those whose solutions are encoded with real-valued variables, also known
as continuous optimization problems, and those where the solutions are encoded using discrete
variables. Among the latter ones, we find a class of problems named combinatorial optimization–
problems. When these problems are multi-objective, they are usually called multi-objective
combinatorial optimization problems (MCOPs) (also multi-objective combinatorial optimization –
MOCO – problems; Gandibleux and Ehrgott, 2005). In the past few years, many metaheuristics
for solving MOPs were designed to deal with continuous problems; however, there is now a
growing interest in solving MCOPs, because many real problems belong to this class.
Multi-objective optimization seeks to optimize several components of a cost function vector.

Contrary to single-objective optimization, the solution of a MOP is not a single solution, but
a set of solutions known as a Pareto optimal set, which is called a Pareto border or a Pareto front
when it is plotted in the objective space. Any solution of this set is optimal in the sense that
no improvement can be made on a component of the objective vector without worsening
at least another of its components. The main goal in the resolution of a multi-objective problem
is to obtain a set of solutions within the Pareto optimal set and, consequently, the Pareto
front. Notwithstanding, when approximate techniques such as metaheuristics are applied,
the goal becomes to obtain a set of solutions having two properties: convergence to the
true Pareto front and homogeneous diversity. The first property ensures that we are dealing
with non-dominat solutions, while obtaining a uniform-spaced set of solutions indicates that we
have carried out a good exploration of the search space, and so we are not losing valuable
information.
Currently, there are many open research lines on multi-objective optimization using

metaheuristics. Among them are the design of new algorithms, the definition of metrics for
performance assessment, to establish a commonly accepted benchmark of MOPs, and the
definition of accurate density estimators. These are major topics that appear frequently in
international conferences and journals on multi-objective optimization.
In this paper, we focus on some open research lines in order to provide new perspectives in the

field. As mentioned before, many works on metaheuristics for multi-objective optimization are
related to evolutionary algorithms, and some books have been published about this issue, such as
the well-known ones by Coello et al. (2002) and Deb (2001). Nevertheless, there is a trend to adapt
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other kinds of metaheuristics (sometimes called alternative methods, with reference to
Evolutionary Algorithms), such as Particle Swarm Optimization (Reyes-Sierra and Coello,
2005), Scatter Search (Nebro et al., 2005a), or Ant Colony Optimization (Doerner et al., 2002).
The second topic is hybrid multi-objective metaheuristics, which combine concepts of different
techniques aimed at providing a more efficient behavior, which is of particular interest when
solving real-world problems. In this sense, parallel multi-objective optimization is also a way to
obtain more powerful techniques to solve large-scale problems. Parallelism has been widely
applied to single-objective optimization (Alba and Tomassini, 2002; Cantú-Paz, 2000); however,
the parallel models that have been successfully used in the single-objective field are not directly
applicable to solve MOPs, due to the difficulties related to obtain a Pareto front with good
convergence and diversity. Finally, our last interesting point is multi-objective optimization under
uncertainty, which is related to the fact that some real-world MOPs are subject to uncertainties
caused by missing information or stochastic models.
Our goal in this work is to provide an overview of these four topics to provide the reader with

some insights into promising research lines related to multi-objective metaheuristics for solving
MOPs. In general, we will not discuss the techniques in detail, because many of them are widely
known in single-objective optimization (see Blum and Roli, 2003, for example); instead, we will
concentrate on analyzing representative works. As we do not intend to provide a complete survey
of these issues, our preferences will be biased, without loss of generality, to examples mainly
related to solving MCOPs.
The paper is organized as follows: in Section 2, we include some background on multi-objective

optimization fundamentals. Section 3 is devoted to alternative metaheuristics for solving MOPs.
In Section 4, we analyze hybrid metaheuristics. A review of parallel metaheuristics for multi-
objective optimization is included in Section 5. Section 6 studies multi-objective metaheuristics
under uncertainty. Finally, in Section 7, we present the conclusions and some research prospects.

2. Multi-objective optimization fundamentals

In this section, we include some background on multi-objective optimization. We first define basic
concepts, such as Pareto optimality, Pareto dominance, Pareto optimal set, and Pareto front. In
these definitions, we are assuming, without loss of generality, the minimization of all the
objectives.
A general multi-objective optimization problem (MOP) can be formally defined as follows:

½MOP� ðMOPÞ ¼ minFðxÞ ¼ ðf1ðxÞ; f2ðxÞ; . . . ; fnðxÞÞ;
s:t: x2 O;

�

nX2 being the number of objective functions and x5 (x1,x2, . . . , xr) the decision variable vector.
The set of all values satisfying the constraints defines the feasible region O and any point ~x 2 O is a
feasible solution. As mentioned before, we seek the Pareto optima. Its formal definition is provided
next:
[Pareto Optimality] A point ~x� 2 O is the Pareto optimal if for every ~x 2 O and I5 f1, 2, . . . , kg

either 8i2I fið~xÞ ¼ fið~x�Þð Þ or there is at least one iAI such that fið~xÞ > fið~x�Þ.
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This definition states that ~x� is Pareto optimal if no feasible vector ~x exists that would improve
some criterion without causing a simultaneous worsening in at least one other criterion. Other
important definitions associated with Pareto optimality are as follows:
[Pareto Dominance] A vector ~u ¼ ðu1; . . . ; ukÞ is said to dominate ~v ¼ ðv1; . . . ; vkÞ (denoted by

~u%~v) if and only if ~u is partially less than ~v, i.e., 8iAf1, . . . ,kg, ui4viL9iAf1, . . . ,kg: uiovi.
[Pareto Optimal Set] For a given MOP ~fð~xÞ, the Pareto optimal set is defined as

P� ¼ f~x 2 Oj:9~x0 2 O;~fð~x0Þ%~fð~xÞg:

[Pareto Front] For a given MOP ~fð~xÞ and its Pareto optimal set P�, the Pareto front is defined
as PF� ¼ f~fð~xÞ; ~x 2 P�g:
Obtaining the Pareto front of a MOP is the main goal of multi-objective optimization.

However, given that a Pareto front can contain a large number of points, which are not easily
enumerable, a good solution would be to find a limited number of them, which should be as close
as possible to the exact Pareto front and would also be uniformly spread. Otherwise, they would
not be very useful to the decision maker. Let us examine the three fronts included in Fig. 1. The set
of solutions represented by triangles shows a front having a very good spread of solutions, but the
points are far from the true Pareto front; this front is not attractive because it does not provide
efficient points. The set of solutions represented by crosses contains a set of solutions that are very
close to the true Pareto front; thus, some regions of the true Pareto front are not covered, and so
the decision maker could lose important trade-off solutions. Finally, the set of solutions
represented by circles has the two desirable properties of good convergence and diversity.
It is worth pointing out that ideally, we would like to obtain a solution minimizing all the

objectives. Let us suppose that the optimum for each objective function is known; then, we can
define the concept of an ideal vector:
[Ideal Vector] A point ~y� ¼ ½y�1; y�2; . . . ; y�n� 2 O is an ideal vector if it minimizes each objective

function in fð~xÞ, i.e., y�k ¼ minðfkð~xÞÞ:
Unfortunately, ideal points rarely exist in real problems where the criteria are in conflict.

Related to this concept is the concept of reference vector, which can be used when we are
interested in defining the goal intended to be reached for each objective.

f1

f2

Fig. 1. Examples of Pareto fronts (solid line: Pareto optimal set): bad convergence and good diversity (triangles), good
convergence and bad diversity (crosses), good convergence and diversity (circles).
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[Reference Vector] A point~z� ¼ ½z�1; z�2; . . . ; z�n� 2 O is a reference vector when it defines the goals
to be reached for each objective fkð~xÞ:
In single-objective optimization, the concept of an optimal solution is frequently related to

suboptimal solutions, also known as local minima. In general, metaheuristic algorithms try to avoid
becoming trapped in local optima when searching for an optimal solution. In multi-objective
optimization, the concept of local minima is replaced by a locally Pareto optimal solution. This notion
is related to the concept of neighborhood, usually applied in metaheuristics based on Local Search:
[Neighborhood] A neighborhood N is a function Nð~xÞ; x 2 O that assigns to each vector ~x a set

of points called neighbors.
We can define now the concept of local optimality in a multi-objective context:
[Locally Pareto Optimal Solution] A solution ~x is locally Pareto optimal if and only if 8~w 2

Nð~xÞ; w does not dominate x.

3. Non-evolutionary approaches for multi-objective optimization

Although most metaheuristics designed to solve MOPs are evolutionary algorithms, there exist
other techniques that can be used for the resolution of these problems. For example,
metaheuristics such as Tabu Search or Scatter Search have proved their ability to find good
solutions in many optimization problems; hence, there are proposals focused on extending these
strategies to deal with multiple objectives, hoping that their performance will also be extended to
the multiple objective case. Moreover, as shown in Section 4, some of these multi-objective
extensions are proposed in order to design hybrid approaches between a classical multi-objective
algorithm and other different techniques, aimed at producing a more efficient search method.
In this section, we analyze alternative approaches to multi-objective optimization. We consider

the following techniques: Local Search, Simulated Annealing, Tabu Search, Path Relinking,
Scatter Search, Ant Colony Optimization, and Particle Swarm Optimization.

3.1. Pareto optimization and Local Search

Local Search is a general technique based on an iterative process in which a current solution is
perturbed somehow, producing a new solution. If this solution is better than the former, the new
solution becomes the current one. In single-objective optimization, Local Search has the property
of promoting search intensification; moreover, it allows a fast convergence rate for problems of
many types and sizes. Many Local Search proposals are applied in the context of other
metaheuristics, leading to hybrid approaches (see Section 4); for this reason, here, we discuss a few
general ideas, analyzing two works in this field.
The main question in a multi-objective Local Search is how to find a diversified set of good

solutions, as the basic principle of Local Search involves the evolution of a single solution. Let us
consider the Pareto Local Search (PLS) algorithm (Basseur et al., 2003). This algorithm works
with a population of non-dominated solutions, called PO. For each Local Search step, the
neighborhood PN of each solution of PO is generated, and PO takes the non-dominated solutions
of PO [ PN as a new value. In many cases, the set of non-dominated solutions to be stored can be
too large, and so the user has to apply a clustering step during PLS. A study on dominance-based
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Local Search approaches for multi-objective combinatorial optimization is proposed in Liefooghe
et al. (2009). In this paper, different simple versions of dominance-based Local Searches are
proposed and tested on different combinatorial problems.
Other approaches work by reducing the multi-objective problem to a single-objective one using

a weighted sum approach. An example is the algorithm presented in Ishibuchi and Murata (1998),
which is applied to flow-shop scheduling. The problem with these techniques is how to define the
weights; in Ishibuchi and Murata (1998), they are randomly specified. This work also takes into
account only a small number of neighbor solutions to prevent the Local Search procedure from
using too much computing time. The approach of converting a multi-objective problem into a
single-objective one is not very popular in the multi-objective research community, because it only
provides a unique solution, thus reducing the chances of the decision maker choosing a good
trade-off solution to the problem.
The main difficulty with multi-objective Local Searches is control of the population size. In Pareto

approaches, the number of non-dominated solutions considered have to be controlled, and in weighted
sum approaches, the searches have to be iterated intelligently in order to obtain a set of diversified
non-dominated solutions. Hence, the approach proposed in Basseur and Burke (2007) is interesting. In
this paper, a multi-objective search in which the selection is realized using a quality indicator is
proposed, and the Local Search is carried out using a fixed number of solutions in the population.

3.2. Multi-objective Simulated Annealing

Simulated Annealing algorithms are commonly said to be the oldest among the metaheuristics. It
is basically a Local Search with an explicit strategy to avoid local minima. The basic idea is to
allow solutions of a quality worse than the current solution; this is done with a probability that is
decreased during the search.
One of the first attempts to use simulated annealing to solve MOPs was presented in Serafini

(1992). Since then, there have been many proposals in the literature, such as Czyzack and
Jaszkiewicz (1998); Chipperfield et al. (1999) and Karasakal and Köksalan (2000). Most of these
algorithms do not have a population, but they store the non-dominated solutions discovered
during a Local Search process. Rather than using Pareto dominance, weighted metrics are used to
aggregate the objectives into a single score to be used in the acceptance function. Thus, multi-
objective Simulated Annealing has the same disadvantages as those mentioned in the previous
section concerning Local Search. The latest papers dealing with multi-objective Simulated
Annealing are trying to incorporate the concept of dominance into their algorithm, such as in
Smith et al. (2008).

3.3. Multi-objective Tabu Search

Tabu Search is a metaheuristic based on explicitly using the history of the search, both to escape
from local minima and to implement an exploration strategy. Here, we discuss the proposals
MOTS and TAPaS.
M.P. Hansen proposed a multi-objective Tabu Search procedure called MOTS (MultiObjective

Tabu Search) (Hansen, 1997). This algorithm works with a set of current solutions, which,
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through manipulation of weights, are optimized towards the non-dominated front while at the
same time attempting to disperse them over the Pareto front. The MOTS algorithm was updated
later to TAMOCO (Tabu Search for MultiObjective Combinatorial Optimization) (Hansen,
2000). In TAMOCO, a mechanism is introduced in order to force solutions to drift over the
Pareto front. In this paper, a parallel version of TAMOCO has also been implemented.
A Tabu Search algorithm using a trade-off between a Pareto dominance-based and an

aggregation search is described by Jozefowiez (2004), and is called the Target Aiming Pareto
Search (TAPaS). This algorithm considers a set of non-dominated solutions found by an
evolutionary algorithm, with a good quality and diversity. Then, a search li is applied on each
solution si of an initial Pareto set. A specific single-objective function yi is defined for each search
li. The defined function takes into account that two searches carried out simultaneously do not
have to explore the same area of the objective space. The goal is to intensify the search around the
solutions found by the evolutionary algorithm, without having a loss in terms of diversity. The
goal definition is illustrated in Fig. 2.
Several other Tabu Search methods have been proposed in the literature, such as Hertz et al.

(1994) and Beausoleil (2001). Beausoleil’s proposal uses a weighted objective Tabu Search to build
an initial population, and Hertz defines three different non-Pareto approaches (weighted,
lexicographic, and e-constraint). In general, most of the proposed techniques do not adopt an
entire Pareto dominance approach. Other multi-objective Tabu Search approaches were also
proposed by Ulungu et al. (1999) and Gandibleux et al. (1997).

3.4. Multi-objective Scatter Search

Scatter Search is a metaheuristic technique that, compared with evolutionary algorithms, intends
to avoid using stochastic operators as much as possible. The working principle of Scatter Search is

AP

AS AND Local search

AD

si

gi

Fig. 2. TAPaS: the goal gi of a solution si is defined as a function of si neighbors (in the objective space). Then, the
search is realized in AS (space dominated by a solution gi and dominating a solution si) and in AND (space dominated by
two solutions gi and gj and not dominated by any solution si). AD represents the objective space dominated by at least

one solution si and AP represents the objective space that is not dominated by any solution gi.
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to have a reference set of solutions composed of, on the one side, a subset of solutions having
good fitness values and, on the other side, another subset of solutions promoting diversity. The
elements of this reference set are then systematically combined producing new trial solutions that
are used to update that set. The combination of solutions is based on making linear combinations
of the decision variable values, and the trial solutions are enhanced using a Local Search
algorithm. Scatter search is described in detail in Glover et al. (2003).
Recently, the application of Scatter Search to multi-objective optimization problems has

received some attention from some researchers (Beausoleil, 2001; Corberán et al., 2002). In
Beausoleil (2006), the MOSS algorithm is presented, which proposes a Tabu/Scatter Search
hybrid approach for solving nonlinear multi-objective optimization problems. SSPMO, described
in Molina et al. (2007), proposes a similar hybrid approach, but with a different Tabu Search.
There are studies indicating that the search capabilities of Scatter Search can be improved using

stochastic operators in the algorithm (Herrera et al., 2006). In this respect, Nebro et al. (2005a)
introduce an SSMO, a multi-objective Scatter Search using a mutation operator as the Local
Search. This proposal is characterized by using the initial set as an external population to store the
non-dominated solutions found during the search. An evolution of SSMO is AbYSS (Archive-
based hybrid Scatter Search) (Nebro et al., 2006), which uses an external archive to store the non-
dominated solutions. Several configuration of AbYSS, starting from an orthodox Scatter Search
approach (using non-stochastic operators) to configurations using genetic operators, have been
studied in Nebro et al. (2006), showing that the algorithm produces very high-quality Pareto
fronts when using a polynomial mutation in the Local Search method and a simulated binary
crossover (SBX) to recombine solutions.
These works indicate that Scatter Search is a promising approach to multi-objective

optimization. Some open research lines are related to how to re-use the search experience present
in the non-dominated solutions found by the algorithm, the update policies to be applied to the
reference set in order to enhance the diversity of the solutions, and configuration analyses to study
how to accelerate the convergence of the technique.

3.5. Multi-objective Path Relinking

Path Relinking (Glover et al., 2000) is a generalization of scatter search, in which the concept of
combining solutions by making linear combinations of reference points is generalized to
neighborhood spaces. The idea is to generate a path between two solutions in the search space by
generating a sequence of neighboring solutions in the decision space.
In Beausoleil (2001), a first investigation was proposed to include Path Relinking algorithms

in a multi-objective Scatter Search algorithm. Two neighborhood operators were used to
generate the paths, and the distance used was not correlated with these measures. After the
path relinking process, the non-dominated solutions are selected to pursue the Scatter Search
algorithm. A Path Relinking algorithm using the same individual representation is proposed in
Basseur et al. (2005), although it is applied to a different problem. In this study, only the
most powerful neighborhood operator is used, and the proposed distance measure is corre-
lated with the neighborhood operator. This allows the generation of only the shortest paths
without generating any other solution. Then, a Multi-Objective Path-Relinking (MOPR)
algorithm is presented, which is used in combination with genetic and Local Search algorithms.
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Several questions are formulated in this paper concerning how to adapt Path Relinking
mechanisms to the multi-objective case.
More recently Jaszkiewicz (2005) has proposed including the path relinking principle in a

Pareto Memetic Algorithm, which uses random scalarizations of the objective functions during
the Local Search step. Although this approach does not use the concept of Pareto dominance, it
proposes an interesting algorithm that could be applied to Pareto optimization by defining several
selection methods that can replace the scalar selection.
In multi-objective optimization, as well as in single-objective optimization, there are only a few

papers that propose Path Relinking algorithms. One reason is that for some optimization problems,
the path generation is very difficult to define. However, the Path Relinking principle is an interesting
and growing research area for multi-objective optimization, and some other studies were proposed
recently (Beausoleil et al., 2008; Pasia et al., 2010). There are many research perspectives in order to
adapt this method to multi-objective optimization, such as the path generation, how to select the
solutions in the path, or choosing the solutions to participate in the parent selection.

3.6. Multi-objective Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic approach proposed by Dorigo and Blum (2005).
It is a bio-inspired technique taking the foraging behavior of real ants as a model. When ants walk
from food sources to the nest and vice versa, they deposit a chemical substance called pheromone on
the ground. To make a decision on a direction to take, ants choose with a higher probability those
paths marked by stronger pheromone concentrations. ACO algorithms use a probabilistic model
using a pheromone matrix to model the chemical pheromone trails.
In Gambardella et al. (1999), Gambardella and colleagues propose solving a bi-objective

routing problem by ant colony systems. They propose MACS-VRPTW (Multiple Ant Colony
System for Vehicle Routing Problems with Time Windows). MACS-VRPTW is organized as a
hierarchy of artificial ant colonies designed to successively optimize a multiple-objective function:
the first colony minimizes the number of vehicles while the second colony minimizes the distances
traveled. Cooperation between colonies occurs by exchange of information through pheromone
updating. MACS-VRPTW improves some of the best solutions known for a number of problem
instances in the literature.
Mariano and Morales proposed ANT-Q, which was also designed to deal with multiple objectives

(Mariano and Morales, 1999). In this study, the proposed algorithm could be compared with parallel
selection (Schaffer, 1985), i.e, one ant colony is associated with one objective function. In Iredi et al.
(2001), Iredi and colleagues detail a similar scheme, but each population is associated with an
objective function corresponding to a weighted sum of the different criteria to optimize. More
recently, in López-Ibáñez and Stützle (2010), although a similar approach is proposed, the paper also
proposes allowing the application of the automatic algorithm configuration technique.
Over several years, a growing number of studies have focused on multi-objective Ant Colony

systems. In fact most of the proposed approaches use several ant colonies during the optimization
process, i.e. one colony per objective function or one colony per objective weight vector.
Approaches involving only one colony and using Pareto dominance are interesting ideas to be
exploited in this area.
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3.7. Multi-objective Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a bio-inspired metaheuristic based on the flight of a flock
of birds when they search for food (other analogies are considered, such as the behavior of
fish schooling) (Kennedy and Eberhart, 1995). Compared with evolutionary algorithms, PSO is
also a population-based technique with a population of random solutions aimed at finding an
optimum by successive generations. However, in PSO, there are no evolutionary operators such as
crossover and mutation; instead, the particles (solutions) fly through the problem space by
following the best particle known so far.
PSO has become a popular metaheuristic in single-objective optimization and, recently, there

has been a growing interest in its application to multi-optimization. In a survey published in 2006
(Reyes-Sierra and Coello Coello, 2006), more than 20 works were covered. Here, we comment on
the proposals of Li (2004) and Reyes-Sierra and Coello Coello (2005).
In Li (2004), Li describes maximinPSO, a PSO algorithm characterized by using a fitness

function derived from the maximin strategy to determine Pareto domination. With this strategy,
there is no need to use an additional clustering technique. The reported results show that the
algorithm produces very good Pareto fronts when solving some benchmarks.
Reyes-Sierra and Coello Coello (2005) present a multi-objective PSO based on Pareto

dominance and the use of a nearest-neighbor density estimator for the selection of the best
solutions. The algorithm uses two archives: one for the final population and the other for storing
the best solutions currently used. An interesting feature is that the flock is divided into three sub-
swarms, and a different mutation operator is applied to the particles of each subswarm.
Since 2006, a growing number of studies have been dedicated to multi-objective PSO (Janson

et al., 2008; Ono and Nakayama, 2009), because of the combined growing popularity of multi-
objective optimization and PSO algorithms. Some open issues in multi-objective PSO are
strategies for choosing the best particles, studies on self-adaptation of some of the parameters in
the algorithm, and the application of this technique to real-world problems.

4. Hybrid multi-objective metaheuristics

Until the 1990s, the main focus of research in the metaheuristic field was on the application of
single techniques to concrete problems. Nowadays, it has become evident that using a unique
metaheuristic is sometimes not sufficient. A skillful combination of concepts from different
metaheuristics, called hybrid metaheuristics, can provide a more efficient behavior and a higher
flexibility when dealing with real-world and large-scale problems.
The design and implementation of hybrid metaheuristics give rise to problems beyond those

encountered in the design of a single metaheuristic; for example, the choice and tuning of
parameters leads to the issue of how to achieve a proper interaction of the different algorithm
components. Interaction can take place at a low level, using functions from different
metaheuristics, but also at a high level, e.g., using a portfolio of metaheuristics for automated
hybridization. In Talbi (2002), a taxonomy of hybrid metaheuristics (in the single-objective
domain) is proposed. This taxonomy considers two features, leading to four different types of
hybrid metaheuristics if we combine them:
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� Low-level/High-level: the low-level hybrids address the functional composition of a single
optimization method. In this class, a given function of a metaheuristic is replaced by another
metaheuristic. In high-level hybrid algorithms, the different metaheuristics are self-contained.

� Relay/Teamwork: in relay optimization, a set of metaheuristics is applied one after another,
each using the output of the previous as its input, acting in a pipeline fashion. Teamwork
hybrids represent cooperative optimization models, in which several agents cooperate in a
parallel way, each agent carrying out a search in a solution space.

This classification could be adapted for multi-objective algorithms. In general, with very large
problems and/or multi-objective problems, the efficiency of single metaheuristics may be
compromised. Hence, in this context, it is necessary to integrate metaheuristics into more general
schemes in order to develop more efficient methods. For instance, a well-known cooperation
scheme consists in using explorative methods, such as Evolutionary Algorithms, with
intensification methods, such as Local Searches. In fact, many of the multi-objective hybrid
approaches proposed in the literature deal with hybridization between genetic algorithms and
Local Search. For example, the well-known Genetic Local Search (called also memetic) algorithms
are popular in the multi-objective optimization community. Some examples are Jaszkiewicz (1998)
and Ishibuchi and Murata (1998). The basic principle consists of incorporating the Local Search
procedure during a genetic algorithm search. The Local Search part could be included by
replacing, for example, the mutation operator, but it can also be added after each complete
generation of the genetic algorithm. The classical structure of a Multi-Objective Genetic Local
Search (MOGLS) algorithm is shown in Fig. 3, which depicts the relationships between the
evolutionary multi-objective (EMO) component and the Local Search.
In the following, we analyze a number of works involving hybrid algorithms between Genetic

Algorithms and Local Search. In Gen and Lin (2004), the ‘‘Multi-objective Hybrid Genetic
Algorithm’’ is described. The paper focuses on how the performance of multi-objective Genetic
Algorithms can be improved by hybridization with fuzzy logic control and Local Search. In
Basseur et al. (2003), an Adaptive Genetic/Memetic Algorithm, called AGMA, is described. In

Local Search Part

Initial
population

New
population

Improved
population

EMO Part

Initialization

Fig. 3. Generic form for MOGLS algorithms.
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this study, a Memetic Algorithm is hybridized with a Genetic Algorithm, and the transitions
between the two metaheuristics are performed according to convergence speed criteria. In Deb
and Goel (2001), the proposal consists of a sequential approach, where a genetic algorithm is
executed and then a Local Search is applied to upgrade the solution quality and thus reduce the
number of compromise solutions at the same time. This algorithm is applied on engineering shape
design problems. In Jozefowiez et al. (2002), the hybrid approach proposed involves Genetic
Algorithm and a Tabu Search using the Target Aiming Pareto Search principle (TAPaS), where
search goals are defined according to the shape of the current non-dominated set of solutions.
Some works deal with hybrid techniques involving original multi-objective metaheuristics. In

Chaiyaratana and Zalzala (1999), a hybrid approach between neural networks and Genetic
Algorithms for multi-objective time-optimal control optimization is introduced. In Burke et al.
(2001), some evolutionary principles are introduced in a multi-objective Simulated Annealing
algorithm to solve a bi-objective space allocation problem. In Basseur et al. (2005), a hybrid
approach, combining Memetic Algorithm, Local Search, and Path Relinking, is applied to solve a
bi-objective flow-shop scheduling problem.
Another recent popular issue is the cooperation between multi-objective metaheuristics and

exact methods. There exists a growing number of studies involving this type of cooperation in the
single-objective context, and two surveys have been published recently on this topic (Dumitrescu
and Stützle, 2003; Puchinger and Raidl, 2005). These papers attempt to extract classical
cooperation schemes between exact and metaheuristics approaches. For example, some hybrid
schemes mainly aim to provide efficient solutions in a shorter time, while others primarily focus on
achieving better solutions. In a multi-objective context, only a few studies tackle this type of
approaches. In T’kindt et al. (2002), a bi-objective 2-machine flow-shop problem is solved. One
objective is not NP-hard and then solved exactly, while the second one is solved using an Ant
Colony algorithm. The objectives are treated in a lexicographic way.
In Basseur et al. (2004), Basseur and colleagues investigate several cooperative approaches for a

bi-objective flow-shop problem. These schemes are designed around AGMA (presented above)
and the two-phase method (Visée et al., 1998), a multi-objective exact method based on a Branch
and Bound approach. The first cooperation described uses optimum solutions obtained by the
metaheuristics as the initial bounds for the exact approach. Then, the search space explored by the
exact method is reduced with respect to these bounds. This is a multi-objective application of
classical cooperation found in the single-objective context. They also propose two heuristic
cooperations, where the multi-objective exact part is running to intensify the search around the
best solutions obtained by the metaheuristic. This search is carried out applying two different
methods: large neighborhood techniques and partitioning methods. In Jozefowiez (2004), a bi-
objective routing problem is solved using a combination of a Genetic Algorithm and a Branch and
Cut algorithm. In this study, the Genetic Algorithm uses the Branch and Cut algorithm to exactly
solve one of the two considered criteria.
Other interesting issues are the approaches called ‘‘hyper-heuristics’’, first introduced by Burke

et al. (2003a,b). Hyper-heuristics are dedicated to choosing the right heuristic for the right
operation at the right time during the search. It must be noted that the hyper-heuristic operates in
the heuristic space, as opposed to most implementations of meta heuristics, which operate in the
solution space. This principle is relatively new, although the concept of ‘‘optimizing heuristics’’ is
not a recent one. As an example, a multi-objective Tabu Search hyper-heuristic, which optimizes
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the use of different neighborhoods in a Local Search algorithm, has been proposed by Burke et al.
(2003b). This approach, tested on space allocation and timetabling, uses a Tabu list of
neighborhood search heuristics that is actualized by adding the last used heuristic and/or the
worst one, in terms of performance.

5. Parallel multi-objective optimization

When trying to solve real-world problems, multi-objective metaheuristics may not be powerful
enough to provide a good approximation to the Pareto front in a reasonable time. Let us consider
a MOP whose function evaluation requires 1 minute; then, to carry out 25,000 evaluations (a
typical value in many experiments), around 17 days of computing time is necessary. This becomes
worse if we consider that to evaluate the meta heuristic when solving the problem, a minimum of
30 independent runs need to be performed. In this situation, parallelism must be considered to
tackle these kinds of MOPs.
Several taxonomies have been proposed to classify parallel implementations of metaheuristics

(Crainic and Toulouse, 2003; Cung et al., 2003). Existing works review and discuss the general
design and the main strategies used in their parallelization. A widely accepted classification mainly
distinguishes between strategies whose goal is basically to speed up the sequential algorithm
(Single-walk parallelization) and those that modify the behavior of the sequential implementation
not only to search for higher speed but to hopefully improve the solution quality (Multiple-walk
parallelization) (Cung et al., 2003).
This taxonomy has been adapted for multi-objective optimization algorithms in Nebro et al.

(2005b), where a survey of works in the field is included. The adaptation to the multi-objective
domain needs a further specification for two reasons. First, real-world MOPs have to deal with
the utilization of complex solvers and simulators. We therefore differentiate those strategies aimed
solely at speeding up the computations from those that parallelize the function evaluation of the
problem to optimize, and from those that parallelize one or more operators of the search
technique. Second, the results of a multi-objective optimization procedure are not restricted to
finding a single solution, but a set of non-dominated solutions. This should be taken into account
in the parallelization strategy because several parallel entities (threads or processes), at the same
time, are exploring new potential solutions whose Pareto optimality must be checked. Here, we
distinguish between two strategies: the Pareto front is distributed and locally managed by each
search thread during the computation (local non-dominated solutions) or it is a centralized
element of the algorithm (global non-dominated solutions). An outline of this hierarchical
classification is shown in Fig. 4. Hence, we define the following categories:

1. Single-walk parallelization

This kind of parallelism is aimed at speeding up the computations, and the basic behavior of the
underlying algorithms is not changed. It is the easiest and the most widely used parallelization in
multi-objective optimization because the MOPs that are usually solved in this field are real-world
problems involving high time-consuming tasks. Parallelism is applied in two ways:

(a) Parallel Function Evaluation (PFE): The evaluations of the objective functions of MOPs are
performed in parallel (Mäkinen et al., 1996; Golovkin et al., 2000; Radtke et al., 2003).
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(b) Parallel Operator (PO): The search operators are run in parallel (Rowe et al., 1996; Watanabe
et al., 2001).

2. Multiple-walk parallelization

Besides the search for speed up, improvements in the solution quality should also be sought in
parallel implementations. Although the latter is likely to be the most important contribution of
parallelism to metaheuristics (Cung et al., 2003), few such parallel search models have been
especially designed for multi-objective optimization until recently (van Veldhuizen et al., 2003). A
main issue in the development of these kinds of algorithms is how the Pareto front is built during
the optimization process. Two different approaches can be considered:

(a) Centralized Pareto Front (CPF): The front is a centralized data structure of the algorithm that
is built by the search threads during the entire computation. In this way, the new non-
dominated solutions in the Pareto optimal set are global Pareto optima (Basseur et al., 2003;
de Toro et al., 2004; Coello Coello and Reyes-Sierra, 2004).

(b) Distributed Pareto Front (DPF): The Pareto front is distributed among the search threads so
that the algorithm works with local non-dominated solutions that must be somehow combined
at the end of their work (Rowe et al., 1996; Duarte and Barán, 2001; Parsopoulos et al., 2004).

Among the studies analyzed in Nebro et al. (2005b), no pure CPF implementation has been found
clearly motivated by efficiency issues. All the found CPF parallelizations are combined with DPF
phases where local non-dominated solutions are considered. After each DPF phase, a single
optimal Pareto front is built using these local Pareto optima. Then, the new Pareto front is again
distributed for local computation, and so on.
Most works on parallel metaheuristic implementations deal with some kind of population-

based metaheuristics, mainly evolutionary algorithms, as it seems natural to evolve a population
of solutions on a population of machines. We next describe three major parallel models that are
commonly applied in population-based algorithms (Alba and Tomassini, 2002): the master/slave
model, the distributed or island model, and the cellular or the diffusion model. Although these
models are comprised in the taxonomy explained before, we describe them because they have
become very popular:

� The master/slave model: The evaluation step of a metaheuristic is generally the most time-
consuming. Therefore, in order to speed up the search, the master–slave model distributes the

Parallel Multi-Objective
Optimization Algorithms

Single-walk
parallelization

Multiple-walk
parallelization

Parallel Function
Evaluation (PFE)

Parallel
Operators (PO)

Distributed
Pareto Front (DPF)

Centralized
Pareto Front (CPF)

Fig. 4. Classification of parallel metaheuristics for multi-objective optimization.
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evaluation of the evolving population. As they require a global management of the population,
the selection, transformation, and replacement operations are applied by a master process. At
each generation, the master distributes the set of newly generated solutions between different
slaves or workers, which evaluate and return these solutions as well as their fitness values. A
particularly efficient execution is often obtained when the ratio between communication and
computation is high. Otherwise, most of the time can be wasted in communications, leading to
a poor parallel algorithm. The master/slave model fits into the single-walk parallelization
category.

� The distributed island model: A number of metaheuristics are simultaneously deployed to
cooperate with the aim of improving the quality of the solutions. Each of them performs a search
on a sub-population; then, exchanges of genetic materials are performed in a synchronous or an
asynchronous way to diversify the search into the target sub-populations. This allows a delay to
the global convergence, especially when the metaheuristics are heterogeneous with respect to the
variation operators. Individual migrations are conducted by various parameters and are
performed in a regular or an irregular way. The distributed island model, along with the cellular
model (see below), belongs to the multiple-walk parallelization category.

� The cellular model: This model uses the concept of small neighborhood in the sense that an
individual may only interact with its nearby neighbors in the breeding loop (Tomassini, 2005).
The overlapped small neighborhoods in cellular evolutionary algorithms help in exploring the
search space because the induced slow diffusion of solutions through the population provides a
kind of exploration, while exploitation takes place inside each neighborhood by evolutionary
operators. This model is suited to massively parallel computers but, although such computers
do not exist nowadays, it is still popular because of the competitive search capabilities of the
resulting algorithms.

Although most works on parallel multi-objective metaheuristics are related to genetic algorithms,
there are also proposals related to alternative methods, such as Tabu Search (Al-Yamani et al.,
2002), Simulated Annealing (Agrafiotis, 2001; Chang and Huang, 1998), Ant Colony Systems
(Delisle et al., 2001), and Memetic Algorithms (Basseur et al., 2003).
Parallel multi-objective metaheuristics are an open research area, where parallel models are

needed to cope with the effective management of distributed Pareto fronts. Furthermore, the
growing popularity of large-scale distributed systems based on the infra structure provided by the
Internet, known as grid computing systems (Foster and Kesselman, 2003), leads to new
perspectives to provide solutions to real-world problems whose complexity makes them
intractable with typical distributed systems based on local area networks of workstations. There
are some recent studies related to grid computing and multi-objective optimization, such as Luna
et al. (2006), where the use of Globus (Foster and Kesselman, 1997), the de facto standard grid
computing software, is analyzed to implement distributed multi-objective metaheuristics.

6. Pareto optimization under uncertainty

Real-world optimization problems are often subject to uncertainties caused by, for example,
missing information in the problem domain or stochastic models. In this section, we are not
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focused on fuzzy problems (there are currently many metaheuristic applications for this type of
MOPs; Sakawa, 2001); in fact, we do not consider problems with variables having several fuzzy
values, but variables that have a certain distribution of possible values in an interval (bounded or
not). These uncertainties can take different forms in terms of distribution, bounds, and central
tendency. In a general way, different types of uncertainty are distinguished. Generally speaking,
uncertainties can be divided into four main categories. According to Jin and Branke (2005), these
categories are:

1. Noisy fitness functions.
2. The design variables and/or the environmental parameters may change after the optimization

process. Then, the quality of the solution obtained should be robust against environmental
changes or deviations from the point(s).

3. The fitness function is approximated, which means that the fitness function suffers from
approximation errors.

4. The optimum of the problem to be solved changes over time and, thus, the optimizer should be
able to track the optimum continuously.

In all these cases, Jin and Branke note that evolutionary algorithms are able to work satisfactorily.
In the next paragraphs, we analyze several multi-objective approaches proposed in the literature.
While uncertainty in the objective functions received some attention in the single-objective

context (Arnold, 2003; Jin and Branke, 2005), only a few studies address this problem within a
multiple-criteria setting. Let us note that the problem considered here is different from the issue of
robustness, where the goal is to find solutions that are robust regarding parameter perturbations.
The work of Horn and Nafpliotis (1993) was among the first to discuss uncertainty in the light of
generating methods, although they did not propose a particular multi-objective optimizer for this
purpose.
Several years later, Hughes (2001) and Teich (2001) independently proposed stochastic

extensions of Pareto dominance and suggested similar ways to integrate probabilistic dominance
in the fitness assignment procedure; both studies consider special types of probability
distributions. More precisely, Teich proposes an approach modifying the SPEA algorithm,
assuming that the probability density function is constant over the property interval of each
random variable. First, he defines a probability dominance notion in the single-objective case as
follows: given two points a and b with objectives aA[as, . . . ,au] and bA[bs, . . . ,bu], respectively, the
probability of a to dominate b, written as P½akb� for uniform distribution functions, is given as:

P½akb� ¼
0 if bu < as;
1 if au < bs;

1
au�as

R bs
y¼as dyþ

Rminðau;buÞ
y¼maxðas;bsÞ 1�

y�bs
bu�bs dy

� �
otherwise:

8><
>:

Based on the single-objective case, he proposes an extension to the multi-objective case. For any
two n-dimensional decision vectors a and b, and m statistically independent objective functions
f1, f2, . . . , fm,

P½akb� ¼
Ym
i¼1

P½fiðaÞpfiðbÞ�:
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The SPEA ranking computation is adapted according to these probability values (N:
population size, Mt: population at time t):

RðiÞ ¼ 1

N� 1

X
j2Mt:j6¼i

P½mðjÞkmðiÞ�:

It is also necessary to redefine the calculation of distance between two solutions. He uses the
expected objective values of the solutions to evaluate the distance.
Hughes (2001) proposes the same type of approach, with the probabilistic dominance notion.

He compares the use of probabilistic ranking against classical ranking algorithms, such as NSGA
and MOGA. The probabilistic ranking proposed is the following:

Ri ¼
XN
j¼1

P½akb� þ 1

2
�
XN
j¼1

P½a � b� � 0:5:

Teich and Hughes’ studies were among the first to propose approaches dedicated to establish
new concepts for multi-objective optimization under uncertainty. But, with these studies, there are
still several open problems: the uncertainties considered are completely defined (uniform/normal
distribution, bounded, central tendency equal to 0), the proposed approaches are not directly
adaptable to unknown uncertainties, and the proposed algorithms need to compute the distance
between solutions, which is dependent on uncertainties.
Bui et al. (2005) use this same principle, but they introduce fitness inheritance in the Genetic

Algorithm, which replaces the multiple evaluation with respect to a criterion of confidence.
In Büche et al. (2001), Büche and colleagues are critical about the redefinition of Pareto

dominance approaches in the case of non-bounded noise, i.e., potential aberrant solutions, which
confer a large deviation to the algorithm running. They propose three modifications for an
extended multi-objective algorithm to overcome the problem of noise:

� Domination-dependent lifetime: in contrast to elitism, which may preserve elitist (non-
dominated) solutions for an infinite time, a maximal lifetime is assigned to each individual.
They propose to adapt the lifetime of each individual according to the dominance relation.
The lifetime is shortened if the solution dominates a major part of the present non-dominated
solutions. This limits the impact of a solution.

� Re-evaluation of solutions: all non-dominated solutions whose lifetime has expired are re-
evaluated and added to the population. This enables good solutions to remain in the
evolutionary process, but their objective values will change due to the noise in the re-
evaluation.

� Extended update of the secondary population: the elite is updated only according to the non-
expired lifetime solutions.

In Babbar et al. (2003), another ranking method is proposed, and it is based on the average value
per objective and the variance of the set of evaluations. Similarly, Deb and Gupta (2005)
suggested considering for each dimension the mean over a given sample of objective vectors and
applying standard multi-objective optimizers for deterministic objective functions.
Most of the existing studies assume certain characteristics (symmetry, shape, etc.) of the

probability distribution that determines to which objective vectors a solution may be mapped. In
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other words, the corresponding methods rely on and exploit problem knowledge, which may not
be available, particularly with real-world applications. Basseur and Zitzler (2006) depict a slightly
different scenario, where the optimization goal is specified in terms of a quality indicator, as in
Zitzler and Künzli (2004). A general indicator model that can handle any type of distribution
representing the uncertainty allows different distributions for different solutions, and does not
assume a ‘‘true’’ objective vector per solution, but in general regards a solution to be inherently
associated with an unknown probability distribution in the objective space. Then, the solutions
are evaluated several times, and the set of evaluations obtained corresponds to approximations of
the ‘‘true’’ probability distribution of this solution in the objective space. The solutions are
evaluated according to a quality indicator value, which is also computed in a stochastic way. They
also propose an algorithm to compute an empirical attainment function, which evaluates the area
of the objective space that is dominated by the output with different confidence levels (see Fig. 5).
An interesting analysis of multi-objective optimization under uncertainty can be found in Tan and

Goh (2008), where the impact of different type of uncertainties is described and the approaches
designed for better and robust EMO performance are presented. To summarize, a small, but
increasing number of studies are dedicated to solve uncertain MOPs, but this aspect of multi-
objective optimization needs to be further explored. Particularly, some performance assessment
indicators are needed in order to evaluate the effectiveness of different algorithms, and to evaluate the
effect of the mechanism that takes into account the uncertainty during the optimization process.

7. Conclusions and perspectives

Multi-objective optimization is certainly a crucial research area for engineering and research
science because many real-world problems are of a multi-objective nature. The most popular
approach nowadays to tackle these problems is the use of metaheuristics, and especially
Evolutionary Algorithms.
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Fig. 5. Example with two objective functions and two solutions evaluated five times (circle and square points). There
exists only one alternative over 25 for the point (8, 4) to not be dominated by at least as one solution: if we take the

circle and square sample on the top of the figure. Then PðS%ð8; 4ÞÞ ¼ 24=25 ¼ 96%.
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In this paper, we have analyzed a number of emergent metaheuristic techniques to solve MOPs.
Our purpose has been to introduce open research lines related to metaheuristics but with a focus
on less explored areas that are of growing interest. We have focused on alternative metaheuristic
techniques, hybrid methods, parallel metaheuristics, and multi-objective optimization under
uncertainty.
The analysis of these techniques reveals that, although there are a number of works related to

them, they have not been fully explored and there are many open research lines. We expect this
paper to be useful, in particular to those researchers looking for new lines of work in the field of
metaheuristics for multi-objective optimization and, in general to the multi-objective research
community.
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In Cantü-Paz, E., et al. (eds) Genetic and Evolutionary Computation Conference (GECCO’2003), late breaking

papers, volume 2723 of Lecture Notes in Computer Science. Springer, Chicago, IL, pp. 21–27.
Basseur, M., Burke, E.K., 2007. Indicator-based multiobjective local search. In IEEE Congress on Evolutionary

Computation (CEC 2007), Singapore, September, pp. 3100–3107.

Basseur, M., Lemesre, J., Talbi, E.-G., Dhaenens, C., 2004. Cooperation between branch and bound and evolutionary
approaches to solve a biobjective flow shop problem. In Workshop on Evolutionary Algorithms (WEA’04), volume
3059, pp. 72–86.

Basseur, M., Seynhaeve, F., Talbi, E.-G., 2003. Adaptive mechanisms for multi-objective evolutionary algorithms. In
Congress on Engineering in System Application CESA’03, Lille, France, pp. 72–86.

Basseur, M., Seynhaeve, F., Talbi, E.-G., 2005. Path relinking in Pareto multi-objective genetic algorithms. In
Coello Coello, C.A., Aguirre, A.H., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization, EMO’2005, volume

3410 of Lecture Notes in Computer Science. Springer-Verlag, Guanajuato, Mexico, pp. 120–134.
Basseur, M., Zitzler, E., 2006. Handling uncertainty in indicator-based multiobjective optimization. International

Journal of Computational Intelligence Research (IJCIR) 2, 3, 255–272.

Beausoleil, R.P., 2001. Mutiple criteria scatter search. In 4th Metaheuristics International Conference (MIC’01)),
Porto, Portugal, pp. 539–544.

Beausoleil, R.P., 2006. ‘‘MOSS’’, multiobjective scatter search applied to non-linear multiple criteria optimization.

European Journal of Operational Research 169, 2, 426–449.
Beausoleil, R., Baldoquin, G., Montejo, R., 2008. Multi-start and path relinking methods to deal with multiobjective

knapsack problems. Annals of Operations Research 157, 1, 105–133.
Blum, C., Roli, A., 2003. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM

Computing Surveys 35, 3, 268–308.
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