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Abstract. Web data-extraction systems in use today mainly focus on the generation of extrac-
tion rules, i.e., wrapper induction. Thus, they appear ad hoc and are difficult to integrate when
a holistic view is taken. Each phase in the data-extraction process is disconnected and does not
share a common foundation to make the building of a complete system straightforward. In this
paper, we demonstrate a holistic approach to Web data extraction. The principal component of
our proposal is the notion of a document schema. Document schemata are patterns of struc-
tures embedded in documents. Once the document schemata are obtained, the various phases
(e.g. training set preparation, wrapper induction and document classification) can be easily in-
tegrated. The implication of this is improved efficiency and better control over the extraction
procedure. Our experimental results confirmed this. More importantly, because a document can
be represented as a vector of schema, it can be easily incorporated into existing systems as the
fabric for integration.
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1. Introduction

Large quantities of semistructured documents are appearing on the Web. In recent
years, Web data-extraction techniques have been applied in many automatic agent
systems, such as price comparison and recommendation systems. They access Web
documents to extract and integrate data and to provide data services to users. Unlike
free-text documents, semistructured documents have embedded structures. However,
there is no explicit schema that comes with these documents, making them difficult
to be processed automatically.

Much research has been done in generating Web data-extraction systems that
query Web documents and transform them into structured data, such as relational
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Fig. 2. Enhanced web data-extraction process

data or XML documents with explicit XML schema. Figure 1 presents a typical
Web data-extraction process consisting of three phases:

• Phase 1: Documents in training set are parsed to structural representations such as
graphs, trees, etc. A training set is a set of documents sharing similar structures.

• Phase 2: Extraction rules are induced from the training set. Extraction rules in-
clude knowledge about structure patterns appearing in these documents.

• Phase 3: Given the target set consisting of documents to be extracted, parts in
these documents matching with structure patterns are extracted and transformed
to structured format. Documents in the target sets are assumed to have similar
structures with documents in the training set.

Earlier work in Web data extraction suffers from three problems. First, the train-
ing set and the target set are assumed to be predefined. Given a large set of docu-
ments that do not share similar structures, multiple training sets have to be con-
structed and extraction rules are learnt from these training sets independently. To
the best of our knowledge, automatical construction of training sets has not been
addressed. Second, the learnt extraction rules cannot be applied to the documents
that are not from the predefined target set. That is, mapping between a document
and the corresponding extraction rules cannot be achieved automatically. Third, most
current approaches are ad hoc in terms of the entire Web extraction process. In other
words, no consistent view over all phases in Web data extraction is provided. In this
paper, we enhance the Web data- extraction process by adding document preparation
and document classification processes. A framework is therefore proposed to provide
a consistent view over all phases in the enhanced Web data-extraction process. Our
contributions are summarized as following:

• The Web data-extraction process is enhanced and formalized as shown in Fig. 2.
In this enhanced process, phase 0 automatically clusters structurally similar docu-
ments together to construct multiple training sets. Given a new document, phase 4
finds the most structurally similar training set using classification techniques. The
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extraction rules learnt from the set are then used to extract data from the docu-
ment.

• We propose a three-layer framework consisting of instance layer, schema layer
and operation layer. The instance layer provides a uniform virtual model for
Web-data resources, especially HTML and XML documents. The schema layer
contains descriptions and attributions of items in the instance layer and provides
a common foundation for operations of training-set preparation, document clas-
sification and data extraction in the operation layer. These operations handle the
instance layer in terms of items in the schema layer.

• To present the feasibility of this framework, an efficient algorithm to build the
schema layer and the instance layer is introduced. How to implement training-set
preparation, document classification and data extraction in the operation layer is
presented. We define notions to represent documents based on the schema layer.
Given documents in this representation, it is possible to quantitatively measure the
similarity among documents and automatically cluster similar documents together
to construct training sets. Data-extraction operations are implemented as extended
XQuery operations on the schema layer.

The following sections are organized as follows: Section 2 briefly surveys related
work addressing various phases in Web data extraction. Section 3 overviews our Web
data-extraction framework and formulates important problems in the framework. In
Sect. 4, we define classes of schemata of semistructured documents. Efficient algo-
rithms to detect these schemata are introduced. Section 5 proposes notions to rep-
resent semistructured documents using schema information. Based on these notions,
we introduce how to measure document similarity and manage documents. Section 6
describes how to extract Web data based on schema information of documents. After
presenting experiments and analyzing experimental results in Sect. 7, we conclude
our research in Sect. 8.

2. Related work

Much research has been done in Web data extraction. Most work focuses on how to
generate extraction rules from a given training set; i.e. the phases 1 and 2 in Fig. 1.
This work can be basically classified into three approaches, namely, manual rule
construction, annotated document learning and unannotated document learning.

Manual rule construction includes VDB (Virtual Database) (Gupta et al. 1998),
Lixto (Baumgartner et al. 2001), Wiccap (Liu et al. 2002) etc. VDB manually gen-
erates extraction rules from training documents; thus, rule generation is time con-
suming. Lixto and Wiccap focus on providing visual interfaces to aid extraction rule
generation. Extraction rules generated from these methods are not scalable.

Annotated document learning infers common structures from annotated docu-
ments and generates extraction rules automatically. Examples are WIEN (Wrapper
Induction for Information Extraction) (Kushmerick et al. 2000, 2002), T-Wrapper
(Sakamoto et al. 2001) and TreeAutomata (Kosala et al. 2003). WIEN automati-
cally induces relatively simple structure patterns from training sets containing tabular
contents. T-Wrapper extends WIEN and records path information to locate tabular
data in Web documents. Nevertheless, these methods are not capable of dealing with
documents with complex structures. The TreeAutomata method introduced by Kosala
exploits tree automata to extract data from documents. It studies a single annotated
Web document and uses a g-testable algorithm to induce automata grammar that
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recognizes target documents. As the grammar learnt is from a single document, it
is too sensitive to noise data.

To avoid user effort in annotating Web documents, unannotated document learn-
ing focuses on learning extraction rules from unannotated documents. Work using
this approach includes IEPAD (Information Extraction based on Pattern Discovery)
(Chang et al. 2001), RoadRunner (Crescenzi et al. 2001), Skeleton (Rajaraman et
al. 2001) and ExAlg (Arasu et al. 2003). IEPAD exploits the PATRICIA (Practical
Algorithm to Retrieve Information Coded in Alphanumeric) tree algorithm to con-
struct a suffix tree and detect frequent subtrees. RoadRunner devises a method to
detect the most common regular expression over HTML strings. Skeleton and Ex-
Alg both devise their own heuristic methods to guess which parts of Web documents
are sensitive to users’ requirements. Their methods can be divided into three steps:
(1) tokenize documents in the training set, (2) count the occurrence of each token in
the training set and (3) reconstruct those tokens that appear to fulfill certain require-
ments into skeletons (template of documents). All the above methods need users to
manually prepare training sets.

Compared with work addressing the phases of parsing and rule generation, less
work addresses the extraction phase. Kosala et al. (2003) introduce how to apply
TreeAutomata to interpret extraction rules. Gottlob et al. (2000) formally analyze
expressive capability of extraction rules and optimize performance of extraction in
Fig. 1. However, it is hard to apply these methods to the extraction rules learnt by
the methods that focus on parsing and rule generation phases because of the lack of
a comprehensive framework providing a consistent view over all those problems.

To solve problems in the phases of document-set preparation and document clas-
sification, it is reasonable to cluster and classify documents based on structural sim-
ilarity. Some recent work (Flesca et al. 2002; Nierman et al. 2002) addresses the
problem of structural similarity measurement among semistructured documents. Zaki
et al. (2003) and Wang et al. (2004) introduced some initial work on document clus-
tering and classification based on structure. However, the structure patterns used in
these structural methods do not fit the requirements of Web data extraction; i.e.
a pattern should match structures that contain similar semantic information to be
extracted.

3. Web data-extraction framework

In this section, we suggest a comprehensive framework that provides a consistent
view over various phases in Web data extraction. The problems in building compo-
nents in this framework are formally defined.

3.1. Overview of web data-extraction framework

Our framework draws ideas from relational databases. A relational database con-
tains at least a relational data model and relational operations. A relational data
model includes data instances (two-dimensional tables consisting of sets of tuples)
and schemata (descriptions of those instances). Relational operations are based on
sets; i.e. the inputs and returned results of them are tables instead of individual tuples.
Tuples in a relational database may have different structures and can be changed by
operations. However, the schema of a table is static. Thus, it is possible to provide
a consistent way for all those operations to handle tuples in the system.
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We adapt the relational framework in our Web data-extraction framework (Fig. 3).
As our framework works on semistructured data, it has substantial differences from
the relational framework. Relational schemata only describe linear tuples, while in
our framework, schemata should describe structures of various trees. A relational
instance is a table with a unique schema. In our framework, a data instance may
be a document, a fragment of a document or a piece of extracted structured data.
A document may correspond to multiple schemata, and a schema may correspond
to multiple data instances. In Fig. 3, these dashed lines among data instances and
schemata represent corresponding relationships among them.

The core of our framework is the schema layer. Schemata describe data instances
and provide information to the operation layer. To put our framework into practical
systems, there are some interesting problems to address; e.g. how to detect these
schemata. In the following part of this section, we formally define concepts in the
framework and formulate the problem of building each layer.

3.2. Instance layer

In this section, we propose a model to represent Web documents. Based on this
representation, the problem of building instance layers is defined.

Semistructured documents are usually modeled as directed graphs (Wang et al.
2004). For example, an HTML document can be parsed into a directed graph; each
tag element is parsed to a node and corresponding to each pair of parent–child tag
elements, there is a directed edge. Each hyperlink, which describes non-parent–child
link relationship between two tag elements, can also be parsed into a directed edge.
However, as hyperlinks carry less information in Web data extraction, we do not
consider them during the process of parsing in this paper. Without considering hy-
perlinks, documents can be parsed to trees. Here are some examples:

Example 3.1. Figure 4(a) shows a Web page fragment from the Amazon website on
30 January 2004. It lists four top sellers of computer books. The topmost seller in
this page is rendered from the HTML codes as shown in Fig. 5(a). DOM (Document
Object Model) trees generated from the codes are shown in Fig. 5(b) (for simplicity,
we have not drawn all nodes in the DOM tree; nodes with folder icon are nontext
nodes and nodes with paper icon are text nodes). The right-hand side of pages B and
C in Fig. 4(b) are detailed information about the two topmost hot books, respectively.
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(a) Top seller books (b) Book details

Fig. 4. Sample pages

<tr>
<td align="right">
<a href="/exec/...">
<img src="http://ima..."/></a></td>

<td class="small">
<b>1.</b>
<a href="/exec/...">
<i>Mac OS X</i></a>

by David Pogue
<span class="small">
<b>Price:</b>
<b class="price">$20.97</b>
<b>You Save:</b>
<span class="price">$8.98</span>
<span class="price">(30%)</span>
<a href="http://ww...">
<span class="small">Used &amp;... new</span>
</a>
<span class="tiny">from</span>
<span class="price">$20.45</span>

</span>
</td>

</tr>

(a) (b) (c)

Fig. 5. An HTML document fragment and DOM trees

Figure 5(c) shows the top four levels of the DOM tree corresponding to the HTML
codes for the right-hand side of page B.

In Example 3.1, an element name is mainly used to describe page layout. How-
ever, for some semistructured documents, especially XML, an element name may
contain important information. Thus, in this paper, we model semistructured docu-
ments as labeled trees—document tree—as defined below:

Definition 3.1 (Document tree). A document tree is a rooted, labeled tree that can
be defined as a four-tuple: t = 〈V, E, r, γ 〉, where V is the set of nodes corresponding
to tag elements, E is the set of edges connecting these nodes, r is the root node,
γ : V → L is a function that assigns each node a string label, where L is the label
set of t. An edge e is an ordered two-tuple (u, v), where u, v ⊆ V and u is the
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(a) (b) (c)

Fig. 6. Instances and their schema

parent node of node v. Root node r has no parent node. Each nonroot node u in V
has exactly one parent node.

In this paper, we restrict our discussion to HTML and XML documents so that
we can exploit DOM parsers to parse documents to trees. During the parsing pro-
cessing, we label each nontext node with the name of the corresponding element in
the original documents and label each text node with its value.

The objective of Web data extraction is to extract fragments from document trees
that are relevant to a user’s requirements. We refer to these fragments as data in-
stances, as defined below:

Definition 3.2 (Data instance). Given a document tree t = 〈V, E, r, γ 〉, t1 = 〈V1, E1,
r1, γ1〉 is a data instance (DI) of t if V1 ⊆ V , E1 ⊆ E and γ1 = γ . This relation is
denoted as t1 ⊆ t. Given two Dis, ti and t j , ti is a sub-DI of t j if ti ⊆ t j .

Example 3.2. In Example 3.1, the document tree in Fig. 5(b) is a DI of the docu-
ment tree corresponding to page A in Fig. 4(a). This instance corresponds to the first
book entry in page A. Figure 6(a) is a DI of Fig. 5(b). Figure 6(a) corresponds to
the title of the first book, while Fig. 6(b) corresponds to the title of the third book.

Definition 3.2 states that a document tree is also a DI. We therefore do not dis-
tinguish between semistructured document, document tree and data instance in the re-
maining sections of this paper. Given the definition of DI, the problem of building in-
stance layer is quite straightforward; i.e. given n Web documents P = {p1, . . . , pn},
induce the set of DIs D = {d1, . . . , dn, dn+1, . . . , dn+m}, where di is parsed from
pi and dn+ j ∈ D if and only if dn+ j ⊆ dk, k ∈ [1, n].

3.3. Schema layer

In this section, we formally define schema and discuss problems in building the
schema layer.

3.3.1. Schema

Repeated contents in semistructured documents are usually prominent and easily raise
a reader’s attention. Most Web data-extraction systems (Arasu et al. 2003; Chang et
al. 2001; Crescenzi et al. 2001) assume that repeated contents are important and
should be extracted. For example, in the example in Fig. 4, all books have similar
formats and most parts of their HTML codes are repeated, like those in Fig. 5. These
repeated contents can be parsed to equivalent DIs, as defined below:

Definition 3.3 (Equivalence). Given two Dis, t1 = 〈V1, E1, r1, γ1〉 and t2 = 〈V2, E2,
r2, γ2〉, t1 is equivalent to t2 if and only if there exists a bijection M between V1
and V2 such that
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• M(r1) = r2,
• (u, v) ∈ E1 if and only if (M(u),M(v) ) ∈ E2,
• γ1(u) = γ2(M(u)).

This definition does not consider the orders among sibling nodes; i.e. a document
tree is an unordered tree. In Sect. 4, we shall introduce the benefit of modelling
HTML documents and other semistructured documents as unordered trees.

The two instances in Figs. 6(a) and (b) are almost the same, except for the la-
bels of two text nodes. If we use a label “*” (wildcard character) to replace both
labels, the two instances will become Fig. 6(c). A wildcard character “*” is a regu-
lar expression that generates any string, denoted as ∗ � �, where � is a label. We
assume “*” does not appear in label sets of DIs of document trees to be extracted.
As introduced before, schemata are objects describing a set of DIs. Thus, we treat
the instance in Fig. 6(c) as a schema. We define a schema below:

Definition 3.4 (Schema). A schema s is a five-tuple 〈V, E, r, γ, A〉, where 〈V, E, r, γ 〉
is a DI and γ labels some nodes with “*”. A is an n-tuple 〈a1, a2, ..., an〉, where ai
is an attribute, i ∈ [1, n].

Attributes in a schema are important to aid data extraction and will be discussed
in Sect. 3.3.3. Here, we may assume A = 〈|s|〉, where |s| denotes the size of
a schema s; i.e. the cardinality of the node set V of s.

Definition 3.5 (Conformation and type). A DI t = 〈V, E, r, γ 〉 conforms to
a schema s = 〈Vs, Es, rs, γs, As〉 or s is the schema of t, if and only if there exists
a bijection M between V and Vs such that

• M(r) = rs,
• (u, v) ∈ E if and only if (M(u),M(v)) ∈ Es,
• γ(u) = γs(M(u)) or γs(M(u)) � γ(u),

where t conforms to s, denoted as t � s. A set of DIs conforming to the same
schema is known as a type.

3.3.2. Schema detection

In our framework, the instance layer contains all Web documents to be extracted.
The schema layer contains very useful information of DIs in the instance layer. For
example, two documents are structurally similar if the sets of schemata corresponding
to them are the same. Given a set of n document trees {d1, . . . , dn} that contain a set
of Dis, D = {t1, . . . , tm}, schema detection is the procedure of inducing the set of
schemata S = {s1, . . . , sn}, where si ∈ S if and only if d j ∈ D and d j � si .

The problem of schema detection is to find the set of schemata of all DIs in
documents (or subtrees of document trees). This problem can be reduced from the
problem of the largest common subtrees (LCST) (Akutsu et al. 1992). As LCST
is P for two trees and NP-hard for more than two trees (Akutsu et al. 1992), the
schema detection problem is also NP-hard. The same is applied to the problem of
building instance layers. Some approximate solutions of similar problems have been
proposed by putting some restrictions on subtrees to be processed; e.g. TreeMiner
(Zaki et al. 2003) only processes subtrees of which the frequency of occurrence
exceeds a threshold. We define a constrained version of this problem in Sect. 4 and
an efficient algorithm is proposed to solve it.
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3.3.3. Attributes in schema

Some existing Web data-extraction systems (Arasu et al. 2003; Chang et al. 2001)
assume large structure patterns that match large numbers of structures in documents
are important; contents that match these patterns are then extracted. Similarly, we
compute schema weight to measure the importance of corresponding DIs based on
two observations.

Observation 3.1. A type including a large number of DIs is usually important in
documents, and its corresponding schema is important.

Observation 3.2. A schema with large size is usually important in documents.

There are two factors influencing the weight of a schema—the cardinality of its
corresponding type and its size. Given a document tree t, T is the type in t and s
is a schema conformed by DIs in T , the weight of s in the document is:

ω(s) = ln ‖T‖ × |s|, (1)

where ‖T‖ is the cardinality of T , also known as the document frequency of s in
this paper.

The weight of a schema is important evidence to decide which DIs should be
extracted. However, it is not enough to decide which DIs should be extracted based
on schema weight only. One property of semistructured documents is irregularity—
DIs conforming to the same schema may encode different kinds of content. An-
other property of semistructured documents is that there exist redundant contents,
e.g. advertisement bars appearing in many HTML pages. In this section, we intro-
duce attributes of schemata that provide additional information other than the schema
weight. Users may control extraction operations based on these attributes.

Given a document set C, we collect the following attributes of a schema:

• Size, document frequency (DF) and weight.
• Set frequency (SF): Given a set of documents, C, if s is the schema conformed

by DIs in type T , SF of s in C is |T |.
When all documents are organized into clusters, each cluster is a set of similar

documents. Given these clusters, we may identify more attributes of a schema.
Inverse set frequency (ISF) of a schema s is denoted with I(s). I(s) = log N

n ,
where N is the number of document sets and n is the number of document sets
containing DIs conforming to s.

Suppose a document set C contains types T1 to Tn , the weight of the schema s
conformed by DIs in type Ti is �(s) = ‖Ti‖/maxn

j=1‖Tj‖, the set weight (SW) of
a schema s is

W(s) = �(s) × ISF(s) . (2)

To be easily accessed by users, Web documents often include much redundant
information. For instance, the same navigation bar may appear in many pages. An
entropy measurement of fragments in Web documents was suggested in Lin et al.
(2002) to detect redundant information, only fragments with small entropy should
be extracted. Inspired by this idea, we calculate entropy of schemata and restrict
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that only DIs conforming to schemata with entropy smaller than a threshold will be
extracted. Given n document sets, entropy of a schema s is

Ent(s) = −
n∑

i=1

�(s)log�(s) . (3)

Usually, a type of DIs appearing closely and regularly is likely to be interesting.
Based on this observation, we define two attributes of a schema—mean distance
(MD) and standard deviation of distance (SDD) to measure how close and regular
those DIs in a type are. To compute MD and SDD, we need to know distance and
the order relation among DIs and orders among DIs.

Distance between DIs ti and t j in a document tree is the number of nodes in
the shortest path between root nodes of ti and t j . If ti and t j belong to different
document trees, distance between them is 1.

Given a set of document trees {d1, . . . dn}, a node r0 is added as the parent node
of these trees; the tree rooted from r0 is denoted as T . The position of a DI, t, is
θ(t) = m if the root of t is the mth nodes accessed in the preorder traversal of T .
An order relation between a pair of DIs is denoted with ti 	 t j . We say ti 	 t j if
θ(ti) ≤ θ(t j).

Given a type T , we sort all DIs in T , such that ti 	 ti+1. We say that ti and ti+1
are adjacent DIs. Mean distance (MD) of the schema s conformed by DIs in T, µ(s),
is the mean value of distance between each pair of adjacent DIs belonging to T .

µ(s) =
∑n−1

i=1 d(ti, ti+1)

n − 1
. (4)

Standard deviation of distance (SDD) of s is defined as

σ(s) =
√∑n−1

i=1 (d(ti, ti+1) − µ(s))2

n − 1
. (5)

We store all attributes detected in a schema s in a tuple 〈Size, DF, Weight, SF,
ISF, SW, MD, SDD〉.

We know an important property of semistructured documents is sectional, i.e.
contents in different parts of a document may contain different information. Usually,
DIs belonging to the same type appear in the same part in a document. Thus, if
most DIs belonging to the same type appear in a part and a DI is far away from
this part, this DI may be an outlier and need not to be extracted. We define distance
offset of a DI ti as

∆(ti) = d(ti−1, ti) + d(ti, ti+1)

2µ(C)
− 1 . (6)

3.4. Operation layer

Once the instance layer and the schema layer are built, we obtain the mapping re-
lationships among DIs and schemata. Series operations are proposed based on these
relationships to aid Web data extraction.

A DI and its sub-DIs conform to a set of schemata, i.e. it is possible to use a set
of schemata to describe a document. Section 5 discusses how to manage documents
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based on the set of schemata conformed by DIs appearing in these documents. As
a schema may be conformed by a set of DIs, this DI set can be handled in terms
of the schema. For example, an operation o = e(s) can be defined to extract all
DIs conforming to s. Based on attributes in a schema, o can be extended to more
complicated operations. In Sect. 6, we shall introduce how to extend the standard
XML query language, XQuery, to implement Web data-extraction operations in the
operation layer. The extension of XQuery shows the possibility for our framework
to be adopted by other applications. Before discussing the details of building the
operation layer, we shall introduce our approach to build the schema layer and the
instance layer in the next section.

4. Constrained schema detection

As defined in Sect. 3.3.2, the problems of building instance layer and schema layer
are intractable. To solve the problems, we only consider a special class of DIs in
document trees based on an observation:

Observation 4.1. Most interesting contents appear near leaf nodes in many docu-
ment trees. Text information to be extracted is mainly embedded in text elements,
especially for HTML documents.

Based on this observation, we define a class of DIs and schemata as follows:

Definition 4.1 (Bottom data instance and bottom schema). Given a document for-
est F, a bottom data instance (BDI) is a data instance where all leaf nodes are also
leaf nodes in F. A bottom schema (BS) is a schema for a BDI that labels and only
labels text nodes with “*”.

The only difference between a DI and a BDI is that the leaf nodes of a BDI are
also the leaf nodes of the document tree containing the BDI. In the following parts
of this paper, we only consider BDI and BS, i.e. we do not distinguish between BDI
and DI, BS and schema. Given this restriction, we shall introduce an algorithm with
almost linear time complexity to detect all schemata and DIs from given documents
and assign a unique ID to each schema. Before introducing our algorithm, we provide
an alternative definition of conformation to make our algorithm easier to understand.

Definition 4.2 (Conformation). Given a data instance t = 〈V, E, r, γ 〉, its type vec-
tor is ϕ(t) = 〈γ(r), o1, . . . , on〉, where o1 to on are sorted schema ID of n child
DIs of r . A DI t = 〈V, E, r, γ 〉 conforms to a schema s = 〈Vs, Es, rs, γs, As〉 if
ϕ(t) = ϕ(s).

Note that Definition 4.2 is equivalent to Definition 3.5. From the definition, it is
possible to traverse document trees from the bottom to top and detect all schemata
in one traversal. Ideally, we hope that document fragments containing the same kind
of information can be parsed to the same type of DIs conforming the same schema.
Unfortunately, the real situation is more complicated. For example, in Fig. 4(a), the
first and the third books in page A are rendered from document fragments that can
be parsed into the same type of DIs. This is ideal; however, the second data in-
stance of book information does not conform to the same schema as them. Unlike
other books, the book titled “C++ GUI Programming with QT3” has no second-hand
price. There are some other properties of semistructured documents that make data
instances describing the same kind of information different and cannot be put into
the same type.
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Algorithm 1 LayerBuilder
Require: a document forest F.
1: initiate a dequeue of nodes D ;
2: read the schema table S from the schema layer, each tuple is [id, s, T ];
3: read the type table T from the instance layer, each tuple is [id, T, D];
4: push all the leaf nodes in F to D ;
5: while D is not empty do
6: pop the first node d from D , t=TreeRootedFrom(d);
7: search S for S[i]: ϕ(t) ≈ S[i].T ;
8: if found then
9: insert t to T [i].D;

10: else
11: let idd = |S|, s is t’s schema;
12: insert [idd , s, ϕ(t)] to S;
13: insert [idd , ϕ(t), {t}] to T ;
14: end if
15: search sibling nodes of d in D ;
16: if failed then
17: push the parent node of d to D ;
18: end if
19: end while

• Missing attributes: In Example 3.1, information of a book may include author,
price, etc. Sometimes, some books have a second-hand price and others do not
have such information.

• Multivalued attributes: A book may have more than one author.
• Disjunctive delimiters: A document may use different delimiters to mark the same

attribute. For example, the titles of hot sales or the special price may appear in
bold format.

To resolve the problem that the same kind information is embedded in different
types, we relax the condition in Definition 4.2 and place two DIs in the same type
if most sub-DIs appearing in them are equivalent.

Definition 4.3 (Partial equivalence, conformation and type). Given a DI t =
〈V, E, r, γ 〉, there are m sub-DIs t1 to tm rooted from m child nodes of root r. The
DIs t1 to tm conform to schemata s1 to sk , respectively. {s1, ..., sk} is the child schema
set of t, denoted as Sc(t). Given a DI s = 〈Vs, Es, rs, γs〉, suppose Sin = Sc(t)∩Sc(s)
and Sun = Sc(t) ∪ Sc(s), type vectors ϕ(V ) and ϕ(Vs) are partial equivalents if

∑

si∈Sin

|si | > r ×



∑

si∈Sun

|si |


 , (7)

denoted as ϕ(V ) ≈ ϕ(Vs), where r ∈ [0, 1]. DIs t and s are partial equivalents if
ϕ(V ) ≈ ϕ(Vs), denoted as t ≈ s. If s is a schema, we say t partially conforms to s,
denoted as t � s. We call a set of DIs that partially conforms to the same schema
as a partial type.

Based on the preliminary introduction above, we provide a procedure to build the
instance layer and schema layer in Algorithm 1. In the schema layer, the schemata
detected in each document set are stored in a schema table. Each tuple in a schema
table consists of a schema’s ID, the schema and its type vector, denoted as 〈id, s, T 〉.
In the instance layer, the partial types detected in each document set are stored in
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(a) DI1 (b) DI2

id s T
1 s1 [c]
2 s2 [d]
3 s3 [e]
4 s4 [b,1,2]
5 s5 [a,3,4]
6 s6 [e,4]
7 s7 [a,4,6]

(c) Final status
of S

(d) Schema detected

Fig. 7. Running example

a type table. Corresponding to each partial type, there is a tuple that consists of
the schema ID of this type, its type vector and the list of DIs belonging to this
type, denoted as 〈id, T, D〉. Given a document set, Algorithm 1 first initiates the
schema table and type table; then reads nodes from bottom to top, while detecting
the schema of the DI rooted from each node. New schemata, DIs and types detected
will be appended to the schema table and type table correspondingly. As the schema
table and type table of a document set are stored persistently, when the document
set is changed, e.g. a new document is added, Algorithm 1 only needs to read nodes
from changed parts and modify the schema table and type table. We know that DIs
in a partial type may partially conform to multiple schemata. Line 13 of Algorithm 1
assigns an id to a partial type; this id is the same as the id of the schema that is
conformed by the first DI inserted to the type. We call this schema the representative
schema of this type.

In Fig. 7, we provide a running example of Algorithm SchemaDetector. Here,
we set r in (7) to 1. Figures 7(a) and (b) are input Dis, where “a”, “b”, “c”, “d”, “e”
are labels of nodes. The number at the left-upper corner of each node is its preorder
traversal position in the input document forest. The number at the right-upper corner
of each node is the id of schema to which the DI rooted from the node conforms.
The SchemaDetector performs its operation in the following order:

• Detect schemata of leaf nodes “c”, “d”, “e”, delete corresponding nodes from
D , and insert the detected schemata into S, i.e. the first three tuples.

• Detect schema of subtree rooted at “b” as schemata of all its child nodes have
been detected, delete node “b” from D , and insert the schema into S, i.e. the
fourth tuple.

• Similarly, detect schema of subtrees rooted at “a” (with preorder traversal pos-
ition 1) and “e”, respectively, delete the two nodes from D and insert the detected
schemata into S, i.e. the 5th and 6th tuples.

• Detect schema of subtree rooted at “a” (with preorder traversal position 10),
delete the node from D and insert the detected schema into S, i.e. the last tuple.

Figure 7(c) is the final status of S.
SchemaDetector accesses each node only once. For a set of DIs containing n

nodes, it assigns class id to those nodes in n iterations. In the ith iteration, the
complexity of all statements except line 7 is O(1). Statement 7 searches in a table,
and its complexity is O(n) in the worst case, i.e. all sub-DIs accessed conform to
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DI1 = [1 1 1 1 0 1 0]
DI2 = [1 1 1 1 1 0 1]

(a) Documents

M =
[

1 1 1 1 0 1 0
1 1 1 1 1 0 1

]

(b) Document space

Fig. 8. The vector space of documents

different schema. Thus, the complexity of SchemaDetector is O(n2) in the worst
case. However, in a large document set, the number of all schemata is often much
smaller than the number of nodes; thus, the complexity of SchemaDetector is near
O(n).

5. Document management

As shown in Fig. 2, the document-set preparation operation clusters structurally simi-
lar documents together as training sets. Document classification operation classifies
a document to a training set. These two operations significantly improve efficiency
of Web data extraction. In this section, we first introduce how to measure structural
similarities among documents, followed by the details of these two operations.

5.1. Document similarity measurement

To measure similarity among documents, we first represent them as vectors of schema
weights and compute document similarities by computing the similarity among these
vectors. Corresponding to each schema embedded in a DI, there is an item in the
vector recording the weight of the schema. Suppose the weight of a schema is 1 if
the schema appears in a document tree and 0 if it does not appear; the vectors of
DI1 and DI2 in Fig. 7 are shown in Fig. 8(a). So far, we can represent all documents
in a vector space. For example, DI1 and DI2 can be represented using the matrix in
Fig. 8(b).

Given two documents, t1 and t2, suppose there are n representative schemata, we
represent t1 = 〈ω1(s1), . . . , ω1(sn)〉 and t2 = 〈ω2(s1), . . . , ω2(sn)〉, where ωi(s j) is
the weight of s j in ti . The similarity between t1 and t2 can be computed using (8).

ΩC(t1, t2) =
∑k

i=1(ω1(si) × ω2(si))√∑k
i=1 ω1(si)2 × ∑k

i=1 ω2(si)2
. (8)

5.2. Document set preparation and document classification

Given the structural similarity among documents, we now introduce how to solve
problems in the phases of document-set preparation and document classification.

5.2.1. Document-set preparation

We prepare a training set by clustering similar documents together. In the similarity-
calculation phase, we can obtain similarity square matrix Mm×m , where m is the
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number of document trees and Mi, j is the similarity between document ti and docu-
ment t j . Given the similarity matrix, we choose bisecting k-means clustering algo-
rithm that clusters documents into k clusters (k is predefined by a user), from C1
to Ck , such that the maximum value of the following formula is obtained:

k∑

i=1

√ ∑

t1,t2∈Ci

M(t1, t2) . (9)

5.2.2. Document classification

As introduced before, we may detect schema attributes in terms of document sets
and extract data based on those attributes. Given a new document, it is an issue on
how to exploit the known attributes to extract data. We propose to classify the new
document to an existing training set and apply extraction rules learnt from the set
on this document. We referred to XRules (Zaki et al. 2003) for some initial work of
documents classification based on tree structures of documents. XRules mines rules,
like T ⇒ C, that describe the relationship between the appearance of a tree structure
t in a document and the document belonging to class C. During the classification
phase, XRules combines the evidences of structures appearing in a document and
suggests a class to the document. However, XRules does not consider the occurrence
frequency of structure t in the documents to be classified. Here, we suggest a more
general approach to classify document trees. From the results of the document-set
preparation phase, we use a vector, WC = 〈ωC(s1), . . . , ωC(sn)〉 to represent a train-
ing set, where ωC(si) is the weight of a representative schema si in training set C.
Previously, we have introduced how to represent a document tree using a weighted
vector. Assume that Wt = 〈ωt(s1), . . . , ωt(sn)〉 is the weight vector of document
tree t, the similarity between a document tree and a document set is

ΩS(t,C) =
∑k

i=1 (ωt(si) × ωC(si))√∑k
i=1 ωt(si)2 × ∑k

i=1 ωC(si)2
. (10)

We may classify a document tree t to the training set that is most similar if
the similarity value is larger than a threshold; otherwise, t should be treated as an
outlier.

6. Data extraction

In this section, we discuss the details of how to extract data based on schemata.
In Sect. 3.3.3, attributes in a schema are defined. We may directly output DIs

with large weight or fulfilling some other requirements. However, the requirements
from users are not unitary. It is more flexible to allow a user to use a predefined
threshold on each attribute to control extraction results. In the original documents,
we annotate a DI with schema attributes by adding attributes to the root element of
the DI. Future queries on annotated documents in terms of schemata are allowed.
For example, XML document in Fig. 9(a) is the original document of document trees
in Fig. 7. It may be annotated to Fig. 9(b).

Given attributes in schemata, a user may set threshold to instruct the system
to extract only those DIs conforming to schemata with special attribute values. We
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1.<a>
2. <b>
3. <c/>
4. <d/>
5. </b>
6. <e>
7. <b>
8. <c/>
9. <d/>
10. </b>
11. </e>
12.</a>

(a)

1.<a schema="s7" size="8" DF="1" ...>
2. <b schema="s4" size="3" DF="2" ...>
3. <c schema="s1" size="1" DF="2" .../>
4. <d schema="s2" size="1" DF="2" .../>
5. </b>
6. <e schema="s6" size="4" DF="1" ...>
7. <b schema="s4" size="3" DF="2" ...>
8. <c schema="s1" size="1" DF="2" .../>
9. <d schema="s2" size="1" DF="2" .../>
10. </b>
11. </e>
12.</a>

(b) “out.xml”

Fig. 9. Annotated document

define function DF($e as element,
$t as xs:decimal) as xs:boolean

{
if ($e/DF>$t)
then true()
else false()
}
{-- Function A: Evaluate Frequency --}

define function Size($e as element,
$t as xs:decimal) as xs:boolean

{
if ($e/@Size>$t)
then true()
else false()
}
{-- Function B: Evaluate Size --}

define function Extract($e as element)
as element*
{
if (Size($e, 2) and DF($e, 1)) then
( $e )
else
( for $child in $e/*

let $b := Extract($child)
return $b )
}
{-- Function C: Extract --}

Fig. 10. Extension function for XQuery

exploit the standard XML query language, XQuery, to extract final results from an-
notated documents. Here, we give an example of extending XQuery to allow users to
extract data based on schema information. Function A in Fig. 10 is to judge whether
the DF of a DI’s schema is larger than the given DF. Function B is to judge whether
the size is larger than the given size. Function C recursively accesses nodes from
root to leaf and filters all those nodes from root to these DIs conforming to schemata
that are larger than 2 and have DF larger than 1.

Given these extension functions, users may exploit very simple XQuery scripts
to extract final data from annotated documents. For example, users may want to
extract records conforming to large-size schema with high DF. Submitting XQuery
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<FinalData>
{Extract(document("out.xml")/a}
</FinalData>
{-- Query A --}

1.<FinalData>
2. <b schema="s4" size="3" DF="2" ...>
3. <c schema="s1" size="1" DF="2" .../>
4. <d schema="s2" size="1" DF="2" .../>
5. </b>
6. <b schema="s4" size="3" DF="2" ...>
7. <c schema="s1" size="1" DF="2" .../>
8. <d schema="s2" size="1" DF="2" .../>
9. </b>
10.</FinalData>
{-- Final Results --}

Fig. 11. Extended XQuery and results

Table 1. Data sets

Name URL

IEPAD http://140.115.156.70/iepad/

RoadRunner http://www.dia.uniroma3.it/db/roadRunner/index.html

RISE http://www.isi.edu/info-agents/RISE/

WIEN http://www.cs.ucd.ie/staff/nick/home/research/wrappers/

ExAlg http://www-db.stanford.edu/˜arvind/extract/

A in Fig. 11 on the document in Fig. 9(b), we may obtain the final results in Fig. 11.
DIs conforming to s4 in Fig. 7 are returned. Such XQuery scripts can be treated as
a representation of extraction rules.

7. Experiments

We conducted experiments to compare our methods with other famous systems. Clus-
tering results based on structural information are compared with a traditional clus-
tering method implemented in CLUTO (A Software Package for Clustering High-
Dimensional Data Sets) (Karypis 2002; Steinbach et al. 2000) that does not consider
structure of documents. We compare our classification results with Rainbow from
CMU1. Comparison shows that our methods are better on semistructured document
sets. The performance of Algorithm 1 is compared with two recent tree structure
miners. We show that our methods deliver quite well extracted results by adjusting
various parameters.

7.1. Data sets

Most of the data sets used in our experiments were taken from previous literature,
listed in Table 1. In these data sets, each document is assigned a category label. To

1 http://www-2.cs.cmu.edu/˜mccallum/bow/



Z. Li et al.

Fig. 12. Performance comparison

evaluate clustering methods, we mix documents from various categories to gener-
ate a MIX data set. For RoadRunner, we randomly choose 4 documents from each
of its 12 categories. We randomly choose 5 documents from each of the 6 cat-
egories in RISE (Repository of Online Information Sources Used in Information
Extraction Tasks), 4 documents from each of the 10 categories in WIEN. For Ex-
Alg, they provided 3 categories, 132 documents except some documents from the
RoadRunner. We chose 50 documents from 3 categories of ExAlg. Most documents
in these data sets have regular structures; we also generated the ETC (Equivalent
Tree Class) data set that is more complicated than the above data sets. Web pages
in the ETC data set were crawled from Amazon. These pages have been classified
by Amazon into categories; Thus, we can easily verify clustering and classifica-
tion results. To generate ETC data sets, we only follow hyperlinks in the category
list on the left side of the homepage of Amazon. Each hyperlink links to a home-
page of a category of commodities. We randomly choose 10 hyperlinks in this area,
and in the homepage of each category, we downloaded 3–4 pages following hyper-
links in the navigation area. All these downloaded pages were transformed to the
XHTML format using HTMLTidy toolkit. The average size of these documents is
550 K bytes.

7.2. Performance of schema detection

For Web data extraction, it is important to process large-scale documents quickly.
For example, if users want to trace price changes in an e-commerce Web site, a long
refresh period is not acceptable. We evaluated the complexity of SchemaDetector on
the ETC data set. We conducted an experiment on a PIII933 laptop with 512 M mem-
ory. SchemaDetector is the key process in our system that finds schema. TreeFinder
and TreeMiner are two famous tree-structure miner algorithms. In Fig. 12, we find
the complexity results of these three algorithms. The results of TreeFinder and Tree-
Miner were collected from related papers (Termier et al. 2002; Zaki et al. 2003).
The document size of TreeMiner is measured by the string length of documents, not
measured by node number. We plot the point of TreeMiner there, because in an ETC
data set, the string length of documents containing 50 K nodes is about 1 M, which
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Table 2. Clustering accuracy

Data set E1 E2 W R1 R2 Average

Our method(%) 90 100 100 100 89.6 95.7

CLUTO(%) 47.5 100 72.5 66.7 70.8 71.2

Table 3. Classification accuracy

Data set E1 E2 W R1 R2 Average

Our method(%) 97.5 100 100 100 100 99.5

Rainbow(%) 77.08 86.78 89.58 89.58 87.66 86.14

is approximately equal to the size of the data set used by TreeMiner. TreeMiner
and TreeFinder will discard structures that appear fewer times than a minimum sup-
port value; when the value decreases, the complexity of them increases rapidly. It is
easy to see from Fig. 12 that our algorithm outperformed them when the minimum
support was set to a small value in TreeFinder (5%) and TreeMiner (0.25%). We
have analyzed that, when the number of schemata is much smaller than the number
of subtrees, the complexity of SchemaDetector is near linear; otherwise, its worst
complexity is O(n2). From the diagram, we can see the empirical results verify that.
When the data set is small, the number of schemata is large compared with the num-
ber of DIs; thus, the complexity grows quickly. With the increase in size of the data
set, the complexity is near linear, as the number of schemata is smaller compared
with the number of DIs.

7.3. Clustering accuracy

Given the similarity between each pair of documents, we choose the bisecting K -
means method to cluster them. Table 2 lists comparison results obtained on MIX data
sets, including documents selected from several data sets. Row 1 indicates these data
sets: E1 (ETC), E2 (ExAlg), W (WIEN), R1 (RISE), R2 (RoadRunner). CLUTO also
uses a bisecting K -means method but only considers texts in documents. CLUTO is
very suitable to cluster- free text documents (Steinbach et al. 2000). From this table,
we can see that, except for documents from ExAlg, our method was much better than
CLUTO. The reason is that CLUTO only performed well when documents contained
long free-text paragraphs, e.g. documents in ExAlg. However, our method delivered
good results consistently.

7.4. Classification accuracy

Table 3 lists the comparison results of Rainbow and our classification method. We
exploited a fourfold cross-validation strategy to evaluate Rainbow; i.e. divided each
data set into 4 parts, each time we chose 3 of them as training sets and 1 as a test
set. The final result is the average accuracy of results in four times. The accuracy
results obtained by Rainbow vary from 77.08% to 89.58%. Our method classifies
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Table 4. Extraction accuracy

Data set RecNum Extracted Accuracy

Alta 100 90 0.9

Cora 100 70 0.7

Excite 100 100 1

Galaxy 200 199 1

Hotbot 100 95 0.95

L.A. Weekly 81 76 0.94

Magellan 100 92 0.92

Metacrawler 200 179 0.9

Northenlight 100 97 0.97

Openfind 200 185 0.93

SavvySearch 150 140 0.93

StptCom 100 97 0.97

Webcrawler 250 141 0.56

Total 1781 1561 0.88

documents based on Formula 10. It delivers 100% accuracy on all data sets except
ETC, and the average accuracy of our method is about 13% higher than Rainbow.
On the ETC data set including documents with complicated structures, Rainbow’s
results are not good, although in other data sets, it can achieve accuracy larger than
85%. Our method is almost not affected by the difference among data sets. On the
ETC data set, one page was classified to the error class by our methods. The reason
is that the page is a page linking other subcategories and it is difficult to judge to
which class it belongs.

7.5. Extraction accuracy

We evaluated our extraction method on an IEPAD data set including Web documents
returned by 10 search engines listed in the first column of Table 4. We first manually
annotated DIs in these documents; the method is quite straightforward; i.e. each entry
returned by those searches is treated as a DI. The number of hand-annotated DIs
(RecNum) are listed in the second column in Table 4.

We executed SchemaDectector to assign schema ID to each DI in document trees
parsed from documents of IEPAD. As a result, most annotated DIs from the same
search engine are assigned with the same schema ID. In Table 4, the second col-
umn (Extracted) is the number of annotated DIs belonging to the type that contains
the largest number of annotated DIs. We observe that our method accurately iden-
tifies these important contents in documents. The accuracy values in column 3 are
the rate of Extracted to RecNum. For document trees returned by most search en-
gines, our accuracy rate is greater than 90%. The reason for receiving poor accuracy
results in documents from Cora and WebCrawler is that these search engines high-
light some of their search results using various formats. If we consider the type
that contains the second largest set of DIs, the accuracy values will exceed 90%,
too.
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(a) Size (b) DF

(c) Offset (d) Entropy

Fig. 13. Distribution of schema attributes

7.6. Discussion on schema attributes

As introduced before, we justify parameters to select which types of DIs should be
extracted. Figure 13(a) shows the relation between size threshold and the number of
nodes extracted; i.e. only those DIs conforming to schema with size larger than the
threshold are extracted. As the threshold increases, the number of extracted nodes
decreases. In some ranges, the number changes very slowly. For example, when the
size threshold changes from 25 to 28, the number of extracted nodes almost does
not change because there are many DIs belonging to the same schema that has 28
nodes. In Fig. 13(b), when we change the DF threshold from 0 to 30, the number of
extracted nodes changes as shown in Fig. 13(a). In Fig. 13(c), we plot the distance
offset of each DI. The X-axis is the position of their root nodes in traversal and
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the Y-axis corresponds to distance offset. Most offsets are located from −1 to 1.5.
Empirically, those DIs with large offset are noise. As introduced before, high entropy
also means noise sometimes. Figure 13(d) shows that DIs conforming to schemata
with low entropy are very easily distinguished from those with high entropy. We may
control extraction results by combining the parameters. For example, in the AltaVista
documents of IEPAD, when we set the size threshold to 6 and frequency threshold
to 89, most child DIs of the root node in extracted XML document are those DIs
we annotated in the original documents. Figures 13(a) and (b) show the effect of
combining two parameters.

8. Conclusion

This paper presents a comprehensive framework for a Web data-extraction system
that provides a consistent view over various operations in Web data extraction. Oper-
ations, including document-set preparation, document classification and data extrac-
tion, are all conducted in schema-based representation of Web documents. To sup-
port these operations, similarity measurements for semistructured documents based
on schema are proposed. We have also introduced an efficient algorithm to discover
frequent structures to generate schema in Web documents. In our experiments on real-
world data sets, compared with the methods that do not consider document structures,
much better clustering results were achieved using schema-based representation in
terms of clustering accuracy. Moreover, we have also demonstrated better document
classification results using schema-based representation. Based on the notions intro-
duced in this paper, the Web data-extraction process can be more configurable. We
presented how to extend XQuery to extract data fulfilling the requirements of those
criteria defined in this paper. In our experiments, promising Web data-extraction re-
sults were achieved. Currently, our framework only considers the structure of Web
documents. How to combine semantic information in documents to further improve
our framework is to be studied. As our methods need to parse documents into trees
in memory, it is not efficient on very large data sets. How to solve this problem is our
future work. How to adopt other structural methods of classification and clustering
in our framework is also to be studied.
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