
Goodput Improvement for Multipath TCP by

Congestion Window Adaptation in Multi-Radio Devices

Dizhi Zhou, Wei Song, Member, IEEE

Faculty of Computer Science

University of New Brunswick, Fredericton, Canada

Emails: dizhiz@acm.org, wsong@unb.ca

Minghui Shi

Communications Research Centre

3701 Carling Avenue, Ottawa, Canada

Email: minghui.shi@crc.gc.ca

Abstract—Multipath Transport Control Protocol (MPTCP) has
been standardized by Internet Engineering Task Force (IETF)
to support simultaneous delivery of transport control protocol
(TCP) packets over multiple interfaces of multi-radio mobile
devices. Although MPTCP provides an efficient solution to ag-
gregate the available bandwidth of multiple paths, the goodput of
MPTCP is usually far lower than the aggregate throughput due to
out-of-order received packets. One key reason for the out-of-order
issue is the large variation of end-to-end delay for multiple paths
over wireless channels. In this paper, we propose a congestion
window adaption algorithm for the MPTCP source (referred to as
CWA-MPTCP), which dynamically adjusts the congestion window
for each TCP subflow so as to mitigate the variation of end-
to-end path delay. We consider typical multipath transmission
scenarios over wireless links, as well as a cooperative multi-
hop wireless network with multiple relays. For wired paths with
stable end-to-end delay, we further develop a proactive scheduling
algorithm to determine the packet sending sequence to each path.
This algorithm effectively reduces the out-of-order packets by
predicting the receiving sequence. Experiments are conducted to
evaluate the goodput performance of the two enhancements to
MPTCP. Significant performance gain is achieved in terms of
goodput, while the receive buffer requirement is minimized.

Index Terms—MPTCP, multipath transmission, goodput, con-
gestion window, out-of-order problem.

I. INTRODUCTION

In recent years, mainstream mobile devices in the market

are equipped with multiple radio interfaces. Multi-radio mobile

devices usually have at least one built-in wireless wide area

network (WWAN) interface, such as high speed packet access

(HSPA). Also, the multi-radio mobile devices often have one

or more short-range wireless network interfaces, such as Wi-

Fi and Bluetooth. This offers a good opportunity to explore

several interfaces for multipath transmission, so as to aggregate

the bandwidth among multiple wireless links and further

improve the quality of service (QoS) for bandwidth-intensive

applications, such as video streaming and video conference.

The transport control protocol (TCP) is the de facto standard

for the transport layer. Nonetheless, there is a critical problem

with TCP over multiple paths for multi-radio devices, i.e., a

high level of out-of-order packets. In traditional TCP, such

as TCP Reno and selective acknowledgment (SACK), the

source node halves its congestion window once three duplicate

acknowledgments (ACK) are received from the sink node. That

is, three duplicate ACKs are viewed as an indicator of packet

loss in transmission. In a multipath transmission scenario,

because the round-trip time (RTT) of each path varies, there is

a high probability that packets with lower sequence numbers

sent over a slower path arrive at the sink later than packets

with higher sequence numbers sent over a faster path. As a

result, the sink node receives out-of-order packets and then

returns duplicate ACKs, which is misinterpreted by the source

as packet loss. Then, the source reduces its congestion window

and enters fast retransmit and recovery stage. This behavior

jeopardizes the efficiency of TCP transmission because the

sending window can be mistakenly set to a small value [1].

Multipath transport control protocol (MPTCP) is standard-

ized by Internet Engineering Task Force (IETF) in 2011 [2]. A

typical scenario of MPTCP in wireless networks is shown in

Fig. 1. MPTCP runs in multi-homed mobile devices to simul-

taneously deliver TCP packets over multiple paths and pool the

available bandwidth together. Although MPTCP improves the

available throughput for the upper layer, there is still another

unresolved issue caused by out-of-order packets. Throughput

indeed represents the overall receiving capacity of successful

packet delivery over multiple paths. Nonetheless, it is goodput

that reflects the real application-level throughput, which is the

amount of useful data available to the receiver application

per time unit. Specifically, in-order packets received at the

transport layer can be forwarded to the application layer and

counted for goodput. Some most recent work in 2012 tries

to improve goodput for MPTCP, by using network coding [3]

and packet retransmission over fast path [4]. However, these

studies only show the average goodput improvement over a

long term. In fact, stable goodput with minimal variation is

preferable for QoS assurance to real-time applications.

In this paper, we conduct extensive experiments to examine

the goodput performance of MPTCP. An interesting observa-

tion is that the MPTCP goodput is near optimal (approaching

the upper bound of aggregate throughput) when the end-to-

end delays of two transmission paths are very close. The

goodput variation is not directly related to the absolute delay

values of multiple paths. Based on such observations, we

propose a congestion window adaption algorithm for MPTCP,

referred to as CWA-MPTCP, in which the MPTCP source

dynamically adjusts the congestion window of each TCP

subflow so as to maintain similar end-to-end delays over

Application server

(source node)

Mobile Device

(sink node)

Base stationRouter

Router

Access point

HSPA,

WiMAX,...

802.11

WiFi

Fig. 1. Multipath scenario in wireless networks.

multiple paths. The CWA-MPTCP solution is evaluated for a

typical wireless multipath scenario with multi-radio devices, as

well as a wireless cooperative scenario with multi-hop relays.

Moreover, in a wired environment, since the path delay is more

stable in comparison with that of wireless links, the goodput

performance of MPTCP can be further enhanced with a

proactive packet scheduler. The simulation results demonstrate

significant goodput improvement and greatly reduced receive

buffer requirement for the sink node.

The rest of this paper is organized as follows. An overview

of MPTCP is given in Section II. In Section III, we introduce

the proposed extensions to MPTCP for goodput improvement.

Experiment results are presented in Section IV. Related work is

outlined in Section V, followed by conclusions in Section VI.

II. OVERVIEW OF MPTCP

As shown in Fig. 2, MPTCP loosely splits the transport

layer into two sublayers, namely, MPTCP and subflow TCP.

Based on this architecture, MPTCP can be easily implemented

within current network stack. As seen, subflow TCP runs on

each path independently and reuses most functions of regular

TCP. The main difference between subflow TCP and regular

TCP is that congestion control on each path is delegated to

MPTCP sublayer [5]. Although each subflow TCP maintains

a congestion window at the source (sender), the congestion

window is updated by a coupled congestion control algorithm

which aims to balance the traffic load on each path and

improve throughput without jeopardizing regular TCP users.

MPTCP sublayer is responsible for coordinating data pack-

ets on multiple paths, such as reordering packets received from

each path at the sink, scheduling packets toward each path

at the source, and balancing the congestion window of each

subflow TCP. In addition to the aforementioned congestion

control algorithm, another main function of MPTCP is packet

reordering for multiple paths. As each TCP subflow maintains

an independent sequence number space, the sink may receive

two packets of the same sequence number. Further, packets

received at the sink can be out-of-order because of mismatched

round-trip time (RTT) of multiple paths. Therefore, the source

needs to tell the sink how to reassemble the data forwarded

to the application. MPTCP solves this problem by using two

levels of sequence numbers. First, the sequence number for

TCP subflow is referred to as subflow sequence number (SSN),

which is similar to the one in regular TCP. The subflow

sequence number independently works within each subflow

Application

TCP

IP

Application

Subflow (TCP)

IP

Subflow (TCP)

MPTCP

Network Interface Network Interface

Fig. 2. Network protocol stack with MPTCP.

and ensures that data packets of each subflow are successfully

transmitted to the sink in order. The sequence number at the

MPTCP level is called data sequence number (DSN). Each

packet received at the sink has a unique DSN no matter which

path it is sent over. Hence, the sink can easily sequence and

reassemble packets from different paths by DSN.

III. GOODPUT IMPROVEMENT FOR MPTCP

A. Problem Analysis

As discussed Section II, MPTCP can provide aggregate

bandwidth to the application by pooling network resources of

multiple paths together. In this work, we focus on another

important performance metric, i.e., goodput. In particular, we

define the goodput of MPTCP as the data throughput of in-

order packets forwarded by MPTCP to the application layer.

Intuitively, we have

Goodput =
Size of N in-order packets

Total receiving time of N packets
. (1)

Next, we examine two special scenarios of MPTCP so as to

find out the primary factors affecting goodput performance.

Suppose that there are two available paths. Let τi denote

the packet sending interval at the MPTCP source for path

i, i = 1, 2. Assume that the throughput of path 1 is greater

than that of path 2. Denoting the end-to-end delay of path i
by di, we have d1 < d2. Consider a block of N packets with

continuous DSN numbers, among which N − 1 packets are

received on path 1 and only 1 packet is from path 2. Such a

block of data packets is referred to as an in-order unit. Let S
and T denote the total size in the unit of maximum segment

size (MSS) and the total receiving time of an in-order unit,

respectively. Then, we can evaluate the goodput by G = S/T .

Consider two special cases illustrated in Fig. 3. The in-

order unit comprises 4 packets of DSN numbers 1, 2, 3, and 4.

Suppose that packet 1 and packet 2 are sent at the same time to

path 1 and path 2, respectively. Fig. 3(a) shows the case with

∆D , |d2 − d1| > τ1. We can easily obtain T = ∆D and the

goodput, given by

G =
S

T
=

τ2/τ1 + 1

△D
. (2)

Fig. 3(b) shows another special scenario with ∆D ≤ τ1. In this

case, the MPTCP sink needs less time to receive all packets

within the in-order unit. Here, the total time to receive all N
packets of the in-order unit is just the time for path 1 to receive

2

IF1 IF2 IF1 IF2

MPTCP Source MPTCP Sink

1

3

4

2

T

(a) General case with ∆D > τ1

IF1 IF2 IF1 IF2

MPTCP Source MPTCP Sink

1

3

4

2
T

(b) Near optimal case with ∆D ≤ τ1

Fig. 3. Special cases with two transmission paths for goodput analysis.

all N − 1 packets sent over it. Obviously,

G =
S

T
=

τ2/τ1 + 1

τ2
. (3)

Actually, Eq. (3) is also the aggregate throughput (denoted by

Υ) over two paths. That is,

Υ =
1

τ1
+

1

τ2
. (4)

This observation implies that goodput is inversely proportional

to the end-to-end path delay difference ∆D. The larger the

delay difference between two paths, the longer the time that

MPTCP sink needs to receive all packets within the in-order

unit, and the smaller the achievable goodput. To approach the

upper bound of goodput, which is the aggregate throughput of

all available paths, we need to minimize the end-to-end delay

difference among transmission paths without jeopardizing the

aggregate throughput.

B. Congestion Window Adaptation

In regular TCP, the TCP source node maintains a congestion

window to control the maximum amount of packets to send

at the current time. Once triple duplicate ACKs are received

by the source, it is interpreted as an indicator of packet loss

and the source node halves its congestion window to reduce the

traffic load toward the transmission path. In MPTCP, each TCP

subflow maintains its own congestion window and triggers

a decrease of the congestion window by receiving duplicate

ACKs. In contrast, the increase of the congestion windows of

all subflows is controlled by a coupled algorithm at the MPTCP

flow level. This congestion window control algorithm can

aggregate the available bandwidth of each path and prevent a

MPTCP source from taking up too much resource to guarantee

TCP friendliness. In this congestion control algorithm, the

only reason to decrease the congestion window is packet loss

indicated by duplicate ACKs. Consequently, the congestion

window of each path may greatly differ from each other and

lead to a large path delay difference, which is detrimental to

the goodput performance.

Based on the design principle in Section III-A, we propose

the congestion window adaptation (CWA) given in Algorithm 1

to improve MPTCP goodput. In CWA-MPTCP, the end-to-end

delays of multiple paths are monitored. Here, we define the

delay ratio as the ratio of the maximum path delay over the

minimum path delay. When a large delay ratio is detected, the

source node proportionally decreases its congestion window

although there is no packet loss indicated by duplicate ACKs.

The main purpose is to minimize the path delay difference

∆D in order to increase the goodput. On the other hand,

the increase of all subflow congestion windows follows the

algorithm in original MPTCP.

Algorithm 1 Congestion Window Adaptation.

1: if θmin ≤ θ ≤ θmax then // High delay ratio detected

// Select path i for cwnd adaptation

2: i = arg maxp(end-to-end delay of path p)

// Adaptation counter does not exceed maximum limit

3: if counti < m then

// Decrease congestion window of path i
4: cwndi ← cwndi/θ
5: if ssthreshi > cwndi then

6: ssthreshi = cwndi
7: end if

8: counti ← counti + 1
9: else

// Reset adaptation counter

10: counti = 0
11: end if

12: end if

As seen in Algorithm 1, the congestion window adaptation

is triggered when the delay ratio θ is within a certain range

[θmin, θmax]. The congestion window (denoted by cwndi) of

the path i with the maximum delay is decreased proportionally

to the delay ratio θ. This is because a larger delay ratio

indicates that the high-delay path is overloaded. Its congestion

window needs to be decreased to relieve traffic and reduce path

delay. Here, θmax is introduced to avoid over-blocking slow

path and severely jeopardizing aggregate throughput. Mean-

while, the TCP slow start threshold (ssthreshi) is updated

with the new cwndi if ssthreshi > cwndi. Otherwise, cwndi
will be recovered quickly with the slow start procedure (i.e.,

cwndi is linearly increased by 1 for each successful ACK

received at the source). As a consequence, it would be hard

3

to guarantee that the congestion window of the slow path is

decreased for sufficient time to reduce the end-to-end delay.

Although the cwnd adaptation can reduce the end-to-end

delay variation of multipath paths, it is not guaranteed that all

paths maintain similar delays as the ideal case illustrated in

Fig. 3(b). This is due to a variety of reasons in addition to the

traffic load over the paths that affect the end-to-end delay, such

as transmission, processing, and queueing delays at routers,

base stations, and intermediate nodes between communication

peers. The link-layer interference and retransmission over

wireless channels also result in delay variation. The path

delay variation can be reduced by decreasing the congestion

window of the slow path and relieving its carried traffic

load. Nonetheless, the transport-layer control itself cannot

completely eliminate the path delay variation. Therefore, we

introduce the parameter counti to restrict the number of

continuous reductions of congestion window for a single path i
by m, which is the maximum adaptation limit (e.g., m = 3 for

the experiments in Section IV). As such, we can avoid severe

throughput degradation on an individual path.

After the cwnd of a high-delay path is reduced according to

Algorithm 1, the corresponding TCP subflow is blocked from

sending more packets, because of the gap between the original

cwnd and the adapted new one, i.e., (cwndi − cwndi/θ). The

TCP subflow is blocked since the highest acknowledged DSN

plus the adapted smaller cwnd becomes less than the highest

DSN of packets that are sent to the sink node. This subflow

is then blocked for a period ∆T , given by

∆T = (cwndi − cwndi/θ)× τi. (5)

For instance, when 1 ≤ θ ≤ 3, τi = 5 ms, and cwndi = 100
packets, ∆T ranges from 170 ms to 340 ms. During this short

period, although one slow path is blocked and the overall

throughput slightly decreases, more significant performance

gain is achieved for goodput.

C. Proactive Scheduler for Wired Multipath Links

The above congestion window adaptation algorithm aims

to minimize the end-to-end delay variation among multiple

paths. Nonetheless, it is hard to guarantee close path delay

due to various factors at different layers. The path delay

of wired links is more stable than that of wireless links.

Taking a closer examination on the scenario in Fig. 3(a),

we can further complement CWA-MPTCP with a proactive

scheduler (Pro) for wired multipath links, in case that the path

delay difference is still relatively large even when congestion

window adaptation is activated.

In Fig. 3(a), it is assumed that τ2 = 3× τ1 and

∆D = 3× τ1. Suppose that the MPTCP source sends pack-

ets 1 and 2 simultaneously. Since ∆D/τ1 = 3, the number

of intermediate packets received between packets 1 and 2 is

2. That is, the MPTCP sink receives two more packets on

path 1 before it receives packet 2 on path 2. This example

demonstrates that, if the path delay difference ∆D is relatively

stable, the source is able to predict the receiving packet order

at the sink. Based on the above observation, we develop

Algorithm 2 to schedule the sequence of packets sent to each

path at the source. It requires relatively stable path delay to

predict packet receiving order. Since the congestion window

adaptation in Algorithm 1 can reduce path delay variation for

goodput improvement, it is a complementary match to the

proactive scheduler.

Algorithm 2 Proactive Packet Scheduler for Two Paths.

1: ACK for DSN packet received at MPTCP source

2: Path selection by MPTCP scheduler

3: if Slow path is selected then

4: ∆dsn = ∆D/τf // τf is packet interval of fast path

5: else // Fast path is selected

6: ∆dsn = 1
7: end if

// Initialize DSN of next packet with proper increment

8: Sdsn = Fdsn +∆dsn

// Check if the packet of DSN Sdsn has been sent

9: while Sdsn ∈ Ldsn do // Ldsn is DSN list of sent packets

10: Sdsn ← Sdsn + 1
11: end while

12: Insert Sdsn into Ldsn
13: if Fast path is selected then

// Update the DSN of packets sent sequentially

14: Fdsn = Sdsn

15: end if

To reduce out-of-order packets received at the sink, we

can properly adjust the DSN increment value (denoted by

∆dsn) for the next packet over the slow path and the fast

path. Specifically, ∆dsn for the slow path depends on the path

delay difference ∆D and the packet sending interval of the

fast path. Based on ∆dsn, the DSN of the next packet sent

over each path is determined according to Algorithm 2. Once

the MPTCP source receives a data ACK from the sink, the

MPTCP scheduler scans all paths and finds the first path having

one packet free space in its sending window. If a fast path is

chosen, the DSN of next packet to send is just Fdsn + 1, where

Fdsn is the largest packet DSN sent over the fast path. For a

slow path, the next packet to send takes an advanced DSN, i.e.,

Sdsn = Fdsn +∆dsn, so as to better ensure in-order receiving

sequence at the sink. In both cases, the source checks the DSN

list of sent packets (Ldsn) to avoid duplicate transmission.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate the performance of the proposed solution in

Section III, we extend the MPTCP model in NS-2 [6] with

the congestion window adaption and proactive scheduler. The

performance is evaluated in terms of goodput and receive

buffer requirement for both wireless and wired scenarios. In

the wireless case, the multi-radio sink node is equipped with

two network interfaces and connected to a multi-channel base

station over typical wireless links or cooperative multi-hop

links through multiple relays. The detailed system parameters

are given in Table I. The bandwidth for each path is an

average and actually varying in the simulation. To evaluate

4

TABLE I

SYSTEM PARAMETERS FOR EXPERIMENTS.

Parameter Sample value

Number of transmission paths 2

Radius of base station coverage 500 m

Average bandwidth on path 1 4.0 Mbit/s

Average bandwidth on path 2 2.0 Mbit/s

Application for testing FTP

Minimum delay ratio θmin 1.0

Maximum delay ratio θmax 3.0

Receive buffer at sink 1.16 Mbit (100 MSS)

Receive buffer at relays 0.38 Mbit (33 MSS)

throughput and goodput performance over a long term, we

simulate saturated data traffic by using an extremely large

file. In the following experiments, the congestion window is

adapted for every 0.5 seconds according to Algorithm 1. The

goodput and receive buffer size are measured whenever the

sink node receives 100 packets of continuous DSN. The receive

buffer size is the required space to accommodate all incoming

packets (including the out-of-order ones) until a block of 100
packets of continuous DSN are completely received.

In MPTCP, receive window specifies the maximum amount

of data that can be received and buffered at the sink. That

indicates the overall receiving capacity of all interfaces of the

MPTCP sink. In this paper, we use another term receive buffer

to represent the storage space required for the sink to accom-

modate K (K = 100 in the following experiments) packets of

continuous DSN sequence numbers. Because packets arrived

at the sink may be out of order due to multipath transmission,

the actual space required can be much larger than the nominal

size of K packets. Hence, the receive buffer implies the out-

of-order extent of received packets through multiple paths.

A. Performance of CWA-MPTCP in Wireless Networks

Fig. 4 and Fig. 5 compare the goodput and receive buffer

size when regular MPTCP and CWA-MPTCP are used. As

seen in Fig. 4, the goodput of CWA-MPTCP almost approaches

the aggregated throughput (6 Mbit/s), which is the upper

bound of goodput achievable at the MPTCP sink. The goodput

of original MPTCP is much lower and only close to the

throughput of the slow path in some periods. This is because

the large delay of the slow path introduces a large amount of

out-of-order packets, which degrade the goodput substantially.

In contrast, CWA-MPTCP can minimize the end-to-end delay

difference between the two paths, so that the goodput is signif-

icantly improved and much more stable. Fig. 5 shows that the

required receive buffer in CWA-MPTCP almost equals to the

minimum receive buffer for 100 continuous packets, which is

given by the black line. This observation indicates that CWA-

MPTCP efficiently reduces the out-of-order packets received

at the sink without jeopardizing the aggregate throughput.

Although MPTCP can aggregate the bandwidth over sev-

eral wireless interfaces via multipath transmission, multiple

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

7

8

9

Simulation time (sec)

G
o

o
d

p
u

t
(M

b
it
/s

)

MPTCP

CWA-MPTCP

Fig. 4. Comparison of multipath goodput over wireless links.

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

7

Buffer size for 100 packets

Simulation time (sec)

R
e

c
e

iv
e

 b
u

ff
e

r
(M

b
it
)

MPTCP

CWA-MPTCP

Fig. 5. Receive buffer size for multipath transmission over wireless links.

wireless accesses may not be always available. According to

a recent survey in [7], 79% of smartphone users also own

additional wireless devices such as laptops. Hence, multipath

transmission can be enabled by exploiting multi-homed mobile

devices in vicinity as relays as shown in Fig. 6. The relay

nodes receive packets on behalf of the sink via their WWAN

interfaces and then forward packets toward the sink via short-

distance links (e.g., Wi-Fi or Bluetooth). Traditionally, multi-

hop relay is supported at the link layer or the network layer.

However, packet collisions may exist among multiple relays

and the sink node with contention-based channel access. Such

interference if not addressed properly limits the achievable

performance of multipath transmission. We can extend the

CWA-MPTCP solution by using relays at the transport layer

[8]. Once an MPTCP connection is established, the sink

node sends a DSN range, (MIN_DSN, MAX_DSN), for the

incoming data packets to all relays. This range gives the DSN

of in-order packets that the sink expects to receive. If any

packet within this DSN range is received by a relay, the

relay accepts and forwards the packet to the sink. Otherwise,

the relay node buffers the packet outside the range and only

forwards the head packet once the buffer becomes full. As

such, we can relax the buffer requirement for the sink node

by sharing the receive buffer of relays.

5

Application server

(source node)
Core network

Relay node 1 Relay node 2

Mobile device (sink node)

Long distance radio

(e.g., HSPA, WiMAX)

Short distance radio

(e.g., 802.11 WiFi)

Base stationRouter

Fig. 6. Multipath with cooperative relays in a cooperative wireless network.

Fig. 7 and Fig. 8 present the simulation results of CWA-

MPTCP in a cooperative multi-hop wireless scenario. Here,

we compare the performance of regular MPTCP and CWA-

MPTCP with relays implemented at the IP layer and TCP layer.

As seen in Fig. 7, CWA-MPTCP greatly outperforms original

MPTCP no matter whether IP relays or TCP relays are used.

This observation demonstrates that the proposed congestion

window adaptation algorithm works well in both a regular

multipath scenario and a cooperative wireless scenario with

multi-hop relays. This is because the adaptation algorithm

effectively minimizes the path delay difference ∆D, which in

turn significantly reduces the out-of-order packets to achieve

a much higher goodput.

Additionally, relays implemented at the TCP layer further

improves the goodput. With TCP relays, the TCP subflow

connections end at the two relays rather than the two interfaces

of the sink node. Hence, the source node is invisible to the

additional delay caused by packet collisions among the relays

and the sink node. As a result, a much smaller end-to-end delay

is viewed at the source node for transport control. Thus, the

goodput is benefited from the smaller path delay difference

and the smaller absolute value of end-to-end delay. Similar

performance gain is observed in Fig. 8 for the receive buffer

requirement at the sink node.

B. Performance of MPTCP Extensions for Wired Links

Fig. 9 shows the goodput of original MPTCP and extended

MPTCP with congestion window adaptation and proactive

scheduler. The congestion window adaptation can also ef-

fectively mitigate the path delay difference ∆D. The delay

variance of wired links is much smaller that that of wireless

networks. This enables the implementation of the proactive

scheduler to predict the receiving DSN sequence and rear-

range the packet sending sequence to each path. The goodput

of CWA-MPTCP with the proactive scheduler significantly

improves the goodput and almost approaches the aggregate

throughput (6 Mbit/s in this case), which is the upper bound

of the achievable goodput.

In addition, a few spikes of dropped goodput are observed

in Fig. 9. As discussed in Section III-B, when a large end-

to-end delay ratio is detected between the fast path and the

slow path, the cwnd of the slow path is decreased to block

the corresponding TCP subflow, so as to minimize out-of-

order packets received at the sink. As a consequence, the

0 10 20 30 40 50 60 70

1

2

3

4

5

6

Simulation time (sec)

G
o

o
d

p
u

t
(M

b
it
/s

)

MPTCP + IP relays

CWA-MPTCP + IP relays

CWA-MPTCP + TCP relays

Fig. 7. Goodput with multi-hop relays in a cooperative wireless scenario.

0 10 20 30 40 50 60 70
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Buffer size for 100 packets

Simulation time (sec)

R
e

c
e

iv
e

 b
u

ff
e

r
(M

b
it
)

MPTCP + IP relays

CWA-MPTCP + IP relays

CWA-MPTCP + TCP relays

Fig. 8. Gain of receive buffer in a cooperative multipath scenario.

throughput of the slow path and the resulting goodput can

be reduced for a very short period and recovered quickly. The

property is acceptable since the overall goodput is significantly

improved and much more stable than in regular MPTCP. The

enhancement for receive buffer sharing is evidently observed

Fig. 10. The sink node only needs a minimum receive buffer

by effectively controlling out-of-order packets.

V. RELATED WORK

Many multipath transmission architecture based on TCP

have been proposed, such as pTCP [9], mTCP [10], and

PRISM [11]. Such proposals modify the regular single-

path TCP, aiming to aggregate bandwidth on multiple paths.

Nonetheless, substantial changes to TCP stack are needed,

which may limit wide deployment. There are also studies on

enabling multiple TCP transmission for bandwidth-demanding

applications (e.g., video streaming), so as to provide stable

throughput throughout a session. In [12], TCP traffic is split

at the IP layer and sent to multiple paths so as to enhance

the performance of real-time streaming. Authors in [13] find

the required aggregate TCP throughput (1.6 times the video

bit rate) to support multipath live streaming. The approach in

[14] adjusts the receiver window size to achieve the desired

throughput using multiple TCP connections for multimedia

6

0 10 20 30 40 50 60 70
1

2

3

4

5

6

7

8

Simulation time (sec)

G
o

o
d

p
u

t
(M

b
it
/s

)

MPTCP

CWA-MPTCP

CWA-MPTCP + Pro

Fig. 9. Goodput performance over wired multipath links.

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

7

Buffer size for 100 packets

Simulation time (sec)

R
e

c
e

iv
e

 b
u

ff
e

r
(M

b
it
)

MPTCP

CWA-MPTCP

CWA-MPTCP + Pro

Fig. 10. Comparison of receive buffer size for wired multipath links.

streaming. Most of the previous solutions assume that the per-

formance of video applications can be improved with a higher

aggregate throughput. Although this is true in principle, out-

of-order received packets may severely degrade the useful data

throughput delivered by the transport layer to the application.

In 2012, there are some specific studies on the goodput

performance of MPTCP. In [4], the goodput of MPTCP is

enhanced by appropriately selecting the path for packet re-

transmission. When the slow path is blocked by a full receive

buffer due to too many out-of-order packets, the source will

retransmit packets toward the fast path. Also, the source simply

halves the congestion window size of the slower path. As

this scheme is only triggered when the receive buffer is full,

it cannot handle goodput degradation in normal transmission

stages. The schemes in [3] and [15] utilize network coding to

recover packet loss at the sink and in turn increase the goodput.

In such coding-based schemes, the source transmits the orig-

inal data in one subflow and linear combinations of original

data in the other subflow. Thus, the redundancy of network

coding data is utilized to recover lost and delayed packets.

However, these schemes require the support of network coding

in both communication peers. The solutions in [3,4] mainly

focus on the average goodput in a long term and neglect the

goodput variation. Our approaches with congestion window

adaptation and proactive scheduling significantly improves

overall goodput to approach the upper bound of aggregate

throughput. Meanwhile, the goodput variation is minimized

to provide a stable goodput to the application.

VI. CONCLUSIONS

In this paper, we propose a congestion window adaptation

algorithm (CWA-MPTCP) to enhance the goodput of MPTCP

and decrease the receive buffer requirement for the sink node.

By adapting the congestion window based on the end-to-

end delay difference between paths, CWA-MPTCP effectively

improves the goodput of multipath transmission over wireless

and wired links. Moreover, CWA-MPTCP works well in coop-

erative wireless networks with multiple paths constructed via

multi-hop relay nodes. Taking advantage of stable end-to-end

delay of wired links, we further improve the goodput by using

a proactive scheduler to arrange the packet sending sequence

to each path. Simulation results demonstrate that our solutions

achieve stable goodput with significant improvement and relax

receive buffer requirement for the sink node.

ACKNOWLEDGEMENT

This research was supported by Natural Sciences and Engi-

neering Research Council (NSERC) of Canada.

REFERENCES

[1] M. Zhang, B. Karp, S. Floyd, and L. Perterson, “RR-TCP: A reordering-
robust TCP with DSACK,” in Proc. IEEE ICNP, Nov. 2003.

[2] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar, “Architectural
guidelines for multipath TCP development,” IETF RFC 6182, Mar. 2011.

[3] M. Li, A. Lukyanenko, and Y. Cui, “Network coding based multipath
TCP,” in Proc. IEEE INFOCOM Computer Communication Workshop,
Mar. 2012.

[4] C. Raiciu, C. Paasch, S. Barre, and A. Ford, “How hard can it be?
Designing and implementing a deployable multipath TCP,” in Proc.

USENIX NSDI, Apr. 2012.
[5] C. Raiciu, M. Handley, and D. Wischik, “Coupled congestion control

for multipath transport protocols,” IETF RFC 6356, Oct. 2011.
[6] Google Code Project, “Multipath-TCP: Implement multipath TCP on

NS-2,” http://code.google.com/p/multipath-tcp/.
[7] K. Purcell, “E-reader ownership doubles in six months,” Pew Research

Center, 2011.
[8] D. Zhou, P. Ju, and W. Song, “Performance enhancement of multipath

TCP with cooperative relays in a collaborative community,” in Proc.

IEEE PIMRC, Sep. 2012.
[9] H. Hsieh and R. Sivakumar, “pTCP: An end-to-end transport layer

protocol for striped connections,” in Proc. IEEE ICNP, Nov. 2002.
[10] M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, and R. Wang, “A

transport layer approach for improving end-to-end performance and
robustness using redundant paths,” in Proc. USENIX ATC, Jun. 2004.

[11] K. Kim and K. Shin, “Improving TCP performance over wireless
networks with collaborative multi-homed mobile hosts,” in Proc. ACM

MOBISYS, Jun. 2005.
[12] M. Tsai, N. Chilamkurti, J. Park, and C. Shieh, “Multi-path transmission

control scheme combining bandwidth aggregation and packet scheduling
for real-time streaming in multi-path environment,” IEEE IET Commu-

nications, vol. 4, no. 8, pp. 937–945, May. 2009.
[13] B. Wang, W. Wei, and Z. Guo, “Multipath live streaming via TCP:

Scheme, performance and benefits,” ACM Trans. Multi. Comput. Com-

mun. and Appl., vol. 5, no. 3, Aug. 2009.
[14] S. Tullimas, T. Nguyen, and R. Edgecomb, “Multimedia streaming using

multiple TCP connections,” ACM Trans. Multi. Comput. Commun. and

Appl., vol. 4, no. 2, May 2008.
[15] Y. Cui, X. Wang, H. Wang, G. Pan, and Y. Wang, “FMTCP: A fountain

code-based multipath transmission control protocol,” in Proc. IEEE

ICDCS, Jun. 2012.

7

