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Abstract—The routing in communication networks is typically
a multicriteria decision making (MCDM) problem. However,
setting the parameters of most used MCDM methods to fit
the preferences of a decision maker is often a difficult task.
A Russian doll method able to choose the best multicriteria
solution according to a context defined beforehand is proposed.
This context is given by a set of nested boxes in the criteria space,
the shapes of which can be established from objective facts such
as technical standards, technical specifications, etc. This kind
of method is well suited for self-adaptive systems because it is
designed to be able to give pertinent results without interaction
with a decision maker, whatever the Pareto front.

The Russian doll multicriteria decision method is used with a
reinforcement learning to optimize the routing in a mobile ad-hoc
network. The results on a case study show that the routing can
be finely controlled because of the possibility to include as much
parameters as desired to adjust the search of the best solution on
Pareto fronts a priori unknown. These results are clearly better
than those obtained with the optimization of a weighted sum or
the minimization of a Chebyshev distance to a reference point.

I. INTRODUCTION

A. Background on Routing Protocols for Mobile Ad-Hoc Net-
works

Mobile ad hoc networks (MANETs) are self adaptive
telecommunication networks formed by several wireless nodes
that attempt to build an efficient topology in order to commu-
nicate. The aim of the routing task is to find a path between
a source node and a destination node. As the transmission
range of the nodes is limited, the path often uses successive
forwarding nodes called hops. The routing should optimize
Quality of Service (QoS) parameters like hop count, delay
or bitrates. In addition, the mobility of nodes causes frequent
changes of the network topology, thus the routing mechanism
must be able to modify paths in order to adapt to changes.
Many works have been published on the field of routing in
MANET [1].

The most often, the protocols described in [1] deal with
a single performance parameter namely hop count. Neverthe-
less, many applications like video and voice require different
performance parameters; therefore a new range of protocols is
needed.

Recently, some protocols based on reinforcement learning
methods [2] have emerged in order to deal with QoS opti-

mization in MANET. These protocols are either based on Q-
learning [3] like LQ-Routing [4], or on “Ant Colony Opti-
mization”, which is a special case of reinforcement learning
[5].

B. Routing as a Multi-criteria decision problem

The performance based routing problem is typically a multi-
criteria decision making problem (MCDM). It should be
solved in such a way that several QoS criteria are taken
into account simultaneously. However, these criteria are often
contradictory. Moreover, the importance given to the different
criteria depends on the requirements of the applications using
the network. For example, a telephony application could accept
quite high error rates, but the maximum transmission delay
should be of the order of 0.1 second. On the contrary, a file
transfer application will be efficient if the error rate is low,
while the delay could be quite high, of the order of several
seconds.

C. Related works

Especially for wireless networks, the task of selecting
among many candidates the multicriteria solution fitting at
best the preferences of a decision maker is discussed in many
research works. Common approaches use parametric prefer-
ence functions where the parameters, designated as “weights”,
have to be adjusted to express the relative importance given to
each criterion. Often these approaches transform the MCDM
problem into a single-objective optimization problem. How-
ever, it is difficult to determinate good values for the weights
according to the preferences of the decision maker, especially
when criteria are incommensurable. Thus, in [10], the authors
minimize a weighted sum in order to optimize the delay and
the distance from a source node to a destination node, to
deal with the issue of greedy-forwarding mechanism in ad
hoc networks. The values of the two weights are fixed using
multiple simulation scenarios. In [9] the authors formulate the
routing task in a mobile ad hoc network as a MCDM problem
that they solve by the weighted sum method. However, no
idea is suggested for the setting of the weight values. The
authors study the sensitivity of the optimization process results
according to these weights. They claim that a good estimation
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of the weight values is very important to obtain a good
efficiency and depend only on the application classes. In
[11], the authors consider the network selection problem as
a MCDM problem. The aim is to optimize two contradictory
objectives namely cost (price) and transmission time when
a set of components (data, video, voice, etc.) is transmitted
through different network connections. The problem is solved
by minimizing the weighted Chebyshev distance between the
solution and a reference point. Again, the authors state that the
weight values have to be chosen by the user himself. However
they argue that the proposed method is not very sensitive to
them thanks to their choice of a specific reference point.

In [8], the authors solve the problem of multicast routing
with a multi objective genetic algorithm (MOGA) [6], which
tries to approximate the set of non-dominated solutions. The
aim is to construct a multicast tree that optimizes several
objectives like delay and bandwidth. The choice of the best so-
lution among the set of non-dominated solutions is performed
by a decision maker according to the requirement of the
application. [7] use a reference solution given by the decision
maker to guide the search process of the best multicriteria
solutions during the selection step of a MOGA. But, an
adequate choice of the reference point is strongly dependent
on the optima locations, which are a priori unknown.

D. Multicriteria routing for autonomous networks

Our work is in the line of autonomic networks [12], which
have a self-adaptive capacity. Such networks should be able to
learn from their environment, to configure themselves and they
should take intelligent decisions without external help. In this
context, it is unacceptable that human decision makers help
the network to choose best multicriteria routing decisions.

However, the standard MCDM approaches based on para-
metric preference functions need an a priori knowledge of
the location of optima to give pertinent results. But, this
knowledge is a priori not available. When results are dis-
appointing, interactions with a decision maker are required
for choosing new parameters. For this reason, we think that
standard MCDM approaches are quite adequate for human
machine interactions, but not for autonomous systems. In the
frame of self-adaptive machines, a more suitable way could
be to consider multicriteria decision problems in terms of
homeostasis. With this point of view, the importance of criteria
changes according to their value in order to regulate them.

Section II presents a Russian doll method to implement
multicriteria decision making. Section III shows how the
Russian doll method is used by a reinforcement learning
method able to optimize routing in a mobile ad-hoc network.
Section IV describes a case study involving an ad-hoc network
of boats. Results of experiments are then given and discussed.

II. A MULTICRITERIA DECISION MAKING METHOD FOR
AUTONOMOUS SYSTEMS

A. Pareto dominance

The criteria are represented by vectors defined in a criteria
space C ⊂ Rm, for which each coordinate should be mini-

mized. A vector of criteria F(x) is associated with each vector
x in search space Ω ⊂ Rn.

The Pareto dominance is defined as follows: Let a =
(a1, ..., am) and b = (b1, ..., bm) be criteria vectors, a domi-
nates b if and only if

∀i ∈ [1,m], ai ≤ bi and ∃j ∈ [1,m] such that aj < bj

Let F(x) = (f1(x), ..., fm(x)) be the objective functions of
the multi-criteria optimization problem. The resolution of this
problem consists in finding the Pareto optimal set of vectors
X∗ such that each criteria vector z = F(x) with x ∈ X∗

is non dominated. The Pareto front F is defined as the set
F = {F(x),∀x ∈ X∗}.

Multi-criteria decision consists in choosing a Pareto optimal
point that is recognized as the best choice by a decision maker.

B. Decision making by autonomous systems

We propose in this paper a MCDM approach suitable for
autonomous systems where the parameters of the multicriteria
decision are directly deduced from the requirements we want
to reach. Typically, this kind of information could come
from technical standards, technical specifications of system
components or experiments.

For example, for a high quality Voice over IP (VoIP)
application, the delay d should be lower than 0.1 s and the
bit error rate BER should be lower than 10−6. The problem
is finding routes maximizing the QoS. Table I gives as an
example a series of thresholds associated to different levels of
quality.

TABLE I
DIFFERENT LEVELS OF QUALITY FOR A VOIP APPLICATION

Delay d BER

High quality [0, 0.1) [0, 10−6)

Degraded quality [0.1, 0.5) [10−6, 10−4)

Unacceptable ≥ 0.5 ≥ 10−4

Figure 1 can be used to illustrate an example of Pareto front
in the criteria space generated by the BER (in abscissa) and
the delay. Please note that this figure is only given to support
explanations and does not come from experiments. Box 0 is
defined as the whole criteria domain. According to Table I, box
2 contains high quality VoIP communications criteria vectors
while vectors of box 1 that are not in box 2 are associated to
degraded communications. Criteria vectors of box 0 but not in
box 1 are in the “unacceptable” domain.

Figure 1 shows that box 2 does not contain any solution of
Pareto front F . So there are only “degraded quality” solutions
at best for this Pareto front. The best solution chosen is the
closest to box 2 (high quality domain box) according to a
distance to define.

This example has given an idea about the working of the
proposed MCDM algorithm. It is described in details in the
following.
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Fig. 1. Choice of a non dominated criteria vector with the help of nested
boxes

C. Russian doll decision making method

Without loss of generality, we consider the case of a
minimization problem for all the criteria. A box is defined by
the Cartesian product of m intervals [li, ui] with i ∈ [1,m].
A set of k + 1 boxes Bj =

∏
[li0, uij ] indexed from 0 to

k must be defined in the criteria space in such a way that
any box, except box 0, is nested in another box like Russian
dolls. Box 0 is the whole criteria domain. The parameters of a
box are given by bounding values or threshold values for each
criterion. The lower bounds li0 of boxes are the lower bounds
of the whole criteria domain.The required number of boxes and
their shapes are specification-dependent. Many nested boxes
allow the system designer to accurately control the choice of
a solution on the Pareto front.

In the following, we need to define a distance between
vectors and boxes. We propose to use the weighted Chebyshev
distance d∞w to ensure that any point of the Pareto front could
be reached [13] by defining appropriate shapes for boxes. Let
a and b be two vectors of Rm.

d∞w (a,b) = max
i∈[1,m]

wi|ai − bi| with wi ≥ 0

Now, we define the normalized Chebyshev distance between
a criteria vector x ∈ Bj−1 and box Bj as follows:

d∞(x) = max
i∈[1,m]

δij , with δij =


0 if xi ∈ [lij , uij ]
0 if uij = uij−1

xi − uij

uij−1 − uij
otherwise

In this way, every point on the upper borders uij−1 of a box
Bj−1 is at the same distance from the nested box Bj except
if uij = uij−1.

Let u and v be two criteria vectors to compare. B(u) and
B(v) are defined as the smallest boxes containing vectors u
and v respectively. Let d∞(u) be the Chebyshev distance
between u and the largest box contained in B(u). If u is
contained by the smallest box Bk, d(u) is not defined.
• Let i(B) be the index of box B. If i(B(u)) > i(B(v)),

then u is said “better than” v.

• If B(u) = B(v) and i(B(u)) 6= k and d∞(u) < d∞(v),
then u is said “better than” v.

• If B(u) = B(v) and i(B(u)) 6= k and d∞(u) = d∞(v)
and u dominates v, then u is said “better than” v.

• In the other cases, u and v are said “indifferent”.
By applying these simple rules, it is easy to show that

the relation “is better than or indifferent to” is reflexive and
transitive. However, this relation is not antisymmetric because
of the “indifferent” rule and it is not symmetric because of the
“better than” rules. Moreover, this relation is total: all couples
of criteria vectors can be compared.

The Russian doll decision making method is implemented
by comparing couples of criteria vectors with the comparison
rules described above. The best criteria vector is the one that is
the closest of the largest box that does not contain any criteria
vector.

III. MULTI-CRITERIA REINFORCEMENT LEARNING FOR
ROUTING IN AD-HOC NETWORKS

A. Choosing the best routes according to the returns of the
environment

For each class of application (VoIP, FTP, video streaming,
etc.), there is a specific routing policy fitting at best the
requirements for each of them. The criteria evaluation for a
packet is made when it reaches its destination.

Let a, s, d and n respectively stand for “application class”,
“source node”, “destination node” and “neighbor node”. A
router r has to choose a neighbor n* according to a and d
such that the criteria vector evaluated on the destination node
d satisfies at best the QoS requirements according to a. The
criteria vectors are seen as realizations of a random vector C.
It is assumed that each router r, keeps in memory expected
criteria vector estimations Q(a, d, r, n) = Ê(C|a, d, r, n).
Note that (a, d) are given by the packet transmitted by router r.
Let n∗ be the best neighbor according to the QoS requirements
for application class a. n∗ is chosen by router r by comparing
the expected criteria vectors Q(a, d, r, n) for every neighbor
n. These multicriteria comparisons are implemented by the
Russian doll method.

B. Discovering routes by reinforcement learning

Reinforcement learning (RL) [2] takes place in the com-
putation of Q(a, d, s, n) only at the source node of a packet
indexed by t according to the following expression:

Qt(a, d, s, n) = Qt−1(a, d, s, n)
+α(ct −Qt−1(a, d, s, n)), if t > 0

Q0(a, d, s, n) = 0 otherwise

where
• criteria vector ct is evaluated for packet number t at its

destination. It is seen as the return of the environment of
router s ;

• α is a constant step-size parameter: α ∈ [0, 1).
Our RL approach has been designed to work well with the

Interleave Division Multiple Access (IDMA) method [14] that
allows several nodes to transmit data simultaneously. However,
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the number of simultaneous communications must be as small
as possible. For this reason we have not used a protocol of
the Q-routing family.

Reinforcement learning requires finding a good equilibrium
between exploitation and exploration [2] in order to be able
to converge as quickly as possible towards optimal or near
optimal solutions. Exploitation consists in choosing the action,
i.e. the neighbor of a node, with the best-expected return.
However a learning process with too much exploitation, leads
to sub-optimal solutions. Exploration is required to improve
the quality of the best found solution. Exploration consists in
choosing an action at random, i.e. choosing the neighbor of a
node at random. However, too much exploration results in a
waste of resources and low returns.

It is impossible to have an a priori estimation of the packet
QoS involved in the exploration process. The exploration
packets should then be used only for the computation of the
Qt vectors. When an exploration packet is sent by source s
towards destination d, router s chooses a neighbor randomly.
The other routers of a path choose their best neighbor accord-
ing to their Qt vectors.

IV. EXPERIMENTS

A. The case study

An access method allows several users to share the same
medium, i.e. electromagnetic waves for wireless communi-
cations. The Interleaved Division Multiple Access (IDMA)
method [14] is a new access method similar to CDMA: users
can send the data simultaneously and in the same band. The
separation of the different users is based on the attribution of
different interleavers but the code remains the same. Recent
studies [15] have shown that it is even possible to use the same
interleaver for all the users provided that the communications
are asynchronous. This property is well suitable for MANETs.
However, the greater the number of simultaneous transmitting
nodes in the neighborhood, the lesser the signal to noise ratio
and the greater the error rate. That involves that the quality of
links between nodes is not stable and changes quickly. It is a
challenge for the conception of good routing policies.

The experiments aim to estimate the efficiency of the
Russian doll multicriteria decision method. The case study
involves 20 boats in a rectangular region 100× 150 km2 that
transmit data towards a terrestrial station located at coordinates
(0, 75km). All the boats use the IDMA method.

During communications, boats are considered as station-
ary because of their low speed compared to distance be-
tween them. However, the features of communication channels
change quickly because of the variability of the signal to noise
ratios.

B. Simulations

The integration of the physical layer on a standard network
simulator involves a high software complexity. There is no
current simulator able to offer this feature. To overcome this
difficulty, we have decided to work with the combination of
two simulators that we have developed: one dedicated for the

physical layer and IDMA access method simulation and the
other for the network layer in charge of the routing tasks.
The source nodes are chosen at random. Node 0, which is the
terrestrial station, is the only destination of data packets.

A time period is a set of 40 successive time slots. For every
time slot, a random number of simultaneous messages from
1 to 5 are sent through the network. A half of the messages
is used to train the routers. The other half is used to provide
performance results.

In the frame of the presented experiments, Qt(a, d, r, n)
is a vector (δt, εt) composed of the expected delay δt and
expected error rate εt at time period t. These values have to
be minimized by choosing adequate neighbors n* for every
router r and destination 0. Four application classes are defined
for these experiments. Class 1 requires minimizing ε only.
Class 2 requires the minimization of δ only. Class 3 requires
simultaneous minimization of δ and ε if δ ≤ 3.5. If δ > 3.5, δ
is minimized only. Class 4 requires simultaneous minimization
of δ and ε if δ ≤ 4.5. If δ > 4.5, δ is minimized only. Two
experiments are performed.

Experiment 1 uses standard MCDM methods. However,
such methods are unable to meet the exact requirements for
application classes 3 and 4. So, they are simplified by dropping
the thresholds 3.5 and 4.5 for classes 3 and 4 respectively.
We differentiate class 3 and 4 by using two MCDM methods
with the same objectives in order to compare them with
the Russian doll method. The MCDM method for class 3
minimizes the weighted Chebyshev distance d∞w (x, ρ) between
solution x = (δ, ε) and the reference point ρ = (1, 0) with
weight 0.1 for δ and weight 0.9 for ε:

d∞(x, ρ) = max (0.1(δ − 1), 0.9ε)

The weights have been chosen as normalizing coefficients
since no indication was given about the importance of criteria.
The MCDM method for class 4 minimizes the weighted sum
of δ and ε with the same weights as for class 3.

Experiment 2 uses the Russian doll method. Now, the
specification of classes 3 and 4 can be fully implemented by an
appropriate choice of shapes for the nested boxes. According
to section II, box 0 is defined as the whole criteria domain
defined by the extreme points (0, 0) and (10, 1) where the
first coordinate stands for δ and the second one stands for ε.

The nested boxes for the different application classes are
represented in figure 2. The box upper bounds are given in
table II.

TABLE II
BOX UPPER BOUNDS ACCORDING TO THE APPLICATION CLASSES

Class box 1 box 2
1 (10, 0)
2 (1 , 1)
3 (3.5, 1) (1, 0)
4 (4.5, 1) (1, 0)

In summary, box 1 implements the threshold 3.5 or 4.5 on
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Fig. 2. Nested boxes of the Russian doll method for the four application
classes

δ for classes 3 or 4 respectively. Definition of box 2 allows
the MCDM algorithm to minimize simultaneously δ and ε.

C. Results

Each simulation gives 4 sets of numbers dt(a), st(a), δt(a)
and εt(a) for each application class a, where t is the time
period number:

dt(a): average of measured delays over all packets sent
during time period t for application class a.

st(a): average of success rates, st(a) = 1 − et(a), where
et(a) is the measured error rate.

δt(a): average of Qt(a, 0, s, n∗) first coordinate (expected
delay) at source nodes. For each packet, source node s is
randomly chosen. Its destination is always 0.

εt(a) : average of Qt(a, 0, s, n∗) second coordinate (ex-
pected error rate) at source nodes.

Fig. 3 and 4 give the delays dt(a) and success rates st(a) vs.
time period t, for experiment 2. The figures show that dt(a)
and st(a) are clearly differentiated according to application
class a. Thus, the network is able to configure itself to route
simultaneously data packets according to the specifications of
the different application classes.

In order to show how the learning process adapts the routing
policy following a failure of some nodes, the success rates
and delays for two nodes close to the destination (over 4)
are suddenly and strongly degraded from the 300-th time
period. Figures show that the routes are changed after some
time periods to prevent the routers to choose these nodes.
The network is then able to almost recover its previous
performance.

Figure 5 presents the histograms of the expected delays
estimations δ(a) for the Russian doll decision making. They
are not displayed as bar charts as usual, but as continuous
functions for the sake of readability. The width of each bin is
0.1. The frequency at abscissa x is obtained from the number
of values in interval (x− 0.1, x].

The effect of the boundaries of box 1 of the Russian doll
method are clearly visible on fig. 5 for application classes 3
and 4. Indeed, the difference of frequencies between bins 3.4
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for experiment 2
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Fig. 5. Histograms of the estimation of expected delays according to
application classes for experiment 2 (bin width = 0.1)

and 3.5 for the application 3 histogram is the greatest among
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consecutive bins, while 3.5 is the δ boundary for box 1 of
application class 3. Similarly, the same phenomenon occurs
between bins 4.4 and 4.5 for the application 4 histogram, while
4.5 is the δ boundary for box 1 of application class 4.

The standard deviation for application class 1 is quite high
as expected because the only minimized criterion is ε. For the
other classes, standard deviations of δ(a) are notably lower.
These values show that the δ boundaries of box 1, for a = 3
or 4, behave like an attractor. These values will be compared
below with results of experiment 1.

Experiment 1 carries out standard MCDM methods only.
Figure 6 presents the histograms of the expected delays estima-
tions δ(a) for the weighted Chebyshev distance minimization
(application class 3) and for the weighted sum minimization
(application class 4).

Compared to experiment 2, standard deviations for appli-
cation classes 3 and 4 are notably higher. The histograms of
δ(a) for these classes are not very different from the one of
application class 1. So, the “attraction effects” towards desired
objectives are much less marked than for experiment 2.

V. CONCLUSION

Setting the parameters of most MCDM methods to fit the
preferences of a decision maker is a difficult task. This paper
has presented a method able to choose the best multicriteria
solution according to a context defined beforehand, whatever
the Pareto front. This context is given by a set of nested
boxes in the criteria space, the shapes of which are defined by
objective facts as technical standards, technical specifications,
etc. This kind of method is well suited for self-adaptive
systems because it does not need the intervention of a decision
maker to adjust parameters and to assess the quality of the
method results.

The Russian doll multicriteria decision method has been
used with a reinforcement learning to optimize the routing in
a wireless network. The results on a case study show that the
routing can be finely controlled because of the possibility to

include as much parameters as desired to adjust the search
of the best solution on Pareto fronts a priori unknown. These
results was clearly better than those obtained with the min-
imization of a weighted sum or a Chebyshev distance to a
reference point.

More work has to be done to refine the Russian doll
multicriteria decision method for self-adaptive systems. In
particular, the method could be improved when the Pareto front
is strongly concave by using polyhedral nested boxes instead
of hyper-rectangular boxes only. Its applicability should also
be evaluated in multiple contexts.

ACKNOWLEDGMENT

This work is a part of the OPERRA project supported by
the “Institut TELECOM”, France.

REFERENCES

[1] Mehran Abolhasan, Wysocki, T., and Dutkiewicz. E., “A review of routing
protocols for mobile ad hoc networks”. Ad Hoc Networks, 2:1, January
2004.

[2] Sutton, R., Barto, A., Reinforcement Learning: An Introduction.
MIT Press, Cambridge, Massachusetts, 1998.

[3] Watkins, C.J.C.H., Dayan, P., Machine Learning, 8:279-292, 1992
[4] Tao, T., Tagashira, S., and Fujita, S., “LQ-Routing Protocol for Mobile

Ad-Hoc Networks”. In Proc. of the 4th Annual ACIS International
Conference on Computer and information Science (July 14 - 16, 2005).

[5] Di Caro, G., Ducatelle, F., and Gambardella, L.M., “Anthocnet: An
adaptive nature-inspired algorithm for routing in mobile ad hoc net-
works”, European Trans. on Telecom., Special Issue on Self-organization
in Mobile Networking, vol. 16, pp. 443455, 2005.

[6] Deb. K., Multi-Objective Optimization using Evolutionary Algorithms.
John Wiley, 2001.

[7] Ishibuchi, H., Nojima, Y., Narukawa, K., Doi, T., “Incorporation of
decision maker’s preference into evolutionary multiobjective optimization
algorithms”, in Proc. of GECCO ’06, 741–742, 2006.

[8] Roy, A., Das, S.K., “QM2RP: a QoS-based mobile multicast routing
protocol using multi-objective genetic algorithm. Wirel. Netw. 10, 3
(May), 271-286, 2004.

[9] Guerriero, F., De Rango, F., Marano, S., Bruno, E., “A biobjective
optimization model for routing in mobile ad hoc networks”, Applied
Mathematical Modelling, Volume 33, Issue 3, March 2009, Pages 1493.

[10] Egoh, K., De, S., “A Multi-Criteria Receiver-Side Relay Election Ap-
proach in Wireless Ad Hoc Networks”, MILCOM 2006, pp. 1-7, 2006

[11] Setmaa-Krkkinen, A., Miettinen, K., Vuori, J., “Best compromise solu-
tion for a new multiobjective scheduling problem”, Comput. Oper. Res.
33, 8 (Aug.), 2353-2368, 2006

[12] Mahmoud, Q., (Ed.) Cognitive Networks: Towards Self-Aware Networks,
Wiley-Interscience, 2007

[13] Bowman, V. J., “On the relationship of the Tchebycheff norm and
the efficient frontier of multiple-criteria objectives”, Lecture Notes in
Economics and Mathematical Systems, Vol. 135, pp.76-85, 1976

[14] Ping, L., WU, K.Y., Liu, L., Leung, W.K., “On Interleave-Division
Multiple-Access” in Proc. of IEEE ICC Conference, pp 2869-2873, 2004

[15] Houcke, S., Sicot, G., Debbah, M., “Blind Detection for block coded
interleaved Division Multiple Access” GLOBECOM, San Fransisco, USA,
2006

ha
l-0

05
65

83
8,

 v
er

si
on

 1
 - 

14
 F

eb
 2

01
1


