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ABSTRACT

Crowd-enabled place-centric systems gather and reason over
large mobile sensor datasets and target everyday user loca-
tions (such as stores, workplaces, and restaurants). Such sys-
tems are transforming various consumer services (for exam-
ple, local search) and data-driven organizations (city plan-
ning). As the demand for these systems increases, our under-
standing of how to design and deploy successful crowdsens-
ing systems must improve. In this paper, we present a sys-
tematic study of the coverage and scaling properties of place-
centric crowdsensing. During a two-month deployment, we
collected smartphone sensor data from 85 participants using
a representative crowdsensing system that captures ≈ 48,000
different place visits. Our analysis of this dataset examines is-
sues of core interest to place-centric crowdsensing, including
place-temporal coverage, the relationship between the user
population and coverage, privacy concerns, and the character-
ization of the collected data. Collectively, our findings pro-
vide valuable insights to guide the building of future place-
centric crowdsensing systems and applications.
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INTRODUCTION

The proliferation of sensor-enabled smartphones makes it in-
creasingly feasible to build crowdsensing systems that gather
large-scale mobile sensor data. An important and growing
class of these crowd-enabled systems are place-centric – that
is, they are designed to provide place-related information and
focus on locations that participants routinely visit (for exam-
ple, cafes, supermarkets, offices, homes, or schools) as tar-
gets for data collection and analysis. Numerous research pro-
totypes have been demonstrated, enabling, for example, im-
proved local search and recommendation services [24, 11, 7],
or even the estimation of the number of customers in a coffee
shop [20, 25]. In addition, early stage commercial examples
of place-centric crowdsensing are already emerging through
companies such as Gigwalk [4] and FieldAgent [1]. These
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systems recruit users for tasks such as gathering photos of
store interiors (to assess product displays or stock levels) or
real estate. To maintain this rapid progress, we must continue
to deepen our understanding of place-centric crowdsensing
systems in all areas. On the surface, these systems can ap-
pear deceptively simple: contributors collect data which is
then analyzed for a variety of purposes. However, to design
and deploy successful systems, a diverse set of technical and
social challenges must be met simultaneously.

In this paper, we report on the systematic study of a large-
scale deployment using a representative place-centric crowd-
sensing system built with commodity smartphones. Our de-
ployment is one of the largest examples of mobile crowdsens-
ing yet studied. We recruited 85 people to collect data for two
months while making ≈ 48,000 place visits in Seoul, Korea.
Each day, contributor phones periodically collected a range
of standard smartphone sensors (viz. WiFi, GPS, camera, or
microphone); the resulting dataset includes ≈ 22,000 audio
clips and ≈ 6,200 photos among other data types. Our aim
is to investigate fundamental issues related to place-centric
crowdsensing’s coverage and scalability. The issues we sur-
vey include the coverage achieved with respect to places,
place categories, and temporal patterns; the relationship be-
tween the number of participants and system coverage; user
privacy concerns and how they affect coverage; and, finally,
a detailed characterization of the data collected as a means to
understand future potential place-centric applications1

Based on our deployment experiences and analysis of the col-
lected dataset, we report findings that are relevant to builders
of crowdsensing systems. These findings include: (1) Even
with a small number of contributors (85), we find that crowd-
sensing can provide relatively high coverage levels for select
place categories or groups (for example, 15% of places in the
top 1% of popularity), especially given the city’s large size
(nearly 100,000 places in total). Our results identify the spe-
cific place categories with high coverage and quantify how of-
ten these places are visited; such information is important in
understanding the viability of monitoring desired place com-
binations. (2) We find empirical distributions that model im-
portant factors underpinning the relationship between the size
of a crowdsensing user population and place coverage. For in-
stance, we find that in our crowdsensing study the number of
place visits by participants follows a power-law distribution.
Based on these results, we develop a simple but effective gen-
erative model of place coverage based on participant popula-
tion and city characteristics that we can use to estimate how

1In the interest of experimental reproducibility the data needed to
produce the results reported in this study will be available here: [30].



many users are required for certain levels and types of cover-
age. (3) Although our crowdsensing study collects sensitive
sensor modalities (including audio and images), and users are
clearly cautious, this does not prevent the system from con-
structing a large-scale dataset during the study. For exam-
ple, we find that participants allow audio collection in 93% of
food-related places and 82% across all place types – a promis-
ing result for crowdsensing techniques that require a micro-
phone. (4) Unsurprisingly, we find crowdsensed data to be
extremely noisy. However, because of the volume of data col-
lected, we also find that carefully tuned conventional audio-
and image-based classifiers (such as sound or object classifi-
cation) can mine a large number of diverse, place-related con-
texts – for example, thousands of spoken and written words;
overheard instances of music or coughing; or observations of
people, cars, and furniture. By detailing our experiences in
mining context from this dataset – including how well each
classifier works, which classifier-tuning approaches were ef-
fective, and the frequency and spread of contexts relative to
place categories – our results can assist in identifying new
potential place-centric crowdsensing scenarios.

STUDY DESIGN

In the following section, we describe the design of our study
and the region in which it was performed.

Overview. Participants receive a smartphone app that col-
lects sensor data (largely audio clips and images). Based on
the subject’s privacy settings, data is selectively transmitted
to a server for storage and analysis. Collectively, the app
and server comprise a representative crowdsensing system
designed to support the study objectives.

Subjects are told that the system’s aim is to gather large-scale
data regarding the city that will be used for various urban
sensor-related applications – we use the umbrella term “smart
city” because many participants understand this phrase. Ex-
ample applications described include building noise and pol-
lution maps, modeling traffic flows, or improving local search
with enhanced information about places.

Subjects use their own Android smartphones, onto which we
install the smartphone app. This phone must remain their pri-
mary phone for the duration of the study. We request that
participants carry this phone with them at all times, while also
keeping the device charged and active most of the day.

Incentives. We compensate the study population in two
ways depending on their performance: (1) bonus payments
(BP) and (2) a data competition (DC). Everyone receives the
same baseline payment for their participation, namely, the
equivalent of 100 USD. Similarly, within each scheme, mem-
bers are ranked based on a simple metric that is based on the
number of images they capture (with a safety measure not re-
ward images taken all in the same place). The key difference
between the two compensation schemes is that under BP par-
ticipants receive a bonus payment (equivalent of 20 USD) if
they are in the top five participants at the end of the study.
In comparison, under DC participants receive no additional
money but have their performance feedback presented as a
game in which they can compete against each other.

Privacy Controls. Importantly, subjects are absolutely free
to remove any data they collect without this negatively af-
fecting study compliance. All incentives are driven by data
collection, but not necessarily by sharing that data with the
server (or researchers). Participants can use any of the nu-
merous privacy controls built-in to the smartphone app that
either remove data or prevent similar data from being sam-
pled in the future.

Protection of Human Subjects. We followed the policy of
the National Research Foundation of Korea, which carefully
examined this study’s design prior to providing its approval
(equivalent to the IRB in Korea). Collected data is accessible
only to those researchers who are part of the project, with all
data access audited to allow later review if necessary. Strong
anonymization procedures are applied to any study data be-
fore it is released publicly.

Deployment Location. We conducted our study in Seoul,
Korea. Seoul is the capital and largest metropolis in Korea
(605.21km2), with a population of 10,442,000. The city has
good characteristics for our crowdsensing study: (1) 67% of
people use smartphones, which is the one of the highest adop-
tion rates in the world. Smartphone owners most actively
use their phones for multimedia, location-based services, or
commerce activities such as web browsing and online bank-
ing [35]. (2) The WiFi network is available almost every-
where in Seoul, even in metro buses and the subway. This
characteristic enables high coverage of place recognition us-
ing WiFi fingerprints. (3) People are active around the city
from early morning to late at night. Public transportation op-
erates for the entire day (including a night bus), and public
safety is very high.

Recruitment. To recruit subjects, we distributed adver-
tisements via Facebook, in addition to using posters placed
around the Yonsei University campus. Interested parties re-
ceive a comprehensive description of the study enabling them
to make an informed decision regarding their participation.

Instructions. We requested that participants collect sensing
data constantly throughout their daily lives. We informed
them that the payments do not depend on the coverage of lo-
cation sampling, and that incentives are tied into the number
of images (which require user intervention to capture), not
the number of visited locations. We expect that this instruc-
tion does not significantly alter participants’ daily routines.
However, they are informed that better-quality data will result
from them visiting a variety of areas of the city and physically
entering a diverse set of places while repeatedly returning to
places they prefer. Since image capture is entirely subject-
driven, they are instructed to capture any type of entity (build-
ing, objects, or people), at any time they wish.

CROWDSENSE@PLACE

In the following section, we describe the design and imple-
mentation of the crowdsensing system deployed in our study.
We extended our CrowdSense@Place system in [7] by adopt-
ing various techniques from the literature, including [24, 6,
8, 22, 18] (when describing component details later, we high-
light specific work when appropriate). As a result, the de-
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Figure 1. Architecture and data flow of the CrowdSense@Place system used in the study.

ployed system is representative of crowdsensing systems in
the literature. As such, we make no claims of novelty for this
system; our work’s contribution is based on the execution of a
large-scale field trial and subsequent analysis of the collected
data and experiences gained.

Overview

Figure 1 shows both the architecture and data flow of the
crowdsensing system. This system comprises two compo-
nents: (1) Smartphone App and (2) Server Infrastructure.

Smartphone App. Smartphone App samples low-level sen-
sor data (viz. image, audio, WiFi, or GPS) that is later trans-
ferred to Server Infrastructure. All sensor data is collected
opportunistically (that is, via automated sampling), with the
exception of image data that is sampled with a participatory
approach (user-driven sampling). Study subjects receive an
extensive set of privacy controls, such as customizable data-
filtering policies (for example, “never sample data at this lo-
cation”) and the ability to manually review and remove data
before it is transferred from the phone.

Server Infrastructure. Server Infrastructure collects,
stores, and analyzes data received from Smartphone App. All
uploaded data is processed by multiple sensor-data classifiers
that attempt to extract additional high-level information, such
as objects (cars, buildings, and so on) recognized in images or
spoken words recognized in audio. The results of classifiers
along with the raw data are stored for later analysis and use
within crowdsensing applications.

Smartphone App

Figure 2 presents screenshots of Smartphone App that include
the following components: (1) sensor sampling; (2) privacy
controls; (3) place detection; and (4) data transmission.

Sensor Sampling. Sensor data collection occurs primar-
ily through an Android background service that samples data
from all sensors except the camera. Sensor sampling is not
periodic but is based on a series of techniques adopted from
the literature in an effort to keep Smartphone App’s overall
energy consumption to ≈ 10% of the phone battery. We adopt
the WiFi sampling policy proposed in [8]; this prediction-
based scheduling approach is based on the users everyday
routine mobility patterns – WiFi scanning occurs when a user
is likely to change a location, and re-uses the stored loca-
tion information to minimize GPS sensing. GPS is sampled

(a) (b) (c)

Figure 2. Screenshots of Smartphone App. (a) Collected data is
visualized using a map. (b) Alternatively, data is shown by list
view. (c) From either view, users can access data collected from
a specific place and edit privacy policies regarding this place.

only when WiFi scans detect strong signs that the user is in
motion, such as being in a car (details of this process are pro-
vided in the upcoming Place Detection description). Along
with these sample strategies, a simple daily budget helps to
limit the number of GPS and audio samples and maintain our
energy consumption goal.

Image capture is only manually triggered by users through
an explicit action within Smartphone App. The audio sam-
pling is basically disabled in all places, but the image cap-
ture enables audio sampling on a place-by-place basis. Audio
is sampled based on a simple heuristic to improve audio clip
quality: the microphone records once users turn off the smart-
phone screen after using an application or making a phone
call at a place where they have taken a picture. In such cases,
the user is no longer speaking into the microphone, and the
phone is exposed to the environment.

Place Detection. Recognition of logical places (such as
a store or a user’s home) is performed by WiFi fingerprint
matching. This approach is widely used throughout the liter-
ature, and we integrate the specific techniques detailed in [8,
18]. Smartphone App utilizes place detection to (1) associate
collected data with a place (where applicable), and (2) allow
users to annotate a logical place as a particular place category.
Based on the sensing schedule generated by the sampling pol-
icy (described above), Smartphone App adaptively performs
WiFi scans to identify nearby WiFi access points. Whenever
a WiFi fingerprint is encountered that is unlike those previ-



Table 1. Summary of classifiers.

Classifiers 
Classification 

Model 
Recognized Classes

Sources of 

Training data

Optical character 

recognition 

Microsoft API 

[12] 
words in images - 

Object

recognition 

exemplar-SVM 

[23] 

bicycle, sofa, bottle, 

bus, car, chair, dining 

table, person, potted 

plant, monitor 

PASCAL VOC 

2011 dataset 

[14] 

Speech 

recognition 
Google API [16] words in audios - 

Sound category 

classification

Gaussian mixture 

model [31], 

Random forest 

(cough detector) 

[28] 

coughing (domain 

specialized), chattering, 

typing, horns of car, 

toilet flush, vacuum 

cleaner

Freesound [3],

self collected 

cough dataset

ously seen, a new place is assumed to have been discovered.
Similarly, previously visited places are recognized based on
the WiFi fingerprint being sufficiently similar to fingerprints
that have been observed earlier. We adopted the Tanimoto
Coefficient as the distance function in this process and set the
threshold to 0.7, as suggested by [18].

Privacy Controls. Users have three forms of privacy con-
trols at their disposal. First, they can disable the sampling
of certain sensors at specific locations/places. This option is
available as soon as Smartphone App has learned the place’s
WiFi fingerprint or gained a GPS lock. Second, users can
review all data collected and delete it if desired. Data upload-
ing is delayed at least one day to allow the user to perform
a manual review. Image and audio data can be viewed and
played back, respectively. All other data modalities are visu-
alized as list entries at a certain time and place/location. Data
navigation is provided based on either (1) the time and date
using a list interface, or (2) a map interface that shows places
the user has visited. Third, the user can temporarily disable
sensor sampling for a window of time (e.g., 3 hours).

Data Transmission. To minimize data collection’s energy
overhead to the user, we utilize a simple approach previously
described in the literature (e.g., [7, 22].) Data transmission
from Smartphone App to Server Infrastructure occurs only
when (1) a WiFi connection is available and (2) the phone
is line-powered. As a result, the impact to battery life and
mobile bandwidth is reduced to negligible levels.

Server Infrastructure

As illustrated in Figure 1, Server Infrastructure comprises two
components: (1) sensor-data classifiers and (2) application
support. The classifiers extract high-level context from im-
age and audio data, such as written texts or spoken words.
The analysis support manages recognized contexts, raw data,
location/places, and any auxiliary information.

Sensor-data Classifiers. We integrate four sensor-data clas-
sifiers into our system: (1) optical character recognition, (2)
object recognition, (3) speech recognition, and (4) sound clas-
sification (embedding a specialized cough classifier). Prior
crowdsourcing systems (e.g., [6, 7, 11]) have also closely in-
corporated classifiers to extract information from urban re-
gions. In addition, we include a variety of classifiers used in
examples of mobile sensing systems (e.g., [21]). Our intent
is to incorporate a variety of often-used classifiers, so we can
examine them at scale as part of our study.
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Occupation

Age

Gender 30 womens 55 mens

43 twenties 35 thirties
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40 undergraduates 24 graduates 18 office
workers

Figure 3. Composition of our study population in terms of (a) age, gen-
der, occupation, and (b) collection periods.

Classifier Design. Each classifier uses techniques that are
either commercial-quality or are recently published in the lit-
erature. Table 1 provides the specific details regarding each
classifier, including features and classification model used,
source of training dataset, and classes recognized.

Classifier Confidence. For each classifier, we also want to
have an estimate of the algorithm’s certainty of the classi-
fication. In the case of the two classifiers based on com-
mercial solutions (OCR and speech recognition), a confi-
dence algorithm is built-in to each and can be accessed via
an API. For all others, we implement well-known classi-
fier confidence techniques based on the classification model
used. Object recognition is based on an exemplar-SVM ap-
proach; we implement a technique called binning that al-
lows well-calibrated class probabilities to be estimated from
a model [32]. Similarly, our primary sound classifier relies
on Bayesian inference applied to Gaussian mixture models –
we adopt the techniques described by Paalanen et al. in [34].
Finally, we also implement a specialized cough classifier that
uses a random forest classifier to provide class probabilities.
For this classifier, we adopt the technique proposed in [33].

STUDY FINDINGS AND IMPLICATIONS

In the following, we present key experiment results and im-
plications from our study that touch on the four major themes:
(1) place-temporal coverage, (2) the relationship between the
user population and coverage, (3) privacy concerns and (4)
characterizing the collected data.

Data Collection

We begin by describing our dataset and experiences during its
collection.

CrowdSensing Participants. A total of 85 participants were
selected out of approximately 150 applicants. Figure 3(a)
shows the composition of our study population in terms of
age, sex and occupation. The age of subjects ranged from 17
to 44, with 65% of subjects being male (35% female). We



Table 2. Description of collected dataset.

Type Values 

Locations 

Covered Areas 230.2 km2

Unique Places 13,447 

Unique Paths 483,379 

Visit Counts 48,068 

Total Size of Database 813MB 

Photos 

Unique Places 1,580 

Number of Photos 6,242 

Total Size 9.1GB 

Audios 

Unique Places 1,517 

Number of Audios 22,604 

Total Length 192 hours 

Total Size 1.3GB 

find participants have one of the following occupations: of-
fice workers, graduate students, undergraduate students, and
high school students. All users live in Seoul, South Korea.
During our study, subjects drop out of the experiment due to
personal reasons (i.e., taking time off from school or chang-
ing their phone without notifying us). We pay 10 USD into
drop-out users and removed the data they collect.

CrowdSensing Dataset. We collected the dataset from
March 2011 to September 2012. Figure 3(b) presents the col-
lection period across all participants. The average collection
period was 79 days and the median was 58 days. Within the
6,700 user-days of collected data, subjects visit 48,000 places
and make 13,500 distinct places – as presented in Table 2 that
provides key statistics characterizing the dataset. The dataset
contains more than 11 GBs, along with 22,000 audio clips
(190 hours of audio) and 6,200 photos. Figure 4 shows the
locations where data is collected in the city, with color indi-
cating the volume of data collected at each particular location.

Some experiments require ground truth (e.g., labeling objects
within images to act as training data) or data categorization.
To make this possible we employ 20 undergraduates to hand
label/categorize image and audio files, they are paid five cents
(USD) per file. Due to the overwhelming size of the data, the
portion of our dataset which is manually inspected is ≈ 15%.
Data selection is performed by random sampling.

Social Media Dataset. During the same period as our study,
we gathered a large social media dataset from FourSquare [2].
We restricted spatial regions within Seoul, Korea due to the
huge amount of data in FourSquare. We collect 1,078,100
checkins, 99,000 POIs, 9,200 pictures by 31,000 unique
users. Note that we collected only publicly available data.

For all experiments where place categories are required we
adopt the category assignments determined by FourSquare.
Unless otherwise stated, only the top-level of the FourSquare
place category hierarchy is used. In some cases, FourSquare
does not have a record of a place visited during our study. For
these situations we apply the methodology described in [7],
and performing manual coding using a group of five people.

Place-Temporal Coverage Properties

Our first set of results investigate the following coverage-
related issues: (1) How extensively are places and place cate-
gories covered? (2) How does this coverage compare to data
available from a social media (FourSquare) dataset?

Figure 4. CrowdSensing study was performed in Seoul, Korea.
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Figure 5. (a) Coverage of CrowdSensing and (b) interval between visits.

To estimate place coverage we rely on FourSquare that lists
98,899 places in Seoul. We find our users visit a total of 5,999
places during the study – 6% of this total. However, higher
coverage is found for select place categories, such as: col-
leges (14%) or arts and entertainment (9%). Higher coverage
levels are also found when the popularity of places is taken
into consideration. Figure 5(a) groups places based on their
popularity (as measured by FourSquare check-ins) and shows
the coverage our dataset achieves at each level. For example,
this figure shows our 85 users visited 22% of the top 0.4%
percentile of places (that are visited by 1,000+ users).

Figure 6 compares the place visits made in our dataset to
FourSquare check-ins made during the study period. Ob-
viously our dataset contains far fewer place visits due to a
much lower number of participants. For example, FourSquare
check-ins dominate in many place categories, such as movie
theaters, restaurants, or shopping stores. But interestingly
in certain place categories – such as the examples provided
in Figure 6, namely: residences, workplaces, internet cafes,
or karaoke bars – crowdsensing (85 users) collects an appre-
ciably higher number of visits than FourSquare (≈ 31,000
users). When information is required about such places
crowdsourcing may be a more effective method to use. We
believe this is because the social motivations that underpin
check-in activities (e.g., sharing experiences, receiving re-
wards) do not apply equally to all place categories.

In Figure 7(a), we present the time-of-day when crowdsens-
ing data collection occurs for a variety of place categories.
Because crowdsensing semi-continuously gathers data cer-
tain locations – for example, places visited later at night – are
collected much more heavily than in the social media dataset.

Figure 7(b) examines the speed at which unique place visits
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accumulate during our study. We find that the rate at which
our crowdsensing users visit new (i.e., previously unvisited)
places quickly declines as time passes. For example, after 35
days at least one visit has already occurred for ≈ 60% of the
complete set of places eventually seen during the study. Our
data suggests simply waiting for coverage to increase over
time is of limited effectiveness. Instead, as examined in the
following subsection, to reach new areas the crowdsensing
user population must altered. Because place coverage satu-
rates quickly one viable approach – especially when design-
ers wish to deliberately guide coverage changes – appears to
be incrementally adding users and waiting for the new sys-
tem coverage to converge. After convergence, the next batch
of recruits can be added and redundant users removed.

Finally to examine temporal place coverage we compute the
interval between visits of users to each unique place. Fig-
ure 5(b) presents the CDF of visit intervals for both crowd-
sensing and social media datasets. From this figure we find
that 60% of places are visited every ≈ 3.1 days. This longer
interval for places is understandable given their small size but
highlights the difficulty in providing up-to-date information
regarding places as often proposed by crowdsourcing systems
(e.g., [24]). In comparison, 60% of FourSquare places receive
a check-in every ≈ 1.4 days.

Predicting Coverage at Scale

The next set of experiments consider: How many users are
likely needed to scale-up place coverage? Accurately esti-
mating this relationship must be done carefully. Simply by
naively extrapolating from the coverage achieved by small
numbers of people can potentially underestimate the number
of participants required. One reason for this is that we find
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Figure 8. (a) Distribution of number of visited users to places and (b)
visit probability to distances from top two places.

new users are more likely to share place routines and pref-
erences with existing users as the population increases; as a
result, these new users contribute fewer visits to previously
unseen places than would be otherwise expected.

We propose a data-driven estimation model for predicting
coverage relative to user population size. This model is based
on two fundamental observations made from our dataset.
First, we find in our study the frequency of place visits fol-
lows a power-law distribution (this result is supported by the
findings of [26]). Figure 8(a) illustrates this observation us-
ing a CDF of FourSquare check-ins across all places in Seoul
during our study. This CDF is closely fit by a hyperbolic
decay function (R = 0.97) or more loosely by a pareto distri-
bution (R = 0.61). The implication of this result is that many
places will exist in the ‘long tail’ of this distribution, so will
be infrequently visited – and so difficult to cover. Second,
we find that the probability of a user place visit falls sharply
as the distance between the place and the user’s own signif-
icant places (i.e., often visited locations) grow. Figure 8(b)
shows a histogram of place visits relative to the shortest dis-
tance of the top two significant places of the user (based on
the significant places algorithm in [5]). This distribution is fit
by an second order inverse function (R = 0.72). This result
is important as it indicates the majority of user place visits
are relatively localized; places are most likely to be visited by
those who live or work near the place. Collectively, these two
findings are useful when selecting a final crowdsensing user
population from a cross-section of willing participants.

Our approach is a generative model based on the conditional
probabilities representing the two observations, as just de-
scribed, with functions used to the model data. To vali-
date the model we assume the actual place locations (from
FourSquare) and physical dimensions of Seoul. For each user
in the simulation we must assume a location where they live.
In addition, we grouped the places into four categories based
on the number of visited users (i.e., 1000+, 100-999, 10-99,
1-9) as observed in the social media dataset. We then es-
timate the parameters in the model according to each cate-
gories. This approach incorporates an important behavioral
tendency of users: users likely visit popular places rather than
unpopular ones. For example, a user may visit a supermarket
very frequently, but he/she may rarely visit a travel agency
(unless a trip is planned) even if it is nearby to his/her home.
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Figure 9. Estimation model about number of users and place coverage.

Figure 9 presents results that validate the estimation model.
We again assume use the number of places in the social me-
dia dataset as the total number of places in the entire city.
For low numbers of users we can compare the model pre-
dictions to real values from our dataset. Based on the 100
round simulation using real traces, our estimation model ac-
curately predicts the coverage with an error of 11.3% (see
inset in Figure 9). Next, we use the model to predict the in-
crease in coverage assuming users are systematically selected
from one of the 25 districts in Seoul with their living location
set to a random location within the district. Under this sce-
nario, the model predicts in the extreme ≈ 25,000 users will
necessary to cover 60% of popular places (visited by 100+
users) in Seoul over a two month span – however, this is
only 0.2% of entire population. Smartphone app user pop-
ulations of this size are not that uncommon. For example,
SeoulBus [36] used for checking bus arrival information has
268,000+ users living in Seoul today. This same model can
be applied to estimate the required user population necessary
for various targeted groups of places. One key limitation of
this result however is the majority of our participants are con-
nected to Yonsei University and may be more mobile and so-
cially active than typical members of the city population.

Influence of User Privacy Concerns

During this study three highly sensitive data types are col-
lected – images, audio clips and location (place visits and ex-
plicit location). In the following set of experiments we inves-
tigate: (1) Are users willing to collect this type of data? (2)
If so, in which places do they collect this data? (3) How does
these aspects of user behavior vary within the demographic
groups represented in the study?

Feasibility. We find the majority of users are willing to col-
lect and share all three data types, at least under certain con-
ditions, during the study. As suggested in prior work (e.g.,
[19]), audio is the most sensitive modality with 29% of users
considering too sensitive to share and choose to disable it for
the entire study. Nevertheless, on average for each place visit
15 audio clips are collected along with 4 photos while loca-
tion is also enabled 95% of the time. This overall result is
important in that it shows despite natural concerns there are
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Figure 10. (a) Ratio of users who prohibit the collection of location and
audio sensing. (b) Ratio of places where users prohibited the collection
of audio data.
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Figure 11. Ratio of users who prohibit the collection of audio according
to (a) ages, (b) occupation, and (c) sex.

still enough willing users to crowdsource all three of these
rich, yet sensitive, data types. As discussed in the following
subsection, the availability of such data can act as valuable
building blocks for a variety of crowdsensing applications.

Place Categories. Figure 10 shows how often users disable
location and audio collection across a range of place types
across all users. Figure 10(a) highlights place categories that
are personal to each user that we determine by interviewing
each study participant. Not surprisingly users are cautious
when sampling in their own homes (81%) and workplace
(86%) but much more open to homes of friends (11%) and the
workplaces of others (30%) – likely because of it being con-
sidered a semi-public place. However, most users are willing
to share location data (unlike audio) within private places:
only 7% of users are cautious about sharing location data in
personal places. Figure 10(b) presents the places where a user
prohibits the audio collection for all other place categories
based on the FourSquare category assignment. We find users
are much more willing to capture data in public places. Users
prohibit audio sampling in 16% of places. In contrast, users
enable audio collection in 93% of food places (e.g., coffee
shops/restaurants). These results have the following impli-
cations for building crowdsensing applications: (1) privacy
concerns will not effect the coverage of public place types;
but, (2) applications that require sampling in personal spaces
(e.g., to understand user or community behavior) will be more
challenging to develop and require larger user populations –
although potentially still feasible as data is still collected.
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Figure 12. Amount of (a) image and (b) audio data according to place

category.

Demographic Differences. Attitudes to privacy are well-
known to vary based on personal beliefs and characteristics
(e.g., [15]). Figure 11 presents the same privacy sharing infor-
mation discussed earlier in this section but separated by sub-
ject age, occupation and sex. We omit the results of teenagers
(i.e., high school students) as the population size is too small
(3 users) to be meaningful. It appears office workers and
women tend to prohibit the sampling in more places relative
to students and men. Interestingly, this pattern does not hold
in terms of the amount of data collection. On average, women
collected 71% more images than men (the top-5 individual
data contributors in the study are all women), and students
take 24% more images than office workers. The result sug-
gests women (at least in our study) are inclined to perform
crowdsourcing tasks (i.e., picture taking), but they are sensi-
tive to privacy and carefully use our data collection tool when
doing so. These findings are useful in understanding the type
of user population needed to capture certain types of data.
When deploying a crowdsensing system this should jointly
be considered along with user mobility patterns as both fac-
tors have considerable influence on the data that is collected.

Characterizing CrowdSensed Place Data

In our final set of experiments, we examine the data collected
during the study and attempt to mine place-related contexts
using off-the-shelf image and audio classifiers. Specifically,
we consider: (1) What type of images and audio are collected
in each place category? (2) How can the problem of low-
quality data collected by untrained users be overcome? (3)
Which contexts are contained in the data collected?

Place Categories. As already shown in Table 2, a large vol-
ume of image and audio data is collected during the study.
Figure 12 further categorizes collected images and audio
clips based on content, while also showing the place cate-
gory where the data is captured. From Figure 12(a) we ob-
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Figure 14. (a) Distribution of confidence scores in OCR and (b) object
recognition.

serve food and shopping related places are where the ma-
jority of images are captured; in such places, a great frac-
tion of images also contain text detected by OCR. In con-
trast, place categories where users spend the majority of their
time (e.g., residences, colleges, office) few images are col-
lected. These results indicate such places are not well suited
to exploit image-based contexts. This may be significant for
systems seeking to monitor user place visits more continu-
ously throughout the day. Figure 12(b) groups audio clips
into three categories, namely audio containing: human voice,
environmental sounds and one “other” category for the re-
mainder. We find from this figure large amounts of audio
is collected in place categories including: residences, food
places, colleges, shopping places, and offices. Potentially au-
dio may be able to compensate, under some scenarios, for the
lack of images available in certain place categories (e.g., of-
fices). However, we also find overall only 8% of collected
audio contains recognizable sounds (viz. speech or environ-
mental categories). Such inefficiency highlights the need for
more intelligent sampling strategies than the simple scheme
used in our system.

Coping with Noise. Perhaps the most significant problem
of crowdsensing is the low quality of sensing even though the
system collects a huge volume of data. Users are not pre-
cise when capturing images, and audio clips are automati-
cally sampled regardless of the ambient conditions. As a re-
sult, the automatic extraction of contexts from this dataset is
challenging. Figure 13 quantifies this difficulty by presenting
the accuracy of the four primary classifiers used in our study:
OCR, object recognition, speech recognition, and sound clas-
sification. Despite our use of state-of-the-art techniques, the
baseline precision and recall results for all classifiers are ex-
tremely low, ≈10% and ≈7% respectively.



Table 3. Example Classifiers Output.

Data Source Semantic Contexts Frequencies Locations

Image 

Chair/Table 598 143 

TV/Monitor 160 34 

ATM Machine 17 4 

Flowerpot 21 7 

Audio 

Conversation 1,716 470 

Horn of Cars 419 212 

Typing 78 18 

Cough 248 69 

Image/Audio 14,081 Unique Words 56,867 913 

Figure 14 highlights a potential solution. We find the clas-
sifier confidence algorithms we adopt in our crowdsensing
system (see earlier system design section) are reasonably ac-
curate even with low quality data. As an example, Figure 14
shows how false positives decrease if classifier results are ig-
nored unless they also have a high confidence score. This is
only possible if the confidence algorithm is effective. In Fig-
ure 14(a) 91% of OCR false positive results are filtered if we
set a threshold of 300. Similarly, Figure 14(b) shows for ob-
ject recognition we can eliminate 92% of false positives by
using a threshold of 3. We find similar results across all clas-
sifiers in our system.

Although simply requiring a high confidence score is effec-
tive in lowering false positives, and thus increasing overall
accuracy, it often causes many true positives (i.e., correct
classifier results) to also be ignored. We find this occurs for
all classifiers we test, with the exact quantity depending on
confidence threshold used. However, just as noise is an in-
herent property of crowdsourcing so is redundancy. For ex-
ample, Figure 5(b) indicates during the study users in social
media and crowdsensing visit 60% of places every 1.4 days
and 3.1 days respectively. Such redundancy allows us to set
confidence thresholds at levels that would otherwise (in non-
crowdsourcing scenarios) be impractical because of a limited
number of opportunities to classify a particular context.

Frequently Extracted Contexts. To better understand po-
tential crowdsensing application scenarios we present a se-
lection of classifier results, as seen in Table 3. In all cases
we tune each classifier until false positives fall to 2% even
though we understand this will filter out a large number of
correct classification results. Table 4 provides examples of
contexts extracted by manual labeling.

From Table 3, we find words extracted from conversation and
writing in the environment are particularly promising sources
of context. A total of 14,081 unique words (among 56,867
total recognized words) are extracted using both OCR and
speech classifiers. One key reason we believe the number of
classification results can remain high (such as, in the case of
written words) – even when applying aggressive confidence
thresholding – is because many sources of context (signs etc.)
are static in the environment. As a result, these sources pro-
vide multiple opportunities for classification to occur cor-
rectly each time a user visits a place; this appears to be a
general principle designers of these systems can leverage. In
Table 4, we find common words extracted are tied, for exam-
ple, to entities, brands and locations. Such words describe
different attributes of a place. This suggests that a number

Table 4. Frequently occurring Sounds, Words, and Objects.

Type Frequency Top Results (ordered by high frequency) 

Sounds 

> 500 music, laugh, foot stepping, car & street 

> 100 
put down objects, cough, type keyboard, click

mouse, beep (card, button), writing, crashing, game

> 50 
printing, paper passing, door open & close, bell

ringing, moving objects, clapping, zipper 

> 20 
glass hitting, humming, screaming, knocking,

vibration, water flowing, sign, crying 

< 20 
running, vacuum, dryer, brushing, sign, animal

sounds (cat, dog, bug) 

Words 

> 100 
store name (McDonald, Starbucks), food name (rice,

noodle), province name (Seoul, Shinchon) 

> 50 
cafe, station, pc, information, date info. (June, Sunday),

floor info. (1F, B1F), brand name (Samsung, Hyundai)

< 50 
here, cashier, open, transfer, URL info. (www, kr),

toilet, pick, service, new, room, best, fresh, atm 

Objects 

> 500 person, chair, table, light 

> 100 
sign, plate, flowerpot, monitor, board, window, tv,

bag, menu board, picture frame 

> 50 
display stand, desktop, paper, box, clock, sofa, trash

box, refrigerator, bottle, book shelf 

< 50 
cup, speaker, curtain, price tag, keyboard, door, camera,

laptop, shoes, vending machine, calendar, cosmetics, atm

of opportunities exist for various types of automated place
understanding. Potential scenarios include: inferring store
open hours, performing price comparisons, and measuring
customer service – for instance, queuing wait times.

In Table 4, we also observe contexts commonly related to
activities or actions. For example, contexts such as: music,
clapping, laughing, coughing and typing. These contexts can
be informative regarding routine user behavior during a place
visit. Possible applications include: building an understand-
ing of what occurs during place visits (e.g., how entertained
is an audience based on overheard laughter or clapping?); or,
even for performing place comparisons based on activity. For
example, comparing two coffee shops based on if people tend
to quietly work there or if people often talk and listen to live
music. However, because context inferences tend to accumu-
late over multiple place visits – as discussed above – it ap-
pears crowdsensing is not well suited to making assessments
on a visit by visit basis (i.e., a form of activity recognition)
but instead making assessments incrementally as aggregate
trends slowly build up.

LIMITATIONS

Despite the scale of our study, the participant population is
not particularly diverse. Our data was collected only in a sin-
gle city in South Korea, with 65% of subjects being univer-
sity students (both graduate and undergraduate). Moreover,
smartphone users in South Korea are some of the most active
phone users in the world [35]. Similarly, user behavior with
respect to privacy is known to be sensitive to characteristics
like culture and occupation. As a result, we accept some of
our findings still remain to be verified by performing similar
experiments elsewhere in the world.

This study seeks to investigate a broad range of coverage and
scalability related issues encountered in place-centric crowd-
sensing. Many of these issues (e.g., modeling the relationship
between coverage and the user population) warrant additional
experiments and investigation beyond the results presented in
this paper. We anticipate revisiting these topics as part of



future focused follow-up investigations, in addition to invit-
ing other researchers to examine these topics using the study
dataset that we have released publicly [30].

RELATED WORK

In this section, we describe closely related prior work while
also highlighting the novel contributions of our research.

Mobile Crowdsourcing. Crowdsourcing is an active area
of interest, and has been applied to a variety of different do-
mains, ranging from translation [13] to image search [29].
Recently, a number of projects have examined the architec-
tural requirements of these systems at scale [9, 27]. We com-
plement this growing body of work by providing further in-
sights that aid the evolution of crowdsourcing architecture
and application scenarios.

[6, 24, 20, 25, 11, 7] are recent studies of place-centric
crowdsensing. For example, SurroundSense [6] used smart-
phone sensors to build sensor fingerprints for place recogni-
tion. Similarly, VibN [24] leveraged crowds to enhance lo-
cal search based on data from audio clips and user behavior.
Again, our study fulfills a complementary role to this research
by providing analysis of use to designers of such systems.

Although we perform our study using the same crowdsensing
system proposed and evaluated in our own prior work [7] –
this paper and [7] make distinct contributions. Specifically,
all results presented in [7] are tied to a single place-centric
application (place category classification); furthermore, [7]
performs no analysis of coverage, scalability or privacy and
only indirectly considers collected data in terms of how it im-
pacts the targeted place-centric application.

Participatory and Opportunistic Sensing. Mobile crowd-
sourcing and the results of our study are tightly linked with
other sensing system architectures, namely participatory and
opportunistic sensing. [11, 28] have a particular city focus:
LiveCompare [11] leverages the camera to explore the dis-
covery of grocery bargains; EarPhone [28] constructs a noise
map by opportunistically collecting audio samples. These
systems motivated our study and help guide our study aims.

Privacy. [17, 19, 10] have investigated privacy concerns
of sensor usage; [19] in particular provided detailed insights
with respect to the usage of the microphone. Our findings are
fairly consistent with both these studies. In addition, we con-
tribute by providing further results under the specific domain
of crowdsensing, and in a different culture and city.

CONCLUSION

In this paper, we presented a detailed study based on one
of the largest examples of urban crowdsourcing using smart-
phones performed to date. We collected two-months of smart-
phone sensor data from 85 study subjects who made a total
of ≈ 48,000 place visits in Seoul, Korea. Our investigation
examined key issues for place-centric crowdsensing – specif-
ically, we studied place-temporal coverage properties, cover-
age scalability, participant privacy concerns and performed a
characterization of the collected data. We believe the analy-
sis and findings we have presented provide valuable insights
useful not only for builders of crowdsensing systems; but,

also apply to other closely related sensing systems that rely
on having a close engagement with the user.
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