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Abstract—With the advent of wireless and mobile devices,
many new applications are being developed that make use of
the spatio-temporal information of a user to provide better
functionality. Such applications also necessitate sophisticated
authorization models where access to a resource depends on the
credentials of the user and also on the location and time of access.
Consequently, researchers have extended the traditional access
control models, such as role-based access control, to provide
spatio-temporal access control. We improve upon these models by
providing additional features that allow us to express constraints
that were not possible until now. We express our model using
the unified modeling language (UML) and the object constraint
language that are the de facto specification languages used by
the industry. Our model has numerous features that interact
in subtle ways. To this end, we show how the UML-based
specification environment tool can be used to analyze the spatio-
temporal access control model of an application. We propose an
architecture for enforcing our model and provide a protocol that
demonstrates how access control can be granted and revoked in
our approach. We also develop a prototype of this architecture
to demonstrate the feasibility of our approach.

Index Terms—Access control.

I. Introduction

W ITH THE GROWTH of the sensor and wireless tech-
nology, new applications are being developed for mo-

bile devices. Such applications typically have new authoriza-
tion requirements where environmental conditions, such as
location and time, are used together with the credentials of the
user to determine access. An example will help illustrate this
point. Consider a real-world example of a spatio-temporal pol-
icy for the telemedicine application iMediK [1]. The iMedik
is a mobile application accessible by handheld devices that are
integrated with a global positioning system (GPS) that iden-
tifies its physical location. With the help of mobile devices,
doctors can access their patient information on the move. The
security policy requires that doctors can use handheld devices
to view complete patient medical record (PMR) information
in the clinic during daytime, whereas the same doctors can
view only partial PMR information outside the clinic during
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nighttime. Such a policy is needed to protect patient-sensitive
information in the case of lost or stolen devices. Traditional
access control models, such as role-based access control
(RBAC), cannot be used for expressing such policies.

Researchers have addressed this problem by extending
RBAC that allows it to do spatio-temporal access control
[2]–[4]. Most of the work on spatio-temporal RBAC associate
two entities, namely, location and time with users, roles, and
permissions. The location and time associated with a user
gives the current time and his present location. The location
and time associated with a role designate when and where
the role can be activated. The location and time associated
with a permission signify when and where a permission can
be invoked. In addition, researchers have also suggested how
spatio-temporal constraints can be associated with inheritance
and separation of duty (SoD) relations. Our current work
extends the earlier works along several dimensions. First,
we provide a more expressive spatio-temporal access control
model that we refer to as generalized spatio-temporal role-
based access control (GSTRBAC). We allow spatio-temporal
constraints to be specified with various types of prerequisite
constraints. We also introduce the concept of spatio-temporal
zone that allows us to abstract location and time into one
entity. This, in turn, reduces the number of entities that must
be managed and also prevents the creation of new roles or
permissions when spatio-temporal constraints associated with
them change.

Second, we demonstrate how our model can be formally
represented using the unified modeling language (UML) and
object constraint language (OCL) that are the de facto speci-
fication languages used in the software industry.

Third, we illustrate how the model can be automatically an-
alyzed using the UML-based specification environment (USE)
tool for consistency and correctness. An application using our
model can also be analyzed using USE to check for security
property violations and see how the properties are affected
when the security policy is changed.

Fourth, we provide an architecture for enforcing our spatio-
temporal access control model. We also provide communica-
tion protocols that demonstrate how access can be granted and
revoked in the context of our model and prove the security of
this protocol. Finally, we implement a prototype and show how
our spatio-temporal RBAC can be used in an Android mobile
application.
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Treating location and time as separate entities often create
problems. Let us illustrate this with an example. Suppose a
doctor role can be activated at locations {hospital, clinic} from
8:00 a.m. to 5:00 p.m. This means that the doctor can activate
his role either in the hospital or a clinic anytime from 8:00
a.m. to 5:00 p.m. Suppose that the medical board decides to
change the spatio-temporal constraints such that the doctor can
activate his role in the hospital from 8:00 a.m. to 1:00 p.m. and
can activate his role in the clinic from 12:00 p.m. to 5:00 p.m.
In order to specify such a constraint, we would have to split
the doctor role into two roles, namely, hospital doctor and
clinic doctor and associate the respective location and temporal
constraints with each of them. Thus, a simple change to the
spatio-temporal constraint requires the creation of new roles
and changing all the relationships that are associated with the
original role. Such a change is nontrivial. Treating location
and time as distinct entities also causes a significant increase
in the number of entities to be managed as location and time
are associated with every object and relation in RBAC. This
not only reduces ease of understanding for the user but also
makes automated verification more challenging due to state-
space explosion.

We introduce the concept of a spatio-temporal zone, hence-
forth, referred to as STZone. The STZone entity in our model
is an abstract concept associated with each RBAC entity
and relationship. STZone is represented as a set of pairs for
locations and intervals that are of interest to the RBAC entities.
In the previous example, the doctor role is initially associated
with the following STZones: {(hospital, [8:00 a.m. to 5:00
p.m.]), (clinic, [8:00 a.m. to 5 p.m.])}. When the medical
board decides to change the policy, this can be effectuated
just by changing the STZones associated with the doctor
role as follows: {(hospital, [8:00 a.m. to 1:00 p.m.]), (clinic,
[12:00 p.m. to 5 p.m.])}. Abstracting location and time into
a single STZone also reduces the number of entities in the
model, making it easier to understand and verify.

We formalize GSTRBAC using UML [5] and OCL [6].
A number of reasons motivated our choice. First, UML is
a general-propose language that has been considered the de
facto standard in modeling software. Thus, applications are
likely to be specified in UML. This will make it easier for one
to integrate the access control policies with the application.
Second, UML has a set of graphical notations for specifying
static and dynamic aspects of software systems. The graphical
diagrams of the UML make it easy to understand and use.
Third, UML has supporting tools [7] that can be used for
automated analysis. Fourth, UML can be used in all the phases
of the software development process. Thus, it will be easy to
check whether an access control implementation satisfies the
policy if both are specified using the same language.

Once we have specified the GSTRBAC model, it must be
analyzed for consistency and correctness. Moreover, for an
application using GSTRBAC, we need to ensure that no access
control breaches or problems occur. Toward this end, we need
to do some automated analysis. Earlier works that use UML
to specify access control requirements have typically resorted
to the use of other formalisms for automated analysis. Such
an approach typically involves a transformation process where

the UML is converted into Alloy [8], Coloured Petri Nets [9],
or UPPAAL [10] for the purpose of analysis. The results of
the analysis depend on the correctness of the transformation
procedure. We do not follow this approach but utilize USE
[7] for the analysis that allows us to use the same language
for specification and verification of GSTRBAC. The USE
tool supports the automated generation of snapshot instances,
which is used to validate GSTRBAC policies. The USE tool
provides an interactive environment that facilitates the valida-
tion of properties of UML models specified in the form of OCL
invariants, preconditions, and postconditions against some test
scenarios. Such test scenarios are automatically generated by
the USE tool that makes the verification process easier. The
verification is carried out by an embedded constraint solver.

The rest of this paper is organized as follows. Section II enu-
merates some related work in this area. Section III introduces
the concept of spatio-temporal zones. Section IV presents our
GSTRBAC model using UML and OCL. Section V shows how
USE can be used for analyzing the access control requirements
of an application specified using GSTRBAC. In the presenta-
tion of the GSTRBAC enforcement mechanism, Section VI
discusses the proposed implementation architecture model,
Section VII introduces the resource usage protocols, and Sec-
tion VIII describes an experimental evaluation of a prototype
enforcing GSTRBAC in an Android mobile application. Sec-
tion IX concludes this paper with pointers to future directions.

II. Related Work

RBAC [11] is the de-facto access control model used in
the commercial sector. RBAC is policy neutral and can be
used to express different types of policies. RBAC simplifies
security management. In RBAC, users are assigned to roles,
and roles are associated with permissions. In a session, a user
can activate a subset of roles assigned to him. The operations
that a user can perform in a session depend on the roles
activated by the user and the permissions associated with those
roles. To simplify role management, roles are organized in the
form of a hierarchy. A senior role may inherit the permissions
of a junior role, or a senior role may activate the junior role
depending on whether the roles are connected by permission
inheritance hierarchy or role activation hierarchy. In order to
prevent fraud, RBAC allows one to specify separation of duty
constraints. Static separation of duty constraints prevents a
user from being assigned to conflicting roles or a role being
associated with conflicting permissions. Dynamic separation of
duty constraints prevent a user from activating two conflicting
roles.

Researchers have worked on extending RBAC with time and
location. Bertino et al. [12] proposed a temporal RBAC. The
authors introduced the concept of role enabling and disabling.
Roles can be enabled or disabled on the basis of temporal
constraints. Roles can be activated if they are enabled. The
model does not consider the impact of temporal constraints
on user-role assignment or permission-role assignment. This
also does not consider the effect of time on separation of duty
constraints, cardinality constraints, and role–role hierarchy.
Joshi et al. [13] proposed a generalized temporal RBAC model
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that associates temporal constraints with the entities and all the
relationships in an RBAC model.

Researchers have also extended RBAC using location in-
formation. Hansen and Oleshchuk [14] proposed the spa-
tial RBAC for specifying location-based access control poli-
cies for wireless networks. Bertino et al. [15] proposed the
GEO-RBAC model that allows role activation based on users’
locations. However, the model does not discuss the im-
pact of spatial constraints on role hierarchy, separation of
duty, user-role assignment, and permission-role assignment.
Ray et al. [16] proposed location-aware RBAC (LRBAC)
model incorporates location constraints in user-role activation,
user-role, and permission-role assignments. LRBAC does not
define spatial constraints on role hierarchy or separation of
duty.

The use of both spatial and temporal information for
doing access control has also been investigated by many
researchers [2]–[4], [17]–[19]. In all these models, the role
activation is constrained by spatio-temporal information. In
some models [4], [17], [19], additional spatio-temporal con-
straints are imposed on user-role assignment and permission-
role assignment. Some of these models [17]–[19] also consider
the impact of spatio-temporal constraints on role hierarchy and
separation of duty. Others [17], [19] also put additional spatio-
temporal constraints on permissions. Our current model allows
the specification of all the above types of spatio-temporal
constraints. In addition, we allow spatio-temporal constraints
to be specified with prerequisite constraints—the impact of
location and time on prerequisite constraints has not been
discussed in any of the previous works; we do this in this
paper. We also introduce the concept of STZone that abstracts
the location and time into one entity. This simplifies policy
management and policy analysis.

Chen and Crampton develop the graph-based representation
for the spatio-temporal RBAC in [17]. The RBAC entities are
represented by vertices, while their relationships are repre-
sented by the edges of a directed graph. The authors propose
three types of models: standard, strong, and weak. For the
standard model, component v1 is said to be authorized to
component vn if all vertices along the authorization path
satisfy the spatio-temporal constraints. For the strong model,
component v1 is said to be authorized to component vn if all
vertices, together with the edges along the authorization path,
satisfy the spatio-temporal constraints. In the weak model,
component v1 is said to be authorized to component vn if both
vertices satisfy the spatio-temporal constraints. The authors
developed strong and clear semantics of these different models.

Our work differs from that of Chen and Crampton [17] in
the following ways. First, we consider the spatio-temporal
impact on separation of duty and prerequisite constraints
which is missing from the work of Chen and Crampton. They
also did not consider moving objects, which we do in this
paper. Second, Chen and Crampton consider the spatial and
temporal domains separately before developing the spatio-
temporal point. Treating the two domains separately gives
rise to the problems described in Section I. Third, Chen
and Crampton add spatio-temporal constraints to the RBAC
entities and relationships using λ and μ functions, respec-

tively. This approach makes it harder to capture the number,
types, and the relationship between the various spatio-temporal
constraints. On the other hand, we consider STZone as a
separate entity along with the other existing RBAC entities.
This allows a more uniform treatment; the STZone pertinent
to the application is enumerated and their relationships can
easily be evaluated. Fourth, Chen and Crampton provide a
graph-theoretic approach for visualizing problems with the
specification, but do not focus on the analysis. We use UML
and OCL for this purpose; UML and OCL are the de facto
language for specifying the various requirements of the appli-
cations. This makes it easier to analyze the interactions among
the access control constraints and also how these impact other
application requirements.

In addition to specifying novel RBAC models, researchers
have proposed approaches for verifying RBAC security poli-
cies. Some researchers [4], [20]–[22] have investigated the use
of Alloy for verifying spatio-temporal RBAC policies. In order
to make the analysis tractable, Alloy requires that the user
scope the problem. The results of the analysis are, therefore,
applicable only for the scope of the problem being verified.
Modeling and analyzing concurrency in Alloy is nontrivial.
Toward this end, researchers [19], [23], [24] have investigated
alternative techniques based on Coloured Petri Nets [9] and
timed automata [10] for verifying temporal, spatio-temporal,
and real-time RBAC policies. The major challenge in these
works is how to do the analysis without causing the problem
of state explosion. The use of UML and OCL for specification
and analysis of RBAC has been investigated by Sohr et al.
[25]. Our work extends this for specifying and analyzing
spatio-temporal policies.

Researchers have also proposed other temporal authoriza-
tion models that are not based on RBAC. Bertino et al. [26]
proposed a temporal authorization model that extends autho-
rizations with temporal constraints. In this model, an autho-
rization is associated with a temporal expression, identifying
the periods of time in which the authorization applies. Fur-
thermore, it also permits the specification of derivation rules
for expressing temporal dependencies among authorizations.
Gal and Atluri [27] proposed a temporal data authorization
model (TDAM) that can be seen as a complementary model
to the one in [26]. TDAM can express time-based policies
based on the temporal attributes of data such as transaction
time. However, these models are for non-RBAC policies; they
cannot express temporal constraints on roles such as temporal
role enabling and disabling constraints.

III. Location and Time Representation

In our model, each entity and relation is associated with
spatio-temporal information. Before describing these associa-
tions in detail, we show how spatio-temporal information is
represented in our model.

A. Location Representation

There are two types of locations: physical and logical. All
users and objects are associated with locations that correspond
to the physical world. These are referred to as the physical
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locations. A physical location is formally defined by a set of
points in a 3-D geometric space. A physical location ploci is
a nonempty set of points {pi, pj, . . . , pn}, where a point pk

is represented by three coordinates. The granularity of each
coordinate is dependent upon the application.

Physical locations are grouped into symbolic representations
that will be used by applications. We refer to these symbolic
representations as logical locations. Examples of logical loca-
tions are Fort Collins, CO. A logical location is an abstract
notion for one or more physical locations. We assume the
existence of a mapping function m that converts a logical
location to a corresponding physical one.

Definition 1: [Mapping Function m] m is a total function
that converts a logical location into a physical one. Formally,
m : L −→ P , where P is the set of all possible physical
locations and L is the set of all logical locations.

We define the containment ⊆ and equality = on physical
locations. A physical location plocj is said to be contained
in another physical location plock if plocj ⊆ plock. Two
physical locations plocr and plocs are equal if plocr ⊆ plocs

and plocs ⊆ plocr.
Note that logical locations must be transformed into physi-

cal locations (using mapping function m defined above) before
we can apply these operators. We define a logical location
called anywhere that contains all other locations. Each appli-
cation can describe logical locations at different granularity
levels. For example, some permissions may be applicable on
the entire state whereas other permissions are only applicable
to people in the city. Let us denote the logical locations that
are of interest to the application by the set L. Let the physical
locations corresponding to these logical locations be denoted
by P. The size of the smallest location in P corresponds to the
minimal location granularity of the application. For example,
in the organization Software Development Corporation, we
may have L = {MainBuilding, TestingOffice, DirectorOffice,
DevelopmentOffice}. The MainBuilding houses the three of-
fices in separate floors of the building. In this case, the minimal
location granularity is one floor.

B. Time Representation

Our model uses two kinds of temporal information. The first
is known as time instant and the other is time interval. A time
instant is one discrete point on the time line. A time interval is
a set of consecutive time instants that can be represented in the
form of d = [ts − te], where ts, te represent time instants and ts
precedes te on the time line if ts �= te. We use the notation ti ∈ d

to mean that ti is a time instant in the time interval d. The exact
granularity of a time instant is application dependent. Suppose
the granularity of time instant in an application is 1 min. In
this case, time interval [3:00 a.m. to 4:00 a.m.] consists of the
set of time instants {3:00 a.m., 3:01 a.m., 3:02 a.m., . . . , 3:59
a.m., 4:00 a.m.}.

Now, we define the containment ⊆ and equality = on
time intervals. A time interval dj is said to be contained in
another time interval dk if dj ⊆ dk. Two time intervals ds

and dr are said to be equal if dr ⊆ ds and ds ⊆ dr. We
define a time interval called always that includes all other
time intervals. The set of all time intervals of interest to the

application is defined by I. The minimal time granularity of an
application refers to the size of the smallest time interval used
by the application. For example, in the Software Development
Corporation, we may have the following intervals that are
of interest: I = {i1, i2, i3, i4}, where i1 = [8 a.m. to 5 p.m.],
i2 = [8 a.m. to 12 p.m.], i3 = [12 p.m. to 1 p.m.], and i4 =
[1 p.m. to 5 p.m.]. The minimal time granularity pertaining to
this application is 1 hr.

C. Spatio-Temporal Zone

One of the main contributions in our work is the formaliza-
tion of the concept of a spatio-temporal zone. The concept of
spatio-temporal zone abstracts location and time representation
into a single entity. Now we give the formal definition of the
notion spatio-temporal zone and the zones set.

Definition 2 (Spatio-Temporal Zone): A spatio-temporal z-
one STZone is a pair of the form (l, d), where l and d represent
the logical location and the time interval, respectively.

An example of a spatio-temporal zone can be z =
(HomeOffice, [6 p.m. to 8 a.m.]).

A spatio-temporal zone set, i.e., STZones = {z0, z1, . . . , zn},
is a set of all spatio-temporal zones in an organization
that defines where and when some entities are available.
An example of a spatio-temporal zone set is {(HomeOffice,
[6 p.m. to 8 a.m.]), (DeptOffice, [8 a.m. to 6 p.m.])}. A spatio-
temporal zone (l, d) is specified at minimal granularity if l and
d are specified at minimal location granularity and minimal
temporal granularity, respectively.

Definition 3 (Spatio-Temporal Zone Containment): A
spatio-temporal zone z1 = (l, d) is contained in another
spatio-temporal zone z2 = (l′, d ′), denoted by z1 ⊆ z2, if
both zones have time intervals containment and locations
containment, d ⊆ d′ and m(l) ⊆ m(l′), where m is the
mapping function discussed in Definition 1.

Note that {(FortCollins, May2011)} ⊆
{(Colorado, Year2011)} since m(FortCollins) ⊆
m(Colorado) and May2011 ⊆ Year2011. However,
{(FortCollins, May2011)} �⊆ {(Colorado, Year2010)} since
May2011 �⊆ Year2010. Similarly, {(FortCollins, May2011)}
�⊆ {(Nevada, Year2011)} because m(FortCollins) �⊆
m(Nevada). We define a spatio-temporal zone {(anywhere,
always)} that contains all other spatio-temporal zones. For
spatio-temporal zones equality =, two zones z and z′ are said
to be equal, z = z′, iff z ⊆ z′ and z′ ⊆ z.

IV. GSTRBAC Model

We now present our GSTRBAC model and formalize its
specification using UML and OCL.

A. Effect of Spatio-Temporal Constraints on RBAC Entities

The RBAC entities users, roles, permissions, and objects are
associated with spatio-temporal zones.

1) Users: We assume that each valid user, interested in
doing some location-sensitive operations, carries a locating
device that is able to track his location. The location of a
user changes with time. The spatio-temporal zone associated
with a user gives the user’s current location and time.
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Note that time and location can have different levels of
granularity. For example, the current time can be expressed as
12:00:05 p.m. or 12:00 p.m. Similarly, a user’s current location
can be Fort Collins or it can be Colorado. The user’s current
location and time information will be used for making access
decisions. Let us illustrate why the notion of minimality must
be associated with the user’s spatio-temporal zone. Suppose
permission is valid in a certain zone. If we do not use the
concept of minimal, then it is possible that the user zone may
partially overlap with the permission zone. In such a case,
should we give access or deny access? On the other hand, if
we use the concept of minimal, then the user’s zone will either
be within the permission zone or outside it. In such cases,
we know whether to give or deny access. Consequently, we
require the minimal temporal and location be used to express
the spatio-temporal zone associated with a user. We define the
function currentzone that returns the minimal spatio-temporal
zone associated with a user. This function is formally defined
as follows:

- currentzone : Users → STZones.

2) Objects: Objects may also be mobile like the user.
Here, again, we have locating devices that track the location
of an object. Moreover, an object may not be accessible
everywhere and anytime. For example, tellers can only review
customer information at a teller office during working hours.
The ozones function returns the spatio-temporal zones that
determine where and when every object is available

- ozones : Objects → 2STZones.

3) Roles: Role can be assigned or activated only in specific
locations and time. The role of the on-campus student can
only be assigned or activated inside the campus during the
semester. The spatio-temporal zone associated with a role
gives the location and time from which roles can be assigned
or activated. The rzones function gives the set of spatio-
temporal zones associated with a given role

- rzones : Roles → 2STZones.

4) Permissions: Permissions are also associated with a
spatio-temporal zone that indicate where and when a permis-
sion can be invoked. For example, a permission to perform a
backup of servers can be executed only from the department
after 10 p.m. on Friday nights. The function pzones gives the
zones in which a specific permission can be accessed

- pzones : Permissions → 2STZones.

Fig. 1 shows the class diagram of GSTRBAC. A security
policy of a mobile application can be specified as one possible
instance of this GSTRBAC class diagram. The GSTRBAC
entities: User, Role, Permission, Object, Activity, and STZone,
are represented by classes. Permission is represented in the
GSTRBAC class diagram as an aggregation of the classes
Object and Activity. The STZone class aggregates the location
and time subclasses. In STZone class, zcontainment is a
reflexive association specifying that a zone can contain other
zones. Different relationships between entities, including User-
RoleAssignment, UserRoleActivation, PermissionRoleAssign-
ment, RoleHierarchy, and SoD, are modeled using association
classes that are transformed to normal classes following the
modeling guidelines in [5] and [6]. These association classes

have binary relationships with STZone class to enforce the
spatio-temporal constraints.

B. Effect of Spatio-Temporal Constraints on RBAC Operations

1) User-Role Assignment: A user-role assignment is loca-
tion and time dependent. That is, a user can be assigned to a
role, provided the user is in specific locations. For example, a
person can be assigned the on-campus student role only when
he is in the campus during the semester. This requirement is
expressed using the zone concept

- UserRoleAssignment ⊆ Users × Roles × STZones.
This relationship is depicted in the GSTRBAC class diagram

as association class UserRoleAssignment. The OCL operation
assignRole assigns role r to user u in zone z if z is in the set
of rzones, user u is present in zone z, and role r is not already
assigned to user u in zone z. For the lack of space, we omit
the descriptions of the OCL queries used in the assignRole
operation

context User::assignRole(r: Role, z:STZone):
UserRoleAssignment
pre: r.rzones->includes(z)
pre: z.containedZones()->includes(self.
currentzone)
pre: self.getAssignedRoles(z)->excludes(r)
post: self.getAssignedRoles(z)->includes(r).

2) User-Role Activation: A user can activate a role if the
role can be activated on the specific zone and it is already
assigned to that user. For example, the role of a doctor trainee
can only be activated in a hospital during the training period.
We define the UserRoleActivation relation to determine the
current active roles based on zones

- UserRoleActivation ⊆ Users × Roles × STZones.
In the GSTRBAC class diagram, UserRoleActivation class

is specified in a manner similar to UserRoleAssignment. The
only difference is that the activateRole operation ensures that
a user is already assigned to a role before the role is being
activated.

3) Check Access: This operation checks whether a user
is authorized to perform some operation on an object during
a certain time and from a certain location. A user is allowed
to fire a missile if he is assigned the role of a top secret
commander and he is in the controller room of the missile
during a severe crisis period. Thus, a user can access an object
in a certain zone if that user has activated a role that has an
appropriate permission for that object in that zone

context User::checkAccess(o:Object,a:
Activity,z:STZone):Boolean
post: result = getActivatedRoles(z)->
collect( r | r.getAuthorizedPermissions(z))
->asSet()->
exists( p | p.object=o and p.activity=a and
o.ozones->includes(z)).

4) Permission-Role Assignment: Permissions can only be
assigned to a role during specific time and locations. For
example, the permission of opening a cashier drawer in a store
should only be assigned to a salesman role during the daytime.
The assignment of permissions to roles is specified based on
zones
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Fig. 1. UML class model for GSTRBAC.

- PermissionRoleAssignment ⊆ Permissions × Roles ×
STZones.

The following OCL operation assigns permission p to role
r in zone z if z is in the set of pzones and rzones:

context Role::assignPermission(p:Permission,
z:STZone): PermissionAssignment
pre: p.pzones->includes(z) and self.rzones->
includes(z)
pre: self.getAssignedPermissions(z)->excludes(p)
post: self.getAssignedPermissions(z)->includes(p).

C. Spatio-Temporal Role Hierarchy

The permission-inheritance hierarchy (I-Hierarchy) and the
role-activation hierarchy (A-Hierarchy) are two variations of
role hierarchy (RoleHierarchy) in RBAC [11], [13]. In our
model, a senior role could have a subset of junior roles in
a particular zone. The spatio-temporal role hierarchies are
formally defined as follows.

1) RoleHierarchy ⊆ Roles × Roles × STZones.
2) I-Hierarchy ⊆ RoleHierarchy, A-Hierarchy ⊆ RoleHier-

archy, and I-Hierarchy ∩ A-Hierarchy = φ.
The subtypes of RoleHierarchy are represented in the

GSTRBAC class diagram by the subclasses I-Hierarchy and
A-Hierarchy, which are connected to STZone class to restrict
the roles associations.

1) Permission-Inheritance Hierarchy: In a permission-
inheritance hierarchy, a senior role r can only inherit junior
role r′ permissions in zone z if both roles are available in zone
z. A project manager inherits the permissions of a developer
when he is at the customer site giving a demo. The following
OCL expression specifies the spatio-temporal constraint on I-
Hierarchy for adding a new junior role:

context Role::addIHJuniorRole(r:Role,z:STZone):
I_Hierarchy
pre: self.rzones->includes(z) and r.rzones->
includes(z)
pre: self.getIHJuniorRoles(z)->excludes(r)
post: self.getIHJuniorRoles(z)->includes(r).

The delete operation of a junior role in I-Hierarchy can be
defined in the similar manner. The I-Hierarchy relationship is
acyclic as shown by the following OCL constraint:

context r1,r2: Role
inv IHierarchy_Cycle_Constraint: not
STZone.allInstances-> exists(z|r1.inheritsIH(r2,z)
and r2.inheritsIH(r1,z)and r1<>r2).

The Boolean operation inheritsIH(r,z) returns true if role r

is directly or indirectly a junior role of the context role in a
particular zone; otherwise, it returns false.

inheritsIH(r:Role,z:STZone): Boolean =
if (self.getIHJuniorRoles(z)->includes(r))
then true
else self.getIHJuniorRoles(z)->
exists(j | j.inheritsIH(r,z)) endif.

We define the OCL query operation getAuthorizedPermis-
sions(z) to get the authorized permissions for a given role at
zone z through direct assignment or indirect I-Hierarchy

context Role::getAuthorizedPermissions(z:STZone):
Set(Permission)
Post: result= self.getAssignedPermissions(z)->
union(self.getAllIHInheritedRoles(z)->collect(r |
r.getAssignedPermissions(z)))->asSet().

2) Role-Activation Hierarchy: Restricted spatio-temporal
A-Hierarchy allows members of senior roles to activate junior
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roles in predefined spatio-temporal zones. For example, a
department chair can activate a staff role during the semester
inside the department building. The OCL operations of adding
and deleting junior roles to the A-Hierarchy are defined
in similar manner to I-Hierarchy. Furthermore, the acyclic
constraints on A-Hierarchy are enforced in the same way as
the I-Hierarchy.

The only differences are that the OCL query operation
getAHJuniorRoles(z) returns all the junior role in A-Hierarchy
of the context role in particular zone. Moreover, the OCL
query operation getAuthorizedRoles(z) gives the authorized
activation roles for the context user that are either explicitly
assigned or implicitly obtained through A-Hierarchy in certain
zones

context User:: getAuthorizedRoles(z:STZone):
Set(Role)
post: result= self.getAssignedRoles(z)->
union(self.getAssignedRoles(z)->collect(r|
r.getAllAHInheritedRoles(z))->
asSet()).

D. Spatio-Temporal Separation of Duty

The static SoD (SSoD) and dynamic SoD (DSoD) are
two special classes of the SoD constraints in RBAC [28].
Furthermore, the role SSoD (RSSoD) constraints are defined
on roles assignment, while the permission SSoD (PSSoD)
constraints are defined on permissions assignments.

In our model, the conflicting roles and permissions in SoD
are defined over some zones. The spatio-temporal RSSoD,
PSSoD, and DSoD relations are formally defined as follows.

1) RSSoD ⊆ Roles × Roles × STZones.
2) DSoD ⊆ Roles × Roles × STZones, and RSSoD ∩ DSoD

= φ.
3) PSSoD ⊆ Permissions × Permissions × STZones.

The static and dynamic SoD relations are represented in
the GSTRBAC class diagram using the associations classes
RSSoD, PSSoD, and DSoD, which connect the conflicting
entities with certain zones.

1) Role SSoD: The same individual should not be assigned
to specific roles in a specific location for some duration. For
example, the same user should not be assigned to billing clerk
and account receivable clerk roles in the same time at a specific
trade corporation. The following OCL invariant forbids the
assignment of conflicting roles in a particular zone:

context User
inv RSSOD_Constaint: STZone.allInstances->forAll( z |
not self.getAssignedRoles(z)->
exists(r1,r2 | r1.getSSoDRoles(z)->includes(r2))).

However, the above constraint may be violated through a
role hierarchy relation. For example, a billing supervisor may
be a senior role of the two conflicting roles billing clerk and
account clerk at the same time and in the same accounting
department. The following OCL constraint prevents such a
situation:

context User
inv RSSOD_RH_Constraint: STZone.allInstances->

forAll( z | not self.getAuthorizedRoles(z)->
exists(r1,r2 | r1.getSSoDRoles(z)->includes(r2))).

2) Permissions SSoD: PSSoD prevents the assignment of
conflicting permissions to a role. For example, a loan officer is
not permissible to issue loan request and approve it in the bank
building during the daytime. The following OCL invariant
expresses the PSSoD requirement in our model:

context Role
inv PSSOD_Constaint: STZone.allInstances->
forAll( z | not self.getAssignedPermissions(z)->
exists(p1,p2 | p1.getPSSoDPermissions(z)->
includes(p2))).

However, this constraint may be violated through I-
Hierarchy, in which a senior role inherits some junior roles
that have mutually been assigned conflicting permissions. The
following OCL invariant prevents the violation of PSSoD via
I-Hierarchy:

context Role
inv PSSOD_RH_Constraint: STZone.allInstances->
forAll( z | not self.getAuthorizedPermissions(z)
exists(p1,p2 | p1.getPSSoDPermissions(z)->
includes(p2))).

3) DSoD: Two conflicting activation roles cannot be
activated in some spatio-temporal zones by the same user. For
example, the simultaneous activation of cashier and cashier
supervisor is forbidden during the working hours in the same
store to deter such a user from committing a fraud. The
DSoD constraints are expressed in OCL invariants in a similar
manner to the RSSoD constraints. The only difference is that
the OCL invariants prevent the activations of conflicting roles
that are connected by DSoD in some zones through either the
explicit role assignment or the implicit A-Hierarchy.

E. Spatio-Temporal Prerequisite Constraints

In RBAC, the prerequisite constraints obligate that some
actions to be taken prior to performing an operation [29].
Prerequisite constraints impose conditions that must be satis-
fied before certain assignments, such as user-role assignment
and permission-role assignment can be executed. Our spatio-
temporal prerequisite constraints can be expressed in first-
order logic; consequently, we can represent them using OCL
preconditions and invariants.

1) Prerequisite Constraints on User-Role Assignment: The
prerequisite constraint on roles assignments imposes that a
user must be assigned to some less critical roles in a given
spatio-temporal zone before being assigned more critical roles
in specific zones. For example, the role of emergency nurse
can be assigned to John in the urgent care unit from 12:00 a.m.
to 5:00 a.m. if he is assigned the role of nurse-on-night-duty at
the hospital during those hours. The following OCL invariant
expresses the prerequisite constraints on user-role assignment.
The query operation getPreqAssRoles() returns all the assign-
ment prerequisite roles needed for assigning a certain role

context User
inv Prerequiste_URAssign: STZone.allInstances->
forAll(z | Role.allInstances->
forAll(r1 | (self.getAssignedRoles(z)->
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includes(r1)) implies (self.getAssignedRoles(z)->
includesAll(r1.getPreqAssRoles())))).

2) Prerequisite Constraints on Permission-Role Assign-
ment: The prerequisite constraints on permissions assignments
indicate that a role can be assigned a permission in a specific
zone if some prerequisite permissions are already assigned to
that role in the same zone. For example, a bank teller must
have the permission of reading an account during working
hours before he can be given the permission to update that
account. The prerequisite constraint on permission-role assign-
ment can be specified using OCL expression as follows:

context Role
inv Prerequist_PRAssign: STZone.allInstances->
forAll(z | Permission.allInstances->
forAll(p1 | (self.getAssignedPermissions(z)->
includes(p1)) implies
(self.getAssignedPermissions(z) ->
includesAll(p1.getPrerequisitePermissions())))).

3) Prerequisite User-Role Activation: A role can be acti-
vated if some prerequisite roles are already activated in specific
zones. For example, in a university the teaching assistant
role can be activated during a semester in a department if
the student role can be activated during the same time. This
requirement is specified in our model in the same way of
the prerequisite user-role assignment constraint except that
the OCL query getPreqAssRoles() is substituted with getPre-
qActRole(). The query operation getPreqActRole() returns all
activation prerequisite roles needed to activate a role.

V. Example Access Control Verification

The GSTRBAC model has many features that may interact
with each other, causing conflicts, inconsistencies, and security
breaches. In addition, constraints could be specified stronger
than needed resulting in some roles, permissions, or objects
being inaccessible. Consequently, it is important to analyze
GSTRBAC policies before applying them. A manual analysis
is tedious and error prone. Toward this end, we propose an
automated verification approach based on the USE constraint
solver tool. The USE tool accepts three inputs, the GSTRBAC
class diagram, the OCL constraints, and the policy instances as
object diagrams. When the policy instance does not conform
to a GSTRBAC class diagram or it violates some property,
the tool pictorially shows how the property has been violated.
Specifically, it illustrates the entities and the relationships
responsible and how their interactions have caused for the
property violation. Once the security designer sees this graph-
ical representation, he can fix the policy specification. For
example, if the security designer finds that some prerequisite
constraint has been violated, he can either change the pre-
requisite relation or change the constraint depending on the
application requirement.

To illustrate our specification and verification approaches,
consider a software development environment for producing
military applications. The software project files are stored in
computer machines inside a secure building, and the access to
those files is location and time dependent. The access control

policy of the software development system is specified as
follows.

1) Users = {Bob, Ben, Alice, Rachael, Clare, Sam}.
2) Intervals = {i1, i2}. where i1 = [8 a.m. to 6 p.m.] and

i2 = [6 p.m. to 8 a.m.].
3) Locations = {Home, DevelopmentOffice, TestingOffice,

DirectorOffice, DepartmentBuilding}. DepartmentBuild-
ing includes all other offices.

4) STZones = {z0, z1, z2, z3, z4}, where z0 = (Department-
Building, i1), z1 = (Home, i2), z2 = (DevelopmentOffice,
i1), z3 = (TestingOffice, i1), and z4 = (DirectorOffice, i1).

5) Roles = { Software Engineer (SE), Software Programmer
(SP), Test Engineers (TE), Programmer Supervisor (PS),
Test Supervisor (TS), Project Lead (PL) }.

6) rzones = { (SE, z0), (SE, z2), (SP, z1), (SP, z2), (TE, z1),
(TE, z3), (PS, z2), (TS, z3), (PL, z4) }.

7) Objects = { Project Files (obj1), Test Files (obj2),
Programmer Logs (obj3), Test Logs (obj4), Program-
mer Supervisor Report (obj5), Test Supervisors Reports
(obj6) }.

8) ozones = { (obj1, z1), (obj1, z2), (obj2, z1), (obj2, z3),
(obj3, z2), (obj4, z3), (obj5, z4), (obj6, z4)}.

9) Activities = {read, write, copy, run, review}.
10) Permissions = { P1(read, obj1), P2(write, obj1), P3(copy,

obj1), P4(write, obj2), P5(run, obj2)), P6(review, obj4),
P7(review, obj3)), P8(read, obj5) }.

11) pzones = { (P1, z1), (P1, z2), (P2, z1), (P2, z2), (P3, z2),
(P4, z1), (P4, z3), (P5, z3), (P6, z3), (P7, z2), (P8, z4) }.

12) UserRoleAssignment = { (Ben, SP, z1), (Ben, SP, z2),
(Bob, PS, z2), (Alice, PL, z4), (Clare, TS, z3), (Rachael,
TE, z1), (Rachael, TE, z3), (Sam, SE, z0) }.

13) PermissionRoleAssignment = { (SP, P1, z1), (SP, P1, z2),
(SP, P2, z1), (SP, P2, z2), (SP, P3, z2), (TE, P4, z1), (TE,
P4, z3), (TE, P5, z3), (TS, P6, z3), (PS, P7, z2), (PL, P8,
z4) }.

14) I-Hierarchy = { (PS, SP, z2), (TS, TE, z3), (PL, PS, z0),
(PL, TS, z0) }.

15) RSSoD = { (SP, TE, z0) }.
16) PSSoD = { (P2, P4, z0) }.
17) Prerequisite constraints: The role of software program-

mer and the test engineer can be assigned if the user is
already assigned the role of software engineer.

The policy is graphically represented in Fig. 2 based on
the graph notations inspired by Chen and Crampton [17]. We
present two scenarios illustrating our analysis approach for
verifying security properties.

The first scenario shows how the checkAccess opera-
tion can be analyzed. Assume that Ben is in zone z3 =
{(TestingOffice, [8 a.m. to 6 p.m.])} and tries to copy Project-
Files object. Based on the policy, Ben is only assigned to SP
in z1 and z2. Thus, Ben should not be allowed to access that
object because the SP role is not available for activation in
zone z3. Fig. 3 shows that no policy violation is found with
this scenario.

The second scenario considers the verification of the RSSoD
constraints. Assume that Ben is already assigned to the role
SP in the zone z0, which is a containing zone for z1 and z2.
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Fig. 2. Access control graph for the development system policy.

Fig. 3. Accessing object from an invalid STZone.

Later on, a security administrator tries to assign Ben to the
conflicting role TE in the zone z0. The assignment operation
fails due to the RSSoD constraint, as shown in Fig. 4.

VI. Software Architecture

This section describes a platform-independent implementa-
tion architecture, which maps the high-level GSTRBAC policy
definition to the enforcement mechanism in mobile applica-
tions. Later on, we provide an experimental evaluation of this
architecture using Android mobile operating system (OS) [30].

Fig. 5 depicts the proposed implementation architecture for
enforcing GSTRBAC in a mobile application. The architecture
consists of three core components: request composition mod-
ule (RCM), resource access module (RAM), and authorization
control module (ACM). Each of these modules is a stand-
alone program. The RCM is installed at the user mobile
device, the RAM and ACM are installed in servers that may
or may not be colocated.

1) RCM is responsible for forming a user access request
and maintaining the access, while the rights are exer-
cised. The Request Builder component in RCM creates a
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Fig. 4. Conflicting roles assignment.

Fig. 5. Implementation architecture of GSTRBAC policy in mobile applications.

resource access request using information obtained from
the other components. The Request Builder enquires the
STZone Reader to form the current user STZone that
encapsulates current user location and time. The STZone
Reader, in turn, reads the current mobile device time and
gets the location from GPS data component storing the
location information. After creating the proper access
request package, Request Builder sends that package
to one of the available RAM servers. The STZone Lis-
tener gets the current spatio-temporal information from
STZone Reader and ensures that the user is in the autho-
rized spatio-temporal zone while the resource is being
accessed. Once the user moves outside the authorized
zone, STZone Listener requests service termination.

2) RAM is an intermediate server between the user and
ACM server, which is primarily responsible for handling
the application resources to the users. RAM receives the
user request and consults with the ACM server about
the user authorization. The user’s credentials are stored
in the Application Base when the user registers with the
system. The Credential Evaluator evaluates the validity
of the user credentials. If the user credentials are valid,
the Authorization-Token Requester component requests
an authorization token (AT ) from one of the available
ACM servers. Once the AT is granted, it is used by
the Resource Provider component to provide access to
resources needed by the authorized users to accomplish
their tasks. RAM maintains a list of users’ AT s, which
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we refer to as UATokens, and the elements of this list are
continuously updated. A user AT gets deleted from the
list once it is expired, which might happen whenever a
user deactivates his role or the STZone associated with
the role becomes invalid.

3) ACM is accountable for the policy evaluations and to-
kens generations. Typically, ACM is responsible for is-
suing a new AT for every role that the user requests to be
activated. In order for ACM to evaluate access requests,
it consults with the GSTRBAC Policy Base. GSTRBAC
Policy Base stores the access control policy and the au-
thorizations granted to users. The Role Activation com-
ponent in ACM gets the set of roles and permissions that
can be activated based on the STZone it receives from
the STZone Extractor component. The Role Activation
component updates the policy state for each activated
role. The Authorization-Token Granter component is
responsible for granting the AT if a role can be activated.
Note that a user’s role can be activated only if all the
following conditions are satisfied: 1) the role is not
already active; 2) the role can be activated in the given
STZone; and 3) no conflicting roles are already active.
If the requested role can be activated, Authorization-
Token Granter issues a new authorization token with
the following format: AT = (IDu, IDut, r, P, STZone),
where IDu refers to the user identifier, IDut is the
token’s identifier, r is the requested role to be activated,
P is the set of the authorized permissions associated
with the active role r, and STZone defines where and
when these privileges are valid.

VII. Resource Usage Protocols

A. Assumptions

Each mobile device is associated with a user through which
the user can access resources. We assume that the users’
mobile phones (clients) and servers have tamper-proof storages
where the AT s and keys are stored. We also have tamper-
proof components that can only be accessed by authorized
applications. These components house critical software, such
as RCM that cannot be accessed or modified by the unautho-
rized user. In addition, the client has the needed software to
extract the current time and location information. The clients
and servers should have the capabilities of executing public
key cryptography algorithms and hashing algorithms, such as
MD5. We also assume that the existence of a certificate author-
ity is responsible for providing public keys and private keys
for the clients and servers. We use timestamps in the protocol,
so the different servers and clients must be synchronized. The
user identifier and his device identifier must be registered with
the RAM servers, and the user must have a unique password.

Fig. 6 describes the communication exchanges of the re-
source usage protocols. Suffixes associated with the commu-
nication messages indicate the order of steps in the protocols.
Table I enumerates the notations used in the description of the
protocol. Message Mi indicates Step i of the protocol.

Now we describe the steps of the basic resource usage
protocol for handling users’ requests.

Fig. 6. Communication steps of the resource usage protocols.

TABLE I

The Notations of the Resource Usage Protocols

Symbol Interpenetration
IDx Identifier of party x

IDs User’s device identifier
PuKx Public key of party x

PrKx Private key of party x

Tsx Timestamp computed by party x

Pu User password
P∗

u One-time password
H(Pu, Tsx) Computes P∗

u

Mx Package payload created by party x

Ex{S} Encryption of sequence S by PuKx

M∗
x Message checksum generated by party x

H(Mx, Tsx) Computes M∗
x

Sx{M∗
x } Signing M∗

x by PrKx

A
Mi−→ B Party A sends package Mi to party B

Tw Time window
AT Authorization token
IDut Authentication-token identifier
“Close” Keyword indicates deletes user’s AT

“Freeze” Keyword indicates suspends user’s AT

1) Role Activation Request [RCM
M1−→ RAM ]:

RCM creates an access request payload
Mrc = (IDu, IDs, P

∗
u , STZone, r, Tsrc), where IDu

is the user identifier, IDs is the device identifier,
P∗

u = H(Pu, Tsrc) is the user one-time password,
STZone is the current user zone, r is the requested
role, and Tsrc is the timestamp at which Mrc is created.
RCM computes the hash value M∗

rc = H(Mrc, Tsrc)
and signs it using the user’s private key PrKu, i.e.,
Src{M∗

rc}, to be used as a nonrepudiation proof.

2) User AT Request [RAM
M2−→ ACM]: On receiving

message M1, RAM decrypts it using its private key. If
the message is validated and the user is authenticated,
RAM sends message M2 to the ACM server in order to
issue an AT . RAM forwards the AT request payload
Mrs = (IDrs, IDu, STZone, r, Tsrs), where Tsrs is the
timestamp at which Mrs payload request is created.
RAM computes the hash value of Mrs and signs it using
its private key PrKrs. Then, RAM encrypts the Mrs

along with a digitally signed signature Srs{M∗
rs} using

ACM public key PuKas.
If the user authentication fails, RAM sends a rejection
message to RCM that is similar to message M6.
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3) User AT Response [ACM
M3−→ RAM]: At the autho-

rization server, ACM decrypts the package M2. ACM

recomputes the hash value and compares it with the one
in package M2, and verifies the digital signature using
the public key of RAM PuKrs.
In the case the sender of M2 is authenticated and the user
has the rights to activate the requested role, an AT is
sent back as a message M3. M3 includes the payload
Mas and a signed hash of Mas. The payload Mas =
(IDas, IDut, IDu, AT, Tsas) has the user identifier IDu,
user’s authorization-token AT , token identifier IDut , and
timesatmp Tsas at which the payload is created.
If the user’s request cannot be granted, an access rejec-
tion response is sent to the RAM, as shown in message
M5.

4) Forwarding User AT [RAM
M4−→ RCM]: After authenti-

cating message M3 from ACM, RAM stores a copy of
the user’s AT in the UATokens list along with the token
identifier IDut , user identifier IDu, and device identifier
IDs. Subsequently, RAM forwards an encrypted and
signed response message M4 to RCM. This message
includes payload Mrs = (IDrs, IDu, IDs, IDut, AT, Tsrs)
and Srs{M∗

rs} digital signature signed by the private key
PrKrs. M4 is encrypted using the user public key PuKu.
Note that each user AT is related to a particular user IDu

and a device IDs.
However, in the case the access request is rejected by
ACM, RAM directly forwards the rejection response in
message M6 to RCM.
At the user side, if M4 message from RAM is authen-
ticated, RCM stores the AT in its secure storage.

In our model, we need to revoke access whenever the
user moves out of a valid STZone. The STZone Listener
gets periodic updates by the STZone Reader about the
spatio-temporal coordinates of the user. Whenever the cur-
rent user location or time does not satisfy the information
in a user’s AT , the STZone Listener revokes the user’s
AT and requires Request Builder to request an access
termination.

In Fig. 6, the messages M7 and M8 describe the additional
exchanges needed to implement the ongoing access protocol.

1) Terminating User Access [RCM
M7−→ RAM]: The

client software sends the termination access request
M7 to RAM at the time the current user STZone
becomes invalid. RCM creates a termination message
Mrc = (IDu, IDs, IDut, Pu, Close, Tsrc), where the key-
word “Close” indicates the termination of access. RCM

concatenates Mrc with the user digital signature Src{M∗
rc}

and encrypts them with the resource server public key
PuKrs. The user’s AT should be deleted at the client
side to terminate the user access.

2) Revoking User Privileges [RAM
M8−→ ACM]: After

authenticating the sender of M7 message, RAM reads
the keyword “Close” and then uses IDu, IDs, and IDut

to lookup for the user AT in the UATokens list and
removes it. Therefore, if a user subsequently requests
an access to a resource via the same IDut , his request

will be denied because that user does not have the AT

for that resource.
RAM forwards an encrypted and signed termination re-
quest M8 to ACM to delete the user’s authorization. This
request includes Mrs = (IDrs, IDu, IDut, Close, Tsrs)
and the digital signature Srs{M∗

rs} signed by the RAM

private key.
At the ACM server, after authenticating the sender of
M8, the keyword “Close” indicates ACM to revoke the
current user’s active role and authorized permissions
associated with the user AT IDut . It does this by
updating the GSTRBAC policy state.

A user may temporarily depart the authorized location from
which he is currently accessing some resources. To preserve
our design efficiency, the user’s privileges should not be
permanently revoked, but these privileges must be frozen or
suspended for the short period of time the user is off-site and
they are returned when he is on-site.

We achieve this by modifying the communication steps of
the ongoing resource usage protocol to define the suspending
resource usage protocol. The client software sends a resource
access deferral package M

′
7 at the time a user temporarily

leaves his valid position.
This message has a similar format to M7 except that the

keyword “Close” is changed to “Freeze” to indicate that user’s
privileges should be frozen for a certain period. The time
window Tw is included in M

′
7 message. The time window

determines the freezing time during which a user cannot
exercise previously granted access rights. Once the user moves
back to his previous valid location and prior to the Tw

expiration, his roles can automatically be reactivated. If the
user does not move to the valid position before the expiration
of Tw, his privileges are revoked and message M8 is sent.

B. Security Analysis

Since our primary concern is protecting applications’ re-
sources from improper access, we need to provide a proof
that our protocol does indeed protect the resources from
unauthorized access. We assume that RAM and ACM are
trusted. Furthermore, the RCM is installed in a tamper-proof
component of the phone, and it can be only accessed by
authorized applications.

In communication protocols, the message confidentiality,
message integrity, message authentication, and identity au-
thentication are important. We provide these features in our
protocol. Message confidentiality is guaranteed because mes-
sages are encrypted by the public key of the recipient. Message
integrity is maintained by concatenating each message with
the message digest, so that if an intruder intercepts and
alters a communication message, the receiver can detect that.
The receiver validates the received message by reconstructing
the checksum and comparing it to the one in the received
message. Message authentication is protected by associating
digital signatures with messages; the digital signature pro-
vides a non-repudiation proof of the message origin. Identity
authentication is provided by using public key certificates
and digital signatures. Using the public key certificates and
digital signatures, the sender and the receiver are able to
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mutually authenticate their identities. We assume that private
keys used to sign the message digests are only possessed by
the signers, and the public key certificates have one-to-one
mapping between the public key and the owner. Furthermore,
the password-based authentication technique is utilized to
provide a proof of identity. Note that the manner in which such
techniques are used ultimately determines the security of the
protocol.

In the following, we show how our resources are protected
from improper access by unauthorized and authorized users.
First, we consider the attacks that unauthorized users can carry
out to gain an access to protected resources and show how
these attacks are prevented in our approach.

1) Eavesdropping: An adversary may eavesdrop on the
messages that one entity sends to another to breach con-
fidentiality. In this case, even if an adversary eavesdrops
on the communication across two entities, he cannot gain
useful information as the messages are encrypted by the
public key of the recipient.

2) Modifications: An adversary may intercept and modify
data that one entity sends to another. In order to make
this possible, the adversary must be able to read and
modify the messages. Since the messages must be de-
crypted by the adversary before they can be modified,
such an attack is not possible in our scheme.

3) Replay: In this attack, an attacker intercepts authentic
messages coming from a legitimate entity and replays
them to gain an access to resources. Even when mes-
sages are replayed by an adversary, the timestamps and
one-time passwords prevent the replay attacks.

4) Man-in-the-Middle (MITM): In an MITM attack, a mali-
cious user eavesdropping on the communication channel
between entities and masquerades as the legitimate entity
to the other entity. It intercepts messages coming from
a legitimate entity and retransmits them after possibly
modifying them to the intended recipient. The use of a
public key prevents the attacker from reading and mod-
ifying transmitted messages. Consequently, this attack
does not occur in this protocol.

5) Illegitimate Use: An illegitimate use attack occurs when
a malicious user tries to make an access via lost or stolen
cell-phones. Since a malicious user will not be aware of
the user’s password, it cannot send new access requests.

We next consider the attacks that may be carried out by
authorized users.

1) Reusing Authorization-Tokens: A user may want to ac-
cess a resource using his past AT . However, when the
STZone expires, the AT gets deleted from RCM and
cannot be used.

2) Modifying Authorization-Tokens: A user may modify the
AT stored at his site. However, AT s are stored in a
secure tamper-proof storage at the user’s mobile device
and cannot be modified.

3) Users Collusion: In this attack, two or more users
collude to commit a fraud. That is, user u1 gets a valid
AT for a role and sends it by some means to user u2 to
allow u2 to violate conflicting constraints. However, this

attack is not applicable to our protocols because each
AT is exactly linked to a particular device and user.

VIII. Prototype Development

We have developed a proof-of-concept prototype enforcing
GSTRBAC in an Android mobile application. Our Android
application and servers are written using the Java programming
language.

The RCM client is implemented in a mobile application that
is developed using free and open source Google’s Android
(OS) [30]. An Android platform provides a flexible map
display and a location service support. Our mobile application
utilizes the Android location listener to keep track of the
current location coordinates and captures the local time at
which the location is fetched. We have used the Android
LocationManager package [31] for developing an Android
location-based services application. Our application retrieves
the current position from an enabled GPS receiver, and uses
the Google maps application programming interface to display
the location on the screen.

The RAM and ACM components are written as traditional
Java server programs. To implement the basic resource us-
age protocol, we have adopted some source code of the
FlexiProvider Toolkit [32] that has Java-based cryptographic
modules, including the public key, the digital signature, and
the MD5 message digest. The toolkit implements fast and
secure cryptographic algorithms and can be plugged into
many Java applications. Prior to running the experiment, each
entity should have its private key and stores the public key
of the communicated endpoints in a local file. We use the
KeyPairGenerator class to generate public and private key
pairs. The public keys are securely distributed using the AES
symmetric-key encryption. Furthermore, all communicating
parties implement the same MD5 algorithm.

We used the relational database to represent the application
and policy data. The relational database is implemented in
the open source database MySQL server [33]. We have two
relational database tables: the first one is the application table
that stores login information, and the second one is the policy
table that stores a GSTRBAC policy. The application table is
only accessible by RAM via a MySQL server, while the policy
table is connected to ACM.

We tested our mobile application through the Android emu-
lator, and the test showed that our prototype works as expected.
The Android handset emulator is depicted in Fig. 7 displaying
our Android applications. The handset emulator prompts a user
to select his role and enters the user’s identifier and password.
Once the user enters these information and hits the connect
button, the Android application software fetches the last known
user location and the local time, then it composes an access
request and sends it to one of the available virtual RAM servers
in a secure manner.

In order to use the location capabilities of Android, we
used the LocationManager class to access to the Android loca-
tion services. The locationManager.requestLocationUpdates()
method updates the device’s location every some fixed period
of time through the location provider GPS. A class implement-
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Fig. 7. Android handset emulator.

TABLE II

Back-End Average Response Delay

Response Average Delay
0-Approved 73.66 ms
1-Rejected (improper login data) 29.56 ms
2-Rejected (improper role) 67.50 ms
3-Rejected (improper zone) 81.43 ms
Total Average Delay 63.04 ms

ing the LocationListener interface handles changes in the de-
vice location. The locationManager.getLastKnownLocation()
method fetches the last known location object that has the
altitude, latitude, and longitude information. When the An-
droid emulator starts for the first time, it reports the current
location Null because there is no last known location to fetch.
Thus, we used DDMS view of Eclipse to manually feed
mock location information to the Android emulator. Once the
emulator’s GPS device has the dummy data, the listener is
triggered to retrieve the current location. Now, the Android
SDK’s emulator can emulate user’s location changes. Then,
the current user’s coordinates is viewed on a Google map and
the location name is manually fed into our application.

In our experiment, we instantiated three RCM handset
Android emulators, three RAM virtual servers, and three ACM

virtual servers. All of these execute on a single machine
and communicate through sockets. We also created another
virtual server running a local centralized MySQL database
on the same machine. This database server is connected with
the servers to process users’ requests. The Android handset
emulator sends an access request to one of the virtual RAM
servers, and the RAM servers connect with ACM servers to
get the access authorizations. For each request, the handset
emulator opens a new connection with one of the virtual
RAM servers’ names stored in a local file, and it closes the
connection at the time it receives a response. The RAM server
opens a new connection with one of the ACM servers’ names
stored in a local file only if the user login information is
correct, and it closes the connection at the time it gets a
response form the endpoint ACM server.

To evaluate different spatio-temporal access scenarios, we
have stored the logical locations and role names in two distinct
local files. Thus, for each request, the handset emulator ran-
domly selects a location name and a role name from these files
and sends them along with other information in a request pack-
age. This approach allows us to test whether our application
works as anticipated and validates the policy correctness. We
measured the time from issuing an access request to the time
when the response is received. The response delay is evaluated
for 150 requests sent simultaneously from three Android hand-
set emulators, each emulator sent 50 requests. The responses
vary based on the information in the request packages. For
example, a request gets approved only if the login information
is correct, the requested role can be authorized, and the
current user’s zone is acceptable; otherwise, the request is
rejected.

The experiments are carried out on Windows 7 platform
running on Intel(R) Core(TM) 2 Due CPU at 2.20 GH with
4.00 GB RAM. The results in Table II exhibit the response
average delay for each class of responses and the total average
response delay in milliseconds. The overall average response
delay yielded by the basic resource usage protocol is 63.04
ms. Furthermore, the rejected requests due to invalid login
information yield 29.56 ms that is the smallest response delay
because RAM servers send the responses immediately without
consulting the ACM servers.

IX. Conclusion and Future Work

In this paper, we proposed GSTRBAC that allows specifica-
tion of role-based access control policies that are based on time
and location. We introduced the concept of a spatio-temporal
zone that encapsulated temporal and spatial constraints that
facilitated understanding, analysis, and policy evolution. The
model had many features that interacted with each other in
subtle ways. Toward this end, we showed how an application
using our model can be analyzed using the constraint solver
embedded in USE. We proposed an architecture and developed
a prototype for a mobile system enforcing GSTRBAC model.
We developed a number of protocols that consider spatio-
temporal information for initiating and maintaining access
under different circumstances.

Much work remains to be done. In the current work,
we presented arguments demonstrating that certain types of
attacks that led to access control breaches did not occur in
our protocol. Often times, formal analysis may reveal problems
that are not apparent in the informal analysis. Consequently,
to provide more assurance, we plan to formally analyze the
security protocols using existing tools, such as Coloured Petri
Nets [9] and Alloy [8]. We also plan to extend our spatio-
temporal access control model for workflows that consist of
a set of tasks that are coordinated by control-flow, data-flow,
and temporal dependencies. It would be interesting to see how
these various dependencies interact with the spatio-temporal
constraints of the workflow. Our future work also includes
deploying this model for a real-world dengue decision support
application.
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Specification, Validation, and Enforcement of a
Generalized Spatio-Temporal Role-Based

Access Control Model
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Abstract—With the advent of wireless and mobile devices,
many new applications are being developed that make use of
the spatio-temporal information of a user to provide better
functionality. Such applications also necessitate sophisticated
authorization models where access to a resource depends on the
credentials of the user and also on the location and time of access.
Consequently, researchers have extended the traditional access
control models, such as role-based access control, to provide
spatio-temporal access control. We improve upon these models by
providing additional features that allow us to express constraints
that were not possible until now. We express our model using
the unified modeling language (UML) and the object constraint
language that are the de facto specification languages used by
the industry. Our model has numerous features that interact
in subtle ways. To this end, we show how the UML-based
specification environment tool can be used to analyze the spatio-
temporal access control model of an application. We propose an
architecture for enforcing our model and provide a protocol that
demonstrates how access control can be granted and revoked in
our approach. We also develop a prototype of this architecture
to demonstrate the feasibility of our approach.

Index Terms—Access control.

I. Introduction

W ITH THE GROWTH of the sensor and wireless tech-
nology, new applications are being developed for mo-

bile devices. Such applications typically have new authoriza-
tion requirements where environmental conditions, such as
location and time, are used together with the credentials of the
user to determine access. An example will help illustrate this
point. Consider a real-world example of a spatio-temporal pol-
icy for the telemedicine application iMediK [1]. The iMedik
is a mobile application accessible by handheld devices that are
integrated with a global positioning system (GPS) that iden-
tifies its physical location. With the help of mobile devices,
doctors can access their patient information on the move. The
security policy requires that doctors can use handheld devices
to view complete patient medical record (PMR) information
in the clinic during daytime, whereas the same doctors can
view only partial PMR information outside the clinic during
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nighttime. Such a policy is needed to protect patient-sensitive
information in the case of lost or stolen devices. Traditional
access control models, such as role-based access control
(RBAC), cannot be used for expressing such policies.

Researchers have addressed this problem by extending
RBAC that allows it to do spatio-temporal access control
[2]–[4]. Most of the work on spatio-temporal RBAC associate
two entities, namely, location and time with users, roles, and
permissions. The location and time associated with a user
gives the current time and his present location. The location
and time associated with a role designate when and where
the role can be activated. The location and time associated
with a permission signify when and where a permission can
be invoked. In addition, researchers have also suggested how
spatio-temporal constraints can be associated with inheritance
and separation of duty (SoD) relations. Our current work
extends the earlier works along several dimensions. First,
we provide a more expressive spatio-temporal access control
model that we refer to as generalized spatio-temporal role-
based access control (GSTRBAC). We allow spatio-temporal
constraints to be specified with various types of prerequisite
constraints. We also introduce the concept of spatio-temporal
zone that allows us to abstract location and time into one
entity. This, in turn, reduces the number of entities that must
be managed and also prevents the creation of new roles or
permissions when spatio-temporal constraints associated with
them change.

Second, we demonstrate how our model can be formally
represented using the unified modeling language (UML) and
object constraint language (OCL) that are the de facto speci-
fication languages used in the software industry.

Third, we illustrate how the model can be automatically an-
alyzed using the UML-based specification environment (USE)
tool for consistency and correctness. An application using our
model can also be analyzed using USE to check for security
property violations and see how the properties are affected
when the security policy is changed.

Fourth, we provide an architecture for enforcing our spatio-
temporal access control model. We also provide communica-
tion protocols that demonstrate how access can be granted and
revoked in the context of our model and prove the security of
this protocol. Finally, we implement a prototype and show how
our spatio-temporal RBAC can be used in an Android mobile
application.

1932-8184/$31.00 c© 2013 IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE SYSTEMS JOURNAL

Treating location and time as separate entities often create
problems. Let us illustrate this with an example. Suppose a
doctor role can be activated at locations {hospital, clinic} from
8:00 a.m. to 5:00 p.m. This means that the doctor can activate
his role either in the hospital or a clinic anytime from 8:00
a.m. to 5:00 p.m. Suppose that the medical board decides to
change the spatio-temporal constraints such that the doctor can
activate his role in the hospital from 8:00 a.m. to 1:00 p.m. and
can activate his role in the clinic from 12:00 p.m. to 5:00 p.m.
In order to specify such a constraint, we would have to split
the doctor role into two roles, namely, hospital doctor and
clinic doctor and associate the respective location and temporal
constraints with each of them. Thus, a simple change to the
spatio-temporal constraint requires the creation of new roles
and changing all the relationships that are associated with the
original role. Such a change is nontrivial. Treating location
and time as distinct entities also causes a significant increase
in the number of entities to be managed as location and time
are associated with every object and relation in RBAC. This
not only reduces ease of understanding for the user but also
makes automated verification more challenging due to state-
space explosion.

We introduce the concept of a spatio-temporal zone, hence-
forth, referred to as STZone. The STZone entity in our model
is an abstract concept associated with each RBAC entity
and relationship. STZone is represented as a set of pairs for
locations and intervals that are of interest to the RBAC entities.
In the previous example, the doctor role is initially associated
with the following STZones: {(hospital, [8:00 a.m. to 5:00
p.m.]), (clinic, [8:00 a.m. to 5 p.m.])}. When the medical
board decides to change the policy, this can be effectuated
just by changing the STZones associated with the doctor
role as follows: {(hospital, [8:00 a.m. to 1:00 p.m.]), (clinic,
[12:00 p.m. to 5 p.m.])}. Abstracting location and time into
a single STZone also reduces the number of entities in the
model, making it easier to understand and verify.

We formalize GSTRBAC using UML [5] and OCL [6].
A number of reasons motivated our choice. First, UML is
a general-propose language that has been considered the de
facto standard in modeling software. Thus, applications are
likely to be specified in UML. This will make it easier for one
to integrate the access control policies with the application.
Second, UML has a set of graphical notations for specifying
static and dynamic aspects of software systems. The graphical
diagrams of the UML make it easy to understand and use.
Third, UML has supporting tools [7] that can be used for
automated analysis. Fourth, UML can be used in all the phases
of the software development process. Thus, it will be easy to
check whether an access control implementation satisfies the
policy if both are specified using the same language.

Once we have specified the GSTRBAC model, it must be
analyzed for consistency and correctness. Moreover, for an
application using GSTRBAC, we need to ensure that no access
control breaches or problems occur. Toward this end, we need
to do some automated analysis. Earlier works that use UML
to specify access control requirements have typically resorted
to the use of other formalisms for automated analysis. Such
an approach typically involves a transformation process where

the UML is converted into Alloy [8], Coloured Petri Nets [9],
or UPPAAL [10] for the purpose of analysis. The results of
the analysis depend on the correctness of the transformation
procedure. We do not follow this approach but utilize USE
[7] for the analysis that allows us to use the same language
for specification and verification of GSTRBAC. The USE
tool supports the automated generation of snapshot instances,
which is used to validate GSTRBAC policies. The USE tool
provides an interactive environment that facilitates the valida-
tion of properties of UML models specified in the form of OCL
invariants, preconditions, and postconditions against some test
scenarios. Such test scenarios are automatically generated by
the USE tool that makes the verification process easier. The
verification is carried out by an embedded constraint solver.

The rest of this paper is organized as follows. Section II enu-
merates some related work in this area. Section III introduces
the concept of spatio-temporal zones. Section IV presents our
GSTRBAC model using UML and OCL. Section V shows how
USE can be used for analyzing the access control requirements
of an application specified using GSTRBAC. In the presenta-
tion of the GSTRBAC enforcement mechanism, Section VI
discusses the proposed implementation architecture model,
Section VII introduces the resource usage protocols, and Sec-
tion VIII describes an experimental evaluation of a prototype
enforcing GSTRBAC in an Android mobile application. Sec-
tion IX concludes this paper with pointers to future directions.

II. Related Work

RBAC [11] is the de-facto access control model used in
the commercial sector. RBAC is policy neutral and can be
used to express different types of policies. RBAC simplifies
security management. In RBAC, users are assigned to roles,
and roles are associated with permissions. In a session, a user
can activate a subset of roles assigned to him. The operations
that a user can perform in a session depend on the roles
activated by the user and the permissions associated with those
roles. To simplify role management, roles are organized in the
form of a hierarchy. A senior role may inherit the permissions
of a junior role, or a senior role may activate the junior role
depending on whether the roles are connected by permission
inheritance hierarchy or role activation hierarchy. In order to
prevent fraud, RBAC allows one to specify separation of duty
constraints. Static separation of duty constraints prevents a
user from being assigned to conflicting roles or a role being
associated with conflicting permissions. Dynamic separation of
duty constraints prevent a user from activating two conflicting
roles.

Researchers have worked on extending RBAC with time and
location. Bertino et al. [12] proposed a temporal RBAC. The
authors introduced the concept of role enabling and disabling.
Roles can be enabled or disabled on the basis of temporal
constraints. Roles can be activated if they are enabled. The
model does not consider the impact of temporal constraints
on user-role assignment or permission-role assignment. This
also does not consider the effect of time on separation of duty
constraints, cardinality constraints, and role–role hierarchy.
Joshi et al. [13] proposed a generalized temporal RBAC model
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that associates temporal constraints with the entities and all the
relationships in an RBAC model.

Researchers have also extended RBAC using location in-
formation. Hansen and Oleshchuk [14] proposed the spa-
tial RBAC for specifying location-based access control poli-
cies for wireless networks. Bertino et al. [15] proposed the
GEO-RBAC model that allows role activation based on users’
locations. However, the model does not discuss the im-
pact of spatial constraints on role hierarchy, separation of
duty, user-role assignment, and permission-role assignment.
Ray et al. [16] proposed location-aware RBAC (LRBAC)
model incorporates location constraints in user-role activation,
user-role, and permission-role assignments. LRBAC does not
define spatial constraints on role hierarchy or separation of
duty.

The use of both spatial and temporal information for
doing access control has also been investigated by many
researchers [2]–[4], [17]–[19]. In all these models, the role
activation is constrained by spatio-temporal information. In
some models [4], [17], [19], additional spatio-temporal con-
straints are imposed on user-role assignment and permission-
role assignment. Some of these models [17]–[19] also consider
the impact of spatio-temporal constraints on role hierarchy and
separation of duty. Others [17], [19] also put additional spatio-
temporal constraints on permissions. Our current model allows
the specification of all the above types of spatio-temporal
constraints. In addition, we allow spatio-temporal constraints
to be specified with prerequisite constraints—the impact of
location and time on prerequisite constraints has not been
discussed in any of the previous works; we do this in this
paper. We also introduce the concept of STZone that abstracts
the location and time into one entity. This simplifies policy
management and policy analysis.

Chen and Crampton develop the graph-based representation
for the spatio-temporal RBAC in [17]. The RBAC entities are
represented by vertices, while their relationships are repre-
sented by the edges of a directed graph. The authors propose
three types of models: standard, strong, and weak. For the
standard model, component v1 is said to be authorized to
component vn if all vertices along the authorization path
satisfy the spatio-temporal constraints. For the strong model,
component v1 is said to be authorized to component vn if all
vertices, together with the edges along the authorization path,
satisfy the spatio-temporal constraints. In the weak model,
component v1 is said to be authorized to component vn if both
vertices satisfy the spatio-temporal constraints. The authors
developed strong and clear semantics of these different models.

Our work differs from that of Chen and Crampton [17] in
the following ways. First, we consider the spatio-temporal
impact on separation of duty and prerequisite constraints
which is missing from the work of Chen and Crampton. They
also did not consider moving objects, which we do in this
paper. Second, Chen and Crampton consider the spatial and
temporal domains separately before developing the spatio-
temporal point. Treating the two domains separately gives
rise to the problems described in Section I. Third, Chen
and Crampton add spatio-temporal constraints to the RBAC
entities and relationships using λ and μ functions, respec-

tively. This approach makes it harder to capture the number,
types, and the relationship between the various spatio-temporal
constraints. On the other hand, we consider STZone as a
separate entity along with the other existing RBAC entities.
This allows a more uniform treatment; the STZone pertinent
to the application is enumerated and their relationships can
easily be evaluated. Fourth, Chen and Crampton provide a
graph-theoretic approach for visualizing problems with the
specification, but do not focus on the analysis. We use UML
and OCL for this purpose; UML and OCL are the de facto
language for specifying the various requirements of the appli-
cations. This makes it easier to analyze the interactions among
the access control constraints and also how these impact other
application requirements.

In addition to specifying novel RBAC models, researchers
have proposed approaches for verifying RBAC security poli-
cies. Some researchers [4], [20]–[22] have investigated the use
of Alloy for verifying spatio-temporal RBAC policies. In order
to make the analysis tractable, Alloy requires that the user
scope the problem. The results of the analysis are, therefore,
applicable only for the scope of the problem being verified.
Modeling and analyzing concurrency in Alloy is nontrivial.
Toward this end, researchers [19], [23], [24] have investigated
alternative techniques based on Coloured Petri Nets [9] and
timed automata [10] for verifying temporal, spatio-temporal,
and real-time RBAC policies. The major challenge in these
works is how to do the analysis without causing the problem
of state explosion. The use of UML and OCL for specification
and analysis of RBAC has been investigated by Sohr et al.
[25]. Our work extends this for specifying and analyzing
spatio-temporal policies.

Researchers have also proposed other temporal authoriza-
tion models that are not based on RBAC. Bertino et al. [26]
proposed a temporal authorization model that extends autho-
rizations with temporal constraints. In this model, an autho-
rization is associated with a temporal expression, identifying
the periods of time in which the authorization applies. Fur-
thermore, it also permits the specification of derivation rules
for expressing temporal dependencies among authorizations.
Gal and Atluri [27] proposed a temporal data authorization
model (TDAM) that can be seen as a complementary model
to the one in [26]. TDAM can express time-based policies
based on the temporal attributes of data such as transaction
time. However, these models are for non-RBAC policies; they
cannot express temporal constraints on roles such as temporal
role enabling and disabling constraints.

III. Location and Time Representation

In our model, each entity and relation is associated with
spatio-temporal information. Before describing these associa-
tions in detail, we show how spatio-temporal information is
represented in our model.

A. Location Representation

There are two types of locations: physical and logical. All
users and objects are associated with locations that correspond
to the physical world. These are referred to as the physical
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locations. A physical location is formally defined by a set of
points in a 3-D geometric space. A physical location ploci is
a nonempty set of points {pi, pj, . . . , pn}, where a point pk

is represented by three coordinates. The granularity of each
coordinate is dependent upon the application.

Physical locations are grouped into symbolic representations
that will be used by applications. We refer to these symbolic
representations as logical locations. Examples of logical loca-
tions are Fort Collins, CO. A logical location is an abstract
notion for one or more physical locations. We assume the
existence of a mapping function m that converts a logical
location to a corresponding physical one.

Definition 1: [Mapping Function m] m is a total function
that converts a logical location into a physical one. Formally,
m : L −→ P , where P is the set of all possible physical
locations and L is the set of all logical locations.

We define the containment ⊆ and equality = on physical
locations. A physical location plocj is said to be contained
in another physical location plock if plocj ⊆ plock. Two
physical locations plocr and plocs are equal if plocr ⊆ plocs

and plocs ⊆ plocr.
Note that logical locations must be transformed into physi-

cal locations (using mapping function m defined above) before
we can apply these operators. We define a logical location
called anywhere that contains all other locations. Each appli-
cation can describe logical locations at different granularity
levels. For example, some permissions may be applicable on
the entire state whereas other permissions are only applicable
to people in the city. Let us denote the logical locations that
are of interest to the application by the set L. Let the physical
locations corresponding to these logical locations be denoted
by P. The size of the smallest location in P corresponds to the
minimal location granularity of the application. For example,
in the organization Software Development Corporation, we
may have L = {MainBuilding, TestingOffice, DirectorOffice,
DevelopmentOffice}. The MainBuilding houses the three of-
fices in separate floors of the building. In this case, the minimal
location granularity is one floor.

B. Time Representation

Our model uses two kinds of temporal information. The first
is known as time instant and the other is time interval. A time
instant is one discrete point on the time line. A time interval is
a set of consecutive time instants that can be represented in the
form of d = [ts − te], where ts, te represent time instants and ts
precedes te on the time line if ts �= te. We use the notation ti ∈ d

to mean that ti is a time instant in the time interval d. The exact
granularity of a time instant is application dependent. Suppose
the granularity of time instant in an application is 1 min. In
this case, time interval [3:00 a.m. to 4:00 a.m.] consists of the
set of time instants {3:00 a.m., 3:01 a.m., 3:02 a.m., . . . , 3:59
a.m., 4:00 a.m.}.

Now, we define the containment ⊆ and equality = on
time intervals. A time interval dj is said to be contained in
another time interval dk if dj ⊆ dk. Two time intervals ds

and dr are said to be equal if dr ⊆ ds and ds ⊆ dr. We
define a time interval called always that includes all other
time intervals. The set of all time intervals of interest to the

application is defined by I. The minimal time granularity of an
application refers to the size of the smallest time interval used
by the application. For example, in the Software Development
Corporation, we may have the following intervals that are
of interest: I = {i1, i2, i3, i4}, where i1 = [8 a.m. to 5 p.m.],
i2 = [8 a.m. to 12 p.m.], i3 = [12 p.m. to 1 p.m.], and i4 =
[1 p.m. to 5 p.m.]. The minimal time granularity pertaining to
this application is 1 hr.

C. Spatio-Temporal Zone

One of the main contributions in our work is the formaliza-
tion of the concept of a spatio-temporal zone. The concept of
spatio-temporal zone abstracts location and time representation
into a single entity. Now we give the formal definition of the
notion spatio-temporal zone and the zones set.

Definition 2 (Spatio-Temporal Zone): A spatio-temporal z-
one STZone is a pair of the form (l, d), where l and d represent
the logical location and the time interval, respectively.

An example of a spatio-temporal zone can be z =
(HomeOffice, [6 p.m. to 8 a.m.]).

A spatio-temporal zone set, i.e., STZones = {z0, z1, . . . , zn},
is a set of all spatio-temporal zones in an organization
that defines where and when some entities are available.
An example of a spatio-temporal zone set is {(HomeOffice,
[6 p.m. to 8 a.m.]), (DeptOffice, [8 a.m. to 6 p.m.])}. A spatio-
temporal zone (l, d) is specified at minimal granularity if l and
d are specified at minimal location granularity and minimal
temporal granularity, respectively.

Definition 3 (Spatio-Temporal Zone Containment): A
spatio-temporal zone z1 = (l, d) is contained in another
spatio-temporal zone z2 = (l′, d ′), denoted by z1 ⊆ z2, if
both zones have time intervals containment and locations
containment, d ⊆ d′ and m(l) ⊆ m(l′), where m is the
mapping function discussed in Definition 1.

Note that {(FortCollins, May2011)} ⊆
{(Colorado, Year2011)} since m(FortCollins) ⊆
m(Colorado) and May2011 ⊆ Year2011. However,
{(FortCollins, May2011)} �⊆ {(Colorado, Year2010)} since
May2011 �⊆ Year2010. Similarly, {(FortCollins, May2011)}
�⊆ {(Nevada, Year2011)} because m(FortCollins) �⊆
m(Nevada). We define a spatio-temporal zone {(anywhere,
always)} that contains all other spatio-temporal zones. For
spatio-temporal zones equality =, two zones z and z′ are said
to be equal, z = z′, iff z ⊆ z′ and z′ ⊆ z.

IV. GSTRBAC Model

We now present our GSTRBAC model and formalize its
specification using UML and OCL.

A. Effect of Spatio-Temporal Constraints on RBAC Entities

The RBAC entities users, roles, permissions, and objects are
associated with spatio-temporal zones.

1) Users: We assume that each valid user, interested in
doing some location-sensitive operations, carries a locating
device that is able to track his location. The location of a
user changes with time. The spatio-temporal zone associated
with a user gives the user’s current location and time.
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Note that time and location can have different levels of
granularity. For example, the current time can be expressed as
12:00:05 p.m. or 12:00 p.m. Similarly, a user’s current location
can be Fort Collins or it can be Colorado. The user’s current
location and time information will be used for making access
decisions. Let us illustrate why the notion of minimality must
be associated with the user’s spatio-temporal zone. Suppose
permission is valid in a certain zone. If we do not use the
concept of minimal, then it is possible that the user zone may
partially overlap with the permission zone. In such a case,
should we give access or deny access? On the other hand, if
we use the concept of minimal, then the user’s zone will either
be within the permission zone or outside it. In such cases,
we know whether to give or deny access. Consequently, we
require the minimal temporal and location be used to express
the spatio-temporal zone associated with a user. We define the
function currentzone that returns the minimal spatio-temporal
zone associated with a user. This function is formally defined
as follows:

- currentzone : Users → STZones.

2) Objects: Objects may also be mobile like the user.
Here, again, we have locating devices that track the location
of an object. Moreover, an object may not be accessible
everywhere and anytime. For example, tellers can only review
customer information at a teller office during working hours.
The ozones function returns the spatio-temporal zones that
determine where and when every object is available

- ozones : Objects → 2STZones.

3) Roles: Role can be assigned or activated only in specific
locations and time. The role of the on-campus student can
only be assigned or activated inside the campus during the
semester. The spatio-temporal zone associated with a role
gives the location and time from which roles can be assigned
or activated. The rzones function gives the set of spatio-
temporal zones associated with a given role

- rzones : Roles → 2STZones.

4) Permissions: Permissions are also associated with a
spatio-temporal zone that indicate where and when a permis-
sion can be invoked. For example, a permission to perform a
backup of servers can be executed only from the department
after 10 p.m. on Friday nights. The function pzones gives the
zones in which a specific permission can be accessed

- pzones : Permissions → 2STZones.

Fig. 1 shows the class diagram of GSTRBAC. A security
policy of a mobile application can be specified as one possible
instance of this GSTRBAC class diagram. The GSTRBAC
entities: User, Role, Permission, Object, Activity, and STZone,
are represented by classes. Permission is represented in the
GSTRBAC class diagram as an aggregation of the classes
Object and Activity. The STZone class aggregates the location
and time subclasses. In STZone class, zcontainment is a
reflexive association specifying that a zone can contain other
zones. Different relationships between entities, including User-
RoleAssignment, UserRoleActivation, PermissionRoleAssign-
ment, RoleHierarchy, and SoD, are modeled using association
classes that are transformed to normal classes following the
modeling guidelines in [5] and [6]. These association classes

have binary relationships with STZone class to enforce the
spatio-temporal constraints.

B. Effect of Spatio-Temporal Constraints on RBAC Operations

1) User-Role Assignment: A user-role assignment is loca-
tion and time dependent. That is, a user can be assigned to a
role, provided the user is in specific locations. For example, a
person can be assigned the on-campus student role only when
he is in the campus during the semester. This requirement is
expressed using the zone concept

- UserRoleAssignment ⊆ Users × Roles × STZones.
This relationship is depicted in the GSTRBAC class diagram

as association class UserRoleAssignment. The OCL operation
assignRole assigns role r to user u in zone z if z is in the set
of rzones, user u is present in zone z, and role r is not already
assigned to user u in zone z. For the lack of space, we omit
the descriptions of the OCL queries used in the assignRole
operation

context User::assignRole(r: Role, z:STZone):
UserRoleAssignment
pre: r.rzones->includes(z)
pre: z.containedZones()->includes(self.
currentzone)
pre: self.getAssignedRoles(z)->excludes(r)
post: self.getAssignedRoles(z)->includes(r).

2) User-Role Activation: A user can activate a role if the
role can be activated on the specific zone and it is already
assigned to that user. For example, the role of a doctor trainee
can only be activated in a hospital during the training period.
We define the UserRoleActivation relation to determine the
current active roles based on zones

- UserRoleActivation ⊆ Users × Roles × STZones.
In the GSTRBAC class diagram, UserRoleActivation class

is specified in a manner similar to UserRoleAssignment. The
only difference is that the activateRole operation ensures that
a user is already assigned to a role before the role is being
activated.

3) Check Access: This operation checks whether a user
is authorized to perform some operation on an object during
a certain time and from a certain location. A user is allowed
to fire a missile if he is assigned the role of a top secret
commander and he is in the controller room of the missile
during a severe crisis period. Thus, a user can access an object
in a certain zone if that user has activated a role that has an
appropriate permission for that object in that zone

context User::checkAccess(o:Object,a:
Activity,z:STZone):Boolean
post: result = getActivatedRoles(z)->
collect( r | r.getAuthorizedPermissions(z))
->asSet()->
exists( p | p.object=o and p.activity=a and
o.ozones->includes(z)).

4) Permission-Role Assignment: Permissions can only be
assigned to a role during specific time and locations. For
example, the permission of opening a cashier drawer in a store
should only be assigned to a salesman role during the daytime.
The assignment of permissions to roles is specified based on
zones
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Fig. 1. UML class model for GSTRBAC.

- PermissionRoleAssignment ⊆ Permissions × Roles ×
STZones.

The following OCL operation assigns permission p to role
r in zone z if z is in the set of pzones and rzones:

context Role::assignPermission(p:Permission,
z:STZone): PermissionAssignment
pre: p.pzones->includes(z) and self.rzones->
includes(z)
pre: self.getAssignedPermissions(z)->excludes(p)
post: self.getAssignedPermissions(z)->includes(p).

C. Spatio-Temporal Role Hierarchy

The permission-inheritance hierarchy (I-Hierarchy) and the
role-activation hierarchy (A-Hierarchy) are two variations of
role hierarchy (RoleHierarchy) in RBAC [11], [13]. In our
model, a senior role could have a subset of junior roles in
a particular zone. The spatio-temporal role hierarchies are
formally defined as follows.

1) RoleHierarchy ⊆ Roles × Roles × STZones.
2) I-Hierarchy ⊆ RoleHierarchy, A-Hierarchy ⊆ RoleHier-

archy, and I-Hierarchy ∩ A-Hierarchy = φ.
The subtypes of RoleHierarchy are represented in the

GSTRBAC class diagram by the subclasses I-Hierarchy and
A-Hierarchy, which are connected to STZone class to restrict
the roles associations.

1) Permission-Inheritance Hierarchy: In a permission-
inheritance hierarchy, a senior role r can only inherit junior
role r′ permissions in zone z if both roles are available in zone
z. A project manager inherits the permissions of a developer
when he is at the customer site giving a demo. The following
OCL expression specifies the spatio-temporal constraint on I-
Hierarchy for adding a new junior role:

context Role::addIHJuniorRole(r:Role,z:STZone):
I_Hierarchy
pre: self.rzones->includes(z) and r.rzones->
includes(z)
pre: self.getIHJuniorRoles(z)->excludes(r)
post: self.getIHJuniorRoles(z)->includes(r).

The delete operation of a junior role in I-Hierarchy can be
defined in the similar manner. The I-Hierarchy relationship is
acyclic as shown by the following OCL constraint:

context r1,r2: Role
inv IHierarchy_Cycle_Constraint: not
STZone.allInstances-> exists(z|r1.inheritsIH(r2,z)
and r2.inheritsIH(r1,z)and r1<>r2).

The Boolean operation inheritsIH(r,z) returns true if role r

is directly or indirectly a junior role of the context role in a
particular zone; otherwise, it returns false.

inheritsIH(r:Role,z:STZone): Boolean =
if (self.getIHJuniorRoles(z)->includes(r))
then true
else self.getIHJuniorRoles(z)->
exists(j | j.inheritsIH(r,z)) endif.

We define the OCL query operation getAuthorizedPermis-
sions(z) to get the authorized permissions for a given role at
zone z through direct assignment or indirect I-Hierarchy

context Role::getAuthorizedPermissions(z:STZone):
Set(Permission)
Post: result= self.getAssignedPermissions(z)->
union(self.getAllIHInheritedRoles(z)->collect(r |
r.getAssignedPermissions(z)))->asSet().

2) Role-Activation Hierarchy: Restricted spatio-temporal
A-Hierarchy allows members of senior roles to activate junior



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ABDUNABI et al.: SPECIFICATION, VALIDATION, AND ENFORCEMENT OF AN RBAC MODEL 7

roles in predefined spatio-temporal zones. For example, a
department chair can activate a staff role during the semester
inside the department building. The OCL operations of adding
and deleting junior roles to the A-Hierarchy are defined
in similar manner to I-Hierarchy. Furthermore, the acyclic
constraints on A-Hierarchy are enforced in the same way as
the I-Hierarchy.

The only differences are that the OCL query operation
getAHJuniorRoles(z) returns all the junior role in A-Hierarchy
of the context role in particular zone. Moreover, the OCL
query operation getAuthorizedRoles(z) gives the authorized
activation roles for the context user that are either explicitly
assigned or implicitly obtained through A-Hierarchy in certain
zones

context User:: getAuthorizedRoles(z:STZone):
Set(Role)
post: result= self.getAssignedRoles(z)->
union(self.getAssignedRoles(z)->collect(r|
r.getAllAHInheritedRoles(z))->
asSet()).

D. Spatio-Temporal Separation of Duty

The static SoD (SSoD) and dynamic SoD (DSoD) are
two special classes of the SoD constraints in RBAC [28].
Furthermore, the role SSoD (RSSoD) constraints are defined
on roles assignment, while the permission SSoD (PSSoD)
constraints are defined on permissions assignments.

In our model, the conflicting roles and permissions in SoD
are defined over some zones. The spatio-temporal RSSoD,
PSSoD, and DSoD relations are formally defined as follows.

1) RSSoD ⊆ Roles × Roles × STZones.
2) DSoD ⊆ Roles × Roles × STZones, and RSSoD ∩ DSoD

= φ.
3) PSSoD ⊆ Permissions × Permissions × STZones.

The static and dynamic SoD relations are represented in
the GSTRBAC class diagram using the associations classes
RSSoD, PSSoD, and DSoD, which connect the conflicting
entities with certain zones.

1) Role SSoD: The same individual should not be assigned
to specific roles in a specific location for some duration. For
example, the same user should not be assigned to billing clerk
and account receivable clerk roles in the same time at a specific
trade corporation. The following OCL invariant forbids the
assignment of conflicting roles in a particular zone:

context User
inv RSSOD_Constaint: STZone.allInstances->forAll( z |
not self.getAssignedRoles(z)->
exists(r1,r2 | r1.getSSoDRoles(z)->includes(r2))).

However, the above constraint may be violated through a
role hierarchy relation. For example, a billing supervisor may
be a senior role of the two conflicting roles billing clerk and
account clerk at the same time and in the same accounting
department. The following OCL constraint prevents such a
situation:

context User
inv RSSOD_RH_Constraint: STZone.allInstances->

forAll( z | not self.getAuthorizedRoles(z)->
exists(r1,r2 | r1.getSSoDRoles(z)->includes(r2))).

2) Permissions SSoD: PSSoD prevents the assignment of
conflicting permissions to a role. For example, a loan officer is
not permissible to issue loan request and approve it in the bank
building during the daytime. The following OCL invariant
expresses the PSSoD requirement in our model:

context Role
inv PSSOD_Constaint: STZone.allInstances->
forAll( z | not self.getAssignedPermissions(z)->
exists(p1,p2 | p1.getPSSoDPermissions(z)->
includes(p2))).

However, this constraint may be violated through I-
Hierarchy, in which a senior role inherits some junior roles
that have mutually been assigned conflicting permissions. The
following OCL invariant prevents the violation of PSSoD via
I-Hierarchy:

context Role
inv PSSOD_RH_Constraint: STZone.allInstances->
forAll( z | not self.getAuthorizedPermissions(z)
exists(p1,p2 | p1.getPSSoDPermissions(z)->
includes(p2))).

3) DSoD: Two conflicting activation roles cannot be
activated in some spatio-temporal zones by the same user. For
example, the simultaneous activation of cashier and cashier
supervisor is forbidden during the working hours in the same
store to deter such a user from committing a fraud. The
DSoD constraints are expressed in OCL invariants in a similar
manner to the RSSoD constraints. The only difference is that
the OCL invariants prevent the activations of conflicting roles
that are connected by DSoD in some zones through either the
explicit role assignment or the implicit A-Hierarchy.

E. Spatio-Temporal Prerequisite Constraints

In RBAC, the prerequisite constraints obligate that some
actions to be taken prior to performing an operation [29].
Prerequisite constraints impose conditions that must be satis-
fied before certain assignments, such as user-role assignment
and permission-role assignment can be executed. Our spatio-
temporal prerequisite constraints can be expressed in first-
order logic; consequently, we can represent them using OCL
preconditions and invariants.

1) Prerequisite Constraints on User-Role Assignment: The
prerequisite constraint on roles assignments imposes that a
user must be assigned to some less critical roles in a given
spatio-temporal zone before being assigned more critical roles
in specific zones. For example, the role of emergency nurse
can be assigned to John in the urgent care unit from 12:00 a.m.
to 5:00 a.m. if he is assigned the role of nurse-on-night-duty at
the hospital during those hours. The following OCL invariant
expresses the prerequisite constraints on user-role assignment.
The query operation getPreqAssRoles() returns all the assign-
ment prerequisite roles needed for assigning a certain role

context User
inv Prerequiste_URAssign: STZone.allInstances->
forAll(z | Role.allInstances->
forAll(r1 | (self.getAssignedRoles(z)->
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includes(r1)) implies (self.getAssignedRoles(z)->
includesAll(r1.getPreqAssRoles())))).

2) Prerequisite Constraints on Permission-Role Assign-
ment: The prerequisite constraints on permissions assignments
indicate that a role can be assigned a permission in a specific
zone if some prerequisite permissions are already assigned to
that role in the same zone. For example, a bank teller must
have the permission of reading an account during working
hours before he can be given the permission to update that
account. The prerequisite constraint on permission-role assign-
ment can be specified using OCL expression as follows:

context Role
inv Prerequist_PRAssign: STZone.allInstances->
forAll(z | Permission.allInstances->
forAll(p1 | (self.getAssignedPermissions(z)->
includes(p1)) implies
(self.getAssignedPermissions(z) ->
includesAll(p1.getPrerequisitePermissions())))).

3) Prerequisite User-Role Activation: A role can be acti-
vated if some prerequisite roles are already activated in specific
zones. For example, in a university the teaching assistant
role can be activated during a semester in a department if
the student role can be activated during the same time. This
requirement is specified in our model in the same way of
the prerequisite user-role assignment constraint except that
the OCL query getPreqAssRoles() is substituted with getPre-
qActRole(). The query operation getPreqActRole() returns all
activation prerequisite roles needed to activate a role.

V. Example Access Control Verification

The GSTRBAC model has many features that may interact
with each other, causing conflicts, inconsistencies, and security
breaches. In addition, constraints could be specified stronger
than needed resulting in some roles, permissions, or objects
being inaccessible. Consequently, it is important to analyze
GSTRBAC policies before applying them. A manual analysis
is tedious and error prone. Toward this end, we propose an
automated verification approach based on the USE constraint
solver tool. The USE tool accepts three inputs, the GSTRBAC
class diagram, the OCL constraints, and the policy instances as
object diagrams. When the policy instance does not conform
to a GSTRBAC class diagram or it violates some property,
the tool pictorially shows how the property has been violated.
Specifically, it illustrates the entities and the relationships
responsible and how their interactions have caused for the
property violation. Once the security designer sees this graph-
ical representation, he can fix the policy specification. For
example, if the security designer finds that some prerequisite
constraint has been violated, he can either change the pre-
requisite relation or change the constraint depending on the
application requirement.

To illustrate our specification and verification approaches,
consider a software development environment for producing
military applications. The software project files are stored in
computer machines inside a secure building, and the access to
those files is location and time dependent. The access control

policy of the software development system is specified as
follows.

1) Users = {Bob, Ben, Alice, Rachael, Clare, Sam}.
2) Intervals = {i1, i2}. where i1 = [8 a.m. to 6 p.m.] and

i2 = [6 p.m. to 8 a.m.].
3) Locations = {Home, DevelopmentOffice, TestingOffice,

DirectorOffice, DepartmentBuilding}. DepartmentBuild-
ing includes all other offices.

4) STZones = {z0, z1, z2, z3, z4}, where z0 = (Department-
Building, i1), z1 = (Home, i2), z2 = (DevelopmentOffice,
i1), z3 = (TestingOffice, i1), and z4 = (DirectorOffice, i1).

5) Roles = { Software Engineer (SE), Software Programmer
(SP), Test Engineers (TE), Programmer Supervisor (PS),
Test Supervisor (TS), Project Lead (PL) }.

6) rzones = { (SE, z0), (SE, z2), (SP, z1), (SP, z2), (TE, z1),
(TE, z3), (PS, z2), (TS, z3), (PL, z4) }.

7) Objects = { Project Files (obj1), Test Files (obj2),
Programmer Logs (obj3), Test Logs (obj4), Program-
mer Supervisor Report (obj5), Test Supervisors Reports
(obj6) }.

8) ozones = { (obj1, z1), (obj1, z2), (obj2, z1), (obj2, z3),
(obj3, z2), (obj4, z3), (obj5, z4), (obj6, z4)}.

9) Activities = {read, write, copy, run, review}.
10) Permissions = { P1(read, obj1), P2(write, obj1), P3(copy,

obj1), P4(write, obj2), P5(run, obj2)), P6(review, obj4),
P7(review, obj3)), P8(read, obj5) }.

11) pzones = { (P1, z1), (P1, z2), (P2, z1), (P2, z2), (P3, z2),
(P4, z1), (P4, z3), (P5, z3), (P6, z3), (P7, z2), (P8, z4) }.

12) UserRoleAssignment = { (Ben, SP, z1), (Ben, SP, z2),
(Bob, PS, z2), (Alice, PL, z4), (Clare, TS, z3), (Rachael,
TE, z1), (Rachael, TE, z3), (Sam, SE, z0) }.

13) PermissionRoleAssignment = { (SP, P1, z1), (SP, P1, z2),
(SP, P2, z1), (SP, P2, z2), (SP, P3, z2), (TE, P4, z1), (TE,
P4, z3), (TE, P5, z3), (TS, P6, z3), (PS, P7, z2), (PL, P8,
z4) }.

14) I-Hierarchy = { (PS, SP, z2), (TS, TE, z3), (PL, PS, z0),
(PL, TS, z0) }.

15) RSSoD = { (SP, TE, z0) }.
16) PSSoD = { (P2, P4, z0) }.
17) Prerequisite constraints: The role of software program-

mer and the test engineer can be assigned if the user is
already assigned the role of software engineer.

The policy is graphically represented in Fig. 2 based on
the graph notations inspired by Chen and Crampton [17]. We
present two scenarios illustrating our analysis approach for
verifying security properties.

The first scenario shows how the checkAccess opera-
tion can be analyzed. Assume that Ben is in zone z3 =
{(TestingOffice, [8 a.m. to 6 p.m.])} and tries to copy Project-
Files object. Based on the policy, Ben is only assigned to SP
in z1 and z2. Thus, Ben should not be allowed to access that
object because the SP role is not available for activation in
zone z3. Fig. 3 shows that no policy violation is found with
this scenario.

The second scenario considers the verification of the RSSoD
constraints. Assume that Ben is already assigned to the role
SP in the zone z0, which is a containing zone for z1 and z2.
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Fig. 2. Access control graph for the development system policy.

Fig. 3. Accessing object from an invalid STZone.

Later on, a security administrator tries to assign Ben to the
conflicting role TE in the zone z0. The assignment operation
fails due to the RSSoD constraint, as shown in Fig. 4.

VI. Software Architecture

This section describes a platform-independent implementa-
tion architecture, which maps the high-level GSTRBAC policy
definition to the enforcement mechanism in mobile applica-
tions. Later on, we provide an experimental evaluation of this
architecture using Android mobile operating system (OS) [30].

Fig. 5 depicts the proposed implementation architecture for
enforcing GSTRBAC in a mobile application. The architecture
consists of three core components: request composition mod-
ule (RCM), resource access module (RAM), and authorization
control module (ACM). Each of these modules is a stand-
alone program. The RCM is installed at the user mobile
device, the RAM and ACM are installed in servers that may
or may not be colocated.

1) RCM is responsible for forming a user access request
and maintaining the access, while the rights are exer-
cised. The Request Builder component in RCM creates a
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Fig. 4. Conflicting roles assignment.

Fig. 5. Implementation architecture of GSTRBAC policy in mobile applications.

resource access request using information obtained from
the other components. The Request Builder enquires the
STZone Reader to form the current user STZone that
encapsulates current user location and time. The STZone
Reader, in turn, reads the current mobile device time and
gets the location from GPS data component storing the
location information. After creating the proper access
request package, Request Builder sends that package
to one of the available RAM servers. The STZone Lis-
tener gets the current spatio-temporal information from
STZone Reader and ensures that the user is in the autho-
rized spatio-temporal zone while the resource is being
accessed. Once the user moves outside the authorized
zone, STZone Listener requests service termination.

2) RAM is an intermediate server between the user and
ACM server, which is primarily responsible for handling
the application resources to the users. RAM receives the
user request and consults with the ACM server about
the user authorization. The user’s credentials are stored
in the Application Base when the user registers with the
system. The Credential Evaluator evaluates the validity
of the user credentials. If the user credentials are valid,
the Authorization-Token Requester component requests
an authorization token (AT ) from one of the available
ACM servers. Once the AT is granted, it is used by
the Resource Provider component to provide access to
resources needed by the authorized users to accomplish
their tasks. RAM maintains a list of users’ AT s, which
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we refer to as UATokens, and the elements of this list are
continuously updated. A user AT gets deleted from the
list once it is expired, which might happen whenever a
user deactivates his role or the STZone associated with
the role becomes invalid.

3) ACM is accountable for the policy evaluations and to-
kens generations. Typically, ACM is responsible for is-
suing a new AT for every role that the user requests to be
activated. In order for ACM to evaluate access requests,
it consults with the GSTRBAC Policy Base. GSTRBAC
Policy Base stores the access control policy and the au-
thorizations granted to users. The Role Activation com-
ponent in ACM gets the set of roles and permissions that
can be activated based on the STZone it receives from
the STZone Extractor component. The Role Activation
component updates the policy state for each activated
role. The Authorization-Token Granter component is
responsible for granting the AT if a role can be activated.
Note that a user’s role can be activated only if all the
following conditions are satisfied: 1) the role is not
already active; 2) the role can be activated in the given
STZone; and 3) no conflicting roles are already active.
If the requested role can be activated, Authorization-
Token Granter issues a new authorization token with
the following format: AT = (IDu, IDut, r, P, STZone),
where IDu refers to the user identifier, IDut is the
token’s identifier, r is the requested role to be activated,
P is the set of the authorized permissions associated
with the active role r, and STZone defines where and
when these privileges are valid.

VII. Resource Usage Protocols

A. Assumptions

Each mobile device is associated with a user through which
the user can access resources. We assume that the users’
mobile phones (clients) and servers have tamper-proof storages
where the AT s and keys are stored. We also have tamper-
proof components that can only be accessed by authorized
applications. These components house critical software, such
as RCM that cannot be accessed or modified by the unautho-
rized user. In addition, the client has the needed software to
extract the current time and location information. The clients
and servers should have the capabilities of executing public
key cryptography algorithms and hashing algorithms, such as
MD5. We also assume that the existence of a certificate author-
ity is responsible for providing public keys and private keys
for the clients and servers. We use timestamps in the protocol,
so the different servers and clients must be synchronized. The
user identifier and his device identifier must be registered with
the RAM servers, and the user must have a unique password.

Fig. 6 describes the communication exchanges of the re-
source usage protocols. Suffixes associated with the commu-
nication messages indicate the order of steps in the protocols.
Table I enumerates the notations used in the description of the
protocol. Message Mi indicates Step i of the protocol.

Now we describe the steps of the basic resource usage
protocol for handling users’ requests.

M3- Ers{Mas,Sas{M*as}}

M1- Ers{Mrc,Src{M*rc}}
M4- Erc{Mrs,Srs{M*rs}}

M2- Eas{Mrs,Srs{M*rs}}

M6- Rejected Access

M5- Rejected Access

M7- Ers{Mrc,Src{M*rc}}

M8- Eas{Mrs,Srs{M*rs}}

RCM
Client
(RC)

RAM
Server
(RS)

ACM
Server
(AS)

Fig. 6. Communication steps of the resource usage protocols.

TABLE I

The Notations of the Resource Usage Protocols

Symbol Interpenetration
IDx Identifier of party x

IDs User’s device identifier
PuKx Public key of party x

PrKx Private key of party x

Tsx Timestamp computed by party x

Pu User password
P∗

u One-time password
H(Pu, Tsx) Computes P∗

u

Mx Package payload created by party x

Ex{S} Encryption of sequence S by PuKx

M∗
x Message checksum generated by party x

H(Mx, Tsx) Computes M∗
x

Sx{M∗
x } Signing M∗

x by PrKx

A
Mi−→ B Party A sends package Mi to party B

Tw Time window
AT Authorization token
IDut Authentication-token identifier
“Close” Keyword indicates deletes user’s AT

“Freeze” Keyword indicates suspends user’s AT

1) Role Activation Request [RCM
M1−→ RAM ]:

RCM creates an access request payload
Mrc = (IDu, IDs, P

∗
u , STZone, r, Tsrc), where IDu

is the user identifier, IDs is the device identifier,
P∗

u = H(Pu, Tsrc) is the user one-time password,
STZone is the current user zone, r is the requested
role, and Tsrc is the timestamp at which Mrc is created.
RCM computes the hash value M∗

rc = H(Mrc, Tsrc)
and signs it using the user’s private key PrKu, i.e.,
Src{M∗

rc}, to be used as a nonrepudiation proof.

2) User AT Request [RAM
M2−→ ACM]: On receiving

message M1, RAM decrypts it using its private key. If
the message is validated and the user is authenticated,
RAM sends message M2 to the ACM server in order to
issue an AT . RAM forwards the AT request payload
Mrs = (IDrs, IDu, STZone, r, Tsrs), where Tsrs is the
timestamp at which Mrs payload request is created.
RAM computes the hash value of Mrs and signs it using
its private key PrKrs. Then, RAM encrypts the Mrs

along with a digitally signed signature Srs{M∗
rs} using

ACM public key PuKas.
If the user authentication fails, RAM sends a rejection
message to RCM that is similar to message M6.
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3) User AT Response [ACM
M3−→ RAM]: At the autho-

rization server, ACM decrypts the package M2. ACM

recomputes the hash value and compares it with the one
in package M2, and verifies the digital signature using
the public key of RAM PuKrs.
In the case the sender of M2 is authenticated and the user
has the rights to activate the requested role, an AT is
sent back as a message M3. M3 includes the payload
Mas and a signed hash of Mas. The payload Mas =
(IDas, IDut, IDu, AT, Tsas) has the user identifier IDu,
user’s authorization-token AT , token identifier IDut , and
timesatmp Tsas at which the payload is created.
If the user’s request cannot be granted, an access rejec-
tion response is sent to the RAM, as shown in message
M5.

4) Forwarding User AT [RAM
M4−→ RCM]: After authenti-

cating message M3 from ACM, RAM stores a copy of
the user’s AT in the UATokens list along with the token
identifier IDut , user identifier IDu, and device identifier
IDs. Subsequently, RAM forwards an encrypted and
signed response message M4 to RCM. This message
includes payload Mrs = (IDrs, IDu, IDs, IDut, AT, Tsrs)
and Srs{M∗

rs} digital signature signed by the private key
PrKrs. M4 is encrypted using the user public key PuKu.
Note that each user AT is related to a particular user IDu

and a device IDs.
However, in the case the access request is rejected by
ACM, RAM directly forwards the rejection response in
message M6 to RCM.
At the user side, if M4 message from RAM is authen-
ticated, RCM stores the AT in its secure storage.

In our model, we need to revoke access whenever the
user moves out of a valid STZone. The STZone Listener
gets periodic updates by the STZone Reader about the
spatio-temporal coordinates of the user. Whenever the cur-
rent user location or time does not satisfy the information
in a user’s AT , the STZone Listener revokes the user’s
AT and requires Request Builder to request an access
termination.

In Fig. 6, the messages M7 and M8 describe the additional
exchanges needed to implement the ongoing access protocol.

1) Terminating User Access [RCM
M7−→ RAM]: The

client software sends the termination access request
M7 to RAM at the time the current user STZone
becomes invalid. RCM creates a termination message
Mrc = (IDu, IDs, IDut, Pu, Close, Tsrc), where the key-
word “Close” indicates the termination of access. RCM

concatenates Mrc with the user digital signature Src{M∗
rc}

and encrypts them with the resource server public key
PuKrs. The user’s AT should be deleted at the client
side to terminate the user access.

2) Revoking User Privileges [RAM
M8−→ ACM]: After

authenticating the sender of M7 message, RAM reads
the keyword “Close” and then uses IDu, IDs, and IDut

to lookup for the user AT in the UATokens list and
removes it. Therefore, if a user subsequently requests
an access to a resource via the same IDut , his request

will be denied because that user does not have the AT

for that resource.
RAM forwards an encrypted and signed termination re-
quest M8 to ACM to delete the user’s authorization. This
request includes Mrs = (IDrs, IDu, IDut, Close, Tsrs)
and the digital signature Srs{M∗

rs} signed by the RAM

private key.
At the ACM server, after authenticating the sender of
M8, the keyword “Close” indicates ACM to revoke the
current user’s active role and authorized permissions
associated with the user AT IDut . It does this by
updating the GSTRBAC policy state.

A user may temporarily depart the authorized location from
which he is currently accessing some resources. To preserve
our design efficiency, the user’s privileges should not be
permanently revoked, but these privileges must be frozen or
suspended for the short period of time the user is off-site and
they are returned when he is on-site.

We achieve this by modifying the communication steps of
the ongoing resource usage protocol to define the suspending
resource usage protocol. The client software sends a resource
access deferral package M

′
7 at the time a user temporarily

leaves his valid position.
This message has a similar format to M7 except that the

keyword “Close” is changed to “Freeze” to indicate that user’s
privileges should be frozen for a certain period. The time
window Tw is included in M

′
7 message. The time window

determines the freezing time during which a user cannot
exercise previously granted access rights. Once the user moves
back to his previous valid location and prior to the Tw

expiration, his roles can automatically be reactivated. If the
user does not move to the valid position before the expiration
of Tw, his privileges are revoked and message M8 is sent.

B. Security Analysis

Since our primary concern is protecting applications’ re-
sources from improper access, we need to provide a proof
that our protocol does indeed protect the resources from
unauthorized access. We assume that RAM and ACM are
trusted. Furthermore, the RCM is installed in a tamper-proof
component of the phone, and it can be only accessed by
authorized applications.

In communication protocols, the message confidentiality,
message integrity, message authentication, and identity au-
thentication are important. We provide these features in our
protocol. Message confidentiality is guaranteed because mes-
sages are encrypted by the public key of the recipient. Message
integrity is maintained by concatenating each message with
the message digest, so that if an intruder intercepts and
alters a communication message, the receiver can detect that.
The receiver validates the received message by reconstructing
the checksum and comparing it to the one in the received
message. Message authentication is protected by associating
digital signatures with messages; the digital signature pro-
vides a non-repudiation proof of the message origin. Identity
authentication is provided by using public key certificates
and digital signatures. Using the public key certificates and
digital signatures, the sender and the receiver are able to
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mutually authenticate their identities. We assume that private
keys used to sign the message digests are only possessed by
the signers, and the public key certificates have one-to-one
mapping between the public key and the owner. Furthermore,
the password-based authentication technique is utilized to
provide a proof of identity. Note that the manner in which such
techniques are used ultimately determines the security of the
protocol.

In the following, we show how our resources are protected
from improper access by unauthorized and authorized users.
First, we consider the attacks that unauthorized users can carry
out to gain an access to protected resources and show how
these attacks are prevented in our approach.

1) Eavesdropping: An adversary may eavesdrop on the
messages that one entity sends to another to breach con-
fidentiality. In this case, even if an adversary eavesdrops
on the communication across two entities, he cannot gain
useful information as the messages are encrypted by the
public key of the recipient.

2) Modifications: An adversary may intercept and modify
data that one entity sends to another. In order to make
this possible, the adversary must be able to read and
modify the messages. Since the messages must be de-
crypted by the adversary before they can be modified,
such an attack is not possible in our scheme.

3) Replay: In this attack, an attacker intercepts authentic
messages coming from a legitimate entity and replays
them to gain an access to resources. Even when mes-
sages are replayed by an adversary, the timestamps and
one-time passwords prevent the replay attacks.

4) Man-in-the-Middle (MITM): In an MITM attack, a mali-
cious user eavesdropping on the communication channel
between entities and masquerades as the legitimate entity
to the other entity. It intercepts messages coming from
a legitimate entity and retransmits them after possibly
modifying them to the intended recipient. The use of a
public key prevents the attacker from reading and mod-
ifying transmitted messages. Consequently, this attack
does not occur in this protocol.

5) Illegitimate Use: An illegitimate use attack occurs when
a malicious user tries to make an access via lost or stolen
cell-phones. Since a malicious user will not be aware of
the user’s password, it cannot send new access requests.

We next consider the attacks that may be carried out by
authorized users.

1) Reusing Authorization-Tokens: A user may want to ac-
cess a resource using his past AT . However, when the
STZone expires, the AT gets deleted from RCM and
cannot be used.

2) Modifying Authorization-Tokens: A user may modify the
AT stored at his site. However, AT s are stored in a
secure tamper-proof storage at the user’s mobile device
and cannot be modified.

3) Users Collusion: In this attack, two or more users
collude to commit a fraud. That is, user u1 gets a valid
AT for a role and sends it by some means to user u2 to
allow u2 to violate conflicting constraints. However, this

attack is not applicable to our protocols because each
AT is exactly linked to a particular device and user.

VIII. Prototype Development

We have developed a proof-of-concept prototype enforcing
GSTRBAC in an Android mobile application. Our Android
application and servers are written using the Java programming
language.

The RCM client is implemented in a mobile application that
is developed using free and open source Google’s Android
(OS) [30]. An Android platform provides a flexible map
display and a location service support. Our mobile application
utilizes the Android location listener to keep track of the
current location coordinates and captures the local time at
which the location is fetched. We have used the Android
LocationManager package [31] for developing an Android
location-based services application. Our application retrieves
the current position from an enabled GPS receiver, and uses
the Google maps application programming interface to display
the location on the screen.

The RAM and ACM components are written as traditional
Java server programs. To implement the basic resource us-
age protocol, we have adopted some source code of the
FlexiProvider Toolkit [32] that has Java-based cryptographic
modules, including the public key, the digital signature, and
the MD5 message digest. The toolkit implements fast and
secure cryptographic algorithms and can be plugged into
many Java applications. Prior to running the experiment, each
entity should have its private key and stores the public key
of the communicated endpoints in a local file. We use the
KeyPairGenerator class to generate public and private key
pairs. The public keys are securely distributed using the AES
symmetric-key encryption. Furthermore, all communicating
parties implement the same MD5 algorithm.

We used the relational database to represent the application
and policy data. The relational database is implemented in
the open source database MySQL server [33]. We have two
relational database tables: the first one is the application table
that stores login information, and the second one is the policy
table that stores a GSTRBAC policy. The application table is
only accessible by RAM via a MySQL server, while the policy
table is connected to ACM.

We tested our mobile application through the Android emu-
lator, and the test showed that our prototype works as expected.
The Android handset emulator is depicted in Fig. 7 displaying
our Android applications. The handset emulator prompts a user
to select his role and enters the user’s identifier and password.
Once the user enters these information and hits the connect
button, the Android application software fetches the last known
user location and the local time, then it composes an access
request and sends it to one of the available virtual RAM servers
in a secure manner.

In order to use the location capabilities of Android, we
used the LocationManager class to access to the Android loca-
tion services. The locationManager.requestLocationUpdates()
method updates the device’s location every some fixed period
of time through the location provider GPS. A class implement-
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Fig. 7. Android handset emulator.

TABLE II

Back-End Average Response Delay

Response Average Delay
0-Approved 73.66 ms
1-Rejected (improper login data) 29.56 ms
2-Rejected (improper role) 67.50 ms
3-Rejected (improper zone) 81.43 ms
Total Average Delay 63.04 ms

ing the LocationListener interface handles changes in the de-
vice location. The locationManager.getLastKnownLocation()
method fetches the last known location object that has the
altitude, latitude, and longitude information. When the An-
droid emulator starts for the first time, it reports the current
location Null because there is no last known location to fetch.
Thus, we used DDMS view of Eclipse to manually feed
mock location information to the Android emulator. Once the
emulator’s GPS device has the dummy data, the listener is
triggered to retrieve the current location. Now, the Android
SDK’s emulator can emulate user’s location changes. Then,
the current user’s coordinates is viewed on a Google map and
the location name is manually fed into our application.

In our experiment, we instantiated three RCM handset
Android emulators, three RAM virtual servers, and three ACM

virtual servers. All of these execute on a single machine
and communicate through sockets. We also created another
virtual server running a local centralized MySQL database
on the same machine. This database server is connected with
the servers to process users’ requests. The Android handset
emulator sends an access request to one of the virtual RAM
servers, and the RAM servers connect with ACM servers to
get the access authorizations. For each request, the handset
emulator opens a new connection with one of the virtual
RAM servers’ names stored in a local file, and it closes the
connection at the time it receives a response. The RAM server
opens a new connection with one of the ACM servers’ names
stored in a local file only if the user login information is
correct, and it closes the connection at the time it gets a
response form the endpoint ACM server.

To evaluate different spatio-temporal access scenarios, we
have stored the logical locations and role names in two distinct
local files. Thus, for each request, the handset emulator ran-
domly selects a location name and a role name from these files
and sends them along with other information in a request pack-
age. This approach allows us to test whether our application
works as anticipated and validates the policy correctness. We
measured the time from issuing an access request to the time
when the response is received. The response delay is evaluated
for 150 requests sent simultaneously from three Android hand-
set emulators, each emulator sent 50 requests. The responses
vary based on the information in the request packages. For
example, a request gets approved only if the login information
is correct, the requested role can be authorized, and the
current user’s zone is acceptable; otherwise, the request is
rejected.

The experiments are carried out on Windows 7 platform
running on Intel(R) Core(TM) 2 Due CPU at 2.20 GH with
4.00 GB RAM. The results in Table II exhibit the response
average delay for each class of responses and the total average
response delay in milliseconds. The overall average response
delay yielded by the basic resource usage protocol is 63.04
ms. Furthermore, the rejected requests due to invalid login
information yield 29.56 ms that is the smallest response delay
because RAM servers send the responses immediately without
consulting the ACM servers.

IX. Conclusion and Future Work

In this paper, we proposed GSTRBAC that allows specifica-
tion of role-based access control policies that are based on time
and location. We introduced the concept of a spatio-temporal
zone that encapsulated temporal and spatial constraints that
facilitated understanding, analysis, and policy evolution. The
model had many features that interacted with each other in
subtle ways. Toward this end, we showed how an application
using our model can be analyzed using the constraint solver
embedded in USE. We proposed an architecture and developed
a prototype for a mobile system enforcing GSTRBAC model.
We developed a number of protocols that consider spatio-
temporal information for initiating and maintaining access
under different circumstances.

Much work remains to be done. In the current work,
we presented arguments demonstrating that certain types of
attacks that led to access control breaches did not occur in
our protocol. Often times, formal analysis may reveal problems
that are not apparent in the informal analysis. Consequently,
to provide more assurance, we plan to formally analyze the
security protocols using existing tools, such as Coloured Petri
Nets [9] and Alloy [8]. We also plan to extend our spatio-
temporal access control model for workflows that consist of
a set of tasks that are coordinated by control-flow, data-flow,
and temporal dependencies. It would be interesting to see how
these various dependencies interact with the spatio-temporal
constraints of the workflow. Our future work also includes
deploying this model for a real-world dengue decision support
application.
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